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Abstract

Modern approaches to microstructure data processing, including wavelet denoising, are discussed. The wavelet proce-
dure is applied to small-scale shear signals before estimating the dissipation rate e and to the temperature/density profiles
used to calculate Thorpe scales. Microstructure data obtained on the Mediterranean shelf of Catalonia are used to illus-
trate various approaches to the Thorpe displacement calculations. It is suggested that the Weibull probability function is
an appropriate model for the Thorpe scale distribution. Microstructure measurements from the upper layer of the Boadella
reservoir (Catalonia, Spain) support this finding.

A new analytical approximation for the 1D Panchev–Kesich spectrum is deduced and the results of e computation are
compared with spectral fitting by the widely used Nasmyth spectrum. Applying the Kraichnan spectral model to compute e
from temperature spectra in the convective-viscous sub-range is examined as an alternative to the Batchelor spectrum.
Microstructure measurements taken in Lake Banyoles (Catalonia, Spain) and in the North Atlantic were used for spectral
calculations.

Statistical analysis of eddy Kb and thermal Kh diffusivities measured on a shallow shelf of the Black Sea shows the
importance of process-orientated domain averaging of the diffusivities in obtaining good correspondence between Kb

and Kh in active turbulent regions. In weakly turbulent, stratified interior layers, the averaged Kb and Kh differ significantly,
which may point to the inapplicability of isotropic formulae used for e and temperature dissipation vh estimates, as well as
to a dependence of the mixing efficiency c on the Richardson number or in some cases on regions of fossil turbulence.
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Preface

In a widely referred book on turbulent diffusion, Csanady (1973) described the rapid progress in studies of
environmental turbulence, which demanded at that time a review that he portrayed as a synthetic work of sci-
entific journalism. Since then, significant progress in the study of turbulent mixing in natural systems has been
made, which is summarized with emphasis on the air–sea interaction in Csanady’s new book (2001). The
recent development of commercial microstructure profilers has allowed many researchers, who are interested
in aquatic systems but are not experts in turbulence dynamics, to collect a great amount of specific microstruc-
ture data. In this context, we look at modern approaches to microstructure data processing based on our own
experience and the achievements of other researchers and also analyze the statistical properties of such turbu-
lent variables as eddy diffusivity and Thorpe scales in marine and freshwater environments.

1. Introduction

The study of mixing in natural waters is of great importance for the understanding of energy transforma-
tions in the air–sea–land climate system. The first successful measurements of turbulent fluctuations in a mar-
ine environment were made by Stewart and Grant (1962) in a tidal channel. They were discussed further
(Grant et al., 1968) in reference to inertial and inertial-convective subranges (Kolmogorov, 1941; Obukhov,
1941) in the spectra of ocean turbulence. The instruments that can directly measure small-scale fluctuations
of vertical shear, conductivity, and temperature in profiling and towing modes were first developed in the Uni-
ted States (Osborn, 1978; Gregg et al., 1982; Dewey et al., 1987), Canada (Oakey, 1982), Russia (Monin and
Ozmidov, 1985; Arvan et al., 1985), Germany (Prandke et al., 1985) and Australia (Carter and Imberger,
1986). Since then, different research groups continue to improve and develop new microstructure instruments
as is the case of AMP and CHAMELEON (Moum et al., 1995); BAKLAN and GRIF (Paka et al., 1999), FLY (Simp-
son et al., 1996) and EPSONDE (Oakey, 1988). Also, several commercial profilers have recently become available:
MSS (Prandke and Stips, 1996), TURBOMAP (Wolk et al., 2002) and PME (Stevens et al., 1999), allowing more
researchers to study turbulence dynamics and its influence on the ecology of aquatic systems.

Although the history of microstructure measurements goes back more than 30 years, getting accurate esti-
mates of such important turbulent quantities as the dissipation rates of turbulent kinetic energy e and temper-
ature fluctuations vh, as well as eddy diffusivities in various natural environments is still a problem.
Microstructure profilers give only snapshots of the turbulence field, which can vary significantly in space
and time.

In this paper, we focus on recent progress in microstructure data processing which has allowed improved
quality and robustness of the estimates of major microstructure variables. A comprehensive review of the spe-
cifics of oceanic microstructure measurements and processing technique was given by Gregg (1999). Since
then, Piera et al. (2001) have suggested using wavelets for identification of turbulent patches and calculation
of Thorpe scales, the Panchev and Kesich (1969) spectrum has started to compete with the Nasmyth (1970)
spectrum as the universal benchmark for computing e, and the Kraichnan (1968) temperature spectrum has
now challenged the widely used Batchelor (1959) spectrum for the estimates of e based on temperature micro-
structure. Wüest and Lorke (2003) reviewed microstructure measurements in lakes suggesting an extensive use
of the Thorpe scale calculation to quantify the mixing rates in various layers. In this study, we offer a system-
atic description and a comparative analysis of several major approaches to processing microstructure data
illustrating the outcomes by the measurements taken in Catalonian (Spain) lakes and reservoirs, on the Black
Sea and Mediterranean shelves and in the North Atlantic. The basic turbulence balance equations that under-
lie current approaches to microstructure measurements and data processing are given in Section 2. Denoising
initial records is a challenging process, which includes a new wavelet technique and is discussed in Section 3. A
comparative analysis between several competing benchmark spectra is given in Section 4, which is focused on
the calculation of e and vh. In Section 5, we show how the estimates of Thorpe scale depend on the approaches
used for the calculation of Thorpe displacement and suggest that the Weibull (1951) probability function can
serve as a model for the Thorpe scale distribution in weakly stratified layers. Section 6 emphasizes the impor-
tance of the proper domain-averaging of eddy diffusivities to obtain correct information on the state of mixing
on a shallow shelf. A brief summary is given in Section 7.
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2. Balance equations and basic formulae

Geophysical turbulent flows are usually characterized by high Reynolds numbers, Re = UL/m > 105–107,
where U and L are the characteristic velocity and length scale, and m is the molecular viscosity. The balance
equations for the turbulent kinetic energy q2 ¼ ð1=2Þu02i and the variance of scalar (temperature) fluctuations
H ¼ ð1=2Þh02 are (Kundu, 1990)
oq2

ot
¼ G� B� e; ð1Þ

oH
ot
¼ Gh � vh: ð2Þ
The diffusion and advection terms of the q2 and H balances are neglected in (1) and (2) because they are usu-
ally much smaller than the major terms. In stationary state (oq2/ot = 0) the shear production of turbulent ki-
netic energy G is balanced by the viscous dissipation e and the buoyancy flux (in stably stratified flow) B, while
the production of scalar fluctuations (temperature, conductivity, salinity, etc.) Gh is balanced by the scalar dis-
sipation vh if oH/ot = 0. According to a one-dimensional model (Kantha and Clayson, 2000),
G ¼ ½�u0w0ðo�u=ozÞ � v0w0ðov=ozÞ� ¼ Km½ðo�u=ozÞ2 þ ðo�v=ozÞ2�; ð1aÞ

