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The three most successful models for describing scattering from random rough surfaces are the 
Kirchhoff approximation (KA), the small perturbation method (SPM) and the two-scale roughness 
(or composite roughness) surface scattering (TSR) models. In this paper it will be shown how these 
three models can be derived rigorously from one perturbation expansion based on the extinction 
theorem for scalar waves scattering from perfectly rigid surfaces. It will also be shown how 
corrections to the Kirchhoff approximation proportional to the surface curvature and higher order 
derivatives may be obtained. Using these results, the scattering cross section will be derived for 
various surface models. 

1. INTRODUCTION 

When a field scatters from a surface which is 

smooth compared to the field's wavelength, most of 
the field is scattered in the specular direction. A 
more precise statement of this phenomenon is that 
the field momentum transferred by the scattering in 
the plane tangent to the surface is much smaller 
than the momentum transferred perpendicular to 
the surface. In this paper, we make use of this fact 
to construct a perturbation series for the scattered 
field in which we use the ratio of the tangent to 
perpendicular momentum transfers as the small 
ordering parameter. 

We shall limit ourselves to the simple case of the 
scattering of a scalar wave which is constrained to 
vanish on the surface. This boundary condition is 
appropriate for scattering from a perfect conductor, 
if the scalar wave represents the component parallel 
to the mean surface plane of an electromagnetic 
wave, and if depolarization is negligible; from an 
impenetrable potential barrier, if it represents a 
solution to the Schroedinger equation; and from 
perfectly rigid surfaces, if the scalar wave repre- 
sents a sound wave. We leave the generalization of 
the method presented here to full electromagnetic 
scattering to a future publication. 

To develop the perturbation series, the extinction 
theorem [Waterman, 1975] for the scattered field 
will be used. Recently, Nieto-Vesperinas et al. (see 
Nieto-Vesperinas and Garcia [1981] for a summary 
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of their work) have proposed a perturbation series 
(the "small perturbation method" (SPM) series) for 
the scattering problem which gives a recursive 
formula for computing the field perturbation to any 
order of approximation by using this theorem and 
the assumption that the surface roughness is much 
smaller than the field wavelength. Subsequently, 
Marvin [1980] showed that, in the small momentum 
transfer limit, this series could be partially re- 
summed. This allowed him to give a rigorous deri- 
vation of the Kirchhoff approximation. The philos- 
ophy of this paper is similar to Marvin's. The main 
difference is that we do not make use of the SPM 

series as a starting point but proceed directly to the 
small momentum transfer approximation. This pro- 
vides a very simple derivation of the Kirchhoff 
approximation: it appears as the first term in the 
perturbation expansion. It is then shown how 
higher order terms provide corrections due to sur- 
face curvature and higher order derivatives. Thus, a 
systematic way of obtaining corrections to the 
Kirchhoff, or tangent plane, approximation is ob- 
tained using this approach. 

The second part of this paper shows that, for 
surfaces which may be decomposed into roughness 
smaller than the incident electromagnetic wave- 
length superimposed on a large scale "smooth" 
random surface, one can develop a perturbation 
expansion using two smallness parameters' the mo- 
mentum transfer and the small roughness surface 
scale. This is the basic premise of the two-scale 
roughness scattering models which have appeared 
in the literature [e.g., Brown, 1978; McDaniel and 
Gorman, 1983; McDaniel, 1986]. We show that, in 
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the appropriate limit, results similar to those in the 
literature are obtained. This approach contrasts 
with the more ad hoc methods used in deriving the 
usual results: in the past, it had to be assumed that 
the Kirchhoff approximation was a suitable first 
order approximation to the scattered field. No such 
assumption is necessary here. Furthermore, a 
framework is provided for taking curvature correc- 
tions into account, as well as higher order terms. 

The plan for this paper is as follows: in the second 
section, notation conventions are established and 
the results of Nieto-Vesperinas and Garcia [1981] 
and Marvin [1980] are summarized. The third sec- 
tion introduces the momentum transfer perturba- 
tion expansion while the fourth section applies 
these results to "smooth" random rough surfaces. 
The fifth section introduces the two-scale perturba- 
tion expansion. Finally, in the sixth section, this 
expansion is applied to two-scale random rough 
surfaces and the composite surface roughness 
model scattering cross section is derived using this 
perturbation expansion. An appendix establishes 
conventions and derives some useful results for 
rough surfaces. 

G0(rl - r2) = 
exp (ikolr• - r2 I) 

4•r Ir• - r21 
(3) 

one obtains the equations 

q/(r) = q/o(r)- f 
for z -> •(p), and 

as Go(r- rs)fl' V½(rs) (4) 

0 = Co(r)- f as Go(r- rs)fl' V½(rs) (5) 

for z -< se(p). This last equation is called the "ex- 
tinction theorem" because it shows that the inci- 

dent field below the surface is extinguished by the 
scattered field. The vector fi, the unit normal to the 
surface, is given by 

fi = [ 1 + (Vf) 2] •/2 (6) 
In order to solve (4) and (5), it is useful to 

introduce the Weyl plane wave expansion for Go 
[Nieto- Vesperinas and Garcia, 1981 ] 

2. A RIGOROUS DERIVATION OF THE 
KIRCHHOFF APPROXIMATION if Go(rl - r2) = 2(2•r) 2 dK exp [iK' (Pl - P2)] 

Consider a scalar wave • scattering from a rough 
surface whose mean is the x-y plane and whose 
height above the plane is given by •(x, y). Assum- 
ing harmonic time dependence e -iøøt, the incident 
field is assumed to be a plane wave of wavelength 
it = 2•r/ko and wave vector ko' 

½0(r) = exp (ik0-r) = exp (i•0' P - ipoz) (1) 

where we have introduced the vectors p and •o, the 
projections onto the x-y plane of the position vec- 
tor, r - p + z•, and the incident wave vector, k o = 
•o + po•. This convention relating (Roman) three- 
vectors to (Greek) two-vectors in the x-y plane will 
be maintained throughout. The function Po • P(•o) 
is defined by 

p • p(K) = (k0 2 -- K' K)1/2 Imp -> 0 (2) 

The scalar field satisfies the boundary condition 
½(•) = O. 

