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[1] To improve our understanding of tidal sandbank dynamics, we have developed a
nonlinear morphodynamic model. A crucial property of the model is that it fully
resolves the dynamics on the fast (tidal) timescale, allowing for asymmetric tidal flow with
an M0, M2, and M4 component. This approach, extending earlier research on the formation
of tidal sandbanks, leads to equilibrium profiles. Their heights (60–90% of the water
depth) and shapes are controlled by the mode of sediment transport and the hydrodynamic
conditions. Bed load transport under symmetrical tidal conditions leads to high spiky
banks. Several mechanisms tend to lower and smooth these profiles, such as the relaxation
of suspended sediment, wind wave stirring, and tidal asymmetry. This last causes the
profiles to be asymmetric, as well. The morphodynamic equilibrium expresses a tidally
averaged balance between a destabilizing flux due to fluid drag and the downslope
transport induced by both tidal flow and wind wave stirring. The modeled profiles are in
fair agreement with observations from the North Sea. INDEX TERMS: 3210 Mathematical

Geophysics: Modeling; 3220 Mathematical Geophysics: Nonlinear dynamics; 3022 Marine Geology and

Geophysics: Marine sediments—processes and transport; 4219 Oceanography: General: Continental shelf

processes; 4560 Oceanography: Physical: Surface waves and tides (1255); KEYWORDS: morphodynamics, tidal

sandbanks, equilibrium profiles
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1. Introduction

[2] Improving our understanding of offshore seabed
morphology is a challenge of both academic and practical
interest. Tidal currents, waves, and sediment motion inter-
act in a complex way, which is manifested by the variety
of rhythmic bed forms covering the seabed. Despite
considerable advances, these large-scale seabed dynamics
are still not fully understood. Practical issues include
predicting the long-term morphodynamic impact of a
large-scale sandpit.
[3] Tidal sandbanks, the largest offshore bed features,

occur in rhythmic patches throughout the North Sea
(Figure 1). They are tens of kilometers long, 5–10 km
wide, and tens of meters high [Dyer and Huntley, 1999].
Bank crests (on the Northern Hemisphere) usually have a
counterclockwise orientation to the peak tidal flow, ranging
from 0� to 20� [Kenyon et al., 1981]. Finally, most bank
shapes display a cross-sectional left-right asymmetry, which
emphasizes the role of asymmetries in the forcing of the
system.

[4] Past research into sandbank dynamics mainly focused
on the process of formation. Huthnance [1982a] was
the first to show that they may arise as an inherent
instability of a flat seabed subject to tidal flow and bed
load sediment transport. His approach is process-based, i.e.,
based on mathematical formulations of the physical pro-
cesses involved. The underlying hydrodynamic mechanism,
known as tidal rectification, describes the adjustment of
tidal flow obliquely approaching a sandbank [Zimmerman,
1981; Robinson, 1983; Pattiaratchi and Collins, 1987;
Roos and Hulscher, 2003]. The cross-bank component is
accelerated by continuity; the along-bank component is
decelerated by bottom friction, acting more strongly in
shallower water. This flow deflection affects the tidally
averaged sediment transport pattern, causing upslope
sediment transport and hence bank growth. Furthermore,
the along-bank flow component is either accelerated or
decelerated by Coriolis effects, depending on the crest
orientation. For counterclockwise orientations (Northern
Hemisphere), this amplifies the frictionally induced flow
deflection and hence bank growth such that it is strongest
for a particular counterclockwise crest angle. The model
also predicts a preferred wavelength. Both orientation and
wavelength are in fair agreement with banks observed in
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the North Sea. These results were later extended to
include suspended load sediment transport, wind waves,
tidal ellipticity, and tidal asymmetry in the forcing
[De Vriend, 1990; Hulscher et al., 1993; Roos et al.,
2001]. The main limitation of these theories is their
linearity in the bed amplitude, which limits their validity
to banks that are low compared to the water depth. If
banks have attained a finite amplitude, a nonlinear approach
is required.
[5] How to model the finite amplitude evolution toward

equilibrium profiles is still an unresolved issue. Extending
his linear analysis, Huthnance [1982a] indeed found
equilibrium bank profiles, and he identified wind wave
erosion as a crucial mechanism. However, his treatment of
the hydrodynamics was rather simplified (using a block
flow, omitting inertial terms, and neglecting the Coriolis
force). This criticism also applies to Idier and Astruc
[2003], who estimated the equilibrium bank height at
about 90% of the maximum water depth using a nonlinear
numerical method. Their estimate was based on a mor-
phostatic approach, i.e., on the initial bed response
obtained for a series of simulations with sinusoidal banks

of different amplitudes. We note that Idier and Astruc
[2003] validated their nonlinear numerical method by
reproducing the analytically obtained growth character-
istics from linear theory. Komarova and Newell [2000]
studied an alternative mechanism of bank formation
related to the nonlinear interaction of tidal sandwaves, a
smaller-scale bed feature. Their two-dimensional vertical
approach neglected the horizontal dimension perpendicu-
lar to the flow, so the bank orientation could not be
resolved. Therefore it is unclear whether their results are
supported by field observations.
[6] The aim of this paper is to model equilibrium

sandbank profiles in an alternative way. Our emphasis is
on three topics not addressed by previous work: (1) the
morphodynamic evolution to equilibrium shapes; (2) the
influence of different tidal components on bank profiles;
and (3) a qualitative comparison with bank shapes observed
in the North Sea. We propose an idealized, process-based
morphodynamic model, which allows for a harmonic tidal
flow with an M0, M2, and M4 component, considers both
bed load and suspended load transport, and includes
a depth-dependent wave-stirring mechanism. To establish

Figure 1. Seabed topography in the Southern Bight of the North Sea. (a) Bathymetry, showing three
boxed areas to be analyzed further in section 5. Regions without data are indicated in white, such as the
U.K. continental shelf (left) and the Dutch and Belgian mainland (bottom right). (b) Crest and trough
positions of large-scale features (in red and blue, respectively), with line thickness proportional to bank
height. See the acknowledgments for data sources. See color version of this figure at back of this issue.
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how the modeled profiles compare with observations, we
have two data sets on the bathymetry of the Southern
Bight of the North Sea at our disposal (Figure 1) (see the
acknowledgments for data sources).
[7] This paper is organized as follows. In section 2 we

describe the morphodynamic model, whereas section 3
explains the solution procedure, which follows a standard
Galerkin approach. The results are presented in section 4
and compared qualitatively with North Sea data in section 5.
Finally, sections 6 and 7 contain the discussion and con-
clusions, respectively.

