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A B S T R A C T

Satellite radar altimetry is one of the most powerful techniques for measuring sea surface height variations, with
applications ranging from operational oceanography to climate research. Over open oceans, altimeter return
waveforms generally correspond to the Brown model, and by inversion, estimated shape parameters provide
mean surface height and wind speed. However, in coastal areas or over inland waters, the waveform shape is
often distorted by land influence, resulting in peaks or fast decaying trailing edges. As a result, derived sea
surface heights are then less accurate and waveforms need to be reprocessed by sophisticated algorithms. To this
end, this work suggests a novel Spatio-Temporal Altimetry Retracking (STAR) technique. We show that STAR
enables the derivation of sea surface heights over the open ocean as well as over coastal regions of at least the
same quality as compared to existing retracking methods, but for a larger number of cycles and thus retaining
more useful data. Novel elements of our method are (a) integrating information from spatially and temporally
neighboring waveforms through a conditional random field approach, (b) sub-waveform detection, where re-
levant sub-waveforms are separated from corrupted or non-relevant parts through a sparse representation ap-
proach, and (c) identifying the final best set of sea surfaces heights from multiple likely heights using
Dijkstra's algorithm. We apply STAR to data from the Jason-1, Jason-2 and Envisat missions for study sites in
the Gulf of Trieste, Italy and in the coastal region of the Ganges–Brahmaputra–Meghna estuary, Bangladesh. We
compare to several established and recent retracking methods, as well as to tide gauge data. Our experiments
suggest that the obtained sea surface heights are significantly less affected by outliers when compared to results
obtained by other approaches.

1. Introduction

For several decades, radar altimetry is routinely being used for
monitoring sea surface height (SSH) variations. Observed SSHs play a
key role in several applications, ranging from operational oceano-
graphy (Chelton et al., 2001) and tidal modeling (Savcenko and Bosch,
2008; Wang, 2004) to gravity estimation (Hwang et al., 1998), and they
serve as important indicators in climate research. Recently, radar alti-
metry in coastal zones (Gommenginger et al., 2011) and for inland
water bodies (Birkett and Beckley, 2010) has become a topic of in-
creasing interest. However, in both applications one needs to mitigate
the potentially significant land influence on the altimeter return signal.

The altimeter instrument on-board a satellite emits a spherically
propagating, nadir-directed radar pulse, which is reflected at the sur-
face. Range information can then be inferred from the two-way travel
time (Fu and Cazenave, 2001). In addition, the returned signal energy is
measured over time, forming an altimeter waveform. It can be shown
that over an ideal surface, the return waveform corresponds to the

theoretical Brown model (Brown, 1977) and the estimated shape
parameters of this model provide information on mean SSH and sig-
nificant wave height (SWH), while the amplitude strength of the re-
flected radar pulse can be used to derive wind speed. On board the
satellite, the waveform signal is sampled at discrete epochs with a
spacing of about 3 ns of two-way travel time, which are generally re-
ferred to as range gates (Chelton et al., 1989). Altimeter measurements
do not refer to an individual point directly below the satellite, but ra-
ther to a footprint with a diameter of several kilometers, depending on
SWH and the altitude of the altimetry mission.

As illustrated in Fig. 1, the return waveform over the open ocean
consists of three main parts; first, before any return energy from the
radar pulse is measured, the waveform contains only thermal noise
which is present in all radar systems. As soon as the front of the radar
pulse hits the wave crests, the altimeter footprint is defined by a single
point and the measured return energy begins to rise. Afterwards, more
of the pulse illuminates the surface around the initial point and the
footprint becomes a growing circle, which corresponds to rapidly
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increasing signal energy in the measured altimeter waveform. The
leading edge of the altimeter return waveform is defined between the
first energy return from wave crests and the return energy after the
radar pulse has reached the wave troughs (Fig. 1). At this point. the
area of the footprint circle reaches its maximum, which is defined as the
pulse-limited footprint (PLF, Chelton et al., 1989). Afterwards, the
circle transforms into an annulus with increasing inner and outer radii,
but with a fixed illuminated area. The corresponding signal energy
measured outside of the PLF is referred to as trailing edge of the
measured waveform (Fig. 1). The slope of the trailing edge can be
utilized to derive information on the off-nadir attitude of the altimeter
satellite.

The 50%-point on the leading edge corresponds to the mean sea
level between wave crests and wave troughs, and thus represents the
reference point for the range measurement. An algorithm on board of
the satellite tries to position this point inside a pre-defined range
window at a fixed tracking range gate (31 for Jason-2, Quartly et al.,
2001). This range window consists of a fixed number of range gates,
covering about 50 m depending on the satellite mission, and it is po-
sitioned by the onboard tracker based on prior information on the
range. However, positioning is not always perfect and the 50%-point is
not located exactly at the tracking gate. Consequently, this requires a
ground-based reprocessing of the altimeter waveforms transmitted back
to Earth, a procedure which is called retracking. Over the open ocean,
the shape of the waveform will be close to the theoretical Brown model
with the 50%-point being only slightly shifted from the tracking gate
position, and this can be easily corrected using an ocean model re-
tracker (Brown, 1977; Deng, 2003; Hayne, 1980). For ice surfaces
where the waveform signal often contains two leading edges due to the
radar signal partly penetrating through the upper snow layer, specia-
lized retracking algorithms have been developed (Martin et al., 1983).
However, in coastal areas the waveform shape is typically disturbed by
land influences in the altimeter footprint, resulting in peaks or fast
decaying trailing edges.

These deviations of coastal waveforms from the Brown model lead
conventional ocean retrackers to generate diverging or strongly biased
estimates of SSH, as land-induced peaks propagate along the trailing
edge towards the leading edge while the altimeter ground track ap-
proaches the coast (Lee et al., 2010). In order to mitigate the land in-
fluences on the waveform shape, various tailored approaches have been
proposed. As an example for methods that seek to model the entire

waveform, (Halimi et al., 2013) combined a 3-parameter Brown ocean
model with a modeled asymmetric peak to account for land influences.
A different approach for dealing with the influence of peaks on the
retracked estimates is to first partition the waveform in a pre-processing
step; i.e. to identify relevant parts of the waveform, such as the leading
edge, but also possible peaks. For example, (Hwang et al., 2006) first
identify relevant sub-waveforms and then apply a threshold retracking
algorithm to each of the sub-waveforms, which leads to multiple
equally likely SSH estimates at each location from which the final es-
timate is chosen based on comparison to a-priori height information. In
this way, peaks that appear outside of the relevant sub-waveforms are
ignored. Recently, for retracking SSHs over inland water bodies,
(Uebbing et al., 2015) combined the sub-waveform approach from
(Hwang et al., 2006) and the waveform model from (Halimi et al.,
2013) to suppress land-induced peaks on the trailing edge, but also to
account for possible peaks close to the leading edge of the waveform.
This could be shown to lead to improved lake heights compared to
conventional methods. In a different approach, (Passaro et al., 2014)
suggested a two-step procedure, similar to a previously published ap-
proach by Sandwell and Smith (2005), where in the first step all 3
parameters (amplitude, range and SWH) are estimated. In the second
iteration they fixed the SWH to a mean value derived from the first step
and re-estimated the amplitude and range correction, since SWH esti-
mations are strongly correlated to the range correction. This leads to
improved SSHs closer to the coast.

Here, we introduce a novel method for the analysis of sea surface
heights from altimetric waveforms, which will utilize spatial informa-
tion from neighboring range gates within one waveform, as well as
temporal information from neighboring waveforms along the altimeter
track. This Spatio-Temporal Altimetry Retracker (STAR) can be applied
to altimetry data over the open ocean, as well as in coastal areas. Our
contributions are twofold: First, our analysis includes a novel sub-wa-
veform detection scheme, which to our knowledge for the first time
integrates spatial as well as temporal information. This differs from the
conventional sub-waveform detection algorithm (Hwang et al., 2006) in
that we partition the entire waveform into separate sub-waveforms,
instead of identifying possible, disjointed leading edges. Second, in
order to be largely independent of the choice of tuning (or ‘hyper’)
parameters within the sub-waveform detection scheme, we derive
multiple sub-waveform partitionings by varying the weight w between
unary and binary terms of the conditional random field. This leads to a
range of partitionings of the entire waveform, and subsequently to a
point cloud of equally likely SSHs at each measurement position, each
of which is estimated using a 3-parameter ocean model (Halimi et al.,
2013). We then employ Dijkstra algorithm (Dijkstra, 1959) to find
reasonably smooth SSHs, without resorting to fitting.

Our sub-waveform detection scheme uses a sparse representation
(SR) approach, where the return power at all range gates within one
particular sub-waveform is modeled by a weighted linear combination
of a single common set of basis waveforms, which are derived from
synthetic Brown waveforms. The concept of SR has been applied to
many areas of signal analysis (Wright et al., 2010), but this study ap-
pears to be the first which uses it on radar altimetry.