Applying Green's theorem and using the free 
space Green's function 

exp (/p(K) Izl - Z21) 
p(•) 

(7) 

One can write, without loss of generality, 

fi' V½(rs)= 2/f(p)[1 + (V•)2] -1/2 exp (iKo' p) (8) 

where f(p) is an unknown "source" function. Re- 
placing these two equations into (4) and (5), one 
obtains a set of equations that can be solved per- 
turbatively [Nieto-Vesperinas and Garcia, 1981]: 

-Po/5•t,o = (2•r)2 do exp [/P•(0)] exp (-i,y. o)f(P) 
(9) 

T(K, KO) = • p(2,r)2 do exp [-/psC(p)] exp (-i•/- p)f(p) 
(10) 

where T(•, •o), the "transition amplitude (T) ma- 
trix", is the coefficient in the plane wave expansion 
of the scattered field 
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q•(r) = q•o + f dK exp (iK.p + ipz)T(n, •o) (11) 

We have introduced the vector 3t = K - K0, which 
we will call the "momentum transfer in the x-y 
plane". For a perfectly flat reflecting plane, its 
magnitude will be zero. For a smoothly varying 
surface of small slope, or for incidence angle very 
close to the mean surface normal, the magnitude of 
•/ divided by the magnitude of the momentum 
transfer in the z direction, (P0 + Ps), will be small. 

The scattering problem can be solved perturba- 
tively. Assuming that the product p(•)•(p) --- 
O(e) << 1, and that the source function can be 
expanded in powers of e: 

f(P): Z f(n)(p) •.. 
n=0 

(12) 

one can obtain iterative solutions for f(n) [Nieto- 
Vesperinas and Garcia, 1981;Marvin, 1980], 

f(•o) = -poS.•,o (13) 

n-> 1 (14) 

where [ 
to •t; i.e., 

means Fourier transform with respect 

(n) = Lf(n)(p)],/= f d:p f(n)(p) exp (-i•/. p) (15) 
By following a similar procedure, one can deter- 
mine the T matrix to the same order of approxima- 
tion as the source function and, thus, complete the 
solution to the problem to that order of approxima- 
tion. 

By keeping terms of order up to n = 2, the above 
equations provide the Bragg scattering approxima- 
tion [Winebrenner and Ishimaru, 1985b]. However, 
it is not possible to explicitly invert the Fourier 
transform for the source function to obtain analytic 
expressions for it in the spatial domain. Marvin 
[1980] showed that this limitation could be over- 
come in the small momentum transfer limit. In the 

first order approximation, p is expanded in powers 
of the momentum transfer in the x-y plane and only 
the first two terms are kept 

p = (p0 • - 2n0' •/- 3, :) •/: (16) 

t no' 3' t P•Po 1- Pø 2 (17) 

The series for f (p) can now be summed and, to this 
order of approximation, the result is given by 

f(P) = -(Po + Ko' V•) exp (-ipo•) (18) 

or, equivalently, 

fl. vq,(f) = 2n. Vq, o(f) (19) 

which is the Kirchhoff approximation. 
Given Marvin's result, an obvious question .is 

whether, by expanding p in powers of the momen- 
tum transfer to an arbitrary order m, it might not be 
possible to obtain a similar closed form expression 
for the source function. The answer to this conjec- 
ture is affirmative, but the procedure is not elegant. 
In the next section, we will rederive Marvin's result 
and extend it to higher derivatives by using a 
different expansion scheme. 

3. THE MOMENTUM TRANSFER 

PERTURBATION EXPANSION 

While the method outlined in the previous section 
provides a systematic way to obtain corrections 
proportional to curvature and higher order deriva- 
tives to Kirchhoff scattering, it is awkward. One 
assumes that the surface height is small and then, 
by assuming that the momentum transfer is small, 
obtains results which are applicable to arbitrary 
surface heights. It makes more sense to assume 
initially that the momentum transfer is small and 
form a perturbation expansion using it as the order 
parameter. We will do that in this section. 

We proceed in a similar fashion to the previous 
section. However, instead of a source function of 
the form 

f(P) = -Po exp (-ipo•) • f(n)(p)c• n n! 
o 

(20) 

we have chosen the alternate ("cumulant expan- 
sion") form 

f(P) = -Po exp (-ipo•) exp (21) 

where we have introduced the smallness parameter 
a proportional to the ratio of the momentum trans- 
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fer in the x-y plane to the momentum transfer in the 
z direction. Notice that the factor exp (-ipo•) is 
explicitly included in both forms of the source 
functions. That this is correct and necessary for 
homogeneous rough surfaces has been shown by 
Brown [ 1982]. 

There are two main reasons for studying the 
"cumulant expansion" form for the source func- 
tion. First, Lynch [1970] has shown by using a 
variational principle that the first corrections to 
Kirchhoff scattering can be written as the exponen- 
tial of a phase factor as in (21). In addition, several 
authors [Winebrenner and Ishimaru, 1985a, b; $hen 
and Maradudin, 1980], have pointed out that the 
cumulant approach has several advantages, includ- 
ing a clear separation between the coherent and 
incoherent scattered fields, and a higher rate of 
convergence than the approach of Nieto-Vespe- 
rinas and Garcia [1981]. It is our hope that these 
advantages will also be present in our approach. 