2. Morphodynamic Model

2.1. Physical Mechanisms and Geometry

[8] We keep the model as simple as possible while
retaining the essential physics. Following previous analysis
[Huthnance, 1982a, 1982b; De Vriend, 1990; Hulscher et
al., 1993], we apply a depth-averaged approach to the flow,
thus neglecting its vertical structure. To capture the mech-
anism of tidal rectification, we include the Coriolis force
and a bed friction mechanism. The seabed is assumed to
consist of noncohesive sediment of uniform size (typical
grain size 100–600 mm). Besides a commonly adopted bed
load transport formula, we choose to incorporate a mecha-
nism for suspended load transport, as well. Observations
from the Norfolk Banks [Huntley et al., 1993] and the
Middelkerke Bank [Vincent et al., 1998] have shown that
suspended load is indeed a significant mode of transport
over tidal sandbanks, especially at the crests. Assuming fair
weather and offshore conditions, we consider tidally dom-
inated flows in which the role of wind waves is restricted to
the stirring of sediment. We include this effect parametri-
cally using a depth-dependent stirring term, which augments
the local transport capacity.
[9] We restrict our work to topographies that vary in one

horizontal dimension only. This assumption is supported by
the predominantly one-dimensional character of real sand-
banks (Figure 1). It also simplifies the analysis and requires
the orientation between tidal forcing and the direction of
spatial variations to be imposed a priori. Motivated by the
rhythmic structure of observed banks, we apply a spatially
periodic approach with a fixed domain length and periodic
boundary conditions. For both quantities which need to be

imposed externally, namely domain length and flow orien-
tation, we take their preferred values from linear theory
(section 3.1).

2.2. Model Equations

[10] Consider an offshore part of the sea, far away from
coastal boundaries, with a mean depth H and where the
water motion is driven by tidal flow with a dominating
semidiurnal lunar component (period T = 12 hours, 25 min)
and a maximum flow velocity U (typically �1 m s�1). We
define a three-dimensional coordinate system with horizon-
tal coordinates x = (x, y), with x chosen as the direction of
the spatial variations (Figure 2). Parameter values are listed
in Table 1.
[11] The z axis points upward, with the free surface at z =

z and the seabed at z = �h. Let u = (u, v) represent the
depth-averaged flow field with components in the x and y
direction, respectively. Within our one-dimensional ap-
proach the shallow water equations take the following form:

g
@z
@x

þ @u

@t
þ u

@u

@x
� fvþ ru

h
¼ Px; ð1Þ

@v

@t
þ u

@v

@x
þ fuþ rv

h
¼ Py; ð2Þ

@ðhuÞ
@x

¼ 0: ð3Þ

Here g is the gravitational acceleration, f = 2Wsin q is a
Coriolis parameter (where W = 7.292 � 10�5 s�1 is the
angular frequency of the Earth’s rotation and q is the
latitude), and r is a linear friction coefficient. This friction
coefficient is related to the drag coefficient cD of the
sediment according to r = 8 cDU/(3p) [Zimmerman, 1982].
Furthermore, we have adopted the rigid-lid approach, in
which the contribution of the free surface elevation to the
local water depth is neglected. This is motivated by the
small value of the (squared) Froude number Fr2 = U2/(gH).
In section 6.1 we will verify whether this assumption
continues to be justified in the finite amplitude regime.
Finally, the system is driven by a time-dependent pressure
gradient (Px, Py). Owing to the propagating nature of the

Figure 2. Definition sketch of the model geometry, also
showing the basic (undisturbed) flow angle J (section 2.3).

Table 1. Parameters and Values, Typical for the Southern Bight of

the North Sea

Description Symbol Value Dimensions

Mean water depth H 30 m
Maximum flow velocity U 1 m s�1

Angular frequency (M2 tide) s 1.41 � 10�4 rad s�1

Gravitational acceleration g 9.81 m s�2

Coriolis parameter (52�N) f 1.16 � 10�4 s�1

Linear friction coefficient r 2.5 � 10�3 m s�1

Grain size d 3 � 10�4 m
Bed load transport coefficient ab 4 � 10�5 m�1 s2

Bed slope coefficient ~l 2
Wave stirring parameter Uw 0.25 m s�1

Suspended load entrainment coefficient as 4 � 10�5 m�1 s2

Suspended load deposition coefficient g 0.016 s�1

Bed porosity p 0.4
(Squared) Froude number Fr2 0.0034
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tidal wave (wavelength �700 km), this forcing should also
be gradually varying in space, but in a local model we may
represent it as spatially uniform. In section 2.3 the forcing is
further specified in terms of the flow it generates in the case
of a flat bed.
[12] As the divergences of the bed load flux control the

bed evolution, only its component in the direction of spatial
variations is morphodynamically relevant. Let q denote the
x component of the volumetric bed load sediment flux,
which we express in terms of the depth-averaged flow and
the local bed slope according to

q ¼ ab juj2 þ 1

2
u2w

� �
uþ l

@h

@x

� �
: ð4Þ

This is a third power velocity law with proportionality
coefficient ab [Van Rijn, 1993], including a bed slope
correction and a stirring term. The bed slope correction
describes the downhill preference of moving sediment with
coefficient l = ~lU, in which ~l is inversely proportional
to the tangent of the angle of repose [see, e.g., Sekine
and Parker, 1992]. The term (1/2)uw

2 represents the stirring
due to wind waves, in which uw is a measure for the wave-
induced near-bed orbital velocity amplitude. Stirring
augments the amount of sediment transported by the tidal
flow and should be stronger in shallow water. We therefore
model it inversely proportional to the local water depth,
according to

uw ¼ Uw

h

H

� ��m

; ð5Þ

with coefficient Uw (�0.25 m s�1) and power m = 1. This
integer value of m facilitates the analysis and approximates
the values adopted in other studies (for example, Calvete et
al. [2002] employed m = 0.8). We neglect the threshold for
sediment motion.
[13] To model suspended load transport, we use an

advection equation [Schuttelaars and De Swart, 1996]:

@c

@t
þ @ðcuÞ

@x
¼ g ce � cð Þ: ð6Þ

Here c denotes the depth-integrated sediment concentration,
i.e., the volume of suspended matter in the water column.
The left-hand side of equation (6) describes spatial and
temporal relaxation of suspended load, while the right-hand
side models the exchange between bed and fluid column
due to entrainment and deposition. The entrainment
concentration ce is assumed to depend nonlinearly on the
flow velocity, with coefficient as:

ce ¼ as juj2 þ 1

2
u2w

� �
: ð7Þ

We have again included a stirring term, as introduced in
equation (5). By taking a quadratic dependence on the flow
velocity rather than, for example, a cubic one [Van Rijn,
1993], we facilitate the analysis without qualitatively
affecting the results. In equation (6), deposition is taken
proportional to the local concentration, with coefficient g.
Following Schuttelaars and De Swart [1996], we use g =

w2
s /kv, where ws is settling velocity and kv = 0.1 m2 s�1 is a

diffusion coefficient that describes the mixing of sediment
in the vertical. We neglect the horizontal diffusion of
suspended matter.
[14] Finally, the bed evolves as a result of divergences of

bed load flux and the difference between entrainment and
deposition of suspended matter. As this process is much
slower (decades to centuries) than the tidal timescale
(12 hours, 25 min), only the tidally averaged effect effec-
tively contributes to the bed evolution. To emphasize this
separation of hydrodynamic and morphodynamic time-
scales, we describe the bed evolution as a function of a
slow time t = ~at, expressed in units of years (hence ~a =
3.17 � 10�8). This leads to

ð1� pÞ @h
@t

¼ mb
~a

@hqi
@x

þ msg
~a

hce � ci þ l
@

@x
hcei

@h

@x

� �� �
: ð8Þ

Here p is the bed porosity (typically p � 0.4) and h�i � T�1R
0
Tdt means averaging over a tidal period T. The

coefficients ms and mb have been introduced to control
the relative importance of bed load and suspended load
transport. In particular, this allows us to study the transport
mechanisms isolated from each other. For suspended load
transport we have further incorporated a diffusive bed slope
mechanism, with coefficient l. Parker [1978] and Talmon
et al. [1995] have shown that suspended load is also
susceptible to bed slope effects. We choose to include bed
slope effects in such a way that they resemble the slope
effects in the bed load case, i.e., also including a stirring
component.
[15] Finally, we emphasize that our approach is based on

standard scaling technique, which we do not present here
for the sake of brevity. Details can be found, for example, in
the work of Hulscher et al. [1993] for the scaling of
hydrodynamics and bed load transport and in the work
of Schuttelaars and De Swart [1996] for the scaling
of suspended load transport.

