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Uncertainty of the sea state parameters resulting
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Abstract

The uncertainty of some commonly used spectral wave parameters resulting from the spec-
tral estimation procedure is assessed. It is observed that the methods of spectral estimation
produce a significant uncertainty for all parameters examined, but this is of considerable impor-
tance only for the peak period, which is one of the most important parameters to model the
wave climate. 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the spectral estimations obtained from measured wave records are random
variables, the wave parameters obtained from spectra will also be statistical estimates
with associated uncertainty and confidence limits. In particular, the confidence inter-
vals for those parameters obtained by integration of spectrum are dependent on the
spectral shape because they are a function of the effective degrees of freedom of
the total spectrum (Donelan and Pierson, 1983; Medina et al., 1985; Young, 1986;
Elgar, 1987).

On the other hand, the stability and accuracy of wave parameters obtained from
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the spectral density function can be affected by several factors which, have a different
nature than the intrinsic statistical variability of the spectral estimates, and thus may
be considered as model uncertainties. Some of these are: (1) definitions used for
parameter estimation, (2) numerical procedures for integration, (3) high frequency
cut-off selection, (4) frequency resolution, or the degrees of freedom, of the spectral
estimations, and (5) the wave record length.

A number of studies have been undertaken to determine the effect of these factors
on the reliability and stability of some commonly used spectral wave parameters.

Rye (1977) has studied the variability of the derived sea state parameters, in parti-
cular as a function of the cut-off frequency in the integration of the spectral density
function. He found that, while the significant wave height was very stable, mean
periods were too sensitive. Chakrabarti and Cooley (1977) analysed the importance
of the choice of degrees of freedom, or the frequency resolution, of the calculated
spectrum as well as the cut-off frequency selection. They observed that spectral
parameters depending on spectral moments of order higher than zero, such as average
periods, show considerable variations with different values of the high frequency
cut-off and of the spectral resolution. However, the significant wave height remained
reasonably stable when varying these parameters.

Peña (1983) has also studied the effect of the frequency cut-off and the spectral
resolution when the wave spectrum is estimated by means of the maximum entropy
method, by considering the spectral resolution in terms of the length of the autore-
gressive and moving average filter adopted to model numerically simulated wave
records. He concluded that the use of this spectral estimation methodology does not
improve the wave parameter stability as the frequency cut-off changes but, in general,
it produces a large degree of stability as a function of spectral resolution. Similar
results have been obtained by Rodrı´guez et al. (1992) by analysing measured wave
records to examine the variability of various spectral bandwidth and nonlinearity
wave parameters. Also Gomes and Guedes Soares (1997) have confirmed that using
the maximum entropy method yield a more stable spectral density function.

Arhan (1979) and Cavanie´ (1979) have studied the stability of wave parameters
as a function of the length of the record analysed and gave indication of the uncer-
tainty involved. Mansard and Funke (1986) have also analysed the effect of the wave
records length, noting that doubling the record length has no appreciable affect on
the peak frequency.

Mansard and Funke (1986) considered the effect of the definition, or the algorithm,
used to estimate the peak frequency. This study has been extended by Young (1995),
who applied a Monte-Carlo simulation procedure to obtain confidence limits for the
different estimates of the peak frequency.

Another factor that influences the accuracy of the spectral wave parameters is the
numerical procedure used to integrate the spectral density function. Appropriate
results have been obtained by using a three-point Simpson’s method (Nath and Yeh,
1987) and the Romberg method (Rodrı´guez, 1995).

The present work considers one aspect not WITH dealt earlier, namely the uncer-
tainty associated with the spectral parameters, as a result of the method of estimating
the spectral density function,S(f), of wave records. Some parameters currently used
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have been selected and their definition follows the recommendation of the working
group on wave generation and analysis of the International Association for Hydraulic
Research (IAHR, 1989).

For this study, 20 wave records measured in coastal deep waters of Figueira da
Foz in Portugal were used. The spectral density for these time series was estimated
by different numerical approaches, maintaining fixed the above-referred factors (1–
4). A Romberg method was used to estimate the spectral integrals. This method
gives excellent results, as reported by Rodrı´guez (1995). The low and high frequency
cut-off are fixed asflow 5 0.03 (Hz) andfhigh 5 0.5 (Hz). The frequency resolution
is fixed by using the same number of degrees of freedom,n, for the spectral esti-
mations. The effect of parameter definition is eliminated by using the referred con-
ditions in all cases. Thus, the variability of these parameters should only be affected
by the spectral computational methodology.