Since both expansions must agree to each order 
in a, the expansion coefficients must be related. 
Indeed, their relation is the same as that of the 
moments of a distribution to its cumulants; i.e., 

f(l) _. g(l) (22) 

f(2) = g(2) q_ (g(l))2 (23) 

f(3) = g(3) + 3g(2)g(l) + (g(l))3 

and so on [Shen and Maradudin, 1980]. 
To ease bookkeeping, introduce the function 

n0 •/ 2 
q(•/,a)-= 1-2a .... a 

P0 P0 

1/2 

(24) 

- • (25) 

Proceeding as in the previous section, we solve 
term by term for g (n) by equating equal powers of a. 
This can be done by solving the generating equation 

dan •t, o - • d2p exp (-i•/ß p) 

n:l n! =0 
a=0 

(26) 

for0 < n < o•. 

The resulting integral equations can be inverted 
by performing integration by parts and applying the 
boundary conditions. Since the integrands will only 

contain polynomials in no.3• and 3• 2 the inversion 
can always be accomplished explicitly by replacing 
no.•/ by -ino.? and 3• 2 by _?2, and carefully 
taking into account operator ordering. This is in 
contrast to the SPM where noninteger powers of 3t 
are involved and the Fourier transforms cannot be 

inverted analytically. Solving for the first three 
terms, we have 

g(•) = no. V• (27) 
P0 

g(2) = i V2 • + V • V• (28) 
P0 

g,3,_3[( 3 n0' V) V 2 n0' Po 
+2 +3i 

P0 

V n0 ' 

+ 9i p• P0• p• P0• (29) 
If we recall that In0/P01 = tan 00, where 00 is the 
incidence angle with respect to the z direction, we 
see that, to order a, we obtain the Kirchhoff ap- 
proximation by stopping at the n = 1 term. 

The n = 2 term can be cast in a form more 

amenable to geometrical inte•retation. Let us as- 
sume for the moment that the surface slope is small, 
so that we may ignore terms propo•ional to the 
slope squared. By choosing our coordinate system 
to lie along the principal directions, fi and • of 
the surface [O'Neill, 1966], we will have that 
O uv •(u, v) = 0. In this coordinate, the n = 2 term 
can be written as 

-i V2 • + V 
P0 k cos O0 

ß [(1 + tan 2 00 cos 2 qb)0u 2 

+ (1 + tan 2 00 sin 2 qb)0•2]•(u, v) (30) 

where qb is the angle between the direction n0/g0 
and the direction fi; and we have also used P0 = 
k0 cos 00. For small slopes, however, the principal 
radii of curvature of the surface are given by 1/Ru = 
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O• •(u, v) and 1/Rv 
write 

= 0v 2 •(u, v). Therefore, we can 

g(2) = --i (COS 2 00 + sin 2 00 cos 2 •b ko cos • 00 Ru 

cos 2 00 + sin 2 00 sin 2 •b,) (31) + Rv 

For • = •u) and qb - 0 the above expression 
reduces exactly to the one obtained by Lynch [ 1970] 
for the one-dimensional surface. 

In the past, there has been some discussion in the 
literature concerning the regime of applicability of 
the Kirchhoff approximation. Brekhovskikh [1952], 
for instance, takes 2koR cos 00 >> 1 to be a 
sufficient condition. Lynch (1970], on the other 
hand, proposes the less stringent condition 2koR 
cos 3 00 >> 1. It can be seen from (31) that both of 
these conditions are special cases of a more general 
condition, namely, g(2)/2 << 1. 

In general, a necessary condition for stopping the 
perturbation expansion at the nth term is that 
g(m) << 1 for m > n. If the angle of incidence is not 
too large, the nth order term will be of the same 
order of magnitude as the ratio of the nth derivative 
of the surface height to the wavelength raised to the 
power n - 1. Thus, the magnitude of this ratio 
should provide a good role of thumb for terminating 
the series. For near-nadir incidence, one can ignore 
the odd terms of the expansion since they are 
proportional to •o/Po - tan 00, which vanishes for 
nadir incidence. A necessary criterion for stopping 
at g(2) for near nadir incidence is then given by 

I g(4)(00 = 

= 3 • +3i P0• +6p02 (V•)2 <<1 
(32) 

For angles of incidence which are very far from 
the nadir, on the other hand, the perturbation 
expansion will be dominated by terms of the form 
1/cos n 00 which become singular as 00 approaches 
grazing incidence. Therefore, one does not expect 
this perturbation expansion to be applicable for 
these incidence angles. Physically, this is reason- 
able since the assumption behind this perturbation 
scheme is that the momentum transfer is small. For 

near-grazing incidence, however, this is seldom the 
case. Most surfaces present a strong diffuse com- 

ponent due to the emergence of other scattering 
processes such as multiple scattering and shadow- 
ing. The perturbation expansion based on the ex- 
tinction theorem does theoretically include all these 
contributions [Nieto-Vesperinas and Garcia, 1981], 
if enough terms are retained. However, for this 
perturbation expansion, it is not expected that re- 
taining a sufficient number of terms is a practical 
possibility. 

4. APPLICATION TO ROUGH SURFACES 

In this section, the expansion developed in the 
previous chapter will be applied to random rough 
surfaces. The appendix presents in detail the rough 
surface models which will be used. The major 
assumptions will be the following: both the surface 
and its derivatives will be zero mean random vari- 

ables, and the correlation between surface height 
and slope is small enough to be ignored. This last 
assumption is true of Gaussian surfaces, but may 
not always hold for non-Gaussian surfaces; for 
example, due to nonlinear interactions, the ocean 
surface height and slope correlation may not be 
ignored for certain sea states. 