2.3. Basic State

[16] Let h and f � (z, u, v, q, c) denote the state of the
system. The spatially uniform state

h0 ¼ H f0 ¼ 0; u0; v0; q0; c0ð Þ ð9Þ

is a solution to equations (1)–(8). It describes a flat bed
subject to a spatially uniform and fast time-dependent flow
and is called the basic state. From equations (1) and (2) the
basic flow is related to the tidal forcing (Px, Py), which we
choose such that it generates a bidirectional oscillatory flow
at an angle J with the y direction (see Figure 2):

u0ðtÞ ¼ jðtÞðsinJ; cosJÞ: ð10Þ

Positive values of J correspond to a counterclockwise bank
orientation with respect to the flow. Next, the tidal signal j(t)
is given by

jðtÞ ¼ j0 þ j2 cosðstÞ þ j4 cos 2st � j4ð Þ: ð11Þ

In this equation we consider three tidal components: a
residual flow j0, a semidiurnal lunar component j2 of
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angular frequency s (see Table 1), and its first overtide j4,
with a phase lag j4. The sediment transport pattern of the
basic state is also spatially uniform so that following
equation (8), the seabed remains flat: @h0/@t = 0.

3. Solution Procedure

3.1. Linear Theory

[17] Let us now revisit the linear analysis, highlighting
only the properties that are relevant for the subsequent
nonlinear theory. Here the basic state (h0 and f0) serves
as starting point, and we expand

h ¼ h0 þ h1 f ¼ f0 þ f1: ð12Þ

The equations for the perturbed state h1 and j1 � (z1, u1, v1,
q1, c1) follow from substituting equation (12) into
equations (1)–(8). In the linear theory the topographic
perturbations are assumed to be small compared to the water
depth such that nonlinear terms in h1 and f1 can be neglected.
[18] We consider a sinusoidal bed perturbation

h1 ¼ H1ðtÞeikx þ c: c:; ð13Þ

with H1 = H1
init at t = 0 and with c. c. denoting complex

conjunction. The wave number k and the orientation J
with respect to the flow (equation (10)) can be seen as
the characteristics of the perturbation. Following the
mechanism of tidal rectification (as explained in section 1),
the perturbation triggers flow and sediment transport
responses u1, q1, and c1, respectively. They have a spatial
structure similar to equation (13) and a temporal structure
accounting for the generation of overtides due to tide-
topography interaction. We write

f1 ¼
XN
n¼�N

Fn
1e

int

 !
eikx þ c: c:; ð14Þ

with Fourier components F1 � (Z1
n, U1

n, V1
n, Q1

n, C1
n ),

truncated at some N. Finally, solving the bed evolution
equation (8) gives @H1/@t = w H1, which leads to

h ¼ h0 þ H init
1 ewteikx þ c: c:

	 

; ð15Þ

i.e., exponential growth or decay, with w representing the
growth rate. Mathematically speaking, the eigenfunctions of
the system are of the form of equation (13), w being the
corresponding eigenvalue. The growth rate is a complex
number w = wr + iwi. Its real part controls the growth, while
the imaginary part is associated with migration of the
feature, the corresponding celerity being given by cmig =
�wi/k.
[19] The perturbation, for which the real part of w is

largest, is termed the "fastest growing mode" (Figure 3).
Its characteristics (wave number kfgm, orientation Jfgm,
and growth rate wfgm) depend on the problem parameters
(Table 1). From the linear perspective, this is clearly the
most interesting mode as it will emerge initially from a
slightly perturbed flat bed. For typical North Sea values the
fastest growing mode indeed approximates the character-
istics of tidal sandbanks observed there, even though the
linear theory overestimates the angle between flow direction

and bank crests. Further properties of the fastest growing
mode can be found in the work of Huthnance [1982a], De
Vriend [1990], Hulscher et al. [1993], and Roos et al.
[2001].
[20] The lobes with positive growth rates always connect

to the origin (Figure 3a). As a result, there is no control
parameter for which near-critical conditions can be achieved
while the fastest growing mode retains a finite, nonzero
value.

3.2. Nonlinear Theory

[21] The nonlinear theory is not restricted to small per-
turbations of the basic flow. We follow a standard Galerkin
approach, which has been used earlier in morphodynamic
studies (see Schuttelaars [1998] for tidal embayments and
Calvete et al. [2002] for shoreface-connected sand ridges).
As pointed out in section 2, one-dimensionality and spatial
periodicity force us to fix both the flow orientation J and
the Fourier box size L � 2p/k. On the basis of linear theory,
we take (k, J) = (kfgm, Jfgm). Next, we write the topography
as

h ¼
XM

m¼�M

Hme
ikmx; ð16Þ

with Fourier components Hm. This expansion contains the
k = 0 mode, the fastest growing mode from linear theory, as
well as a finite number of higher harmonics (see the markers
in Figure 3). We then expand the other state variables
according to

f ¼
XM

m¼�M

XN
n¼�N

Fn
me

isnt

 !
eikmx; ð17Þ

with Fourier components Fm
n � (Zm

n, Um
n, Vm

n, Qm
n , Cm

n ),
truncated in space and time at some M and N, respectively.

Figure 3. Modes to be used in the nonlinear analysis in
the (kp, kn) plane with kp � ksin J and kn � �kcos J. The
fastest growing mode is denoted with a cross, the k = 0
mode with a circle, and the higher harmonics with pluses.
Also plotted are the contours of the real part of growth rates
from linear theory (solid contours are positive, dashed
contours are negative, case As in Table 2).
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Unlike linear theory, the nonlinear analysis allows us to
consider any topography h > 0 which averages {h}0 = h0
over the domain. (Here {�}0 � L�1