2. Spectral wave parameters

The wave parameters selected to examine the effect of the spectral estimation
procedures on their stability are: thesignificant wave heightwhich, assuming a Ray-
leigh distribution for wave heights, is given by

Hmo 5 4√mo (1)

The peak period, Tp, defined as the inverse of the frequency associated to the
maximum of the wave energy spectrum, orpeak frequency, fp. That is,

S(fp) 5
dS(F)

df
5 0 Tp 5

1
fp

(2)

The Delft peak period, defined as the inverse of the peak frequency estimated by
the Delft method. That is, the centroid of the spectral band bounded by the fre-
quencies corresponding to those values ofS(f) 5 0.8S(fp) at both sides offp. It is
namedDelft peak frequencyand is expressed as

f pD
5

E
f2

f1

f S(f)df

E
f2

f1

S(f)df

TpD
5

1
fpD

(3)

The mean period,T01, the average zero up-crossing period,T02, and the average
crests period,T24, defined respectively as,
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T01 5
m0

m1
T02 5 Sm0

m2
D 1

2
T24 5 Sm2

m4
D 1

2
(4)

wheremn represents thenth order spectral moment, given by

mn 5 E
`

0

f nS(f)df n 5 0, 1, 2, 4

3. Methods of spectral estimation

The objective of this study is to present evidence of the uncertainty of some spec-
tral parameters as a result of the method used to compute the wave spectrum, rather
than a comparative evaluation of various methods of spectral estimation. Hence, only
the relevant attributes of the different numerical approaches used to estimate wave
spectra are outlined. Specifically, the methods used are two classical, or non-para-
metric, and one parametric method. They are the indirect non-parametric methods
or covariance method, usually named as the Blackman–Tukey (BT) method and the
direct Fourier transform, often named as the Fast Fourier Transform (FFT) approach
and the maximum entropy (ME) method, as a parametric procedure.

3.1. The Blackman–Tukey method

Consider a time series,x(t), with N data measured with a sampling periodDt
during a time intervalT. Blackman and Tukey (1958) proposed to estimate the spec-
tral density function of a random time series by using the Wiener–Kintchine theorem.
That is, by computing the Fourier transform of the estimated autocovariance function.
The estimated spectrum is given by

ŜBT(f) 5 4E
`

0

Ĉ(t)cos(2p ft)dt

whereĈ(t) is an estimate of the autocovariance function andt is the lag between
time series values. Unfortunately, the spectral density function estimated by this
procedure cannot be considered as a true estimate of the spectral density, due to the
finite length of the time series and, as a consequence, the finite value in the upper
limit of the above integral. This fact makes the maximum lag,tmax, the critical para-
meter controlling the resolution bandwidth and the variance of the spectral esti-
mations. It can be shown that the raw spectral estimationsŜBT follow a chi-square
distribution with two degrees of freedom (see, e.g. Priestley, 1981). Furthermore,
added inaccuracies are caused by considering a zero value ofĈ(t) for lags greater
than tmax. Some of these drawbacks may be partially alleviated by introducing a
time lag windowl(t) (or its Fourier transform, spectral window), which modifies
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the autocovariance function values in such a way that they are smoothly decreased
to zero ast increases. Thus, the BT estimator can be rewritten as

S̃BT(F) 5 4E
`

0

l(t)Ĉ(t)cos(2p ft)dt (5)

Numerous expressions forl(t) have been proposed. However, there is not a cri-
terion to select the adequate window for each case. In this work, three well-known
spectral windows have been used. These are the Parzen, Hamming and Hanning
windows. Details on these and other windows can be found in many textbooks (e.g.
Priestley, 1981). Depending on the applied spectral window, the BT method is
denoted as BT1, BT2, and BT3, for the Parzen, Hamming and Hanning windows,
respectively.

3.2. The direct Fourier transform method

It is possible to estimate the spectral density function by a direct Fourier transform-
ation of the observed time series. By definition, the power spectral function is

S(f) 5 lim
T→`

2
T

uX(f)u2

whereX(f) is the Fourier transform of the observed sequence, that is

X(f) 5 E
`

2 `

x(t)exp( 2 i2p ft)dt

which can be efficiently estimated by means of the Fast Fourier Transform (FFT)
algorithm. A natural estimator of the spectral density function is

ŜFFT(f) 5
2Dt
N |O

N

t 5 1

x(t)exp( 2 i2pft)|
2

This estimator is known as the periodogram. It can be shown (see, e.g. Priestley,
1981) that the spectral estimations obtained with this procedure have a large variance
and follow a chi-square distribution with two degrees of freedom (dof). That is, the
periodogram is not a consistent estimate of the spectral density function. Thus, it
becomes necessary to apply some smoothing technique to reduce the variance of
these raw estimates. The most popular procedures used to improve the variance
properties of the periodogram are outlined below.