B ¼ �b0w0 ¼ Kb

ob
oz
; ð1bÞ

e ¼ 3:75m½ðou0=ozÞ2 þ ðov0=ozÞ2�; ð1cÞ
Gh ¼ �h0w0ðo�h=ozÞ ¼ Khðo�h=ozÞ2=2; ð2aÞ

vh ¼ 6Dðoh0=ozÞ2; ð2bÞ
where u 0, v 0 and w 0 are the three components of the turbulent velocity, u0w0 ¼ �Kmðou=ozÞ and
v0w0 ¼ �Kmðov=ozÞ are the vertical fluxes of the two components of the horizontal momentum,
b0w0 ¼ �KbN 2 is the buoyancy flux, and b 0 = �(g/qo)q 0 and N2 = ob/oz are the buoyancy fluctuations and
the squared buoyancy (Brunt-Vaisaala) frequency, respectively. The molecular viscosity, m, is close to
10�6 m2/s in natural waters, and molecular diffusivity, D, depends on the nature of the scalar
(D � 1.4 · 10�7 m2/s for the temperature and is 100 times lower for the salinity field). In (1a, 1b, 2a), Kb

and Km are the eddy diffusivity and eddy viscosity, respectively, and Kh is the temperature diffusivity. These
variables can be deduced from the stationary balance equations as
Kb ¼ ½Rf=ð1� RfÞ�e=N 2; ð3aÞ
Km ¼ Kb � Ri; ð3bÞ
Kh ¼ vh=2ðo�h=ozÞ2; ð3cÞ
where the gradient Richardson number, Ri = N2/Sh2, indicates the ‘‘state’’ of stability in stratified sheared
flows and Sh2 ¼ ðo�u=ozÞ2 þ ðo�v=ozÞ2 is the squared mean shear. The ratio between buoyancy and inertial forces
is specified by the flux Richardson numberRf = (Kb/Km)Ri, which is related to the so-called mixing efficiency
(Dillon, 1982) defined as
c ¼ Rf=ð1� RfÞ: ð4Þ

The transition from a hydrodynamically stable to unstable regime of a stratified flow is usually associated with
the critical Ri, which is equal to 1/4 (linear stability, Miles, 1961) or 1 (non-linear stability, Miles, 1986) for
constant N and Sh. In turn, the Rf and, correspondingly, c are functions of Ri (Phillips, 1972). Monti et al.
(2002) have also found a strong dependence of Rf on Ri but Oakey and Greenan (2004) recently produced
evidence for the independence of Rf from Ri. Oakey (1982) showed a median value of c = 0.2 for ocean tur-
bulence based on independent measurements of small-scale shear and temperature (density) fluctuations in ac-
tive turbulent regions. This value was used thereafter by many researchers for practical applications (the
diffusivity calculations) in well-developed turbulent flows (e.g., Gregg, 1987; Lozovatsky and Fernando,
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2002). Yamazaki and Osborn (1993), Smyth and Moum (2000) and several others, however, reported a wide
scatter of c and new numerical (Fringer and Street, 2003) and experimental (Wüest and Lorke, 2003) studies
still challenge the universality of c = 0.2.

Results of direct numerical simulation (Smyth et al., 2001), moreover, indicate that c could also depend on
time, growing initially from 0 to �0.9 before a K–H billow overturns, but then decreasing to a constant level
close to c = 0.2. This agrees with a numerical study of the turbulence transition in stratified parallel flow (Pel-
tier and Caulfield, 2003), which suggests c � 0.2 at late stages of flow evolution. The study also predicts a non-
monotonic growth of c for Ri < 0.125, which generally corresponds to the Phillips-Posmentier instability
mechanism (see Balmforth et al., 1998 for more details). Recent laboratory (Strang and Fernando, 2001)
and modeling (Canuto et al., 2001) results show similar continuous growth of c with Ri for 0 < Ri < 1. For
Ri > 1, c associated with K–H instability rapidly decreased to very low values. Canuto et al. (2001) have pro-
posed specific scaling for momentum and buoyancy (temperature) diffusivities that result in a growing c(Ri).
Depending on the major governing processes, extensive, combined measurements of mean shear and density
gradients in different background conditions accompanied by velocity and scalar microstructure are needed to
clarify the behavior of mixing efficiency in stratified sheared flows. Here we focus on several important prob-
lems related to the processing of microstructure data and to obtaining accurate estimates of turbulent quan-
tities in natural waters.

3. Processing and denoising microstructure data

Noise amplitudes of airfoil, fast temperature, and conductivity sensors used in most microstructure profil-
ers can be compared with amplitudes of actual microstructure signals. Moum and Lueck (1985) showed, for
example, that the lowest kinetic energy dissipation rate of about 10�10 W/kg measured by their profiler was a
reflection of the pseudo dissipation rate, which can be calculated using the accelerometer signal. Yamazaki
and Osborn (1993) also found a noise level close to 10�9 W/kg, while Paka et al. (1999) reported that the noise
level of the dissipation measured by the BAKLAN profiler was close to 5 · 10�10 W/kg. Recent measurements
taken across the North Atlantic (Lozovatsky et al., 2005a) with an MSS profiler revealed a noise level of
the dissipation measurements of �3 · 10�9 W/kg. Spectra with low-energy levels often exhibit a characteristic
flatness at low wavenumbers, indicating a wide range of noise; a spiky noise usually appears at high wavenum-
bers. These contaminations can be caused by the electronics and by artificial oscillations produced by the pro-
filer itself, the protection guard and/or the float used to prevent mechanical damage to the sensors during
measurements. Identifying a specific source of the noise in microstructure records is not straightforward.

Sometimes, a localized, narrow-frequency noise can appear in the signal because of the mechanical reso-
nance of the profiler. Such localized peaks (around 40 Hz for an MSS profiler) can be deleted by a bandstop
digital filter such as the Lanczos window (Hamming, 1983) designed for a specific frequency/wavenumber
band. A high-order Lanczos bandstop filter has a sharp frequency response function and, therefore, high-
amplitude peaks can be removed without significant changes in the adjacent frequencies. Lanczos filters have
gained considerable popularity among physical oceanographers over the years (Smith et al., 1985; Jones et al.,
1998; Stabeno and Herman, 1996).

Butterworth or elliptic filters can also be tuned to a narrow spectral window by a combination of proper
filter parameters. The Butterworth filter is maximally flat in the passband and monotonic overall. The elliptic
filter has a steeper rolloff than the Butterworth, but more ripples in both the pass- and stopbands. This filter
can be tuned to a desired frequency band with the lowest order of any filter type. Using the elliptic as a band-
stop filter, has some disadvantages because of noticeable signal attenuation (�1%) in the passband (Fig. 1c).
We believe that the 4th order Butterworth bandstop or a very high-order Lanczos filter is the optimal choice to
clean a shear signal contaminated by a narrow frequency noise. A comparison between frequency response
functions of these three filters tuned to f = 40 Hz with a ± 1 Hz frequency stopband is given in Fig. 1.