SSHs and other sea surface conditions such as wave height are
neither independent along tracks, nor between neighboring tracks
Sandwell and Smith (1997). Spatial information has been used in the
analysis, for example, by Maus et al. (1998) through simultaneously
processing of a sequence of waveforms for tracking of travel times, or
Halimi et al. (2016) for a smooth estimation of altimetric parameters.
This means, the integration of spatial information can be carried out in
different parts of the analysis. The latter two approaches, for example,
integrate spatial information about neighboring waveform to develop
improved estimation algorithms for retracking. Here, we integrate
spatio-temporal information by means of a conditional random field
(CRF, Lafferty et al., 2001): to this end, we introduce spatial relations
between the return power at range gates of temporally neighboring

Fig. 1. Waveform with disturbing peak caused by land influences (colored in blue). The
relevant part for sea surface height, determined by sub-waveform detection, is illustrated
in green. A theoretical waveform model is depicted in orange. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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waveforms, i.e. neighboring waveforms within one pass and cycle, and
relations between the range gate power within a single waveform. In
this way, range gates which are relevant for SSH estimation can be
distinguished from corrupted or non-relevant waveform parts, since
they are represented through a different linear combination of basis
sub-waveforms (see Fig. 1). In contrast to Halimi et al. (2016) where the
conditional random field is used as part of an algorithm to enforce a
smooth estimation of the retracking parameters, we propose to use the
conditional random field at the sub-waveform detection step. Subse-
quently, any retracking method can be applied to the identified in-
dividual sub-waveforms for deriving the SSH, thus effectively ignoring
disturbing signals outside the selected sub-waveform. This means, our
approach could be transferred in future to the analysis of Delay-Doppler
altimetry.

This paper is organized as follows: First, we introduce the altimetry
data that we used for validating our method, as well as our two study
sites in Section 2. We describe the sub-waveform detection with SR and
the integration of spatio-temporal knowledge by employing a CRF in
Section 3. Moreover, the estimation of single SSHs and the determina-
tion of the best set of SSHs from multiple heights using Dijkstra's
algorithm is explained in Section 4. In Section 5, we compare the per-
formance of our sub-waveform detection against an existing method
and we evaluate the proposed analysis framework by means of ana-
lyzing Jason-1, Jason-2 and Envisat waveforms in the coastal regions of
the Gulf of Trieste, and in the northern Bay of Bengal in the coastal
waters of Bangladesh. Section 6 concludes the paper.

2. Data and study sites

2.1. Data

We apply our retracking method to Jason-2 Sensor Geophysical
Data Records (SGDR) of the Jason-2 mission, as well as to SGDRs from
the Jason-1 and European Environmental Satellite (Envisat) missions.

The Ocean Surface Topography Mission (OSTM)/Jason-2 was
launched in mid of 2008 succeeding the Jason-1 mission on the same
orbit. The satellite flies in a near circular ∼10 day repeat orbit with an
altitude of 1336 km and inclination of 66 ° and a separation of the
groundtracks equal to 315 km at the equator. The main instrument is
the Poseidon-3 altimeter which emits radar pulses in the Ku-Band
(13.575 GHz/2.21 cm) and C-Band (5.3 GHz/5.08 cm) (AVISO, 2015).
Additional instruments are a microwave radiometer used to derive the
wet troposphere correction, as well as GPS and DORIS systems for
precise orbit determination (Rosmorduc et al., 2011). The Jason-2
SGDRs have been obtained from the Archiving, Validation and Inter-
pretation of Satellite Oceanographic (AVISO) team which is part of
Centre National d’Etudes Spatiales (CNES). The SGDRs are sorted by
pass and cycle, including 254 passes per cycle or ∼10 day repeat orbit
and we utilize data of passes 053 and 196 from the beginning of the
mission in July 2008 (cycle 0) until the end of 2014 (cycle 239).

The composition of the Jason-1 mission is very similar to Jason-2. It
was launched in December, 2001 as a successor to the Topex/Poseidon
mission. After the launch of Jason-2 in June, 2008 both satellites flew
on the same orbit in close distance to allow intercalibration of the sa-
tellite missions. After 6 months, Jason-1 was moved to an interleaved
orbit located in the middle between the nominal orbit to increase the
spatial resolution of the combined Jason-1 and Jason-2 data until
January, 2012. Afterwards the satellite was moved to a drifting geo-
detic orbit and passivated and decommissioned in July, 2013 after
losing contact. We will use data from the interleaved period from
February, 2009 (cycle 263) until January, 2012 (cycle 370). The Jason-
1 SGDRs for the interleaved orbit are acquired from the Physical
Oceanography Distributed Active Archive Center (PO.DAAC, ftp://
podaac.jpl.nasa.gov/allData/coastal_alt/L2/ALES/jason-2/) operated
by the Jet Propulsion Laboratory (JPL) which is part of the National
Aeronautics and Space Administration (NASA).

The Envisat satellite was launched in March, 2002 succeeding the
ERS-2 mission in the same orbit by the European Space Agency (ESA).
The orbit is a 35-day repeat orbit with an altitude of 800 km, about an
inclination of 98.55° which allows the satellite to cover higher latitude
regions compared to e.g. Jason-2 with a higher spatial resolution
(80 km separation at the equator) at the cost of a longer repeat period of
35 days. The satellite carries a total of 10 instruments of which the
DORIS positioning system, the microwave radiometer and the Radar
Altimeter 2 (RA2) altimeter instrument are of most importance to us
(Rosmorduc et al., 2011). The RA2 altimeter is a dual frequency alti-
meter emitting radar pulses in Ku-Band (13.575 GHz/2.21 cm) and S-
Band (3.2 GHz/9.37 cm) (ESA, 2007). The Envisat SGDR data are pro-
vided by ESA (https://earth.esa.int/). We utilize data from June, 2002
(cycle 7) to September, 2010 (cycle 93).

We extract the 20 Hz (18 Hz for Envisat) tracker range, altitude and
waveforms which are needed during the retracking algorithm.
Additionally, 1 Hz atmospheric model corrections for the dry and wet
troposphere, as well as the ionosphere are extracted from the SGDR
data and linearly interpolated to the high rate positions.

For validation of the retracked coastal SSHs, tide gauge data with
hourly resolution from the University of Hawaii Sea Level Center
(UHSLC) are used. The hourly data are uncorrected with respect to tidal
and inverse barometric effects and we do not apply these corrections to
neither the altimetry data, nor the tide gauge data to remove the in-
fluence of these corrections on the validation. The tide gauge data for
Trieste, Italy is available from June, 2009 to December 2015 and for the
tide gauge station in Chittagong, Bangladesh we have data from July,
2007 till December 2015. Additionally, we utilize openly available GDR
datasets for the Jason-2 (cycles 1 to 239) and Envisat (cycles 7 to 93)
mission that include the ALES retracked ranges for comparison which
are distributed by PO.DAAC, JPL.

For the validation of significant wave height and wind speed, we
utilize model data from the ERA-Interim reanalysis (Dee et al., 2011)
which is distributed by the European Centre for Medium-Range
Weather Forecast (ECMWF) and interpolated to the altimetry track.

2.2. Study sites

For investigating the quality of our proposed STAR algorithm, we
selected two study sites located in the Gulf of Trieste and in the coastal
regions of Bangladesh. The sites include varying conditions, including
shallow coastal waters, open ocean areas, temporally submerged sand
banks and transition zones between river estuaries and the ocean.

2.2.1. Trieste
The first study site is located in the northern Adriatic Sea in the

north-eastern part of the Gulf of Venice and includes the Gulf of Trieste.
The descending nominal orbit pass 196 of the Jason-2 mission crosses
the study area from north-west to the south-east (Fig. 2 (a)). It crosses
from the Italian mainland to ocean close to the city of Marano Lagunare
at approx 45.76 °N and covers about 5.9 km of the Laguna di Marano
before there is a short ocean–land–ocean transition over the Isola di
Sant’ Andrea at ∼45.71 °N. Then, the track covers about 45.5 km of
open ocean in the Gulf of Venice before transitioning to the Croatian
mainland at∼45.36 °N. For the last 5 km from∼45.4 °N until the track
is over the Croatian mainland, it runs very close to the Croatian coast
with a distance of less than 2 km.

Furthermore, we utilize data from the ascending Jason-1 pass 161 of
the interleaved orbit (Fig. 2 (a)). It crosses our study area from the
south-west to the north-east. The first 37 km are located over the open
ocean and the groundtrack covers the Croatian mainland from
∼45.48 °N to 45.50 °N. Then the track covers open water until it
reaches the Italian mainland at ∼45.71 °N. At about 45.54 °N the track
is located less than 2 km away from the Slovenian mainland.

The tide gauge station Trieste is located at ∼13.75 °E and 45.65 °N
in the harbor of the City of Trieste in the Gulf of Trieste. The distance of
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the tide gauge station to the Jason-2 groundtrack is about 31 km at the
closest point.