3.2.1. Frequency averaging
Daniell (1946), suggested to smooth the spectrum by averaging adjacent raw spec-

tral estimations over a band of 2m 1 1 frequencies, to reduce the variability of the
periodogram estimates. The smoothed estimates are computed as
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S̃FFTD(fk) 5
1

2m 1 1 Om
j 5 2 m

Ŝ(fk 1 j ) (6)

Thus, the smoothed estimations have a chi-square distribution with 2(2m 1 1)
degrees of freedom. This approach is often known as Daniell´s method and will be
abbreviated as FFTD.

3.2.2. Segment averaging
A significantly different method to reduce the variance of the raw periodogram

estimations was suggested by Bartlett (1950). In this method the time series are
broken intoK segments with an equal numberM of observations each one, verifying
that N 5 MK. Then, the periodogram is estimated for each segment and finally the
individual spectral estimations are averaged. The smoothed periodogram may be
expressed as

S̃(fi) 5
1
K OK 2 1

J 5 0

ŜJ(fi) (7)

Note that in this method the average is applied on several spectral estimations
associated to the same frequency component. Thus, the degrees of freedom for the
smoothed estimations are 2K. This procedure, known as Bartlett´s method, will be
denoted by FFTB.

3.2.3. Overlapped windowed segment averaging
Welch (1967) proposed a more refined method by improving the idea of segment

averaging by including two important modifications. First, the original time series
is segmented intoK blocks of equal lengthM, which can be overlapped in a given
fractionS, usually close to or lower than 50% of the segment length. Second, a data
window is applied to each segment to reduce the bias due to the leakage effect. The
spectral estimations of theJth overlapped and weighted segment are defined by

ŜJ(f) 5
2

UMDt
uXJ(f)u2

whereU is a correction factor to overcome the energy reduction caused by the data
window. The Welch spectral estimator is defined by

S̃FFTW(f) 5
1
K OK 2 1

J 5 0

ŜJ(f) (8)

The estimations computed with this procedure have a chi-square distribution with
n 5 2(N 2 S)/(M 2 S) degrees of freedom. This approach is usually referenced as
Welch́s method and will be denoted here as FFTW.

The data windows used to taper the segmented time series are: The Rectangular
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(W1), Bartlett (W2), Parzen (W3), Hamming (W4), Hanning (W5), Welch (W6),
Cosine taper (W7), Trapezoidal (W8) and Blackman–Harris (W9) windows. In refer-
ence to the FFTD method, we use the notation in brackets to denote data windows
applied to reduce spectral estimations variance.

3.3. The maximum entropy method

In contrast with the above methods, which estimate the spectral density by Fourier
transforming the data or the estimated autocovariance function, the maximum entropy
method (Burg, 1967) use the data to estimate the parameters of an autoregressive
model of orderP which adequately fits the observed data. The spectral density of
this model is accepted as the spectrum of the analysed time series.

In this method the autocovariance function is not assumed zero outside the
maximum lag used but it is extrapolated by using the statistical concept of entropy,
which is maximised subject to certain restrictions (see, e.g. Priestley, 1981). The
maximisation problem gives as a solution the following spectral density estimation

SME(f) 5
s2

wDt

|1 1 OP
n 5 1

an exp(2 i2pfDt)|
2 (9)

where thean are the parameters of the fitted autoregressive model ands2
w is the

variance of a mean zero white noise sequence added to the deterministic part of the
AR model.

The maximum entropy spectral method presents several advantages over the above
outlined (classical) methods. It does not need the use of smoothing procedures and
has a very high frequency resolution, even for short data records. However, it also
has some drawbacks. One of the most important problems in this procedure is the
selection of the order of the AR model. There is not a universal criterion to select
an adequate order model for a given process. Furthermore, a practical method does
not exist to estimate the degrees of freedom corresponding to the spectral estimations.

4. Results and discussion

The analysis of the statistical variability of the spectral wave parameters given by
Eqs. (1–4), as a result of the applied spectral estimation methods, has been performed
by using 20 measured wave records withT 5 20 min andDt 5 0.78125 s. Thus,
the total number of data for each time series isN 5 1536. The spectral density for
each record has been estimated by means of the estimators given by Eqs. (5)–(9).
In the particular cases of the BT and FFTW methods, each one of the spectral and
data windows mentioned above has been applied. Furthermore, the MEM procedure
was applied to each time series, varying the order of the AR model from 20 to 30.
Then, a total of 25 spectral estimations were obtained for each wave record.
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The values of the wave parameters obtained by the different computational
approaches, are shown in Fig. 1 for one of the analysed time series. In this picture
the black dots represent the values of the wave parameters given in the vertical
axis, computed by using the procedures indicated in the horizontal axis. All spectral
estimations have been obtained with a number of degrees of freedom very close to
14, which should be considered a low degree of smoothness. The choice of this low
number of degrees of freedom is due to limitations in the FFTB and FFTW methods
to obtain spectral estimations with a larger number of dof. Thus, it is necessary to
divide wave records into very short segments, which might not be enough to extract
the spectral structure of the process. Due to this, these methods are often applied
jointly with the Daniell’s method.