Recently, Piera et al. (2001) showed the efficiency of wavelet denoising for processing microstructure tem-
perature profiles, in particular when the measurements are used for the analysis of Thorpe scales and associ-
ated turbulent overturns. Wavelets are specifically useful for multi-scale analysis (Foufoula-Georgiou and
Kumar, 1994) and as a cleaning tool for signals contaminated at various temporal or length scales, keeping
details of the actual signal at specific scales (Strang and Nguyen, 1996).



Fig. 1. (a) The frequency response functions H(f) for the 4th order Butterworth (dashed line), 501st order Lanczos (circled line), and 4th
order, 40 dB attenuation, 0.1 dB ripple elliptic (solid line) bandstop filters tuned to f = 40 Hz with a frequency band of ±1 Hz. The
bandstop (b) and bandpass (c) details of the H(f) structure.
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Wavelet analysis decomposes a discrete signal, /(n), n = 1,2, . . ., onto a specific family of functions ws,l(n)
(decomposition base), which expand and translate with a scale parameter s, and a location parameter l. The
scale parameter defines the decomposition levels. One of the approaches to define l and s is (Daubechies et al.,
1986): s = 2m and l = j2m, where j,m = 1,2, . . . In this case, /(n) transforms to /(m, j)
/ðm; jÞ ¼
X1

n¼�1
/ðnÞWm;jðnÞ ¼

X1
n¼�1

/ðnÞ 1ffiffiffiffiffi
2m
p W

n� j2m

2m

� �
: ð5Þ
Mallat (1991) has also suggested the alternative, so-called, step-by-step method, where s = m.
The fast wavelet (FWT) computational algorithm (Mallat, 1989) first decomposes the original signal into

low- and high-frequency components by the direct convolution of a ‘‘lowpass’’ filter and a ‘‘highpass’’ filter in
a discrete domain. Low-frequency components (approximation coefficients) keep global features of the signal
while high-frequency components (detail coefficients) retain local features. The decomposition process for
approximation coefficients can be iterated recursively while the detail coefficients are retained intact. Details
retained at each level and the reconstruction ability depends on specific properties of the base. Some well-
known bases are Mexican hat, splines, daubechies, maxflat and symlet (Missiti et al., 1996).

Once the coefficients are found, the denoising procedure thresholds them above a certain level in order to
keep only non-contaminated signals. The threshold values can be determined from the original data assuming
different noise structures. That is also the core of the Galbraith and Kelley (1996) algorithm that tests the con-
sistency of the distribution of temperature fluctuations in the water column with the instrumental noise, in
order to identify the ‘‘overturning regions’’. Piera et al. (2001) found that the Galbraith and Kelley algorithm
applied to the run length series of temperature fluctuations with a threshold of four produces the same results
as that which is based on Thorpe scale calculation, using wavelet denoising before sorting the microstructure
temperature profiles. The correspondence between the two methods achieves 97% of the patches.

Using wavelets, noise can be modeled in several different ways. If it is a random Gaussian signal, then the
noise is estimated based on the level of detail coefficients (often, it is the first level: cD1) where a major part of
the noise is kept. The threshold level can then be selected as thr ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðnÞ

p
where M = median(|cD1|)/

0.6745 (Donoho and Johnstone, 1994).
Thresholding can be also done directly or by applying a soft threshold function (Donoho, 1995) so that the

coefficients smaller than the threshold thr are suppressed while the rest of the coefficients are shrunk some pro-
portion of the threshold value. Scales considered to determine the threshold value and those where threshold-
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ing is applied can also be chosen. Finally, after thresholding, an inverse transform is performed to recover a
denoised signal.

In Fig. 2 we present three spectra computed from original contaminated small-scale shear data and those
obtained after wavelet denoising. The spectra are plotted together with the theoretical Panchev–Kesich spectra
for different e (see Section 4 for details of the Panchev–Kesich formulation). In these examples, Daubechies
wavelets, db9, (Daubechies, 1992) were used and, denoising was performed up to the 2nd and 3rd levels of
decomposition. Measurements for these spectra were taken in the upper quasi-homogeneous layer (1) and
in the underlying thermocline (2) in the North Atlantic (Lozovatsky et al., 2005a), and in the stratified Boad-
ella reservoir (3). The Boadella data were denoised using decomposition level 2 because the original data were
averaged previously and, as a result, the effective sampling rate ‘Fs’ was smaller than that of the Atlantic mea-
surements. Although a pure single-frequency component of the signal could be spread with wavelet decompo-
sition at different scales, a characteristic frequency of Fs/2n is approximately projected at the n level of
decomposition, when the 2n scale mode is used. With this type of scaling, a signal with 2a points can not
be decomposed to a scale larger than a, but the generation of extra data is possible in order to allow the
computation.

The notation ‘mln N’ in Fig. 2 indicates that a multi-level noise estimation was performed up to the level N
of decomposition. The notation ‘sln N’ means that the noise was estimated only at the first level and propa-
gated up to the N level (single level noise). The assumption that the noise at small scales propagates to large
scales should be carefully considered. Here (Fig. 2) we considered it for case (1) but only to show the wavelets
capabilities. Applications of wavelets for cleaning airfoil shear records and recovering non-contaminated e
profiles as well as calculating the Thorpe scales are shown in Sections 4 and 5.

Contamination in microstructure profiles, such as spikes and faulty segments, can be caused by abrupt fail-
ures in communication links or malfunctions of the sensors (Moum and Lueck, 1985). Considering the large
amount of information collected by microstructure sensors, editing microstructure data cannot be done man-
ually, and therefore various statistical approaches must be applied to identify and recover – when possible –
these segments. For example, Prandke et al. (2000) suggested excluding bad samples or assigning values to
them by calculating the mean l and standard deviation r for each consecutive pre-determined segment and
then marking and replacing the data outside the interval (l ± nr), where n = 2.7. Instead of replacing bad
samples by the mean value calculated at each segment, a cubic-spline interpolation can be used, when the num-
ber of bad or missing points is less than those corresponding to Dl � 5 cm of the record. If a data gap is larger
than the prescribed limit Dl, the record can be divided into several separate segments, with none of the gaps
exceeding Dl. The median filtration is also a fairly common approach for removing sharp short spikes from
microstructure records (Paka et al., 1999).
Fig. 2. Shear spectra before (star lines) and after (dashed lines) wavelet denoising. The function base (db9), threshold rescaling (mln or sln)
and denoising levels (2 or 3) are shown near the curves. The data are obtained from the upper mixing layer (1) and underlying thermocline
(2) of the North Atlantic, and from the interior of the Boadella reservoir (3). The benchmark Panchev–Kesich spectra for different
turbulent kinetic energy dissipation rates are shown by continuous lines.
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The sinking velocity of the profiler must satisfy the requirements of time response of the shear probe, min-
imization of vibrations, and applicability of Taylor’s hypothesis of ‘‘frozen turbulence’’ to convert time
records into vertical profiles (Luketina and Imberger, 2001; Prandke and Stips, 1998).