2.2.2. Bangladesh
The second study site is located in the northern Bay of Bengal in a

region right off the coast of Bangladesh. The region is covered by the
ascending Jason-2 nominal orbit pass 053 which crosses the study area
from the south-west to the north-east (Fig. 2 (b)). The track coverage
starts over the open ocean parts of the Bay of Bengal and reaches
Sandwip Island after ∼95 km at ∼22.41 °N. From ∼22.53 °N to
22.63 °N the track again covers a strip of about 13 km of open water
related to the estuary of the Ganges–Brahmaputra–Meghna Delta
(GBMD) before it reaches the Bangladesh mainland. Between latitudes
of ∼22.25 °N and 22.35 °N there are some sand banks located along the
track which are submerged during high tide, but not during low tide.

Additionally, the descending pass 0352 of the Envisat mission runs
almost parallel to the Jason-2 track and crosses the study site from the
north-east to the south-west. It first reaches open water related to the
GBMD at ∼22.67 °N and after about 14km the track reaches Sandwip
Island at ∼22.55 °N. At 22.40 °N, the track transitions back to open
water and afterwards covers the remaining 104 km of open ocean in our
study area. Again, the sandbanks mentioned above might influence the
data acquisition during low tide.

The Chittagong tide gauge station is located at ∼91.83 °E and
22.25 °N in the Chittagong harbor. The distance to the Jason-2
groundtrack is about 38 km at the closest point.

3. Sub-waveform detection

3.1. Notation

Let us consider L consecutive waveforms collected along a cycle,
each of which contains return energy for G range gates. We arrange
these waveforms in xl, l=1,…,L. Each waveform can be represented
through a set of overlapping windowed waveforms ξl g, ∈ xl with win-
dows centered at ξl g, and comprising Nξ neighboring range gates, as
illustrated in Fig. 3 for a single echo. Within this framework,
sub-waveform detection means identifying K sub-waveforms in each xl
by deciding for each range gate on indices yl g, , which define the best-
fitting sparse representation (SR)-based models. The aim of the pro-
posed approach is to optimally detect these sub-waveforms, where the
number of models per waveform is unknown and needs to be de-
termined during the detection process.

3.2. Detection framework

The schematic of our sub-waveform detection framework is illu-
strated in Fig. 3. The input of the framework are windowed waveforms
ξl g, and synthetic Brown waveforms. These Brown waveforms are the
basis waveforms collected in a dictionary D, which is used for a sparse
representation-based modeling of signals. Given the input, a conditional
random field is formulated, which consists of an unary, data-dependent
term computed by sparse representation, and a binary term enforcing a
smooth partitioning of the entire waveform. A variation of the
weighting between these two terms yield various sets of optimal indices

= yŶ [ ]w
l g
w
, , resulting in different partitionings of the entire waveform.

The framework is flexible regarding the chosen methods, e.g. the sparse
representation can be replaced by other methods such as correlation or
other similarity measures. In the following, detailed explanations to the
framework will be provided.

3.3. Conditional random field

In order to perform sub-waveform detection while integrating in-
formation about neighboring range gates, we make use of a conditional
random field (CRF). The range gates are represented in a graph, where
each range gate is connected to spatially adjacent range gates within
one waveform and to temporally adjacent range gates along the sa-
tellite's ground track (see Fig. 3). The basic idea is the assignment of
each range gate, represented as windowed waveform, to the best-fitting
model, for which we use sparse representation in this framework.
Neighbored range gates which are assigned to the same model are
summarized to one sub-waveform. Therefore, all range gates in one sub-
waveform follow the same underlying model. In our approach, the
optimal sub-waveform partitioning minimizes the energy functional

U B
Q

∑ ∑= −
∈

ξ y ξ ξ y yY wE( ) ( , ) ( , , , ),
l g

l g l g
l g q

l g l q l g l q
,

, ,
, ,
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(1)

where the unary term U , depending on the windowed waveforms ξl g, ,
describes the agreement between the measured windowed waveform
and a sparse representation model represented by yl g, . These models are
identified by so-called non-zero activation indices Y=[yl g, ], indicating
which synthetic basis waveforms are used for signal reconstruction
within each specific model. The binary term B depends on both the non-
zero activation indices yl g, and yl q, , as well as the windowed waveforms
with Q∈q indicating the set of direct neighbors of each range gate. The
weight between both terms is a hyperparameter and is denoted by w. In
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Fig. 2. Location of the altimetry tracks and the tide gauges used for validation of the retracked SSHs.
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our approach, we assume a sub-waveform to be a set of neighboring
range gates which are modeled with the same non-zero activation in-
dices, as explained in more detail in the next paragraphs.

3.3.1. Unary term — sparse representation
Generally, in terms of sparse coding (e.g., Olshausen and Field,

1997) a (G×1)-dimensional waveform xl can be represented by a
linear combination of a few basis waveforms, which are collected in a
(G×V)-dimensional dictionary D=[dv], v=1,…,V, such that
xl=Dαl+ϵ with ∥ϵ∥ being the reconstruction error. Solving this pro-
blem means finding the activation vector αl containing the optimal
coefficients, whereas most of the elements are zero.

During sub-waveform detection, instead of representing the whole
waveform signal, only windowed waveforms will be sparsely re-
presented by windowed basis waveforms. In this case, each range gate,
represented by a windowed waveform, can be assigned to a specific
sparse linear combination of windowed basis waveforms constituting
the best approximation for it. In more detail, a windowed waveform ξl g,
is sparsely represented using activations αl g, and a sub-dictionary Dg

that contains certain rows of the underlying dictionary D (see identical
colored entities in Figs. 3 and 4). Since the dictionary comprises syn-
thetic Brown waveforms, sub-dictionaries contain specific parts of the
synthetic waveforms. The indices of non-zero elements in αl g, , i.e., the
dictionary elements participating in the reconstruction, are the non-
zero activation indices yl g, used for defining the models (cmp.
Section 3.3). It is important to note that D is fixed for L consecutive
waveforms, such that sub-dictionaries used for temporally neighboring
windowed waveforms are identical.

The optimal ̂αl g, can be formulated as

̂ = − ≤α α ξ α Margmin D subject to ,l g g l g l g l g, , , 2 , 0 (2)

where the indices of M non-zero elements in ̂αl g, are given by the non-
zero activation indices yl g, . For a set of optimal activations ̂αl g, , the
reconstruction error of windowed waveform ξl g, will be

̂= −α ξr D ,l g g l g l g, , , 2 (3)

and rl,g=[rl,g] is the vector collecting the reconstruction errors for all
possible sets of dictionary elements. This optimization can be solved
with orthogonal matching pursuit (OMP, Tropp et al., 2006 ), which
falls in the class of greedy algorithms. For this, the first dictionary
element is chosen to be the one that maximizes the absolute value of the
inner product between the dictionary element itself and the sample
which is meant to be reconstructed; i.e. we maximize the collinearity.
Each further dictionary element is chosen in the same way, however,
using the current residual ϵ instead of the sample until the number of
the used dictionary elements exceeds M. The dictionary elements and
samples are normalized. An alternative would be an exhaustive search
through all combinations of non-zero activation indices, which how-
ever, would be computationally challenging.

In more detail, the unary term in the energy functional penalizes the
reconstruction error for a given set of non-zero activation indices and
the difference of its activations' sum to 1, both describing the agreement
between data and a specific sparse representation model:

̂∑⎛
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⎠
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where the first term is the normalized reconstruction error obtained by

Fig. 3. Detection framework: The input is given by altimetric waveforms and synthetic Brown waveforms. Each range gate is represented by a windowed waveform, i.e., the range gate's
center point and neighboring range gates, as illustrated by blue, violet and orange areas. A conditional random field is formulated, which consists of an unary, data-dependent term
computed by sparse representation and a binary term enforcing a smooth partitioning of the waveform. In the conditional random field, the graphical model is constructed by connecting
temporally adjacent range gates as well as adjacent range gates within one waveform. A variation of hyperparameters in the conditional random field result in different partitionings of
the entire waveform. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Schematic illustration of sparse representation of windowed waveforms. Colors in
xl indicate different windowed waveforms ξl g, , which are independently sparsely re-

presented. Colors in the dictionary are indicating Dg, i.e. the respective rows used for
reconstructing the windowed waveform. For sub-waveform detection, neighbored range
gates which are represented with the same dictionary elements are grouped to one sub-
waveform. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the non-zero activation indices yl g, , and the second term is the nor-
malized difference to 1 of the estimated activations ̂αl g, . Both unary
terms are normalized by the standard deviation ζ of the values for each
range gate, given by Z1=ζ(rl,g) and ̂= − ∑ αZ ζ (abs(1 ))v v l g2 , , , in order
to ensure an equal treatment of all range gates. The sum-to-one pena-
lization serves as regularization to constrain the solution space to rea-
sonable results, which can alternatively be directly incorporated in Eq.
(2) in a more restrictive way by introducing an additional sum-to-one
constraint, as often used in remote sensing (Bioucas-Dias et al., 2012).