The scattered field in the far region is given by 

-2ieit•rs • 4rrrs d2p exp [-iy•/ß p] exp [-ips•lf(P) 

(33) 

Y,t = Ks - K0 (34) 

where rs is the distance from the scattering center 
to the field point, and the subscript s refers to the 
scattered field. The coherent scattered field is then 

given by 

-2ieikrs f ($s) = 4•rr-•- d2p exp [-iYa ß p](exp [-ips•]f(p)) 
(35) 

where angular brackets denote ensemble averaging. 
The normalized bistatic scattering cross section is 
given by 

4,rrs 2 
rr0(K0, Ks) = -•-- ((•0s •0*s) - (•0s)(•0*s)) (36) 

where A is the area of the scattering surface. The 
first average in this expression, the mean scattered 
intensity, can be written as 
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2 2 d2pl d2p2 exp [-i•la' 
4•r r s 

ß (exp {-ips[•(pl)- •(P2)]}f(Pl)f*(P2)) (37) 

where pa = Pl - P2. 
To perform these averages, we make use of the 

following property of cumulant expansions [Shen 
and Maradudin, 1980; Winebrenner and Ishimaru, 
1985b]: if G is a random variable, then 

(exp fiG))= exp • A,• (38) 
=1 

where A n is the nth order cumulant of G. For two 
random variables, G (•) and G ©, the analogous 
expression is given by 

] (exp [i(G (1) + G(2))]) = exp • i n An- m,m 
n=l m=0 (/'/ -•7/• '• ! 

(39) 

where An, m represents the joint cumulant of order n, 
m. 

To calculate the coherent field, let 

G • -(Po +Ps)•- ig (•) - i-- 
(2) 

g 

2 

To maintain consistency in the level of approxima- 
tion, one must retain cumulants which are of order 
a 2 or less. These are given by 

i ((K•000)2) •1 = (G) • ß V• (40) 

A2 = {G 2) - {G) 2 • {G 2) • ((Po + Ps)2• 2 + (Po + P•)s c 

Po 

ß + 
A straightforward calculation then yields 

(41) 

(exp [-ips•]f(p)) 

= exp •- tr2(po + ps) 2 1 +Po(Po + Ps) (42) 
where tr is the standard deviation of the surface, 
and 

F(pa) = V 2 + •00' V C(oa) (43) 
where C(pa) is the correlation function for the 
surface. 

The integral in (35) can now be performed to yield 
the following expression for the coherent scattered 
field 

e ikrs 
(6•) = - i2•r • poiS(•la) exp 

so that we may identify 

_2(trp0)2(1 + F(0)• 
(44) 

R=exp -2(trp0) 2 l+•p02 • (45) 

as the coherent reflection coefficient. 

Since F is proportional to the second derivative of 
the surface height, F(0) must be negative for homo- 
geneous surfaces (see the appendix). Recalling that 
the coherent reflection coefficient predicted by 
the Kirchhoff approximation is given by 
exp [-2(o-p0)2], one sees that the effect of including 
curvature terms in the scattered field is to increase 

its coherency. Physically, this is a sensible result. 
One expects that the effect of the finite resolution of 
the impinging field is to "smooth" the actual sur- 
face [Hagfors, 1966; Tyler, 1976]. Specular points 
which are separated by distances smaller than one 
wavelength must merge into one larger effective 
specular point. 

As a special case of the previous formula, con- 
sider homogeneous, isotropic surfaces. In this case, 
the correlation function is a function of the magni- 
tude of the separation vector, Pa, alone. In the 
appendix it is shown that for this class of surfaces, 
one can express F(0) as 

C(2)(0) ( 1 ) F(0) = L• cos 2 00 + 1 (46) 

where L is a length characteristic of the surface 
spectrum and C © is the second derivative of the 
correlation function with respect to the dimension- 
less parameter /3 = pa/L. Explicit expressions for 
C © and L for Gaussian and power law spectra are 
presented in the appendix. 

To calculate the bistatic scattering cross section, 
let 



RODRIGUEZ: BEYOND KIRCHHOFF 687 

G(1) • -(PO + Ps)•C(Ol) - ig(1)(Ol) - i• 
g(2)(pl) 

2 

G (2) • (Po + Ps)•(O2) - ig(1)*(O2) - i• 
g(2)*(p2) 

To calculate the average in (37) consistent with the 
level of approximation chosen, one needs to calcu- 
late the cumulants 

A 10 = A•l = (G(I)) = ((G(2)) *) = A1 (47) 

3, 20 = A•2 = ((G(1)) 2) - ((G(1))) 2 = 3, 2 (48) 

•. 11 = (G(1)G(2)) -- (G(1))(G(2)) • (G(1)G(2)) (49) 

The first two sets of cumulants have already been 
calculated. The last cumulant can be shown to be 

given by 

A 11 = --(P0 + ps)20'2C(pd) 

(130 + Ps)tr 2 
go 

where 

F(pd) + o'2A(pd) (50) 

(;o A(pd) = g0 •7 C(pd) (51) 

Making the change of variables Ps = (Pl -i- p2)/2, 
Pd = P• - P2, the Ps integral in (37) can easily be 
performed to yield 

exp (--i'yd' Pd) exp [o'2A(pd)] 

ß exp {-(Po + ps)2tr2( 1 - C(Od)]} 

(Po +Ps) tr2 ] ß exp - [F(O)- F(pa)] 
Po 

(52) 

Further assuming that the surface is isotropic yields 

2po 2 f dpd Pd Jo('YdPd) exp [tr2A(pd)] 
ß exp {-(Po + ps)20'2[ 1 - C(pd)]} 

(Po +Ps) tr2 ] ß exp - IF(0)- r(pa)] (53) 
Po 

where Jo is the zeroth order Bessel function of the 
first kind. 