Accurate calculation of the falling velocity wp of a profiler is also an important step in data processing
because the shear signal from the airfoil sensor eout is proportional to w2

p, i.e. eout ¼ qS0w2
pðou0=otÞ, where

S0 is the cross-sectional area of the cylindrical part of the sensor (Paka et al., 1999). To convert the time-sam-
pled signals to the depth-dependent variable (for example, from oT 0/ot to oT 0/oz), the falling velocity is usually
calculated from the pressure signal, which can be contaminated by wave-induced variations of the sea-surface
and possible tilting of the profiler. To reduce the fluctuations in the pressure signal, which should be a mono-
tonic function of time, Lozovatsky et al. (2005a) approximated consecutive segments of data (25 dbar in
length) by a second order polynomial function and then connected the consecutive segments using a 5-point
running averaging filter.

Furthermore, the combined effect of thermal drift of the airfoil probe and low-frequency motions of the
free-falling profiler (fluctuations with the scales corresponding to half of the instrument length) can be a source
of low-frequency noise in the microstructure shear signal. To clean up this kind of contamination, classical
high-pass digital filters like Butterworth, Chebychev or elliptic (Press et al., 1990) are usually employed
directly on a raw signal. At high frequencies, electronic noise can also be removed by the same types of
low-pass digital filters.

Finally, in the very first few meters below the surface, microstructure data are contaminated by ship-
induced movements and transients of the profiler. The data at the end-point of the cast can also be heavily
contaminated, because of the cable tension, which causes high-amplitude vibrations. Since end segments can-
not be recovered by any denoising procedure, they are usually removed from the analysis.

4. Turbulent kinetic energy and temperature fluctuation dissipation rates

4.1. Spectral integration

After applying appropriate corrections to small-scale shear and temperature signals, the dissipation rates e
and vh can be evaluated by fitting one-dimensional wavenumber spectra calculated for a segment of interest to
a theoretical or empirical benchmark spectrum, such as the Nasmyth (1970) or Panchev and Kesich (1969) for
e, and the Batchelor (1959) or Kraichnan (1968) for vh, or e, depending on which one is known. The other
approach, which is also employed in microstructure research, is the so-called variance method when formulae
(1c) and (2b) are converted to their spectral form using the assumption of isotropy
e ¼ 15

2
m
Z jN

j0

Edu0=dzðjÞdj

� �
; ð6aÞ

vh ¼ 6D
Z jN

j0

Edh0=dzðjÞdj

� �
ð6bÞ
and the integration between the external (lowest possible) wavenumber j0 and the Nyquist (highest possible)
wavenumber jN is taken. Here Edu0=dzðjÞ is a one-dimensional spectrum of the gradient of horizontal velocity
component, Edh0=dzðjÞ is the spectral density of the gradient of temperature fluctuation and j = 2p/k (k is the
wavelength of fluctuations).

Free-falling or tethered microstructure profilers with airfoil sensors (Osborn, 1974, 1980) usually provide
information only on two horizontal components of small-scale shear in the wavenumber range from �1–2
to 50 cpm for typical free-falling profiler speeds of 0.6–0.7 m/s. Therefore, the smallest (Nyquist) wavelength
2p/jN could be close to the Kolmogorov lengthscale, g = (m3/e)1/4, and a variance loss correction of the signal
is required at j > jN which can be done by using one of the universal spectra to approximate the empirical one
(see, for example, Paka et al., 1999 for more details). Although any universal shear spectra contains energy at
all scales larger than g, the spectral peak is usually observed near LK � (2p/0.16)g (Gregg et al., 1996) and the
dissipation maximum for the temperature gradient is close to LB = cB(mD2/e)1/4, where cB = 2p(2q)1/2 � 16.5
for q = 2

p
3 (Dillon, 1982). In relatively weak turbulent regions, where e < 10�7 W/kg, the scale g did not
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exceed 1.8 · 10�3 m and, therefore, LK � 0.07 m is about 3–4 times larger than the smallest scales resolved by
typical shear probes. This allows the calculation of e without preliminary corrections for the variance loss.
This correction must be implemented for segments with higher dissipation or, when the signal is contaminated
by high-frequency noise, in a way that cannot be well denoised to compute the variance. An iterative method
to automatically identify the largest non-contaminated wave number to integrate Eq. (6a) has been proposed
by Prandke and Stips (1998).

The variance loss correction is usually needed to obtain correct estimates of the scalar dissipation rate by
formulae (2b) or (6b). Peters et al. (1988) showed how important the variance loss corrections are for the dis-
sipation estimates in a highly turbulent equatorial shear zone. The accuracy of this approach for conductivity
fluctuations is questionable due to the dependence of the conductivity spectrum at higher wavenumbers on
both temperature and salinity fluctuations. In addition, as pointed out by Miller and Demotakis (1996),
the temperature spectrum may not be universal even in the convective-inertial subrange. Detailed analysis
of Washburn et al. (1997) shows that the shape of the conductivity spectrum does not seriously affect temper-
ature dissipation vh if the ratio DS/DT between salinity and temperature differences at a segment of calculation
is positive or weakly negative and vh < 10�8 K2/s. These conditions are satisfied, for example, for measure-
ments taken on the Black Sea shelf (see Section 6), where DS/DT varies from �0.05 to �0.02 psu/K and hence
the influence of the high wavenumber spectral shape on the accuracy of the scalar dissipation measurements is
not crucial.

Knowing e or vh, one can estimate the eddy diffusivity using formula (3a) or (3c). Because in observations
the logarithm of e has much smaller variance than that of vh, the preference is usually given to Kb (Eq. (3a))
over Kh (Eq. (3c)). As a result, the e-based diffusivities exhibit a smaller scatter than vh-based estimates. There-
fore, in the following sections we focus specifically on the approaches that help to obtain accurate estimates of
e based on small scale shear and temperature data.

4.2. Spectral fitting

4.2.1. Shear spectra: Panchev–Kesich and Nasmyth benchmarks

As has been mentioned, the Nasmyth (1970) and Panchev and Kesich (1969) ‘‘universal’’ spectra are among
the most popular benchmarks for the estimation of e by appropriate fitting with related empirical shear spec-
tra. The Batchelor (1959) or Kraichnan (1968) models are used alternatively for the same purpose (see Section
4.2.2) but the fit is made with the empirical spectra of small-scale temperature fluctuations and vh must be cal-
culated previously using Eq. (6b). The Panchev–Kesich theoretical 3D non-dimensional velocity spectrum is
Enðkn1Þ ¼ k�5=3
n1 þ

ffiffiffi
3

2

r
k�1

n1

 !
exp � 3

2
k4=3

n1 �
ffiffiffi
3

2

r
k2

n1

 !
; ð7Þ
where wavenumber kn1 = a3/4jg is normalized by the Kolmogorov scale g = (m3/e)1/4, En = E(j)/[a9/4(em5)1/4],
a = 0.5 is the Kolmogorov constant in the inertial subrange, and j and E(j) are the corresponding dimen-
sional variables (j is in rad/m). To obtain the transversal 1D version of the Panchev–Kesich spectrum, Eq.
(7) must be numerically integrated (Tennekes and Lumley, 1982), because it has no analytical solution. We
found that the approximation formula
EPKnðkn2Þ ¼ 0:96k0:372
n2 exp �5:824k1:495

n2

� �
ð8Þ
can be used for the corresponding non-dimensional shear spectra where kn2 = j/(e/m3)1/4 and EPKn = E(j)/(e3/
m)�1/4. The non-dimensional 1D Panchev–Kesich shear spectrum obtained after numerical integration of For-
mula (7) and EPKn given by Formula (8) is shown in Fig. 3. The proposed Formula (8) fits the Panchev–Kesich
spectrum very well (left panel) and preserves the variance (right panel).