A dictionary should have the following properties for our purpose:
First, the elements should have a high approximation ability, and
second the choice of used dictionary elements for reconstruction should
be unique and stable. In order to build a suitable dictionary, a set of
synthetically generated waveforms is sampled and relevant waveforms
are selected to serve as dictionary elements. We choose the most re-
levant synthetic waveforms by selecting these ones which are most si-
milar to the estimated waveforms and most dissimilar to each other. For
simulating dictionary elements, the parameters of the Brown model
(Brown, 1977), such as the waveform amplitude or the epoch, are
sampled randomly, where the probability density functions are chosen
to resemble empirical distributions of Brown model parameters from a
large set of open-ocean echoes from the Envisat or Jason-1/-2 missions.
In this way, the proposed algorithm will be as independent as possible
of the chosen altimetry mission.

3.3.2. Binary term
The binary term in Eq. (1) serves to incorporate prior knowledge

about the spatial relations between adjacent range gates within a single
waveform and between temporally consecutive waveforms within one
cycle. As mentioned before, we assume a sub-waveform to be a set of
neighboring range gates which are sparsely represented by a common
set of dictionary elements, i.e. they share the same non-zero activation
indices yl g, , which is set to be the objective in Eq. (1). Therefore, we
prefer neighboring range gates with similar characteristics to be re-
constructed with a common set of dictionary elements. The binary term
in Eq. (1) is given by

B =
⎧
⎨
⎩

=
≠

ξ ξ y y
ξ ξ y y

y y
( , , , )

cos ( , ), if
0, if

.l g l q l g l q
l g l q l g l q

l g l q
, , , ,

, , , ,

, , (5)

The similarity measure cos(ξ ξ,l g l q, , ) relaxes the constraint of the re-
presentation of neighboring range gates, e.g., in order to consider
possible adaptions of the range window by the satellite on-board
tracker.

3.3.3. Sparse representation-based conditional random field
As mentioned earlier, the evaluation of all possible sets of non-zero

activation indices is computationally difficult. However, this informa-
tion is needed in the CRF to find the best set of indices for all range
gates. To overcome this problem, we optimize the CRF in a greedy
manner. In detail, the search for the optimal estimation of non-zero
activation indices in iteration j=1 for a windowed waveform is per-
formed over D = …= V{1, , }l g

j
,

1 and fixed after the CRF application.
Stopping after a single iteration is identical to the usage of a correlation
similarity as unary term. For each further iteration j > 1, the optimal
sets of non-zero activation indices will be derived from
D = …− −y y V{{ , 1}, , { , }}l g

j
l g
j

l g
j

, ,
1

,
1 with −yl g

j
,

1 being the optimal set of non-
zero activation indices from the previous iteration. The final CRF that is
employed to find an optimal estimation of non-zero activation indices
in each iteration is given by the minimizer of the energy

Q
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(6)

where all entities correspond to the current iteration (index j is omitted
for simplicity). The final optimal set of non-zero activation indices
given a specific weight w is denoted by Y w.

4. Sea surface height estimation

In this study, we consider only the effect of the hyperparameter w,
i.e. the choice of the relative weight between the unary and binary
terms in Eq. (1). As it turned out in our numerical experiments, no
single choice of w provides optimal results for different cycles, different
study sites or altimetry missions. Therefore, we define a range of pos-
sible sub-waveforms by varying w. A variation of the hyperparameter w
in Eq. (1) leads to a variation in the number of detected sub-waveforms.
Therefore, we choose a set of reasonable W = …w w{ , , }P1 hyperpara-
meters. In other words, we derive multiple sub-waveform partitionings,
ranging from a very coarse partitioning which includes only a few sub-
waveforms to a very fine one which also captures small peaks in se-
parate sub-waveforms. For SSH estimation, we use all sub-waveforms
which are sufficiently large enough and which can be used for re-
tracking. We end up with several equally likely SSHs at each mea-
surement location which could be thought to form a ‘ point cloud’.
Finally, the Dijkstra algorithm is employed to choose the smoothest
combination of these SSHs, such that finally a single SSH at each along-
track location is provided.

4.1. Sea surface height

In the context of this study, we define SSH
∼hSSH as given by

= − + + + +∼h a R( Δ Δ Δ Δ ),SSH dry wet iono retr (7)

where a is the satellite's altitude and R is the tracker range related to the
fixed tracking gate and provided in the altimeter data records. The
atmospheric model corrections Δdry, Δwet and Δiono, extracted from the
SGDR data, refer to the influence of the dry and wet part of the tro-
posphere, as well as the ionospheric influence on the signal. The re-
tracking range correction Δretr is derived from the retracking procedure,
described below, by converting the estimated epoch t0 from two-way
travel time to range using Δretr=0.5ct0, where c is the speed of light in
vacuum.

Additional tidal corrections are applied after the final heights have
been selected, to reduce the impact of noise in the tidal corrections on
the final height detection. In particular, ocean tide correction will in-
troduce a large noise component in coastal areas which will corrupt the
selection of final SSHs through Dijkstra's algorithm.

Furthermore, we validate our retracking results against tide gauge
data with at least hourly temporal resolution without any tidal and
barometric corrections applied to remove possible effects from the
comparison. For this purpose we add relevant corrections

= − − − −∼h h Δ Δ Δ 0.468Δ ,SSH SSH ssb set lt pt (8)

where Δssb is the sea state bias correction which we compute as 5% of
our retracked SWH. Additionally, Δset is the solid earth tide correction,
Δlt is the loading tide and Δpt is the pole tide correction. The factor
0.468 only applies the solid earth part of the pole tide correction, ig-
noring the part resulting from ocean tides (Fenoglio-Marc et al., 2015).
In other words, we do not apply the ocean tide correction or the inverse
barometric correction to render hSSH being directly comparable to the
high rate tide gauge data.

4.2. Ocean model for retracking

For retracking, we employ a weighted 3-parameter ocean model
(Halimi et al., 2013) which is given by
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for each two-way travel time t, centered on the tracking gate. Here, NT

is the thermal noise which is pre-computed from the first few range
gates. The three fitted model parameters represent the amplitude A,
which is related to backscatter, the rise time of the leading edge σwhich
can be converted to SWH, as well as the epoch or retracking gate t0
which refers to the position of the mid-point of the leading edge. Ad-
ditionally, ψ is defined by

=
+

=

ψ c
γh a R

ϕ

γ θ

4 1
1 /

cos (2 ),

sin ( )
ln 4

,

e
2

(10)

where c is the speed of light in vacuum, Re is the radius of the Earth
(Deng, 2003) and ϕ is the off-nadir pointing angle which is assumed to
be zero in our application. The antenna beamwidth parameter γ is de-
fined in (Brown, 1977, Eq. (4)) and can be computed from the beam-
width θ of the altimeter instrument.

4.3. Shortest-path algorithm for finding the best set of sea surface heights

The problem that we discuss here can be viewed as an optimization
problem with certain constraints. Given now a ‘point-cloud’ of (equally)
possible SSHs for each groundtrack-point, we need to realize a con-
sistent SSH at each measurement position by finding the optimal SSH
candidates. Before applying a shortest-path algorithm, we remove
outliers from the ‘point cloud’ through the RANdom SAmple Consensus
(RANSAC) algorithm (Fischler and Bolles, 1981) while assuming a linear
model of SSH change in along-track direction. Sea level change is not
linear and thus, we apply the RANSAC algorithm with a threshold of 3 m
to a moving window covering about 20 s of measured data. By selecting
the moving window to cover 20 s, we make sure that we always include
a relatively large portion of water, especially at land-ocean transitions.
All points that deviate too far from the linear model estimated by the
RANSAC algorithm are discarded and the resulting set of accepted SSHs
is then used to find the shortest path and estimating the optimal SSHs at
each measurement location as illustrated in Figs. 5 and 6. Here, we
chose the Dijkstra algorithm (Dijkstra, 1959), but other shortest-path
algorithms would also be possible. Dijkstra's method requires one to
choose edge weights between individual connected nodes. In our ap-
plication, we chose the height differences between connected nodes as
edge weights, thus, favoring smaller height changes over larger ones.
For the start and end point of the Dijkstra graph we use the first and last
sea surface height at the start and end position.

5. Results

5.1. Setting

We compare the STAR algorithm to existing retracking algorithms,
such as the standard range derived from a MLE4 retracking method
provided in the SGDR data, the 30%-threshold retracker (ICE1, Martin
et al., 1983 ) and the equally weighted 3-parameter ocean model
(W3POM, see Eq. (9)). Furthermore, the specialized coastal algorithms,
such as the Adaptive Leading Edge Subwaveform retracker (ALES,
Passaro et al., 2014 ) and the Improved Threshold Retracker (ITR,
Hwang et al., 2006 ), the latter combined with a threshold of 50%, are
considered.