R
0
L � dx represents spatial

averaging over the domain.)
[22] From the continuity equation (3) the cross-bank flow

is given by

u ¼ xðtÞ
hðxÞ ; ð18Þ

in which the integration constant x(t) takes the role of the
cross-bank water flux. It depends on the fast time, and we
expand it as a harmonic time series x(t) = SnX

neisnt.
[23] The hydrodynamic unknowns Xn and Vm

n follow from
substituting equation (18) into the momentum equations (1)
and (2), then taking the spatial average {�}0 of the former
and multiplying the latter with the local depth h. In Fourier
space, this leads to

isn
1

h

� �
0

X n � fV n
0 þ r

1

h2

� �
0

X n ¼ Pn
x ð19Þ

isn hvf gnm þ ikm xvf gnm þ f xf gnm þ rVn
m ¼ Pn

yHm: ð20Þ

Here {�}mn denotes the mth spatial and nth temporal Fourier
component, which involves a convolution sum if the
bracketed quantity is a product. Moreover, Px

n and Py
n are

the Fourier components of the forcing (Px, Py). For f = 0,
these equations decouple; for nonzero f, they are nonlinearly

coupled and have to be solved iteratively. We note that
dropping the rigid-lid approach would imply a contribution
of z to the local water depth, leaving us with a set of three
coupled hydrodynamic equations.
[24] Once the hydrodynamics is known, the components

Qm
n of the bed load sediment flux follow from (repeated)

convolution sums in space and time. The components Cm
n

of the suspended load concentration are obtained from a
linear system. For the seabed evolution (equation (8)) we
finally write dHm/dt = Bm, where Bm is the mth component
of the bed evolution due to both bed load and suspended
load at time t. We advance in the slow morphodynamic
time using a semi-implicit scheme

Hnew
m ¼ Hm þ Bm

1
Dt

 �
� wm

; ð21Þ

with time step Dt and where wm is the linear growth rate
corresponding to the mth mode with wave number km � km.

4. Results

4.1. Evolution Toward Equilibrium

[25] First, we investigate the evolution of the linearly
most unstable mode in the nonlinear regime, in the case of
a symmetric M2 tidal forcing. To a periodic domain with
wavelength L = Lfgm and flow angle J = Jfgm, we
introduce a slightly perturbed flat seabed according to
equation (13), with H1/H = 0.01. The finite amplitude
evolution now consists of the following stages (Figure 4a):
(1) exponential growth according to linear theory; (2) non-

Figure 4. Finite amplitude evolution starting from a small perturbation with H1/H = 0.01, for both (top)
bed load transport (case Ab in Table 2) and (bottom) suspended load transport (case As in Table 2).
(a) Evolution of crest z = �hcr and trough z = �htr (as defined in Figure 5). (b) Cross-sectional shape of
the equilibrium profile. (c) Real part of the corresponding Fourier spectrum Hm, not showing the average
water depth H0 = 30 m. Truncation numbers are M = 16 and N = 3.
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linear generation of higher harmonics that deform the
sinusoidal shape; and (3) evolution toward an equilibrium
profile, satisfying

@h

@t
¼ 0; for all x: ð22Þ

This behavior appears to be universal, even though the
details are sensitive to changes in the model parameters
such as the basic flow representation, Coriolis force, wave
activity, the type of transport, and transport parameters. Of

particular interest is the equilibrium bank height, which we
define as a fraction of the maximum water depth according
to

hrel ¼ 1� hcr

htr
: ð23Þ

Here hcr and htr are the water depths above crest and trough,
respectively (Figure 5). We conducted a set of numerical
experiments for different values of the model parameters
(Figure 6, Table 2). The simulations seem to indicate that
for a given wavelength the equilibrium profile is unique. We
make the following observations.
[26] 1. Bed load transport leads to highly nonlinear

shapes with spiky crests and flat troughs, while suspended
load transport leads to more sinusoidal shapes with lower,
flattened crests (Figure 4a). This difference is also reflected
in the corresponding Fourier spectra Hm (Figure 4c), which
are real valued due to symmetry. The steepest slopes range
between 1:1000 and 1:100 and are highest for bed load
transport.
[27] 2. The Coriolis force is a destabilizing mechanism

that leads to higher banks (Figure 6a) and shorter time-
scales. Its physical role is similar to that in the stage of
formation, as explained in section 1. Coriolis effects con-
tinue to enhance the frictionally induced flow deflection
around features with a counterclockwise orientation, thus
amplifying bank growth. In equilibrium, this can only be
balanced by stronger slope effects, which in turn requires a
larger equilibrium bank height.

Figure 5. Definition of the quantities required in the
definitions of relative bank height hrel and profile
asymmetry A in equations (23) and (24), respectively.

Figure 6. Properties of the equilibrium profiles for both bed load transport and suspended load transport
(details of the simulations are shown in Table 2). Note that each profile has its own wavelength and
orientation.
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[28] 3. Increasing the bed friction coefficient or decreas-
ing the bed slope coefficient shortens the preferred wave-
length from linear theory, generally leading to higher
equilibrium banks (Table 2).
[29] 4. Omitting the inertial terms @u/@t, @v/@t, and @c/@t

in equations (1), (2), and (6), respectively, results in
significantly higher equilibrium banks (Figure 6b). This
effect is strongest for suspended load as it involves omitting
the inertia of the sediment concentration, as well.
[30] 5. Wind waves suppress bank height, and in the case

of bed load transport under symmetrical flow conditions,
their presence is required for convergence to an equilibrium.
Increasing wave activity (larger values of Uw) leads to lower
equilibrium banks (Figure 6c).
[31] 6. The degree of crest flattening appears to scale with

the suspended load relaxation parameter s/g (Figure 6d).
Like the linear case, in the limit s/g # 0, this relaxation
effect is lost, and suspended load transport behaves as bed
load transport.
[32] Note that any parameter change in the model affects

both the characteristics of the fastest growing mode and its
finite amplitude behavior. This explains the variations in
wavelength (Figure 6) and orientation (see also Table 2).
[33] Which values of the spatial truncation number M are

appropriate depends on the flow conditions and mode of
transport. Taking M = 16 usually works, and for smoother
profiles (suspended load, strong wind wave activity,
neglecting the Coriolis force), even lower values suffice.

For the temporal truncation number we take N = 3, which
accounts for the higher harmonics. Higher values of N
merely slow down the computation, without improving
the morphodynamic results.

4.2. Tidal Asymmetry

[34] The finite amplitude morphodynamics is sensitive to
the degree of asymmetry in the tidal forcing. Asymmetry is
usually caused by the presence of a small M0 component or
an M4 component, besides the dominant M2 component of
the tide. This asymmetry turns out to affect the resulting
equilibrium profiles in three ways: they display (1) asym-
metry, (2) migration, and (3) a reduction in height.
[35] In order to quantify the left-right asymmetry, we

define

A ¼ log
‘1
‘2
: ð24Þ

Here ‘1 and ‘2 are the horizontal distances from crest to
trough, measured on both sides of the profile (Figure 5). We
chose a logarithmic scale such that a fully symmetric profile
has A = 0, asymmetric ones lead to a nonzero A, and
reversing an asymmetric profile (left-right) merely leads to a
sign change. We find asymmetric shapes with A values of
the order 1 (Figures 6e–6h, Table 2) for M0 and M4

amplitudes up to 10% of U. We further observe that an
increase in tidal asymmetry leads to an increase in profile

Table 2. Overview of Numerical Simulations, Each Case Being Defined Relative to One of the Two Default Cases 0b and 0s