An analytical approximation for the experimental Nasmyth spectrum has also been proposed by Lueck
(Prandke et al., 2000)
ENLnðkn3Þ ¼
8:05k1=3

n3

1þ ð20kn3Þ3:7
ð9Þ



Fig. 3. Left panel: The non-dimensional 1D Panchev–Kesich shear spectrum (continuous line) and its approximation by Eq. (8) (crosses).
Right panel: the corresponding cumulative variances multiplied by 7.5. In these plots, kn = j/(e/m3)1/4 and En = E(j)/(e3/m)�1/4 (j is in rad/
m).
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who used cyclic wavenumber notation. Note that ENLn = 2pEPKn and kn3 = kn2/2p. Comparison between the
non-dimensional Panchev–Kesich and Nasmyth spectra and measured shear spectra is done in Fig. 4, where
we show the empirical results obtained by the MSS profiler in several turbulent patches with different mean
dissipation rates, varying over two orders of magnitude (from 3.4 · 10�9 to 2.6 · 10�7 W/kg). In order to plot
all the experimental results together, the spectral integrated dissipations ~e (Eq. (6a)) obtained for each segment
were used for normalization of the corresponding spectrum. The overall resulting experimental spectrum has
better agreement with the Panchev–Kesich spectrum, covering the most important range that embraces the
maximum of the dissipation spectrum. Note that the Panchev–Kesich spectrum contains more power at lower
wavenumbers and rolls off slightly faster at high wavenumbers than the Nasmyth spectrum. This difference
may affect measurements with high levels of dissipation, when small-scale shear at low wavenumbers is not
Fig. 4. Several empirical shear spectra for a range of dissipation rates in comparison with the non-dimensional Nasmyth and Panchev–

Kesich benchmark spectra (Lozovatsky et al., 2005a,b).
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well resolved, and a correction is therefore needed when calculating the shear variance. The variance estimates
obtained by the integration of respective normalized spectra differ in magnitude by less than 10%.

Results of different approaches for e calculations are illustrated in Fig. 5. The dissipation estimates were
obtained at 2-m consecutive segments of a shear profile measured with an MSS profiler in the North Atlantic
(Lozovatsky et al., 2005a). Profile 1 shows the dissipation rate deduced from spectral integration of small-scale
shear signal after removing high-frequency noise; profile 2, using the spectral integration after wavelet deno-
ising; profile 3 resulted from spectral fitting to the Panchev–Kesich model at non-contaminated wavenumber
subranges. Profile 4 was obtained by smoothing profile 2. In the upper turbulent layer, all methods give com-
parable results, but in the weakly turbulent pycnocline, the wavelet denoising produces a lower level of e,
which appears to be a favorable outcome. When the dissipation rate is low, denoising has to be applied with
care and the instrumental noise level must serve as a resolution limit. In the right panel of Fig. 5, two pairs of
shear spectra are shown before and after wavelets denoising. Integration of wavelets denoised spectra give
approximately the same estimates of e as those obtained by fitting a reliable non-contaminated subrange of
shear spectra to the Panchev–Kesich spectral benchmark.

4.2.2. Temperature spectra: Batchelor and Kraichnan benchmarks

The use of small-scale temperature measurements to estimate the kinetic energy dissipation rate e (Dillon
and Caldwell, 1980; Luketina and Imberger, 2001) is based on the fact that theoretical temperature spectra
proposed by Batchelor (1959) and Kraichnan (1968) for the viscous-convective and viscous-diffusive sub-
ranges are dependent not only on vh, but also on e. The 1D Batchelor temperature spectrum in the convec-
tive-diffusive subrange can be written as
Fig. 5.
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is the non-dimensional wavenumber, jB = (e/vD2)1/4, and

LB = (2p/jB) are the Batchelor’s wave number and scale. The traditional value for the constant q is 3.9
Vertical profiles of the dissipation rate obtained by calculating the variance using spectral integration of small-scale shear signal (1),
avelet denoising (2), and by fitting the non-contaminated range of experimental spectra to the Panchev–Kesich benchmark (3). The

uous line (4) is an averaged e profile for the wavelet denoised shear. Right panel: examples of shear spectra before and after wavelet
ing. A series of the Panchev–Kesich spectra for different levels of the dissipation is given in the background.
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(e.g., Oakey, 1982). The correspondent 1D temperature gradient spectrum is usually used to fit the spectra
computed from direct gradient measurements:
Fig. 6.
(K) be
that o
dissipa
(B) an
Edh0=dzðjÞ ¼
vhq1=2

DjB

y2 exp �y2ð Þ
y

�
ffiffiffi
p
p

1� erfðyÞð Þ
	 


: ð10bÞ
The alternative spectrum for temperature fluctuations proposed by Kraichnan (see also Chasnov, 1998) has
the following 1D form:
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ffiffiffiffiffiffiffi
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p j
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and the Kraichnan constant qKr was determined by Smyth (1999) as 7 ± 1. A comparison
of Batchelor and Kraichnan spectra based on measured data is presented in Fig. 6 where we used qKr = 7.5
and vh was computed by spectral integration using Eq. (6b).

To optimize the empirical–theoretical fittings for temperature spectra, Ruddick et al. (2000) proposed the
maximum likelihood method and gave three different indexes to estimate the goodness of the fit: the maximum
likelihood estimation, the ratio noise/signal, and the mean absolute deviation. The fit of measured temperature
spectra to the Batchelor (B) and Kraichnan (K) models are shown in Fig. 6, and validated by all three statis-
tical indexes. The measurements were taken in Lake Banyoles using the MSS profiler with a lowering speed of
0.4 m/s. Prior to computing the spectra, large-scale fluctuations were conveniently detrended to reduce red
noise contamination. This can be avoided by measuring small-scale temperature gradient directly. In
Fig. 6, both theoretical spectra fit the empirical data well in all exemplified layers, although the statistical cri-
teria as well as the visual analysis slightly favor the Kraichnan over the Batchelor in agreement with Nash and
Moum (2002). The spectra presented cover more than two orders of the dissipation variability between �10�9
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Examples of temperature microstructure spectra from various depths in Lake Banyoles fitted to the Batchelor (B) and Kraichnan
nchmark spectra using the optimal fitting algorithm of Ruddick et al. (2000). A white noise spectrum with an amplitude equal to
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and �10�7 W/kg. The difference between Kraichnan- and Batchelor-based dissipation is in the range 30–50%.
Note that in these calculations we used the Kraichnan constant qKr = 7.5 (Smyth, 1999), however, Bogucki
et al. (1997) suggested qKr = 5.26. This issue requires more extensive analysis.