When implementing the STAR method as described above, we chose
to set the neighborhood of the windowed waveforms ξ to Nξ=5. For the
number of non-zero elements in Eq. (2) we select M=2. Values of M >
2 lead to significantly increased computation times while a larger
combination of the limited number of dictionary elements might result

in less clearly defined sub-waveforms from unique combinations of the
basis elements. To avoid finding an optimal weighting parameter w for
each measurement region, we run Eq. (1) for five different choices of

W∈ =w {0.1, 0.5, 1, 2, 100}. This will result in five partitionings of the
total waveform into sub-waveforms, ranging from a very fine parti-
tioning to a very coarse one. The parameters for the computation of our
basis elements are generated based on the average estimated para-
meters from an application of the 50%-threshold retracker to the cur-
rent block of waveforms (20 waveforms per block in our framework).
The mean epoch and amplitude serve as input into the basis element
generation to produce 1000 waveforms by randomly varying the mean
parameters: the amplitude is randomly varied by about 10% of its mean
threshold-retracked value. The epoch is randomly sampled using a
Gaussian weighted distribution with its maximum at the mean
threshold-retracked value. The wave height is randomly sampled from
the range 0 m to 12 m, which is a most common range of waves. The
cross-correlation coefficients between the obtained 1000 generated
waveforms are computed and only the 15 waveforms which are most
distinct from each other are kept and form the dictionary elements. In
the following, we utilize all the detected sub-waveforms to derive the
results for STAR.

Our STAR algorithm, ICE1, W3POM and ITR have been im-
plemented in our in-house C++ altimetry toolbox. As ITR provides
heights for each detected leading edge, we assumed the first detected
leading edge to yield the correct retracking parameters, as we do not
have any prior information on the heights. The SGDR SSHs are ex-
tracted from the GDR data and ALES retracked ranges are extracted
from external GDR data. The SSHs from all retracking methods have
been processed in the same way.

Fig. 5. Schematic illustration of optimal sea surface height estimation employing
Dijkstra algorithm. Dijkstra finds the optimal path (illustrated in blue) through equally
likely successively arranged sea surface heights. where edge weights are derived from the
difference between heights of 2 nodes. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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5.2. Sub-waveform detection

First, we compare the sub-waveforms detected by STAR resulting
from five different weights W∈w in Eq. (1) to sub-waveforms from
the method by Hwang et al. (2006) for an arbitrarily chosen waveform
measured off the coast of Croatia (Fig. 7). The waveform parts that have
not been detected as part of a leading edge by the method presented by
Hwang et al. (2006) are indicated by the white background. In contrast,
individual sub-waveforms are depicted in alternating shades of gray.
For this waveform, five potential leading edges have been identified by
the method of Hwang et al. (2006), each of which can be utilized to
derive potential sea surface heights. When comparing the partitioning
of the total waveform for the different weights W∈w by STAR, lower
weights lead to a significantly increased number of identified sub-wa-
veforms. In some cases single sub-waveforms contain only one range
gate since the binary term in Eq. (1) is weighted significantly lower
than the unary term. With increased weight w, the similarity constraint
is enforced and the sub-waveform size increases. For a weight w=100,
the identified sub-waveform corresponds to the entire waveform, which
leads to including the standard case of retracking the complete wave-
form in our derived point clouds.

In a next step, we compare the resulting point clouds of STAR (or-
ange points, Fig. 8) to the point cloud derived using Hwang et al. (2006)
algorithm (black points, Fig. 8) for one exemplary cycle during low tide
conditions at the Bangladesh site. A small bias over the open ocean can
be identified between both methods, which is related to the chosen
threshold of 50% used for ITR. For the sandbank near 22.325 °N, both
point clouds agree well. However, prior to reaching the sandbank the
points derived from ITR drop rapidly by about 10 m to a level of ap-
proximately −64 m (outside the plot boundaries), while the point
cloud based on STAR becomes less dense but still preserves enough
meaningful SSHs of about −55.5 m up to the beginning of the sand-
bank. Between Sandwip Island and Bangladesh mainland, STAR is able
to derive SSHs from the detected sub-waveforms, while ITR is more
influenced by land returns disturbing the retrieved waveform, which
results in no meaningful SSHs that can be detected during the low tide

conditions in this case.

5.3. Retracked SSHs

For validation of the retracked SSHs, we compare STAR SSHs to
retracked SSHs from various conventional and coastal methods. The top
of Fig. 9 shows retracked SSHs derived for one arbitrarily selected cycle
165 at almost high tide at the Trieste study site. The bottom part of
Fig. 9 shows the corresponding return waveforms at each measurement
location.

Over the open ocean between ∼45.46 °N and 45.58 °N, we find the
waveforms corresponding well to the theoretical Brown model and the
SSHs from all retracking algorithms agree well. However, ICE1 shows a
small bias compared to the other retracking algorithms which is likely
due to the 30%-threshold. At about 5–7 km off the nearest coast in the
northern and southern part of the study site, the SSHs based on the
W3POM and SGDR indicate a rapid drop in sea level. This drop is re-
lated to the influence from peaks, resulting from land influence from
the Croatian and Italian mainlands. The coastal methods STAR, ALES
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and ITR are not influenced by the peaks as they consider only parts of
the total waveform that do not include the peaks at these measurement
positions.

In the southern coastal area (45.37 °N to 45.46 °N), the SSHs from
W3POM, again, generally agree with the SSHs from ICE1 and STAR
with the latter showing less noisy along-track variations and providing
SSHs right up to the coast of the Croatian mainland (Fig. 9). Between 2
to 4 km off the Croatian coast the SSHs based on ALES and ITR show
significant outliers which are related to the peak, due to the land in-
fluence of the Croatian mainland, being located very close to the
leading edge resulting in biased estimations. Additionally, smaller
peaks preceding the leading edge can be detected (Fig. 9, bottom)
which are identified as potential leading edges by the ITR algorithm
and, thus, result in outliers due to our assumption to utilize the first
identified leading edge in the ITR algorithm. Similar behavior can be
observed from the ICE1 algorithm, e.g. near ∼43.75 °N, where the
peaks preceding the leading edge lead to significant outliers.

In the northern coastal area (45.64 °N to 45.71 °N), we find good
agreement between the SSHs based on ALES, ITR and STAR, with a few
significant outliers from ALES over the last two kilometers off the
nearest coast. At about 3.5 km off the Isola di Sant’ Andrea, a drop in
SSH can be detected from all three methods with ITR showing the
strongest drop by several meters while the SSHs from STAR only drop
less than 1 m (Fig. 9) due to relatively broad peaks located directly at
the leading edge.

Over the relatively shallow Laguna di Marano all methods, except
for SGDR, provide a sea level similar to the open ocean level during
high tide, despite of the waveforms consisting of strong specular peak
shapes (Fig. 9, bottom).

5.4. Repeatability of the retracked SSHs

The STAR method utilizes a randomized dictionary for sub-wave-
form decomposition; therefore it makes sense to investigate whether
this leads to an uncertainty in the final SSHs. To answer this question
we conduct a Monte Carlo study: we ran the STAR algorithm 1000
times, utilizing the arbitrarily selected cycle 69 of pass 196 of the Jason-
2 mission. Resulting SSHs are shown in Fig. 10 (top) with additional
zoom-in regions for two coastal areas, as well as for the open ocean. The
bottom part of the figure displays the corresponding root mean square
difference (RMS) ranging from about 0 to 1 m, where the open ocean
area is also given in an additional sub-plot for a range of 0 to 5 cm.

Over the open ocean area, the variability along the groundtrack is in
the range of about 15–20 cm (Fig. 10, top). Here, the repeatability of

STAR is given by a RMS of less than 5 cm (Fig. 10, bottom).
In the southern coastal area, the along-track variability is in the

range of 60 cm revealing a slight increase in sea level towards the
Croatian coast (Fig. 10, top). Due to the land influence on the shape of
the waveform as is visible in the parabolas (Fig. 9, bottom), the re-
tracking results are sensitive with respect to the size of the individual
detected sub-waveforms. Nonetheless, we still find good repeatability in
this region with RMS of less than 20 cm (Fig. 10, bottom), which is less
compared to the along track variability and significantly less compared
to the relatively large outliers produced by other retracking algorithms
in this region (see Fig. 9, top).

Part of the variability in our current state of the algorithm is due to
the Dijkstra algorithm, which is employed to find the best SSHs in
our point cloud. Single points at a measurement location can have
significant influence on the chosen path since we only allow edge
connections between neighboring locations. For example at
∼45.375 °N, we find a standard deviation of almost zero (Fig. 10,
bottom) and in the top plot of Fig. 10 it is possible to identify a single
point where the SSH-tracks of all runs intersect. Since all paths obtained
by Dijkstra algorithm include this point, preceding and succeeding
SSHs are influenced and tend to be close to the SSH at this point.

In the northern coastal region, the general along-track variability is
about in the same range of 20 cm as compared to the open ocean area.
The repeatability in the shallow waters off the Isola di Sant’ Andrea is
similar to the Croatian coast in the south with a RMS of less than 20 cm.
However, we find some significant outliers in some runs which are
related to a weak leading edge and strong peaks close to the leading
edge (e.g., Fig. 9, bottom). Over the Laguna di Marano a large varia-
bility can be detected (Fig. 10) due to strong specular peak waveforms.
Small changes in the detected sub-waveforms will have a significant
impact on the derived SSHs.