Furthermore, together with these data, the figure shows the values of the corre-
sponding parameter estimated by the ME method with the AR model order,P,
increasing from 20 (left side) to 30 (right side).

Inspection of Fig. 1 reveals a clear variability of the spectral parameters as a
function of the methods spectrum estimation. The range of variability showed by
the significant wave height (Fig. 1(A)) is of the order of a few tens of centimetres,
which is close to the accuracy of the popularwaveriderbuoys. It can also be seen
that for the average periods (Fig. 1(B–D)) the variability is always smaller than the
sampling period, while for the peak periods the variability reaches differences of
three and four seconds among different methods.

However, it is worth noting that while for different spectral estimators the peak
periods suffer considerable modifications, the effect of the different spectral and data
windows in the BT and FFTW methods, respectively, is totally insignificant. On the
another hand, while for FFTW the effect of the different windows on the values of
the significant wave height and the average periods is small but can be identified, in
BT it is non-existent. Furthermore, in BT this is true for all the parameters examined.

It may seem paradoxical that the effect of tapering the time series prior to the
periodogram computation may be detected in the average wave height and periods
but not in the peak periods. However, a detailed exam of Fig. 1(E) and (F) reveals
a slight variability in the Delft period which does not exists for the peak period.
This fact makes clear that tapering data affect the overall spectral structure, but not
the location of the spectral components. Naturally, this is reflected in the integration
procedures applied to compute the spectral moments and the Delft peak frequency.
Note that this effect is more substantial for the value of wave parameters that depend
on lower spectral moments and decreases as the order of the spectral moment
increases. Moreover, it should be noted that the largest deviations for these para-
meters are obtained with the FFTW method without tapering time series, that is,
with the rectangular window.

Another interesting feature observed in Fig. 1 is the large stability of the ME
estimations, which remain practically constant over the whole range of orders used.
This reinforces previous results suggesting a model order close to 25 to compute
the maximum entropy spectral density for stationary wave records (see, e.g. Rodrı´g-
uez, 1995 or Gomes and Guedes Soares, 1997). Furthermore, note that the value of
the wave parameters given by the ME method coincide with those of the BT model,
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Fig. 1. Variability of the spectral wave parameters as a function of the spectral estimation method used
for its computation (•, parameter value estimated by means of conventional spectral methods;s, parameter
value computed with the ME technique for AR order varying from 20 to 30).
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Table 1
Statistics for spectral parameters computed by different spectral methods with the same degrees of free-
dom, for the 20 wave records analysed, as illustrated in Fig. 1

Mean value Standard deviation Minimum value Maximum value

Hmo (m) 4.37 0.0587 4.27 4.44
TP (s) 12.72 0.9323 10.40 13.33
TPD (s) 12.97 0.9250 10.70 13.70
T01 (s) 8.29 0.1155 8.11 8.40
T02 (s) 7.54 0.0938 7.35 7.65
T24 (s) 4.52 0.1317 4.19 4.60

except for the peak periods, where they take an intermediate value between the BT
and the FFTW ones.

The basic statistics for the spectral parameters shown in Fig. 1 are given in Table
1. It can be observed that the deviations from the mean values are considerable only
for the peak periods, which have the larger standard deviations. This effect can be
observed in the various spectra corresponding to the wave record, shown in Fig. 2.

Note that for the degree of smoothness chosen, the overall structure of the spectra
changes slightly according to the estimation method, but the peak frequency presents
a significant variation. Then, a larger variability is observed for the peak periods as
a result of the inverse relationship with the peak frequencies.

Thus, the larger uncertainty, resulting from the methods used to compute the wave
spectrum, is observed for the wave parameters that depend on one or few spectral
estimates, that is, for the peak periods, while it is practically insignificant for the
wave parameters that depend on the overall spectral structure.

Fig. 2. Spectral density functions associated to time series used to estimate the wave parameters shown
in Fig. 1.
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It is important to emphasise that the results obtained for several other time series
studied are very similar to those shown in Fig. 1.

5. Conclusions

It can be concluded that the use of different methods of spectral estimation does
not have a significant effect on the variability of the spectral wave parameters whose
magnitude depend on the overall spectrum. However, the parameters depending only
on few spectral estimations, such as the peak period, show great differences as a
function of the spectral method adopted. This effect is enhanced by the inverse
relationship between the spectral peak frequencies and the peak periods.

Furthermore, it can be concluded that tapering data slightly modifies the values
of the parameters whose estimation involves an integration procedure over the spec-
trum. However, this effect is not caused by the application of a spectral window.

Finally, the results show an excellent statistical behaviour of the spectral wave
parameters estimated by means of the maximum entropy method with an autoregress-
ive model of order close to 25.
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