The Ruddick et al. (2000) method of spectral fitting allows the inclusion of a model of the instrumental
noise that is added to the theoretical model used to fit observations. Such spectra can be obtained from
low-amplitude testing sections of shear records. To determine the level of vibrations, the profiler can be
equipped with a vibration control sensor – a second shear probe operated in the air of an encapsulated volume
– from which the pseudodissipation level (noise) can be estimated (Prandke and Stips, 1998).

The estimates of e obtained alternatively from shear or temperature microstructure measurements are usu-
ally in agreement for the e range between 10�4 and 10�9 W/kg. This has been shown by Kocsis et al. (1999)
and Wüest et al. (1996).

5. Thorpe displacements

Measurements of temperature microstructure are useful in determining the turbulent lengthscales, such as
the Thorpe scale LTh and the maximum Thorpe scale LThmax (Thorpe, 1977). Because a strong correlation is
often found between the Thorpe and Ozmidov scales (Dillon, 1982), the computation of LTh can also provide
indirect estimation of e. Thorpe (1977) proposed reordering a measured instantaneous density profile, which
contains density inversions, into a monotonic stable profile. Then, the vertical displacements, d 0, associated
with such reordering are calculated. The Thorpe’s scale is defined as LTh = rms(d 0) where rms(d 0) depends
on the length of the averaging segment. The maximum scale LThmax characterizes the vertical size of overturns.
When salinity does not substantially contribute to density fluctuations, as often happens in lakes and in some
ocean regions, d 0 can be obtained directly from microstructure temperature profiles. Depending on the noise
level of measured temperature profiles, erroneous high-amplitude displacements can contaminate d 0 records.
Therefore, preliminary denoising is usually needed to obtain robust estimates of LTh, especially in weakly
stratified layers.

Traditional filters have rarely been used for d 0 computation because of the danger of erasing genuine small-
scale displacements; the original signal, therefore, has to be thresholded before being reordered. Ferron et al.
(1998) suggested generating an intermediate signal (IS) before reordering, which is reconstructed from the ori-
ginal one considering instrument limitations. Piera et al. (2001) proposed denoising temperature signals using
wavelets. In Fig. 7, we show an example of Thorpe displacements and scales. The measurements were made in
the bottom boundary layer of the Catalan shelf in the Mediterranean Sea (mean temperature gradient of
0.006 �C/m). In these calculations, a 0.002 �C threshold was used for the generation of the intermediate signal
and in the thresholding method. The wavelet denoising used db9 functions and the threshold was computed
based on the first-level detail coefficients and scaled up to the 6th level of decomposition (Fs = 1000 Hz, 6000
data points) The Thorpe scalesLTh were computed at 5 cm segments of Thorpe displacements profiles.

The threshold procedure gives lower Thorpe scales (panel b-3) than visual estimation based on the original
temperature signal (b-1). The IS method seems to produce a better result, but some intermediate scales are
lost. Temperature fluctuation near 60 m depth are present in the original data (a-1) but not in the intermediate
signal (c-1). Wavelet denoising is able to keep this structure (see d-1) and also seems to work better than thres-
holding, but in low-stratified background they can create new structures like those observed in the 56–58 m
depth range. The origin of spurious structures depends on the base functions used to decompose the signal
at different scales and also on the level of decomposition. This problem does not appear when stratification
is not so low. In fact, wavelet denoising optimizes the mean-square differences between the original and the
denoised signal and assures that the denoised signal is at least as smooth as the original (Donoho, 1995) reduc-
ing the generation of undesirable ripple structures which may generate artificial Thorpe displacements. In
background stratifications as low as N2 = 2 · 10�6 s�2, wavelet denoising produces reliable results (Piera
et al., 2001). Although the discussed methods of Thorpe scale calculation are based on formal criteria such,
as the threshold noise level and specific wavelets functions with defined levels of decomposition, it is not easy
to suggest an objective measure that helps to choose the method which works the best.

In order to get a deeper insight into the results of different Thorpe scale calculations, we processed a set
of microstructure measurements (26 consecutive casts) taken during 1 h 50 min by the MSS profiler in the
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Boadella reservoir on June 18, 1999 under moderate winds (5–6 m/s) (Lozovatsky et al., 2005b). In Table 1,
the major statistics of LTh are given for the various methods of calculation discussed here. The threshold level
of the temperature records was set to 0.004 �C, twice the instrumental noise. The Thorpe scales were calculated
at 1-m segments; the vertical resolution of T(z) microstructure profiles was 0.4 cm. Wavelet settings were the
same as in Fig. 7. As expected, the non-thresholding T(z) profiles produced the largest mean ÆLThæ = 17.7 cm
and the mean of the simple threshold method ÆLthræ was more than two times lower. The IS method and the
wavelet denoised Thorpe scales offer similar statistics such as the coefficient of variation and the confidence
interval of the mean. The mean value itself is slightly lower for the wavelets compared to the IS approach
(ÆLwdnæ = 13.5 cm against ÆLisæ = 15.1 cm). The evident advantage of wavelets is avoiding the manual setup
of the threshold level. In the following section we continue to discuss our preference for wavelets based on
the probability distribution function of Thorpe scales.

Lorke and Wüest (2002) suggested that exponential distribution can serve as a good approximation for the
Thorpe scale in lake hypolimnia. The assumption that the Thorpe scale, as many other microstructure vari-
ables, have a universal probability distribution can be used to verify how accurately the Thorpe scales were
computed. It is very likely that the distribution itself, or at least the parameters of a particular distribution,
depend on the governing background conditions generating Thorpe displacements. Thorpe displacements
Table 1
Basic statistics of the non-filtered Thorpe scales (LTh) measured in the Boadella experiment and those calculated using simple threshold
(Lthr), intermediate signal (Lis) and wavelet (Lwdn) filtering methods

524 samples of Thorpe scales (cm) LTh Lthr Lis Lwdn

Maximum 146 130 143 127
Mean 17.7 7.1 15.1 13.5
95% confidence interval of the mean 2.7 1.6 2.4 2.2
Variation coefficient (rms/mean) 1.76 2.61 1.88 1.89
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in the boundary layers may be subjected to substantially different statistical regularities than those from the
interior layers where mixing is intermittent in time and in space.