5.5. Comparison to tide gauge data

In this experiment, we compare the SSH estimated using various
retracking methods with tide gauge data for Trieste, Italy and
Chittagong, Bangladesh. For comparison we utilize cycles 1 to 230 of
Jason-2 data acquired over the described study sites (see Section 2.1),
since for this period hourly tide gauge data as well as data obtained by
ALES is available. The tide gauge data between July 2009 and De-
cember 2014 are interpolated to the times of crossing for each cycle. As
the tide gauge data is not corrected for tidal or atmospheric pressure
effects, we also do not apply these corrections to the altimetry data by
employing Eq. (8). We then remove outliers from the altimetric SSHs
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(deviation > 3 m from mean SSH) and evaluate correlation and dif-
ference RMS with respect to tide gauge data. Due to the large number of
available Jason-2 cycles, we set the minimum number of cycles that are
required to derive reliable correlations and RMS to 50.

The percentage of all cycles which meet the criteria above is shown
in Fig. 11. The median results of the following sections are summarized
in Tables 1 and 2.

5.5.1. Overall correlation
We investigate the overall correlation ρ with tide gauge data at each

20 Hz along-track position, using all available cycles (Fig. 11). The
results for the Jason-2 mission are shown in Fig. 12 for the study site at
the Gulf of Trieste (top) and the coast of Bangladesh (bottom).

Over the open ocean area at the Trieste study site (Fig. 12, top),
SSHs obtained by ICE1, ITR, ALES and STAR show correlations of more
than 0.8 with the tide gauge time series. For W3POM and SGDR we find
correlations between 0.3 and 0.7. Over the open ocean, southward of
22.2 °N, in the Bangladesh study area (Fig. 12, bottom), the SSHs de-
rived from the considered retracking methods agree well to each other.
In the South, the coastal shelf transitions towards the deep ocean and
the correlation begins to drop to about ρ=0.6 at the border of the study
site. Over the deep ocean, the correlation with tide gauge data from the
Chittagong station drops rapidly, as already seen by Kusche et al.
(2016). Over the central coastal shelf up to about 15 km off the coast,

we find correlations of up to 100% between retracked SSHs and tide
gauge data. In the immediate coastal areas of the Trieste and Bangla-
desh study sites, the MLE4 algorithm used to derive the standard ranges
in the SGDR data did not converge and consequently no SGDR SSHs are
available in these regions.

Towards the Croatian coast, we find ρICE1 and ρITR to decline to a
level of 0.3 to 0.5 (Fig. 12, top) which agrees to ρW3POM in this region,
while ρALES shows a rapid decline to a level of 0 to 0.2 at about 3 km off
the coast. ρSTAR also declines towards the coast to a level of 0.5 to 0.7.

At the Italian coast, we again find a decline in overall correlation of
the retracked SSHs with the tide gauge time series (Fig. 12, top). About
4 to 5 km off the Isola di Sant’ Andrea, ρICE1 and ρALES rapidly decline to
a level of 0 to 0.2. While ρALES remains at this level, ρICE1 increases again
to a level of 0.8 right at the coast, which agrees well to ρW3POM, ρITR and
ρSTAR. Over the Laguna di Marano, we generally find a lower correlation
level of 0 to 0.3 or even negative correlation in the southern part of the
Laguna for all retracked SSHs.

Starting about 15 km off the coast of Sandwip Island at the
Bangladesh study site, the overall correlations for all retrackers decline
(Fig. 12, bottom). Over the sandbank area, ρICE1 drops to a level of 0.3
to 0.4, ρITR shows a more moderate drop to a level of 0.5 to 0.7 and
ρSTAR indicates only a small drop to 0.8, which is achieved due to au-
tomatically removing low tide conditions where the sandbank height
does not fit to the conditions imposed by the RANSAC algorithm before
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regions. Colors are chosen randomly. (bottom) Corresponding root mean square difference (RMS) derived from 1000 runs where open ocean region is also provided in a zoomed in sub-
plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Percentage of the total number of available Jason-
2 cycles (227) after applying outlier detection and
minimum number of cycles requirement. (top) Study site at
the Gulf of Trieste. (bottom) Study site at the coast of
Bangladesh. The distance to the nearest coastline (DTC) is
provided in light gray.
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applying Dijkstra's algorithm (see Section 4.3). Over the strip of about
13 km of open water which is part of the estuary of the Gang-
es–Brahmaputra–Meghna Delta, we find ρW3POM and ρICE1 at nearly
zero, while for ALES, ITR and STAR, ρALES ≈ 0.7, ρITR ≈0.8 to 0.9 and
ρSTAR ≈ 0.9 are found in the central part of this region. Lower corre-
lations of W3POM and ICE1 while showing similar number of retained
cycles and RMS (Table 2) are related to the fact that both methods
utilize the total waveform which mainly consists of a strong peak only.
For W3POM, this will often lead to divergence of the estimation. The
heights from the ICE1 algorithm will be influenced by the signal shape
of the waveform. This leads to varying parts of the waveform being
used to derive the amplitudes and consequently to inconsistencies when
deriving the range correction.

5.5.2. Number of retained cycles
We compare the number of cycles of SSH derived from each re-

tracker which can be utilized at each measurement location by itera-
tively eliminating the largest difference to the tide gauge time series
from the time series above until a correlation of at least 0.9 is achieved.
This enables a more direct comparison of the individual retracking
methods. For evaluation, the number of retained cycles N is plotted for
each 20 Hz along-track position in both of our study areas (Fig. 13).

Over the open ocean regions of our study sites in the Gulf of Trieste
and off the coast of Bangladesh, we find good agreement between NICE1,
NALES, NITR and NSTAR with 95–100% of retained cycles. For NW3POM

and NSGDR, we find a slightly lower level of about 90% of retainable
cycles resulting from divergence of the parameter estimation. In addi-
tion, it is obvious that the time series of altimetry derived SSHs over the
deep ocean parts of the Bay of Bengal does not agree well with time
series obtained on the coastal shelf.

In the Croatian coastal area, all retracking methods experience a
small downward peak near 45.425 ° N. About 4 km off the coast, we
find a rapid drop in NALES and NITR to a level of 0–10% retained cycles,
with NITR rising back to about 65% of retained cycles 1 km off the coast.
For NICE1 we also detect a drop to about 30%, followed by a rise to 80%
at about 1 km off the coast. About 60–80% of the SSHs can be retained
from applying the W3POM model in this coastal area. NSTAR declines
from nearly 100% over the open ocean to 80% at about 1 km off the
coast.

At the Italian coast, we find nearly 100% of retainable cycles up to

approximately 3–4 km off the coast for ICE1, ITR, ALES and STAR. For
NICE1, NITR, NALES and NSTAR a steep drop to less than 20% of retained
cycles can be detected near 45.675 °N resulting from land influences
from the small islands that separate the Laguna di Marano from the Gulf
of Trieste (see also Section 5.3). The median percentage of retainable
cycles for SGDR and W3POM in this coastal area (Table 1) is quite low,
indicating difficulties to reach convergence when the total waveform is
used. The sub-waveform retrackers provide a larger number of retain-
able cycles as they are less affected by the land influences. Over the
central part of the Laguna di Marano, generally we find a level of
10–20% of retained cycles for all retrackers, except STAR, which pro-
vides NSTAR ≈ 40%.

At the Bangladesh study site, NW3POM and NSGDR start to decline
near 22.15 °N towards the coast of Sandwip Island and reach a
minimum level of 0–15 % at about 15 km off the coast. In addition, a
decrease of NICE1, NALES, NITR and NSTAR can be detected. The STAR
algorithm is able to retain at least 85% of SSHs of the available cycles in
this region. In the northern Bay of Bengal, the tidal amplitude can reach
several meters which leads to significantly different land influences on
the shape of the waveform between low and high tide. Consequently,
this starts to affect the retrieved SSHs at about 15 km off the coast with
NALES, NITR and NSTAR starting to decrease towards the coast. For NALES,
we find a strong drop to 10% in front of the Sandbank region mentioned
before followed by an increase to a level of NALES ≈ 50% at the coast.
NITR and NSTAR drop to a level of 70–80 % over the sandbank area.
Here, ITR and STAR perform similar, while the overall correlations
suggest a lower correlation for ITR in this region compared to STAR,
due to already removed SSHs from low tide cycles by the RANSAC al-
gorithm as part of STAR. Over the strip of open water between Sandwip
Island and the mainland of Bangladesh, NALES, NITR and NSTAR indicate
that all three algorithms are able to retain about 85–95 % of the
available cycles in the central parts of this open water strip, while STAR
is able to provide a larger number of cycles towards the coastlines.

5.5.3. Root mean square difference
The RMS between SSHs derived from the individual retracking

methods and tide gauge data computed at each 20 Hz along-track po-
sition provides an additional quality measure (Fig. 14). We apply the
same criteria for computation as introduced in Section 5.4.

Over the open ocean, we generally find results similar to the

Table 1
Median values of the different quality measures for the study site in Trieste. See also top plots in Figs. 12, 13 and 14. Here, ρ represents the correlation, N the percentage of retained cycles
and σ the RMS.