As with the Kirchhoff approximation, this inte- 
gral cannot be further reduced for a general surface. 
However, an often encountered situation in natural 
surfaces is that the rms surface height is much 
greater than the wavelength of the field (deep phase 
modulation). Assuming that for this case (P0 + 
ps) • cr • is large enough so that the coherent compo- 
nent of the scattered field can be ignored and, if for 

• 2 < 2/[(po + ps)20'21C (2) I] 

the correlation coefficient is well approximated by 

8 2 
C(8)• 1 - IC(2) 1-- 

2 

and, also, the condition 

I C(4)1 

I C(2) l (po + Ps)PO 
<< 1 

holds, then one can approximate the bistatic cross 
section by 

tro=2Po2fdpdodJo(YdPd) exp[ -- (Po + Ps) 2•21C(2) 1 

1/COS 2 00+ 1/3 C © ) pd 2 ] ß 1 -- (Po + Ps)poL2 iC(2) l •-•/] (54) 
where a term proportional to (•02/p02)/(Po + Ps) 2L2 
has been neglected. The integral can now be easily 
evaluated and the result is 

1 ) tro(no, ns) = 2p (Po + ps)2(IV•12)½ff 

[ ] --Yd 

ß exp 2(po +ps)2(IVsel2)ee (55) 
where (I V•el2)eff, the effective rms slope, is given by 

(IV•12)½ff -- (IV•el2) 1 - (Po + Ps)Po L2 IC (2)1 (56) 
The ratio IC(4)/C(2)lis calculated in the appendix 
for Gaussian and power law spectra. 

For backscattering, •/a = 2•o, Ps = Po, so the 
backscattering cross section can be written as 

1 
tro(•o, -•o) = 2(I V•e 12)eft exp [-tan 2 

(57) 
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Comparing this result with the usual Kirchhoff 
result, we see that the effect of including wave- 
length dependent effects is to replace the rms sur- 
face slope with an effective, smaller, rms surface 
slope. This is consistent with the effect inferred 
from the coherent reflection coefficient: the field 
scatters from an effective surface which is smoother 
than the actual surface. A similar result was ob- 

tained by Lynch [1970] for the one-dimensional 
case. 

5. COMPOSITE SURFACE PERTURBATION 
EXPANSION 

For natural surfaces, it is often the case that the 
surface is too rough for the momentum transfer 
perturbation expansion to apply. However, it is 
frequently possible to split the surface into two 
components 

•(0) = ,•(0) + •(0) (58) 

such that r/(p) is smooth enough so that the Kirch- 
hoff approximation is valid for it; and •(p) is such 
that (Ps - Po)• << 1. In this case, one can introduce 
an additional smallness parameter, /3 --• 
O[(p• - P0)•], and rewrite (9) as 

-p0/5•t, 0 = (2rr)2 dp exp (-i•/ß p) exp (ipo•) 

ß exp [iq(a)po r/] exp [ifi(ps- P0)•]f(P) (59) 

Proceeding in analogy with the previous sections, 
introduce the expansion for the source function 

( m) f(P) = -P0 exp (-ipo•) exp • g(n'm)(p)otnfl 
n =O,m =0 n!m! 

(60) 

One can then solve for g(n,m) term by term, as 
before. Proceeding in this fashion, the first few 
terms are given by 

g (0,0) = 0 (61) 

g(1,0) = g(1) (62) 

g(2,0) = g(2) (63) 

g(0,1)= -i f d2 (2rr) 2 
K 1 exp (iK1 ß P)[P'(KI) -- p0]}(•l) 

(64) 

_if g(0,2) = (2rr)• d2tCl exp (i•l ß p) d2K2 •'(•1 -- 

ß {2[P'(•2) - Po][P'(•I) - P0] - [P'(•I) - P0] 2 

-- [P'(•:I -- K2) -- P0][P'(•2) -- P0]) (65) 

g(l,l) _ (•)2 d2tc 1 exp (i•:1 ' P)[P'(•I)- P0] f d2pl 
ß ' • + 'r/(pl) •'(Pl) 

P0 P0 

(66) 

where the shorthand notation p'(•) = P(•0 + •) has 
been used. We have also introduced the symbolic 
notation 

•(•:) = • d2p exp (-iK. p)•(p) (67) 
Strictly speaking, this integral does not converge 
for infinite homogeneous surfaces. However, in 
what follows we shall only be interested in the 
moments of the scattered field which involve only 
the moments of }(•). These moments are well 
defined. A rigorous spectral representation of the 
random surface • can be obtained in terms of 
Fourier-Stieltjes integrals [Yaglom, 1973]. Since the 
answers obtained by using this method are the same 
as those obtained using our symbolic notation, the 
symbolic notation will be retained for the sake of 
simplicity. 

One can show that in the limit r/--> 0, the results 
obtained are equivalent (to order /32 ) to those 
obtained by Winebrenner and Ishimaru [1985b]. 
They have shown that for Ps• << 1, one obtains 
Bragg scattering as the dominant scattering mecha- 
nism. On the other hand, it is obvious that in the 
limit r/--> 0, one obtains the momentum transfer 
expansion developed in the previous sections. 
Hence, the expansion method advocated here has 
the limiting behavior desired of the two-scale ap- 
proximation. As we shall see in the next section, the 
behavior of the scattering cross section for random 
surfaces is also similar to the one derived by more 
ad hoc methods. It should be noticed that the 

perturbation expansion developed here also in- 
cludes coupling terms between the large scale and 
small scale currents through terms like g(•'•) and 
higher order terms of the form g(n,m) (rt, m • 0). 



RODRIGUEZ: BEYOND KIRCHHOFF 689 

This is in contrast to the usual two-scale theories 

which neglect this interaction. 

6. APPLICATION TO TWO-SCALE ROUGH 

SURFACES 

To apply the expansion developed in the previous 
section to random rough surfaces, let us assume 
that statistically the surface • can be treated as the 
sum of two zero mean random variables, r/and 
such that the first is smooth enough that the mo- 
mentum transfer expansion is applicable, and the 
rms amplitude of the second is small compared to 
the field wavelength. In order to simplify the math- 
ematics, let us further assume that these two vari- 
ables are not correlated. This implies that the sur- 
face correlation function and surface spectrum can 
be written as 

o'•Ce(pa) = o-2nC,•(pa)+ o'•C•(pa) (68) 
2 2 

o'•Wg(•) = o',•W,•(•) + o'•W/.(•) (69) 

A natural way to accomplish this split for Gaussian 
surfaces is to split the spectral expansion of the 
random process • at a cutoff wave number •c. Then 
r/and sr are defined as the low and high frequency 
components of •, respectively. For this approach to 
be viable, there must exist a cutoff frequency such 
that both of the scattering conditions required by 
the two-scale expansion are simultaneously satis- 
fied. 