A 3D image of the Thorpe scales for the same set of data analyzed in Table 1 is shown in Fig. 8. There are
two distinct layers with high (z < 6–7 m) and low magnitudes of the Thorpe scales. In most of the patches in
inner layers the Thorpe scale does not exceed several centimeters. Only one ‘‘single butte’’, which was related
to a wind burst (Lozovatsky et al., 2005b) was observed at t = 35 min, z = 20 m, which is characterized by
LTh = 45 cm. In contrast, in the upper boundary layer (UBL), Thorpe scales are relatively large. The proba-
bility distribution of Thorpe scales in the upper layer was analyzed using the estimates of LTh calculated by
different methods discussed above (thresholding, wavelet denoising, intermediate signal). The empirical cumu-
lative probability of Thorpe scale did not follow the exponential model suggested by Lorke and Wüest (2002),
which assumes the highest probability for zero or very small amplitudes of LTh. The model or its modification
– the so-called cut-exponential distribution, which is applicable for variables with a non-zero lower limit –
could be used for LTh distribution in the pycnocline, where turbulence is highly intermittent and generally
weak, but it is not relevant for such active turbulent region as UBL. In the UBL, permanent wind-induced
turbulent mixing generates turbulent eddies of the sizes that are assumed to be proportional to LTh and, there-
fore, the probability of very small LTh is low.

Weibull distribution (Weibull, 1951) can serve as an alternative (or a valuable extension) of the exponential
model for the Thorpe scales from turbulent boundary layers or other active turbulent regions. The distribution
has been originally developed to model the breaking strength of materials and also includes reliability and life-
time modeling. Its probability distribution function (pdf)
Fig. 8.
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is characterized by the scaling kw and form cw parameters; for cw = 1, Eq. (12) represents the exponential pdf.
Using the analogy between breaking events and turbulent overturns responsible for random generation of
quasi-homogeneous fine-structure layers, Lozovatsky and Erofeev (1993) suggested Weibull distributions to
model pdf of vertical density gradients. They assume that stratification has the highest probability of being
destroyed by turbulence in the layers of random thickness with the lowest N2. Because Thorpe displacements
are related to instantaneous unstable density gradients, we can reverse the idea of Lozovatsky and Erofeev
(1993) and deduce the distribution of the Thorpe scale.
Vertical cross-section of the Thorpe scale (LTh) during a microstructure experiment in the Boadella reservoir (June 18, 1999). Large
e mostly confined in the upper turbulent layer (z < 7 m).
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Let us assume that the highest probability of restratification in an unstable layer of arbitrary thickness Dzi,
which is characterized by a specific Thorpe scale, is associated with the lowest LTh ¼ Lmin

Th . The LTh values in
the depth range Dzi vary randomly in time and can be described by the cumulative distribution function
F*(LTh) If m layers are statistically independent, then the probability of instability preservation (LTh > 0) is
defined as
Fig. 9
probab
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and the cumulative distribution function F(LTh) is therefore
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Approximating F*(LTh) to LTh! 0 by a power function for dLb
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following expression for F(LTh) can be obtained:
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This is the Weibull cumulative distribution function (CDF) for the Thorpe scale correspondent to the pdf gi-
ven by Eq. (12). Parameters kw and cw are related to d and b. The expectation MLTh

and the variance r2
LTh

are
linked to kw and cw by known formula (Weibull, 1951).

In Fig. 9, the CDF of the Thorpe scale (wavelet denoising) is overlaid by the Weibull CDF (Eq. (15)) with
the maximum likelihood estimates of the parameters kw = 0.59 m and cw = 2.0 (solid line) and it is completely
confined by 95% confidence intervals (dashed lines). The corresponding probability distribution function (pdf)
is given in the SE corner of Fig. 9. The distribution of Thorpe scales calculated using the IS method also fol-
lows the Weibull model (not shown here for brevity), but the experimental cumulative curve in this case is
beyond the 95% confidence limits. In our opinion, the better match between empirical CDF of the wavelet
. Cumulative probability plot of the Thorpe scales computed from wavelet denoised signal (stars). The Weibull cumulative
ility (solid line) is given for kw = 0.59 m and cw = 2.0. The 95% confidence limits of the Weibull model k0.95 = 0.53 and 0.65 m,
1.74 and 2.3 (dashed lines) completely embrace the empirical probability. The probability distribution function (pdf) is in the SE
and the cumulative hazard function is in the NW corner.
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denoising Thorpe scales and Weibull distribution, compared to Thorpe scales based on the intermediate signal
favors the wavelet method of Thorpe scale calculation.

Using the Weibull distribution as a model for Thorpe scales in UBL, we can estimate the ‘‘hazard rate’’
h(L) = pdf/(1 � CDF) related to LTh of various magnitudes. Interpreting h(LTh) as the rate of generating tur-
bulence by overturning (hazard) events of different sizes, we suggest that a 1-m LTh is a 3 times more gener-
ation-powerful than a 0.5-m event. The hazard probability function of the Thorpe scale, therefore, helps to
quantify the predominant role of large overturns in generating turbulence in natural basins.

6. Eddy diffusivities

In this section, we analyze the state of turbulent mixing in shallow waters calculating the eddy Kb and scalar
Kh diffusivities, examining their statistics, and emphasizing the importance of correct processes-oriented
domain averaging of the dissipation rates (and consequently the diffusivities) on the interpretation of the state
of mixing in different layers. The microstructure data have been obtained over the shallow shelf of the Black
Sea using a Baklan microstructure profiler (Paka et al., 1999). The bottom depth along a 10-mile cross-shelf
transect varied from 17 to 30 m. We refer to Lozovatsky et al. (1999) and Lozovatsky and Fernando (2002)
where details of measurements, instrumentation, and the analysis of vertical structure of the dissipation rates
and other turbulence variables are presented. In the last paper, the authors identified several main (seasonal)
regions in the water column representing the upper (UBL) and bottom (BBL) boundary layers, intermittently
turbulent pycnocline (ITPC), and a stratified inner layer (SIL), as well as such transient features like quasi-
homogeneous (weakly stratified) patch (QHP) and sheared turbulent zone (STZ), which are marked in
Fig. 10, where the density contour-plot overlays the diffusivity Kb(z,x) cross-section obtained by a triangle
interpolation using Surfer software [www.goldensoftware.com].

The individual samples of diffusivities for each of the selected regions are shown in Fig. 11. Here the dif-
fusivities K (K ” Kb or Kh) were calculated by averaging e (for Kb; see Eqs. (3a) and (4)) and vh (for Kh see Eq.
(3c)) at 0.2 depth intervals and using a constant mixing efficiency c = 0.2 to estimate Kb. As seen, the values of
diffusivities (Kb are open and Kh are solid symbols) were relatively high in regions of sustained shear-induced
turbulence (UBL and STZ), moderately high in weakly stratified turbulent patches (QHP) and in the BBL, and
low in stratified layers with weak or intermittent turbulent activity (SIL and ITPC). The data in Fig. 11 are
Fig. 10. The interpolated diffusivity Kb in the background of the density contour plot along the transect across a shallow Bulgarian shelf of
the Black Sea. Several specific regions of the turbulence generated are indicated (Lozovatsky and Fernando, 2002): upper and bottom
boundary layers (UBL and BBL), quasi-homogeneous patch (QHP), shear-turbulence zone (STZ), intermittent turbulence in the
pycnocline (ITPS), stratified inner layer (SIL).

http://www.goldensoftware.com
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Fig. 11. Density profiles and 0.2-m averaged diffusivity samples in different layers. Kb – open, Kh – solid symbols. The bootstrap estimates
of the mean are in m2/s. The layer abbreviations are the same as in Fig. 10.
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highly scattered, which suggests substantial intermittency of small-scale mixing within each microstructure
layer/feature that can be analyzed using the probability distributions of eddy coefficients.