Retracker Open ocean Croatian coast Italian coast

ρ [−] N [%] σ [m] ρ [−] N [%] σ [m] ρ [−] N [%] σ [m]
SGDR 0.62 85 0.43 − − − 0.27 8 1.35
W3POM 0.53 85 0.53 0.54 59 0.53 0.27 7 1.58
ICE1 0.90 99 0.15 0.46 42 0.74 0.63 74 0.44
ITR 0.86 99 0.17 0.34 36 0.83 0.69 88 0.32
ALES 0.86 97 0.16 0.17 3 1.62 0.26 60 0.50
STAR 0.90 99 0.15 0.73 81 0.28 0.80 98 0.22

Table 2
Median values of the different quality measures for the study site at the coast of Bangladesh. See also bottom plots in Figs. 12, 13 and 14. Here, ρ represents the correlation, N the
percentage of retained cycles and σ the RMS.

Retracker Open ocean Sandbank Channel

ρ [−] N [%] σ [m] ρ [−] N [%] σ [m] ρ [−] N [%] σ [m]
SGDR 0.94 93 0.40 0.64 15 1.06 − − −
W3POM 0.92 96 0.56 0.31 24 1.82 0.29 28 1.33
ICE1 0.95 99 0.43 0.50 55 1.43 0.22 29 1.34
ITR 0.97 99 0.37 0.63 72 1.15 0.40 34 1.33
ALES 0.95 98 0.38 0.14 47 1.38 0.46 27 1.36
STAR 0.97 99 0.33 0.88 78 0.64 0.88 68 0.72

R. Roscher et al. Remote Sensing of Environment 201 (2017) 148–164

158



analysis of the overall correlation with σICE1, σITR, σALES and σSTAR
agreeing well at a level of 0.15 –0.2 m at the Trieste site and 0.2 –1.0
m at the Bangladesh site and σW3POM and σSGDR being slightly larger
compared to the other methods.

Close to the Croatian coast, we find σICE1, σITR and σALES to increase
significantly with σALES reaching more than 1.5 m. The large RMS de-
rived for ALES is probably related to the small peaks in front of the
leading edge. Since ALES sub-waveforms are selected from the first
range gate up to the end of the leading edge, small peaks in front of the
leading edge will lead to difficulties during the parameter estimation.
For STAR, we find a smaller increase in RMS relative to the open ocean
area to σSTAR ≈ 0.4 m. In the northern part of the Trieste site, ICE1, ITR,
ALES and STAR keep their level of RMS from the open ocean area up to
a distance of 4–5 km to the nearest coast.

In the northern part of the Bay of Bengal (Fig. 14, bottom), the SSHs
from all retracking methods become more noisy northward of about
22.0 °N, with a minimum RMS level of about 0.25 m. Over the sand-
bank region, the RMS obtained from SGDR, W3POM, ICE1 and ALES
show a rapid increase to at least 1 m, while the RMS based on STAR
exhibits a relatively smaller increase to a level of about 70 cm up to the
coast of Sandwip Island. The same level is found for σSTAR in the small
strip of open water between Sandwip Island and the mainland of

Bangladesh with σALES and σITR at a similar level in the center of this
region.

5.6. Significant wave height and sigma-nought

Besides range corrections, the use of the 3-parameter retracking
model also allows to retrieve SWH and sigma-nought σ0. The SWHs and
sigma-nought are selected based on the heights chosen by the shortest-
path algorithm. Theoretically it would be possible to run the Dijkstra
algorithm independently on the point-clouds of SWH and sigma-
nought. However, we think that the values should be consistent with
the selected heights.

No independently measured time series of wave height or wind
speed is available for our two study sites. Therefore, we compare
temporal median, RMS and the number of retained cycles of good SWH
and wind speed which were obtained by individual retracking algo-
rithms. We further compare the obtained results to ERA-Interim model
data. We will focus on the Bangladesh study site since no model data is
available from the Gulf of Trieste area.

5.6.1. Significant wave height
Fig. 15 shows the median SWH and RMS over all 239 cycles for the

Fig. 12. Correlation ρ of SSHs derived from sev-
eral retracking algorithms, including our STAR
method, with hourly tide gauge data. (top) Study
site at the Gulf of Trieste. (bottom) Study site at
the coast of Bangladesh. The distance to the
nearest coastline (DTC) is provided in light gray.

Fig. 13. Percentage of cycles retained to achieve
a correlation of at least 0.9 with hourly tide
gauge data from a total number of 227 available
cycles. (top) Study site at the Gulf of Trieste.
(bottom) Study site at the coast of Bangladesh.
The distance to the nearest coastline (DTC) is
provided in light gray.
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Bangladesh study site. Wave heights from SGDR and ALES agree well
with the model data over the open ocean while STAR and W3POM are
biased. At the same time, the median wave height values of all re-
trackers decline towards the coast, reaching a minimum over the
sandbank area. On the contrary, the model data does not show this
decline. Over open ocean, the RMS values from all retrackers agree well
with ALES and STAR providing the lowest RMS at a level of about
60 cm while the model data suggests a level of about 48 cm. At about
10 km off the coast the RMS values from all retrackers increase due to
the sandbank's influence during low tide cycles.

The low agreement between the retracked SWH and the model data,
especially closer to the coast, can be explained by the estimation of the
retracking parameters. All utilized retrackers constrain the SWH para-
meter to positive values since wave heights below zero are not physi-
cally meaningful. This sometimes leads to forcing the wave height to be
zero during the estimation for individual waveforms since the leading
edge, necessary for SWH parameter estimation, is only represented by a
limited amount of range gates during calm sea state conditions. For
ALES method, the problem appears less severe since it is a two stage
procedure in which SWH is estimated and averaged along-track during
the first stage and kept fixed during the second stage. For sub-waveform
retrackers such as STAR, the problem will occur more often in case the
selected sub-waveform which contains the leading edge is relatively
small. In case the zero wave heights are not utilized to derive the
median and RMS value, SGDR, ALES and STAR agree well with the
model data (Fig. 16, Table 3). Over the sandbank area and the channel
between Sandwip Island and the main land, SGDR and W3POM quality

decreases due to the low number of available cycles (Fig. 13, bottom).
Zero wave heights occur for about 10–15 % of the cycles during

calm sea state conditions at the Bangladesh study site, especially in
coastal areas. Similar observations are made for the Trieste study site.
In future, STAR may be extended to a two-step procedure similar to
ALES in order to counter these effects. We also applied our method to
reduced SAR (RDSAR) waveforms, which are conventional altimetry
like waveforms that are derived from the SAR signal during post-pro-
cessing. The RDSAR data from Cryosat-2 data showed that the problem
does not occur when zero-padding is applied during the derivation of
the reduced SAR waveforms due to doubling the number of range gates
available which allows better estimation of SWH (not shown here).

5.6.2. Wind speed
Wind speed has been derived from the estimated amplitudes uti-

lizing the 2-parameter model by Gourrion et al. (2002) as described in
AVISO (2015). The model input consists of the retracked sigma-nought
and SWH. Here, we utilized only non-zero SWH in order to keep the
wind speed estimate unbiased from problems in SWH estimation. Si-
milar to SWH, we display the median and RMS for each retracker and
from the ERA-Interim model data at each measurement position.

Over the open ocean, median wind speed and RMS from SGDR,
W3POM, ICE1, ITR and STAR agree well with the wind speed derived
from ERA-Interim model data (Fig. 17, Table 4). However, SGDR and
ICE1 are slightly biased above the model data, while W3POM, ITR and
STAR are slightly biased below the model data. ALES shows a stronger
bias with respect to the model data. From about 22.15°N towards the

Fig. 14. Root mean square difference (RMS) de-
rived for all along-track locations after applying
the selection criteria mentioned above for all
available cycles (Fig. 11) for both study sites.
(top) Study site at the Gulf of Trieste. (bottom)
Study site at the coast of Bangladesh. The distance
to the nearest coastline (DTC) is provided in light
gray.

Fig. 15. SWH compared to ERA-Interim model
data. Top: median over all cycles, Bottom: RMS
over all cycles.
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coast the waveforms start to get influenced by land returns leading to
peaks moving along the trailing edge towards the leading edge. Re-
trackers that utilize the full waveform, such as SGDR, W3POM and
ICE1, return amplitude estimates which are biased by the peak influ-
ence and thus do no longer provide reliable wind speed. Sub-waveform
method, such as ITR, ALES and STAR also show a slight decline in wind
speed, and over the sandbank area where one finds mostly specular
peak waveforms, the derived wind speed, especially during low tide, is
no longer meaningful. In the center of the channel between Sandwip
Island and the Bangladesh main land only ALES and STAR are able to
provide meaningful wind speed.