The calculation of the scattered field proceeds in 
complete analogy to the calculations presented in 
section 4. We will assume that the smallness param- 
eters a and/3 are of the same order and carry out the 
calculations to order a2. In analogy to section 4, we 
define 

Gn(P) =-(P0 + Ps)r/(P)- i(g(l,0)(p)+ « g(2,0)(p)) (70) 

G,(p)=-(19o+lgs),(p)-i(g(ø'l)(p)+«g(ø'2)(p)) (71) 

G,•(p) = _ig(l,l)(p) (72) 

so that 

(1) G• 1)= Grt(Pl) + G/-(pl) + G,•.(pl)= G(n 1) + G[ 1) + G,• 
(73) 

G[ 2)= -[Gn(P2) + G•(P2)+ Gn((P2)]* 

,_,• (74) 

To order a 2 of approximation, the coupling be- 
tween the surfaces r/and sr appears only through the 
averages (G,•;}, (r/G,•;}, and (•G,•;}, or their com- 
plex conjugates. However, since we have assumed 
that rt and 'st are uncorrelated zero mean variables, 
these averages can easily be seen to vanish. This 
implies that all averages can be split into products 
of r/and sr averages, which will be written as ( 
and ( )• respectively. Thus the expression for the 
mean scattered field becomes 

(4,s) = 
ikr s 

-ipoe 

2 •rrs f d2pl exp [-i'Ya' Pl] 
ß (exp (iG(n•))),•(exp (iG[l)))• ß (75) 

Similarly, the expression for the mean scattered 
intensity becomes 

f (•s• s*)= 4,r2rs 2 d2pl d202 exp [-ibrd' Pd] 

ß (exp [i(G(n•) + G(n2))]),•(exp [i(G[ l) + G[2))])• ß (76) 

The averages involving r/have already been calcu- 
lated in section 4. A straightforward calculation 
shows that 

1 (exp (iG[•)))r = exp -• (p0 + Ps) 20'2 

ß f d2Kl (pi-po)W(t•l)] 
and 

o-•(po + ps) 
(2,r) 2 

(77) 

(exp [i(G•I) + G[2))])/. 

= L(po, Ps) exp [ - (P0 + ps)2ø'•Ci(Pd)] 

ø'i' d2 ß exp (27r)2 K 1 exp (il{ 1 ß •}d)W(K I)(Pi - P0) 

ß [(Pi - P0)* + 2(p0 + Ps)] } (78) 
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(exp [i(G• •) + G•2))])•- L(po, p•) 

ß exp (2•.)2j,, • exp (i•:• ß pa)W(•:•)l(pl +ps)l 2 
(79) 

where p • - p' (• • ), and 

L(po, Ps) = exp [-(P0 + ps)2er• 

- 2 Re (2 •r) 2 d 2 • • W(• •)(p • - Po) 
(80) 

is an attenuation factor which is independent of 
position. 

From these results, it follows that the coherent 

reflection coefficient, R,1 • , for the two-scale surface 
is given by 

R,C = exp [-2p•(a, 

ß exp - (2•) 2 d2• • (pi - po)W(• •) (81) 
One recognizes the first exponential as the coherent 
reflection coe•cient in the Kirchhoff approximation 
for scattering from the surface •. The second expo- 
nential is due to curvature effects of the large scale 
surface. The last exponential is the additional con- 
tribution due to the small scale surface. It can be 

seen that this expression reduces to the one which 
includes curvature co•ections derived in section 4 

in the high frequency limit by expanding the differ- 
ence (pl - P0) about P0 and retaining terms to 
order •2. One concludes that the effect of the small 
scale surface on the coherent reflection coefficient 

is to induce an additional attenuation which is, to 
first order, equal to that predicted by the Kirchhoff 
approximation. A numerical evaluation of the co- 
herent reflection coe•cient in the limit of vanishing 
• is presented by Winebrenner and Ishimaru 
[1985b]. They conclude that, for smooth surfaces, 
the reflection coefficient is nearly identical to that 
predicted by the Kirchhoff approximation. For 
rougher surfaces, on the other hand, significant 
differences may be introduced by keeping the 
higher order terms. 

As in section 4, the scattering cross section 
cannot be computed analytically without making 
further assumptions about the surface. To compare 
with the standard results on two-scale surfaces, we 

will assume, as in section 4, that the deep phase 
modulation approximation applies; i.e., (P0 + 

2 • 1. In this approximation, we may neglect ps)2ern 
the coherent component of the scattered field in the 
calculation of the scattering cross section. In addi- 
tion, we will assume that the small scale surface is 
much smaller than the field wavelength so that the 
exponential in (79) may be expanded. Keeping 
terms of order /32 and lower, interchanging the 
orders of integration and proceeding as in section 4, 
one obtains 

o'o(,,o, ,,s)= o'o(•(,,o, ,,s)+ o'?(,,o, ,,s) (82) 

where 

L(po, P s) ) O'o(•)(•o, •s)= 2p• (Po -•s)•iIV•/12)ee 

ß exp 2(po + ps)2(IVy/12)eft 

2p• ( L(po,Ps) •) Cr(01)(I•'O' I•s) -' (2T/') 2 (Po '•s)](l•'/ 12)e 

(83) 

ß f d2tcllPs+P•12W(tcl) 