In Fig. 12, distributions are shown on log-normal probability plots with the ordinate (logK � l)/rlogK,
where logK is the natural logarithm either of Kb or Kh, having a mean value l and a variance r2

log K . The data
belonging to log-normal distribution represent a straight line on this plot, the slope being 1/rlogK. Fig. 12 indi-
cates that K values in all regions (except for SIL) can indeed be approximated by log-normal distributions with
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Fig. 12. Cumulative probability functions of the eddy diffusivities Kb and Kh in various microstructure regions (see Fig. 10), approximated
by log-normal distributions (straight lines). The maximum likelihood estimates of the mean are given in the legend.
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high variances occurring in UBL and STZ. The mean density and temperature gradients, used for Kb and Kh

calculations vary only slightly in each region. Therefore, the probability distribution functions of Kb and Kh

largely represent those of e and vh, which agrees reasonably well with the log-normal model of Gurvich and
Yaglom (1967) despite later concerns on the applicability of the log-normal distribution to the dissipation
rates (Vanyan, 1992; Davis, 1996). Oceanic measurements by Baker and Gibson (1987), Gibson (1991), Gregg
et al. (1993) and Rehmann and Duda (2000) have also shown that e and vh distributions can be approximated
as log-normal. As pointed out by Yamazaki and Luek (1990), the averaged, non-local estimates of e follow the
log-normal distribution, if the averaging scale la is much smaller than the characteristic scale LD of the domain
but larger than the Kolmogorov scale, so as to ensure the statistical homogeneity of averaged data. In our
calculations, la = 0.2 m and LD varied from 2 m for QHP to 5.6 m for BBL and hence the requirement la
LD

is satisfied.
Using the least-square linear fits of empirical cumulative distribution functions shown in Fig. 12, the max-

imum likelihood estimates for the mean mle�Kh and mle�Kb were obtained for each region. Since the theoretical
basis for log-normal distributions of eddy diffusivities is not well established and because some of the layers
(e.g., SIL) did not follow log-normal approximation, we also calculated the bootstrap (Efron, 1982) estimates
of the mean for every region using 1000 resampling points. The results are shown in the legends of Fig. 11 for
each particular region. Despite a high scatter of individual 0.2-m averaged samples in all regions, in the upper
and bottom boundary layers, and in such turbulent zones as QHP and STZ, the mean values ÆKbæ and ÆKhæ are
close for each region. This indicates that constant mixing efficiency c = 0.2 works well to calculate the diffu-
sivities based on measurements of the dissipation rate e in active turbulent regions.

In the intermittently turbulent pycnocline, where the generation of turbulence is due to internal-wave
breaking, ÆKbæ is about twice ÆKhæ and in weakly turbulent stratified water interior (e.g., SIL) ÆKhæ exceeds ÆKb

by an order of magnitude, the latter being about twice the molecular diffusivity. Under these conditions, the
use of a locally isotropic turbulence assumption to evaluate e and vh is questionable as is the assumption of
stationarity of kinetic energy and scalar homogeneity used in deriving (1) and (2). Therefore, the results on
diffusivities in strongly stratified waters (like SIL) should be viewed with caution. A significant difference
between domain-averaged Kb and Kh in strongly stratified regions points to possible dependence of the mixing
efficiency on the Richardson number as has been obtained in laboratory experiments by Strang and Fernando
(2001) and in the numerical model of Canuto et al. (2001). It appears (Lozovatsky et al., 2006) that modeling
of the depth of a wind-induced mixed layer favors the diffusivities Kb with Ri-dependent c. The diffusivities
which have been computed based on oceanic microstructure measurements with traditional Ri-independent
mixing efficiency, c = 0.2, are more favorable for modeling vertical profiles of the dissipation rate and other
turbulent variables in the upper boundary layer.

7. Summary

In this study, we examined several problems related to processing and analysis of microstructure data col-
lected in oceans, lakes, and reservoirs by modern microstructure profilers. Denoising raw data and eliminating
narrow-frequency, high-amplitude contaminants is an important part of preprocessing any microstructure
measurements. It is suggested to use 4th order bandstop Butterworth or a high-order Lanczos filters to remove
narrow-band, vibration-caused components. These filters are not as sharp as an elliptic filter in a bandstop
window, but they produce very little ripples at bandpass frequencies.

To denoise small-scale shear and temperature signals before calculating the dissipation rates e and vh and
Thorpe scales, we suggest using wavelets. It is shown that wavelet denoised microstructure temperature pro-
files produce Thorpe scales that are comparable with those calculated using the intermediate signal technique
(Ferron et al., 1998), but the threshold level for denoising is chosen automatically by the wavelets. Measure-
ments taken in the Boadella reservoir showed that the probability distribution of Thorpe scales calculated over
1-m segments in the upper turbulent boundary layer is in line with the Weibull probability function. We offer
an interpretation suggesting that Weibull distribution is the appropriate model for Thorpe scale distribution.

An analytical approximation (Eq. (6)) for the 1D Panchev–Kesich spectrum is suggested and the results of e
computations are compared with spectral fitting by the widely used Nasmyth spectrum. Eq. (6) preserves the
variance of a signal better then the same type of formula suggested for the Nasmyth spectrum (Eq. (7)).
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We also compare the Batchelor and Kraichnan spectra used as the benchmarks for computing e by fitting
temperature spectra. The data for this analysis were taken in Lake Banyoles. In most cases both spectral
benchmarks fit the empirical spectra well, satisfying objective statistical criteria (Ruddick et al., 2000), but
the Kraichnan spectrum follows the data more closely. The difference between the Batchelor- and Kraich-
nan-based dissipation estimates is in the 30–50% range.

The importance of process-orientated, domain-base averaging to obtain robust estimates of eddy Kb and
thermal Kh diffusivities is illustrated by statistical analysis of microstructure measurements taken on a shallow
shelf of the Black Sea. The probability functions of Kb and Kh in active turbulent regions were approximated
by log-normal distribution and the corresponding maximum likelihood estimates of the mean calculated.
These were compared with the bootstrap estimates of mean diffusivities in specific regions and a good agree-
ment between the two approaches was found. The values of mean diffusivities ÆKbæ and ÆKhæ in turbulent zones
are close. In weakly turbulent, stratified inner layers, the averaged Kb and Kh differ significantly, which may be
caused by the failing of isotropic formulae used for e and vh calculations, as well as by non-constant mixing
efficiency at high Richardson numbers. A possibility also exists that in some cases we observed fossil
turbulence.
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