No.a Description L,b km J,b deg hcr, m htr, m hrel, % A cmig, m yr�1

0b reference bed loadc 8.4 28 5.0 37.2 87
0s reference suspended loadc 8.7 27 7.8 40.4 81
Ab Coriolis forced 8.8 36 3.5 35.8 90
As Coriolis forced 9.1 35 5.8 38.8 85
Bb1 r ! r/2 10.7 32 6.5 38.7 83
Bb2 r ! 2r 6.5 27 5.1 37.4 87
Bs1 r ! r/2 11.5 30 10.8 42.1 74
Bs2 r ! 2r 6.7 26 7.3 39.7 82
Cb1 l ! l/2 6.7 24 3.8 36.5 90
Cb2 l ! 2l 10.9 33 7.0 38.3 82
Cs1 l ! l/2 6.9 23 6.4 40.0 84
Cs2 l ! 2l 11.5 32 9.9 40.6 76
Db neglecting @/@t 10.8 23 4.2 40.9 90
Ds neglecting @/@t 11.4 22 5.1 41.9 88
Eb1 Uw = 0.0 m s�1 8.3 28 no equilibrium found
Eb2 Uw = 0.5 m s�1 8.5 28 7.1 39.7 82
Es1 Uw = 0.0 m s�1 8.5 27 6.4 38.6 84
Es2 Uw = 0.5 m s�1 9.3 28 10.2 42.8 76
Fs1 s/g = 10�3 8.5 29 5.6 37.9 85
Fs2 s/g = 10�1 10.9 22 14.9 42.4 65
Gb1 2% M0

e 8.3 29 6.0 41.0 85 0.7 1.4
Gb2 10% M0

e 8.4 29 15.9 46.8 66 1.6 4.4
Gs1 2% M0

e 8.7 28 8.2 42.5 81 0.4 0.9
Gs2 10% M0

e 8.8 28 16.4 47.2 65 1.4 4.1
Hb1 2% M4

f 8.3 29 5.5 39.5 86 0.5 1.1
Hb2 10% M4

f 8.1 30 11.6 45.0 74 1.5 3.2
Hs1 2% M4

f 8.7 28 8.0 41.5 81 0.2 0.6
Hs2 10% M4

f 8.6 29 12.3 45.0 73 1.2 2.9
aSubscripts b and s refer to bed load and suspended load, respectively.
bFrom fastest growing mode from linear theory.
cDefault parameter values from Table 1 (except f = 0, taken for computational convenience) Tide, j0 = 0, j2 = 1 m s�1, j4 = 0; bed load, mb = 1, ms = 0;

suspended load, mb = 0, ms = 1; truncation parameters, M = 16, N = 3.
dCorresponding to a latitude of 52�N (Table 1).
eSum of amplitudes kept constant: j0 + j2 = 1 m s�1, M = 20.
fSum of amplitudes kept constant: j2 + j4 = 1 m s�1, j4 = 0, M = 20.
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asymmetry, as well. Unscaled values of steepest bank slopes
are about 1:100.
[36] A migrating equilibrium, for which equation (22) no

longer holds, is characterized by

h ¼ h x� cmigt
 �

; ð25Þ

with migration rate cmig. Only in this shape-preserving case
is the migration rate a well-defined quantity which can be
estimated from the numerical simulations according to

cmig ¼
�Bm

ikmHm

; ð26Þ

where Hm and Bm are the Fourier components of the
topography and the bed evolution, respectively. In a shape-
preserving equilibrium of the form of equation (25), this
quantity is real and identical for all m. The numerical
experiments show that the migration rates of the nonlinear
equilibrium are close to the ones obtained using linear
theory (Table 2).
[37] More important, introducing asymmetry in the tidal

forcing significantly reduces equilibrium height, especially
when the M0 component is responsible for the asymmetry
(Figures 6e–6f, Table 2). The relatively steep lee slope
requires larger values of the spatial truncation number M
than in the symmetric case, with M = 20 usually being
sufficient.

4.3. Physical Mechanisms

[38] We now focus on the physical mechanisms behind
the equilibrium state. The physical mechanisms of bank
formation in the linear stage have already been explained in
section 3.1 and the references cited there. As we will
explain below, it is convenient to distinguish the following

physically different contributions to the tidally averaged
sediment flux:

q
drag
b ¼ ab hjuj2ui þ U2

wj0

2ðh=HÞ2h

 !
; qdrags ¼ hcui;

q
sl;tide
b;s ¼ ab;slhjuj2i

@h

@x
; q

sl;wave
b;s ¼ ab;slU2

w

2ðh=HÞ2
@h

@x
:

ð27Þ

The so-called bed load drag contribution consists of two
terms: a tidally induced component and one related to the
transport by residual currents of wind wave-eroded material.
In the absence of an M0 component, j0 = 0, and the latter
component vanishes. In the suspended load case, both
components are contained in the flux hcui. The slope
contributions, related to tidal flow and wind wave stirring,
are of similar form for both modes of sediment transport.
[39] First, we consider a symmetric forcing and bed load

transport only. In equilibrium the tidally averaged bed load
sediment flux across the bank is constant; by symmetry, it
must be zero. This implies the following balance:

q
drag
b þ q

sl;tide
b þ q

sl;wave
b ¼ 0: ð28Þ

From Figure 7 we see that the drag contribution is
destabilizing as it carries sediment from trough to crest.
This is analogous to the linear stage of formation. In
equilibrium, it is compensated by the joint effect of the
gravitationally induced fluxes due to tidal flow and wave
stirring. The former acts along the flanks, the latter mainly
in the shallow area close to the crests. Reducing wave
activity (smaller Uw) decreases the stabilizing effect, which
leads to higher banks.
[40] For suspended load transport a similar equilibrium

holds, in which the drag effects are replaced with the

Figure 7. Different contributions to the tidally averaged sediment flux. Four cases are shown: (a) bed
load subject to symmetric tide, (b) suspended load and symmetric tide, (c) bed load and asymmetric tide,
(d) suspended load and asymmetric tide. Plotted are qdrag (solid lines), qsl,tide (dashed lines), and qsl,wave

(dotted lines). Figure 7c contains two solid lines: one for the tidal contribution (highest curve) and one for
the residual transport of wind wave-eroded material (lowest curve). The fluxes have been made
dimensionless against the reference fluxes qref = ab,sU

3.
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difference between entrainment and deposition. Combining
equations (6) and (8), we find, after taking the tidal average,
that

qdrags þ qsl;tides þ qsl;waves ¼ 0: ð29Þ

The temporal and spatial relaxation of suspended load
causes the quantity qs

drag to be smaller than the bed load drag
term qb

drag, assuming ab = as. Figure 7 shows that this has a
smoothing effect on the equilibrium topography.
[41] Asymmetry disrupts the picture sketched here,

causing a net sediment flux in the direction of the tidal
asymmetry. In a migrating equilibrium of the form of
equation (25) the sum of the separate contributions is no
longer zero, as in equations (28) and (29). Instead, it
should equal the sediment flux required to maintain
shape-preserving propagation at celerity cmig. From
equation (25), it follows that @h/@t = �cmig @h/@x, which
in turn leads to

q
drag
b;s þ q

sl;tide
b;s þ q

sl;wave
b;s ¼ �cmighþ const: ð30Þ

From Figure 7, it is seen that the drag contribution in the
direction of the asymmetry (from left to right along the stoss
side) is enhanced. This also applies to the slope contribu-
tions along the lee side. As already noted in section 4.2,
asymmetric equilibrium profiles are lower than symmetric
ones. Therefore wind wave stirring under asymmetric
conditions turns out to have a smaller effect than in the
symmetric case.
[42] Finally, we note that equations (28), (29), and (30)

express tidally averaged balances. Hence the instantaneous
effects need not be in balance; they may even differ in order
of magnitude. This emphasizes the dynamic nature of the
equilibrium, which allows small intratidal bed changes as
long as they compensate each other throughout the tidal
cycle.