ß I -("/a- •l) 2 2)ertl (84) exp [2(p0 •-s)•-(i•7-• I 
We recognize er (•) as the specular cross section for 
the surface •t attenuated by the factor L(p0, Ps) due 
to the small scale roughness. The second term is 
similar in structure (aside from the curvature cor- 
rections due to the large scale surface) to the 
two-scale cross sections derived by previous au- 
thors [McDaniel and Gorman, 1983; McDaniel, 
1986; Brown, 1978]. However, these authors start 
with the equivalent of the Kirchhoff approximation 
and obtain a factor of (Po + Ps) 2 inside the integral 
instead of I ps + p• 12 (in effect, the last integral 
inside the exponential in (78) is ignored). In the limit 
of vanishing large scale surface ((I V•t 12 = 0) both eft , 

approximations give the correct Bragg backscatter 
cross section, as can be easily seen. However, for 
general bistatic scattering, our approach gives the 
correct scattering cross section 

4k• cos 2 0o cos 2 Os cr•W(•la) 
tr0 = (85) 
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The approach which starts from the Kirchhoff ap- 
proximation, on the other hand, results in the 
bistatic cross section given by 

•(cos 00 + cos 0,)2•w(•) 
tr0 = (86) 

which does not contain the appropriate angular 
factors. 

This disagreement is a reflection of the well known 
fact that the source function (or surface current) for 
the Kirchhoff approximation does not coincide with 
the source function for the SPM [Marvin, 1980]. 
However, as can be easily seen, these two approxi- 
mations do coincide in the appropriate shared,region 
of validity (small surface height, small momentum 
transfer) if the second-order corrections obtained in 
section 4 are added to the Kirchhoff approximation. 
This is a further confirmation of the basic soundness 

of the approach put forward in this paper. 
The difference for the formula derived here and 

that obtained from the Kirchhoff approximation is 
not readily apparent for small large-scale slopes, the 
case for which most empirical data are available. In 
this limit, the exponential term in (84) restricts the 
contributions to the integral to values of the wave 
vector such that • • •/•, orpl • Ps. Then, to first 
order of approximation, both formulas coincide. 
This will not be the case, however, when the large 
scale surface has large rms slope. 

To summarize the results in this section: we have 

derived an expression for the scattering cross sec- 
tion from two-scale surfaces from our perturbation 
series. This expression is similar to previous ex- 
pressions in the literature for small large-scale sur- 
face slopes and curvatures. However, the expres- 
sions differ when the large scale surface curvature 
or slopes are large. To our knowledge, there are no 
experimental data which allow for the discrimina- 
tion between these two expressions. The advantage 
of the expressions derived here is that the cross 
section was derived without the need of making a 
priori assumptions (for example, validity of the 
Kirchhoff approximation to first order). In addition, 
the procedure clearly defines the regions of validity 
of the approximation and presents a systematic way 
of including higher order effects. 

7. CONCLUSIONS 

We have presented a new perturbation expansion 
for calculating the scattered field using the extinc- 

tion theorem. This method, which is valid for 
smooth surfaces or near-nadir incidence, allows for 
the rigorous derivation of the Kirchhoff approxima- 
tion and allows for the inclusion of higher order 
corrections (for example, curvature corrections) in 
a systematic manner. All the terms of the perturba- 
tion expansion for the source function can be ob- 
tained as closed form analytic expressions involving 
the derivatives of the scattering surface. An appli- 
cation of this perturbation expansion to random 
surfaces showed how the inclusion of curvature 

corrections to the scattered field effectively 
smoothed the scattering surface. This result is' in 
accordance with the heuristic discussions of Hag- 
fors [1966] and Tyler [1976] and with the quantita- 
tive results by Lynch [1970] for one-dimensional 
surfaces. 

It was then shown how this perturbation method 
could be united with the SPM phase perturbation 
method [Winebrenner and Ishimaru, 1985b] to cal- 
culate the field scattered from two-scale surfaces in 

a systematic way. This two-scale perturbation ex- 
pansion was then applied to random rough surfaces 
to obtain their scattering cross section. The results 
obtained are similar to the ones previously derived 
in the literature [McDaniel and Gorman, 1983; 
McDaniel, 1986; Brown, 1978] in the case of small 
large-scale surface curvatures and slopes. When 
these parameters are large, however, significant 
differences may be introduced. It was further 
shown that the effect of the small scale surface on 

the specular point scattering contribution was to 
introduce an additional attenuation factor. This, 
again, is in accordance with the heuristic discussion 
of Tyler [1976]. 

At present, there are no available data of which 
we are aware that will allow for the testing of this 
approximation. The comparison of the results 
against exact numerical calculations is currently 
under way and will be reported on in a future 
publication. An extension of the method presented 
here to vector electromagnetic scattering is also 
currently under way. 

APPENDIX 

In the text we consider a zero mean, homoge- 
neous random rough surface sr-(l•)with standard de- 
viation tr. It is also assumed that the correlation 

between the surface height and slope can be ne- 
glected. The correlation coefficient is defined by 
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1 

C(pd) = C(O1 - P2) = • (sc(Pl)sc(P2)) (87) 

The surface power spectrum, W(•), is defined by 
the relation 

•r2 f o'2C(pd) = (2•r)• - d2• exp (i• ß pdW(•) (88) 

normalized such that 

if 1 = (2 •r) 2 d 2t• W(l•) (89) 

If the random rough surface is isotropic in addi- 
tion to being homogeneous, the correlation coeffi- 
cient is a function of pa only, while the power 
spectrum is a function of • only. They are related by 
the equation 

•r2f cr2C(Pd) = • ds< trJo(•:pd)W(•: ) (90) 

As typical examples of natural surface power 
spectra, consider the Gaussian and the band-limited 
power law spectra defined respectively by 

Wg(t•)-- 'n'L 2 exp - (91) 

p--2 •Cf -2 
Wp(•:) = 2•r 1 - p,P-2 t< p (92) 

where L is the correlation length of the Gaussian 
surface; /z = •l/•u is the fractional bandwidth of 
the power spectrum; tc I is the low wave number 
cutoff; and •u is the high wave number cutoff. 
Band-limited power law spectra are good approxi- 
mations to many natural surfaces, for example, the 
ocean surface [Kitaigorodskii, 1987] where 1._•0 • 3 -- 

p -< 4, or planetary surfaces, where it is estimated 
that p • 3 [Tyler, 1976]. 