The reason for the bias in wind speed between SGDR and W3POM
and STAR is due to the chosen estimation model. For the SGDR data, a
MLE4 estimation method is employed utilizing a 4 parameter model
(Amarouche et al., 2004). The fourth parameter is the off-nadir angle
that can be derived from the slope of the trailing edge and which is
assumed to be zero for the 3-parameter models. The off-nadir angle
influences the estimation of the amplitude (Amarouche et al., 2004, Eq.
8) which will lead to a general bias in amplitude in case the off-nadir
angle is different from zero. Here, the derived off-nadir angle is slightly

positive which leads to a smaller amplitude and consequently higher
estimated wind speed. Even small changes in sigma-nought have sig-
nificant influence on the derived wind speed. However, for sub-wave-
form methods, such as STAR, it is not feasible to try and estimate the
off-nadir angle since the sub-waveforms do not include enough range
gates from the trailing edge for a reliable estimation.

5.7. Application to Jason-1 and Envisat data

We investigate the application of STAR to altimetry data from the
Jason-1 interleaved period to the Trieste site (Fig. 2 (a)) and to Envisat
data for the Bangladesh site (Fig. 2 (b)). However for Jason-1 inter-
leaved, there is no ALES-data available for comparison. Here, we focus
on the number of cycles retained to reach a correlation of >0.9 (Fig. 18
and 19, top), as well as the RMS at each along-track position (Figs. 18
and 19, bottom). For Jason-1, we found 95 cycles that overlapped with
the available time period for the tide gauge data at the Trieste station,
while we found only 32 cycles of Envisat data that overlapped with the

Fig. 16. SWH compared to ERA-Interim model
data. Top: median over all cycles, Bottom: RMS
over all cycles. All zero-SWH removed.

Table 3
Median values of SWH median and RMS over different regions along the track at the
Bangladesh study site. All zero-SWH removed. M denotes the median and σ the RMS.

Retracker Open ocean Sandbank Channel

M [m] σ [m] M [m] σ [m] M [m] σ [m]
SGDR 0.94 0.69 0.59 0.80 − −
W3POM 1.06 0.80 1.13 1.20 − −
ALES 0.78 0.57 0.66 0.86 0.67 0.82
STAR 0.89 0.59 0.62 0.68 0.65 0.71
ERA-I 0.84 0.45 0.63 0.38 − −

Fig. 17. Wind speed compared to ERA-Interim
model data. Top: median over all cycles, Bottom:
RMS over all cycles.

Table 4
Median values of wind speed median and RMS over different regions along the track at
the Bangladesh study site. M denotes the median and σ the RMS.

Retracker Open ocean Sandbank Channel

M [m/s] σ [m/s] M [m/s] σ [m/s] M [m/s] σ [m/s]
SGDR 4.57 2.30 2.31 1.86 − −
W3POM 3.85 1.89 0.49 1.63 0.10 0.50
ICE1 4.85 2.33 0.23 1.90 −0.15 0.38
ITR 4.06 2.02 1.76 1.98 0.01 1.61
ALES 3.35 1.72 2.42 1.68 1.02 1.68
STAR 3.86 1.91 2.43 1.77 2.31 1.70
ERA-I 4.60 2.12 3.58 1.73 2.94 1.37
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tide gauge period available for the Chittagong station.
Utilizing data from the Jason-1 mission over the open ocean at the

Trieste study site, ICE1, ITR and STAR show more retained cycles, as
well as a significantly smaller RMS compared to SGDR- and W3POM-
based SSHs. In the coastal area over about the last 5 km in front of the
Croatian coast, STAR derived SSHs fit well to the tide gauge data
(Fig. 18). After crossing parts of the Croatian mainland, the track
transitions back to the ocean and we find ICE1, ITR and STAR retaining
significantly more cycles compared to SGDR- and W3POM. The general
level of retained cycles is lower due to signal losses that happened
between the coasts of Croatia and Italy during nine of the Jason-1 in-
terleaved cycles. At the Italian coast, all ITR, ICE1 and STAR are able to
maintain a high quality of SSHs in the coastal area with which de-
creases only slightly over the last 1–2 km off the coast.

Additionally, we have utilized Envisat track 416 for our experi-
ments, which crosses our Trieste study site from the north-east to the
south-west. However, the overlapping period with the available tide
gauge data was less than one year and deriving any correlations or RMS
from this short period containing only 10 cycles of the 35-day Envisat
repeat orbit would not be meaningful. Nonetheless, SSHs derived from
these 10 cycles of Envisat data compared well to the available tide
gauge data (not shown here).

For the study site at the coast of Bangladesh, we found an overlap
period of more than 3 years between 32 cycles (2007–2010) of Envisat
data and the Chittagong tide gauge which allows to derive meaningful
correlations and RMS differences. Over the open ocean area, the
number of retained cycles and the RMS agree well between all the
considered retracking methods with W3POM bases SSHs being slightly
more noisy (Fig. 19). About 15 km before the Envisat track reaches
Sandwip Island, the differences between the individual retracking
methods become evident. Ratios of retained cycles for W3POM and
SGDR show a rapid drop to less than 25% over the sandbank area and a
gradual increase towards the coast of Sandwip Island to a level of 35%
and 60%, respectively. This behavior is combined with a strong in-
crease in RMS differences which increase to more than 1 m. Similar
behavior can be observed for ICE1 and ITR, which both show a smaller
drop in the number of retained cycles over the last 15 km towards the
coast to a level of about 75%, but their corresponding RMS increases
significantly to values greater than 1 m. For ALES there is no data
available over the last 15 km in front of Sandwip Island. STAR shows
the smallest drop in number of retained cycles and recovers back to a
level of more than 90% close to Sandwip Island. Over the small strip of
open water between Sandwip Island and the mainland of Bangladesh,
the coastal retrackers ITR, ALES and STAR retain about 90% of the

Fig. 18. (top) Percentage of cycles retained to
achieve a correlation of at least 0.9 with the
hourly tide gauge data from a total number of 95
available cycles of the Jason-1 interleaved mis-
sion. (bottom) Root mean square difference
(RMS) derived for all along-track locations. The
distance to the nearest coastline (DTC) is pro-
vided in light gray.

Fig. 19. (top) Percentage of cycles retained to
achieve a correlation of at least 0.9 with the
hourly tide gauge data from a total number of 32
available cycles of the Envisat mission. (bottom)
Root mean square differences (RMS) derived for
all along-track locations. The distance to the
nearest coastline (DTC) is provided in light gray.
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available cycles providing SSHs that fit well to the tide gauge data.
SGDR, W3POM and ICE1 are not able to provide more than 0–25 % of
retained cycles and exhibit significantly higher RMSs in this region.

6. Conclusion

A novel method for analyzing altimetric waveforms and deriving sea
surface heights, SWH and sigma-nought has been suggested. The pro-
posed technique partitions the total waveform into individual sub-wa-
veforms which can be analyzed in combination with existing retracking
models. The sea surface heights provided by STAR were found to be of
at least the same quality or better compared to existing conventional
and coastal retracking methods over the open ocean, as well as in
coastal regions. In addition, correlations with tide gauge data revealed
generally more usable cycles close to the coast in combination with
lower root mean square differences compared to existing methods. Of
course, depending on the retracking model that is combined with the
derived sub-waveforms, it is possible to derive significant wave height
and backscatter in the same way.

Comparison of the derived sub-waveforms with the Hwang et al.
(2006) method reveal good correspondence between identified parts of
the waveform. We found the influence of the random component of
STAR on the SSH results to be at a level of less than 5 cm over the open
ocean and at about 20 cm in coastal regions. This is in range with
modifications that can be applied to conventional retracking algorithms
including biases between different retracking methods, different
weighting schemes or varying estimators; these effects are considered to
be in the order of a few centimeters. Sea surface heights derived from
the STAR algorithm have been extensively validated for Jason-2 data
and compared to five independent available retracking methods, as well
as hourly in-situ tide gauge measurements. At the study sites in the Gulf
of Trieste, Italy and off the coast of Bangladesh, we found varying
surface conditions including (deep) open ocean and shallow coastal
waters, temporally submerged sandbanks and transition zones between
river estuaries and the ocean. Consequently, deriving five partitionings
of the total waveform enabled the STAR algorithm to handle a larger
variety of waveform shapes compared to existing coastal retracking
algorithms. Examination of estimated SWH and wind speed revealed
good agreement to other retracking algorithms as well as model data
from ERA-Interim. Furthermore, we applied STAR to altimetry data
from the Jason-1 interleaved period, as well as Envisat, which also
resulted in significant improvements in the quality of coastal sea sur-
face heights.

We are confident that the STAR method will enable a wide range of
further studies, including a more comprehensive validation of sig-
nificant wave height and sigma-nought. In this context, we will also
consider an improved selection of final retacking results by considering
SWH, sigma-nought etc. instead of only utilizing the SSHs. In addition,
the algorithm can be improved further by tuning the a-priori hy-
perparameters that control, e.g., the resolution of the sub-waveform, as
well as extending the Dijkstra algorithm to reduce the impact of
potentially non-optimal sea surface heights of neighboring measure-
ment locations. The derived sub-waveforms will be combined with
different available waveform models in order to adapt and extend the
concept to other regions, such as rivers and lakes. One might also
consider a slightly different approach by using the partitioning into sub-
waveform to derive weighting schemes for retracking of the whole
waveform.
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