5. Comparison With North Sea Data

5.1. Observations

[43] In this section we compare the results from the
nonlinear theory with data from the North Sea. The nonlin-

ear analysis provides new characteristics of tidal sandbanks
in morphodynamic equilibrium: (relative) bank height,
asymmetry, and migration as well as other more qualitative
characteristics such as shape. Wavelength and orientation
were already predicted by the linear theory. Because there is
no evidence of significant topographic changes over the last
century, we may assume that the banks in the North Sea are
indeed in or close to a morphodynamic equilibrium state.
Observations suggest that this equilibrium is maintained by
present-day flow conditions (see Trentesaux et al. [1999] for
the Middelkerke Bank, one of the Flemish Banks).
[44] We explored the available data (Figure 1a) in two

ways: by (1) identifying and analyzing the crest and trough
positions and by (2) transforming into Fourier space.
Figure 1b reveals that large-scale wavy patterns are present
almost everywhere in the domain, with varying bed ampli-
tude. Three sites with more pronounced banks catch the eye
(Figure 1): the Dutch Banks (upper box), the Zeeland Banks
(center box), and the Flemish Banks (lower box). It should
be noted that it is unclear whether the latter two should be
classified as open-shelf ridges (tidal sandbanks) or shore-
face-connected ridges (more details on this classification
can be found in the work of Dyer and Huntley [1999]).
[45] For each of these areas the Fourier spectrum

shows prevailing wavelength and orientation (Figure 8 and
Table 3). The orientation has been taken relative to the
principal tidal flow direction, which has been extracted
from the numerical work by Van der Molen and De Swart
[2001]. We use numerical results because we did not find
data that also provide estimates of the components in the
basic flow equation (11), which we need as input for our
model application (section 5.2). The dominant observed
wavelength is of the order of 6–10 km (Dutch Banks) and
5 km (Zeeland Banks and Flemish Banks). The Dutch
Banks and the Flemish Banks have a dominant orientation
counterclockwise to this flow angle, of �25� and �6�,
respectively. In contrast, the Zeeland Banks have a clock-
wise orientation. This supports the idea that they are shore-
face-connected ridges rather than tidal sandbanks, and we
will exclude them from further analysis.
[46] To obtain a more detailed impression of these

banks, we extracted a typical bank profile from each of
the two remaining locations (Figure 9, Table 3). Each of

Figure 8. Fourier spectra of the seabed topography for the three boxed areas in Figure 1: (a) Dutch
Banks, (b) Zeeland Banks, and (c) Flemish Banks. The angle J has the principal flow direction, and k is
the dimensional wave number. The plotted signal is proportional to the amplitude of the bed elevation.
See color version of this figure at back of this issue.

F02003 ROOS ET AL.: THE CROSS-SECTIONAL SHAPE OF TIDAL SANDBANKS

10 of 14

F02003



these profiles is taken as the average over an along-bank
stretch of several hundreds of meters.

5.2. Model Input

[47] The next step is to calculate the equilibrium banks
which would exist at the two remaining locations (Dutch
Banks and Flemish Banks), according to the morphody-
namic model we developed. The hydrodynamic conditions,
needed as model input, have been taken from the numerical
work of Van der Molen and De Swart [2001]. Their
simulations cover the southern North Sea, and the resolution
of 10 km is such that the presence of sandbanks must be
neglected. This is favorable as the required model input
indeed corresponds to flat-bed conditions. The two loca-
tions turn out to have an elliptical tide, albeit of small
eccentricity. To obtain the required input form, given by
equations (10) and (11), we projected the tidal signal onto
the principal tidal axis (tidal components given in Table 3).
The Coriolis parameter is adjusted to local latitude,
whereas the other parameter values have been taken from
Table 1. Numerical truncation parameters have been set at
M = 20 and N = 3.

5.3. Comparison

[48] Now, we compare the model results with the obser-
vations. We stress that the model has not been tuned in any
way to obtain better agreement.
[49] For the chosen parameters, linear theory predicts

wavelengths of �7 km. This roughly agrees with the
wavelength of the observed profiles. The wavelength of
the fastest growing mode appears to be insensitive to
differences in the hydrodynamic conditions. In addition, it
turns out that the angle between flow and bank crest is
overestimated by linear theory, by as much as 15�–30�.
[50] Bank height, as estimated by nonlinear theory,

appears to overestimate the observations, especially at the
Dutch Banks. The spikiness in the bank crests is found in
both model results and observations. This also holds for the

Table 3. Typical Banks at Two Sites in the Southern Bight of the

North Sea: Observations Versus Model Application

Dutch Banks Flemish Banks

Location
Northing, easting, km 5826, 540 5710, 464
Latitude 52�N400 51�N300

Observations
Wavelength L,a km 5.7–9.8 4.5
Orientation J,a,b deg 25 6
Bank height hrel,

c % 26 61
Asymmetry Ac 1.3 0.2

Conditions (Model Input)
Average water depth H, m 28.9 28.7
Flow angle,d,e deg 66.7 59.0
U,e m s�1 0.75 0.80
j0,

e m s�1 0.01 0.00
j2,

e m s�1 0.69 0.74
j4,

e m s�1 0.08 0.08
j4,

e deg 36.4 127.5

Model Output
Lfgm, km

Bed load 7.2 7.5
Suspended load 7.6 7.7

Jfgm, deg
Bed load 39 38
Suspended load 38 37

hrel, %
Bed load 78 84
Suspended load 76 80

A
Bed load 1.6 �1.5
Suspended load 1.2 �0.5

cmig, m yr�1

Bed load 1.9 �1.6
Suspended load 1.8 �1.3
aFrom Fourier spectrum (Figure 8).
bRelative to the principal flow direction (based on Van der Molen and De

Swart [2001]).
cFrom profiles (Figure 9).
dIn degrees counterclockwise to west-east direction.
eBased on Van der Molen and De Swart [2001].

Figure 9. Tidal sandbanks at two locations in the North Sea. (a) Observed profile at Dutch Banks.
(b) Modeled profile for both bed load and suspended load transport at Dutch Banks. (c) Observed profile
at Flemish Banks. (d) Modeled profile for both bed load and suspended load transport at Flemish Banks.
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notion that asymmetric banks are generally lower than the
symmetric ones. For the Dutch Banks we find qualitative
agreement between the asymmetries in bank shape and
tidal forcing. The tidal asymmetry at the Flemish Banks is
small and leads to a modeled profile with small asymmetry,
yet pointing in the wrong direction. Finally, we notice
again from the model results that the temporal and spatial
relaxation of suspended sediment has a smoothing effect on
the dynamics, resulting in lower values of bank height,
asymmetry, and migration.
[51] Migration rates predicted by the model are of the

order of a meter per year. The data, a snapshot of the
present bathymetry, neither confirm nor contradict this
result. However, we should note that in reality, there is
little evidence of sandbank migration. Furthermore, the
uncertainty in the sediment transport coefficient ab,s also
causes uncertainty in our migration estimates.