In section 4, one needs to obtain expressions for 
the short distance behavior of the correlation coef- 

ficient. For the Gaussian case, the correlation coef- 
ficient is easily calculated to be given by 

C(/5) e -• = (93) 

• •2k 

c(•) = • (-7•., c•2 •(o) k=O 

(94) 

where 15 = p ,t/L and 

(2k)!(-1) k d 2k 
c•2•(0) = •! - •o---• c(•) (95) 

To obtain a similar expression for the power law 
spectrum, replace Wp into (90), make the change of 
variables/• = •uPe and x = •/•, and expand the 
Bessel function about zero. Interchanging summa- 
tion and integration, one obtains 

• •2k 

c(•) = Y• (•-•. c•2•(o) k=O 

(96) 

c(2k)(0) (2k)! p - 2 1 -- /x 2k + 2-p = k•- 2k + 2-p 1 -- /x p-2 (-1/4)k/xP-2 
(97) 

The special case of k = 1, p = 4, can be obtained 
from this formula by using the limit 

1 -/.t x) lim = -In/z 
x 

x.--• o 

(98) 

Note that in this case, the "typical" length L is 1/Ku 
which does not coincide with the correlation length, 
which is of order l/t< l . This implies that, for power 
law surfaces, the moments of the derivatives are 
determined by the high frequency cutoff, while the 
shape of the surface itself is dependent on the low 
frequency cutoff. 

Using these expressions, one can derive the ratio 
I C(4)/C(2)lused in section 4: 

Gaussian 

I C(4)/C(2)l = 12 (99) 

Power law 

6-p 3 4-p l-p, 
iC(4)/C(2)1 - _ 4 - p (100) 41-p• 6-p 

An additional result needed in section 4 is the 

short range behavior for the quantity (V 2 + 
((•o/Po).V)2)C(/5). Making the change of variables 
P,t = L/5, this can be written as 

1 ( 1 0 2 1•.) • cos 2 00 oti 2 +• C(ti) 
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Using the short range behavior obtained for the 
correlation function, the short range behavior for 
the quantity can be expanded as 

1 0o •2k-2 

•'• k•l (2k- 2)• C•2k•(O)a • 
where 

1 1 

cos • 00 2k- 1 

Acknowledgments. I would like to thank K. Wiedman for her 
insightful comments. The research described in this paper was 
performed by the Jet Propulsion Laboratory, California Institute 
of Technology, under contract with the National Aeronautics 
and Space Administration. 

REFERENCES 

Brekhovskikh, L. M., The diffraction of waves by a rough 
surface, Zh. Eksp. Teor. Fiz., 23, 275-289, 1952. 

Brown, G. S., Backscattering from a Gaussian-distributed, per- 
fectly conducting rough surface, IEEE Trans. Antennas 
Propag., AP-26, 472-482, 1978. 

Brown, G. S., A stochastic Fourier transform approach to 
scattering from perfectly conducting rough surfaces, IEEE 
Trans. Antennas Propag., AP-30(6), 1135-1144, 1982. 

Hagfors, T., Relationship of geometric optics and autocorrela- 
tion approach to the analysis of lunar and planetary radar, J. 
Geophys. Res., 71,379-383, 1966. 

Kitaigorodskii, S. A., A general explanation of the quasi-uni- 
versal form of the spectra of wind-generated gravity waves at 

different stages of their development, Johns Hopkins APL 
Tech. Dig., 8(1), 11-14, 1987. 

Lynch, P. J., Curvature corrections to rough surface scattering 
at high frequencies, J. Acoust. Soc. Am., 47(3 (part 2)), 
804M•15, 1970. 

Marvin, A.M., Kirchhoff approximation and closed-form 
expression for atomic surface scattering, Phys. Rev. B, 22(12), 
5759-5767, 1980. 

McDaniel, S. T., Diffractive corrections to the high-frequency 
Kirchhoff approximation, J. Acoust. Soc. Am., 79(4), 952-957, 
1986. 

McDaniel, S. T., and A.D. Gorman, An examination of the 
composite-roughness scattering model, J. Acoust. Soc. Am., 
73(5), 1476-.1486, 1983. 

Nieto-Vesperinas, M., and N. Garcia, A detailed study of the 
scattering of scalar waves from random rough surfaces, Opt. 
Acta, 28(12), 1651-1672, 1981. 

O'Neill, B., Elementary Differential Geometry, Academic, San 
Diego, Calif., 1966. 

Shen, J., and A. A. Maradudin, Multiple scattering of waves 
from random rough surfaces, Phys. Rev. B, 22(9), 4234-4240, 
1980. 

Tyler, G. L., Wavelength dependence in radio-wave scattering 
and specular point theory, Radio Sci., 11, 83-91, 1976. 

Waterman, P. C., Scattering by periodic surfaces, J. Acoust. 
Soc. Am., 57(4), 791-802, 1975. 

Winebrenner, D. P., and A. Ishimaru, Investigation of a surface 
field phase perturbation technique for scattering from rough 
surfaces, Radio Sci., 20, 161-170, 1985a. 

Winebrenner, D. P., and A. Ishimaru, Application of the phase- 
perturbation technique to randomly rough surfaces, J. Opt. 
Soc. Am. A, 2, 2285-2293, 1985b. 

Yaglom, A.M., An Introduction to the Theory of Stationary 
Random Functions, translated from Russian by R. A. Silver- 
man, Dover, New York, 1973. 

E. Rodriguez, Jet Propulsion Laboratory, California Institute 
of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. 