6. Discussion

6.1. Physics

[52] The rigid-lid assumption, which simplifies the solu-
tion procedure, is justified if the Froude number remains
small also in the finite amplitude regime. The maximum
(squared) Froude number, maximized over the tidal cycle, is
defined by

Fr2max � maxt
u2 þ v2

gh

� �
: ð31Þ

It is highest at the crests of banks in equilibrium (Figure 10).
For the spiky equilibrium shapes typical of bed load
transport we find maximum values of �0.1. For the lower
profiles of suspended load, this is nearly an order of
magnitude smaller. We conclude that the rigid-lid assump-
tion is justified, although for the bed load case, it may be
worthwhile to investigate the consequences of dropping the
rigid-lid assumption. However, this is not a straightforward
extension of the present approach. The existence of a
spatially uniform basic state heavily relies on the rigid-lid
assumption. Computationally, the dimension of the hydro-
dynamic problem increases considerably now that z can no
longer be eliminated.
[53] The results show that the linear theory behaves well

up to amplitudes of �0.2H (Figure 4), beyond which

nonlinear effects dominate. The migration rates from the
linear stage and the finite amplitude equilibrium turn out to
be nearly the same. Underlying this equilibrium is a balance
between destabilizing fluxes due to the drag of tidal flow
and stabilizing fluxes due to downslope transport. The latter
consists of both tidally induced downslope transport and
wind wave-eroded material. For the typical case of bed load
transport subject to a symmetrical tide, such a stirring
mechanism is even required to obtain equilibrium. In other
cases, wave stirring turns out to lower and smooth the
equilibrium profiles.
[54] Comparison with observations from the North Sea

shows that the model generally tends to overpredict bank
height. This can be due to the lack of a physical mechanism
(rise and fall of free surface during tidal cycle). We further
noticed a discrepancy between the angle of the fastest
growing mode from linear theory and those of observed
banks. Huthnance [1982a] already noted that the orientation
especially is sensitive to the uncertain formulation of sedi-
ment transport and is probably also susceptible to, for
example, the trend of an adjacent coastline. Alternatively,
differences between the direction of depth-averaged flow and
the bed shear stress could partly account for this deficiency.
[55] Our approach does not incorporate the dynamics of

sand waves, which require a description of the vertical flow
structure at shorter length scales of hundreds of meters
[Hulscher, 1996]. Hence we are unable to investigate finite
amplitude sandbank dynamics as a result of nonlinear sand
wave interaction. Such a mechanism has been proposed by
Komarova and Newell [2000], and we consider it worth-
while to investigate it further in a three-dimensional setting,
allowing to test it from a more observational perspective.
[56] The uncertainty in sediment transport coefficients ab

and as is reflected in the timescales of morphodynamic
evolution, which is of the order of centuries. Some param-
eters, assumed constant in the model, may actually vary on
this timescale, such as mean water depth owing to sea level
rise. Even though present-day sea level rise is relatively
strong, it has been significantly smaller over the past couple
of millennia [Douglas, 1995]. Hence it does not significantly
harm the present results, but we consider it an important
mechanism when aiming at long-term morphodynamic
predictions for the future.
[57] The model we have developed is idealized as our

main focus is on the physics from a qualitative point of
view. For example, we have studied the two transport
modes in an isolated way, i.e., either bed load or suspended
load transport. In reality, these modes occur simultaneously,
with their relative importance depending on grain size.
However, modeling this grain size dependence properly
would also require the inclusion of a critical flow velocity
(or critical shear stress) for sediment motion. Part of this
grain size dependence stems from this threshold [Idier,
2003]. We considered this beyond the scope of the present
study. Finally, it is also worthwhile to investigate the
influence of grain size variations on sandbank dynamics,
taking into account hiding and exposure (as studied by
Walgreen et al. [2003] for shoreface-connected ridges).

6.2. Surviving Mode

[58] A restrictive property of the model is its spatial
periodicity. We fixed the value to the preferred wavelength

Figure 10. Maximum values of the Froude number
throughout the tidal cycle for (a) bed load and (b) suspended
load (cases Ab,s in Table 2).
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obtained from linear theory, thus imposing the wavelength
of growing sandbanks. Although this is a common approach
followed in other fields of morphodynamic modeling (for
example, in the study of shoreface-connected ridges by
Calvete et al. [2002]), the finite amplitude wavelength
selection within the system cannot be studied. In their
weakly nonlinear study of alternate bar evolution in rivers,
Schielen et al. [1993] allowed for small changes in wave-
length. Figure 11a shows the sensitivity of equilibrium bank
height on the imposed wavelength, in a region around L =
Lfgm. It shows that for a longer wavelength the system tends
to higher equilibrium banks. This topic needs further
investigation.

6.3. Two-Dimensional Topographies

[59] In this paper we restrict ourselves to topographies
that vary in one horizontal dimension only. This choice is
supported by the predominantly one-dimensional horizontal
character of real sandbanks. It also simplifies the analysis
but forces us to externally impose the angle J between the
basic flow and the direction of topographic variations.
Choosing the preferred angle from linear theory is the most
logical choice. However, nonlinear effects may alter the
preferred bank orientation. For example, Figure 11b shows
that the angle Jfgm, for which initial growth is largest,
may not lead to the highest equilibrium banks. In a two-
dimensional approach the preferred angle emerges naturally
within the system. We therefore no longer need to impose it
externally; it may even adjust itself while the banks are
growing.

7. Conclusions

[60] The nonlinear morphodynamic model presented in
this paper is capable of producing evolution toward non-
trivial equilibrium states, which we associate with equilib-
rium profiles of tidal sandbanks. Equilibrium heights,
varying between 60 and 90% of the maximum water depth,
and their shapes depend on the type of transport and the
hydrodynamic conditions. In particular, bed load leads to
spiky equilibrium banks with flat troughs, whereas the
relaxation of suspended load leads to lower and more
rounded crests. The underlying (tidally averaged) balance
is between the destabilizing sediment flux due to fluid drag

and the downslope transport induced by both tidal flow and
wind wave stirring. Tidal asymmetry produces asymmetric
equilibrium profiles, which migrate at a rate of the order of
that predicted from linear theory. This asymmetry, wind
waves, and, furthermore, the inertia of the tide have a
damping effect on equilibrium heights.
[61] We claim that fully resolving the dynamics on both

the fast and slow timescales is essential to capture the
physics that determine the cross-sectional shape of tidal
sandbanks. The assumptions made in earlier studies to
simplify the dynamics on the fast tidal timescale affect the
results significantly. In particular, using a block flow and
omitting inertial terms [Huthnance, 1982a, 1982b; Roos et
al., 2002; Idier and Astruc, 2003] is too crude a means of
mimicking the nonlinear morphodynamics caused by an M2

tide.
[62] Comparison with information on large-scale features

extracted from North Sea bathymetric data gives fair agree-
ment between observed and modeled bank heights and
shapes, albeit mainly qualitatively. The comparison is
complicated by the small number of banks, the uncertainty
in the input, and along-bank variations in the observed
profiles.

[63] Acknowledgments. We thank Sandra Passchier and Ad van der
Spek from TNO-NITG/Hydrographic Service (Utrecht, Netherlands) for
providing the bathymetric data of the Dutch continental shelf. We are also
grateful to the department Waterwegen Kust of the Administratie Water-
wegen en Zeewezen (Oostende, Belgium) for granting us permission to use
their measurements of the Flemish Banks and to Vera van Lancker and
Samuel Deleu of Ghent University for providing the data set. Johan van der
Molen is thanked for supplying the hydrodynamic conditions from his
numerical model results. We are grateful to Huib de Swart and a second,
anonymous reviewer for their comments. This research was carried out
within the EU-project HUMOR, contract EVK3-CT-2000-00037.

References
Calvete, D., H. E. De Swart, and A. Falqués (2002), Effect of depth-
dependent wave stirring on the final amplitude of shoreface-connected
sand ridges, Cont. Shelf Res., 22, 2763–2776.

De Vriend, H. J. (1990), Morphological processes in shallow tidal seas, in
Residual Currents and Long Term Transport, Coastal Estuarine Stud.,
vol. 38, edited by R. T. Cheng, pp. 276–301, Springer-Verlag, New York.

Douglas, B. C. (1995), Global sea level change: Determination and inter-
pretation, Rev. Geophys., 33, 1425–1432.

Dyer, K. R., and D. A. Huntley (1999), The origin, classification and
modelling of sand banks and ridges, Cont. Shelf Res., 19, 1285–1330.

Hulscher, S. J. M. H. (1996), Tidal-induced large-scale regular bed form
patterns in a three-dimensional shallow water model, J. Geophys. Res.,
101, 20,727–20,744.

Hulscher, S. J. M. H., H. E. De Swart, and H. J. De Vriend (1993), The
generation of offshore tidal sand banks and sand waves, Cont. Shelf Res.,
13, 1183–1204.

Huntley, D. A., J. M. Huthnance, M. B. Collins, C.-L. Liu, R. J. Nicholls,
and C. Hewitson (1993), Hydrodynamics and sediment dynamics of
North Sea sand waves and sand banks, Philos. Trans. R. Soc. London,
Ser. A, 343, 461–474.

Huthnance, J. M. (1982a), On one mechanism forming linear sand banks,
Estuarine Coastal Shelf Sci., 14, 74–99.

Huthnance, J. M. (1982b), On the formation of sand banks of finite extent,
Estuarine Coastal Shelf Sci., 15, 277–299.

Idier, D. (2003), Note on grain size dependency in morphodynamic model-
ling, or the importance of the critical shear stress, CE & M Res. Rep.
2003W-004/WEM-002, Univ. of Twente, Enschede, Netherlands.

Idier, D., and D. Astruc (2003), Analytical and numerical modeling
of sandbanks dynamics, J. Geophys. Res., 108(C3), 3060, doi:10.1029/
2001JC001205.

Kenyon, N. H., R. H. Belderson, A. H. Stride, and M. A. Johnson (1981),
Offshore tidal sand banks as indicators of net sand transports and as
potential deposits, in Holocene Marine Sedimentation in the North Sea
Basin, edited by S. D. Nio, R. T. E. Schuttenhelm, and T. C. E. Weering,
pp. 257–268, Blackwell Sci., Malden, Mass.

Figure 11. Dependence of equilibrium bank height hrel
on (a) imposed wavelength and (b) flow orientation, both
relative to the fastest growing mode (case Ab in Table 2).

F02003 ROOS ET AL.: THE CROSS-SECTIONAL SHAPE OF TIDAL SANDBANKS

13 of 14

F02003



Komarova, N. L., and A. C. Newell (2000), Nonlinear dynamics of sand
banks and sand waves, J. Fluid Mech., 415, 282–312.

Parker, G. (1978), Self-formed straight rivers with equilibrium banks and
mobile bed. part 1. The sand-tilt river, J. Fluid Mech., 89, 109–125.

Pattiaratchi, C., and M. Collins (1987), Mechanisms for linear sandbank
formation and maintenance in relation to dynamical oceanographic
observations, Prog. Oceanogr., 19, 117–176.

Robinson, I. S. (1983), Tidally induced residual flows, in Physical Ocean-
ography of Coastal and Shelf Seas, edited by B. Johns, pp. 321–356,
Elsevier Sci., New York.

Roos, P. C., and S. J. M. H. Hulscher (2003), Large-scale seabed dynamics
in offshore morphology: Modeling human intervention, Rev. Geophys.,
41(2), 1010, doi:10.1029/2002RG000120.

Roos, P. C., S. J. M. H. Hulscher, B. G. T. M. Peters. and A. A. Németh
(2001), A simple morphodynamic model for sand banks and large-scale
sand pits subject to asymmetrical tides, paper presented at the RCEM
Symposium 2001, Int. Assoc. for Hydraul. Res., Hokkaido, Japan.

Roos, P. C., S. J. M. H. Hulscher, and R. M. J. Van Damme (2002), Finite
amplitude tidal sandbanks: Modelling one-dimensional equilibrium
profiles, paper presented at the 28th International Conference on Coastal
Engineering, Cardiff, U. K.

Schielen, R., A. Doelman, and H. E. De Swart (1993), On the nonlinear
dynamics of free bars in straight channels, J. Fluid Mech., 252, 325–356.

Schuttelaars, H. M. (1998), Nonlinear long term equilibrium profiles in a
short tidal embayment, in Physics of Coastal Seas and Estuaries, edited
by J. Dronkers and M. B. A. M. Scheffers, pp. 337–343, A. A. Balkema,
Brookfield, Vt.

Schuttelaars, H. M., and H. E. De Swart (1996), An idealized long-term
morphodynamic model of a tidal embayment, Eur. J. Mech. B, 15(1),
55–80.

Sekine, M., and G. Parker (1992), Bed-load transport on transverse slope,
J. Hydraul. Eng., 118(4), 513–535.

Talmon, A. M., M. C. L. M. Van Mierlo, and N. Struiksma (1995),
Laboratory measurements of the direction of sediment transport on
transverse alluvial slopes, J. Hydraul. Res., 33, 495–517.

Trentesaux, A., A. Stolk, and S. Berné (1999), Sedimentology and stratig-
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Figure 1. Seabed topography in the Southern Bight of the North Sea. (a) Bathymetry, showing three
boxed areas to be analyzed further in section 5. Regions without data are indicated in white, such as the
U.K. continental shelf (left) and the Dutch and Belgian mainland (bottom right). (b) Crest and trough
positions of large-scale features (in red and blue, respectively), with line thickness proportional to bank
height. See the acknowledgments for data sources.

Figure 8. Fourier spectra of the seabed topography for the three boxed areas in Figure 1: (a) Dutch
Banks, (b) Zeeland Banks, and (c) Flemish Banks. The angle J has the principal flow direction, and k is
the dimensional wave number. The plotted signal is proportional to the amplitude of the bed elevation.
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