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Abstract: Interferometric synthetic aperture radar 
(InSAR) is a method which may provide a means 
of estimating global topography with high spatial 
resolution and height accuracy. The paper pre- 
sents a derivation of the signal statistics, an 
optimal estimator of the interferometric phase, 
and the expressions necessary to calculate the 
height-error budget. These expressions are used to 
derive methods of optimising the InSAR-system 
parameters, and are then used in a specific design 
example for a system to perform high-resolution 
global topographic mapping with a one-year 
mission lifetime, subject to current technological 
constraints. Finally, a Monte Carlo simulation of 
this lnSAR system is performed to evaluate its 
performance for realistic topography. The results 
indicate that this system has the potential to 
satisfy the stringent accuracy and resolution 
requirements for geophysical use of global topo- 
graphic data. 

1 Introduction 

Global high-resolution digital topographic information is 
necessary for many geophysical applications, including 
geology, geomorphology, hydrology, ice studies etc. A 
study of the resolution requirements [I] has determined 
that most of the potential applications of such informa- 
tion could use digital topographic maps with spatial 
resolution on the order of a few tens of metres and verti- 
cal resolution on the order of a few metres. This require- 
ment would also satisfy the ice applications if the 
accuracy of the data could be improved to lOcm by 
spatial averaging over 100-500 m2. 

The simultaneous requirements of global coverage, 
high spatial resolution and high vertical accuracy place 
severe demands which cannot be met easily with conven- 
tional mapping techniques. A potential technique which 
may meet these requirements, interferometric synthetic 
aperture radar (InSAR) mapping, has been introduced by 
Graham [2], Goldstein and Zebker [3] and studied 
further by Li and Goldstein [4]. This technique uses the 
relative phase difference between two coherent synthetic- 
aperture radar (SAR) images obtained by two receivers 
separated by a crosstrack baseline, to derive an estimate 
of the surface height. The horizontal resolution of the 
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system is dictated by the SAR bandwidth and antenna 
length, and can easily be made to satisfy, or exceed, the 
topographic-resolution requirements. The vertical accu- 
racy of the system is ultimately limited by the SAR- 
radiation wavelength which, for microwaves, is on the 
centimetric scale. In addition, InSARs have the capability 
of providing wide swaths and all-weather performance, in 
contrast to optical sensors, such as stereo cameras and 
laser altimeters. 

While the theory, design considerations and accuracy 
of conventional SAR instruments are well known [SI, a 
similar analysis does not exist for InSARs scattering from 
distributed natural targets. (Moccia and Vetrella [6] have 
presented an error analysis for point targets, such as 
corner reflectors. Since, for topographic applications, we 
are interested in natural targets, which are diffuse scat- 
terers, we restrict our analysis here to extended targets.) 
In fact, as shown below, an optimal SAR design geared 
to measuring the radar backscattering cross-section can 
be far from optimal for measuring topography. An error 
analysis of InSARs for simplified geometries was present- 
ed by Li and Goldstein [4], and they also mentioned the 
existence of an optimal interferometer baseline. The 
purpose of the present paper is to extend InSAR theory 
to include more realistic scattering surfaces and interfer- 
ometer geometries. Using this theory, we characterise the 
different error sources for InSARs, and obtain criteria for 
the selection of optimal InSAR-system parameters. 

2 Interferometric-return-signal characteristics 

We consider an interferometer system with baseline B, 
tilted at an angle with respect to the local normal, and 
with a look angle Bo.  Fig. 1 depicts the scattering 
geometry. At each of the interferometer receivers, we 
model the interferometer coherent signal u,(i = 1, 2) for 
range ro and azimuth xo by 

u l ( r o ,  xo) = A dz d x  dy exp ( i k r , ) . f ( x ,  y, z) I S  
u2(ro + A + h,, xo + 6,) 

= A dz dx  dy exp ( i k r 2 ) f ( x ,  y, z) I S  
x W{r2 - (ro + A + 6J, x - xo - ax} + n2 (2) 

where ni is the thermal-noise contribution to the signals, 
k is the wavenumber ( = 2 x / j . ) ,  W(r, x) is the system’s 
range-azimuth-point target response, ri represents the 
range from the ith antenna to the scattering point, and A 
is a coefficient which depends on the system parameters. 
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We have assumed that the signal from the second recei- 
ver is offset by a determinstic factor A so that it will be 
coregistered in range with the signal from the first recei- 
ver. In addition, we have allowed for the existence of 
range and azimuth coregistration errors, 6, and 6,, 
respectively. 

Fig. 1 
H ,  y and all angles are referenced to the local horizontal plane of the radar target 
area 

InSAR geometry with arbitrary [ a n d  0 

Geologic surfaces are generally distributed radar 
targets which are very rough compared with typical 
radar wavelengths. These considerations motivate us to 
assume that the surface scattering amplitude, f ( x ,  y ,  z) ,  
obeys the following equation 

( f ( x .  Y .  z ) f*(x’ ,  Y‘. z‘)? 
= a,(x, y ,  z ,  e)s(x - x’)s(y - yy(z - z‘)  (3) 

where cr,(x, y, z ,  0) is the normalised backscatter cross- 
section unit height for incidence angle 0. The assumption 
that the surface scattering amplitude has a delta-function 
correlation is consistent with the deep-phase approx- 
imation in scattering theory 171, which applies to surfaces 
whose root-mean-square height is much larger than the 
incident radar wavelength. Notice that the more common 
normalised radar cross section is defined as 

oo(x, Y, 0) = dz ao(x, ~3 Z, 0) (4) s 
If the SAR coherent return signal has circular Gaussian 
statistics, as is often observed, a complete character- 
isation of the interferometric return can be obtained by 
calculating the complex covariance matrix for u1 and u z  . 
Using eqn. 3, and the fact that nI and n2 are uncor- 
related, the complex covariance of u1 and u2 is given by 

(ul(roxO)u:(rO + A + 4, x o  + 6,)? 

= A Z  1 dz  1 d x  dy exp { - ik(r,  - r , ) }  

x a, (x ,  Y ,  2, 0 ) W I  - r 0 x  - x o )  
W * ( r ,  - ro - A  ~ 6,, x - x ,  - 6,) ( 5 )  

To make further progress, we approximate 

B 
r0 

rz  - r l  1 A + 2 (q  cos 0, + i sin e,) 

(7) 

(8) 
(9) 

A - = J{ 1 + 2B sin (0, - [ ) / r o  + (B/r0)’} - 1 
r0 
1 B sin (0, - t ) / r o  

Bl = B COS (0, - 5 )  
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where B, is the projection of the interferometric baseline 
onto the direction perpendicular to the look direction, 
q = y - yo ,  and = z - zo . We decompose the scatterer 
height locally into a tilted-plane component and an addi- 
tional component w representing the height above the 
mean tilted plane 

[ = (x - xo)  tan 7x + q tan T~ + w (10) 
where 7= and iy represent the surface slopes in the x and 
y directions, respectively. 

As a likely characteristic of natural targets, we assume 
that, at least in the neighbourhood of x o  and y o ,  the 
surface brightness is homogeneous, and that the scatterer 
properties are only governed by their height above the 
mean tilted plane 

u,(x,  y ,  z ,  00) = oo(w, 0,) (1 1) 
We expect this assumption to be good for most natural 
targets which have no sharply defined changes in surface 
brightness. This assumption is not as good for some 
inhabited areas, where sudden changes in the reflectivity 
are common. 

Finally, we choose the SAR system point-target 
response to be given by 

W ( r ,  x )  = sinc (:) sinc ( F) 
where sinc ( x )  = sin ( x ) / x ;  R is the intrinsic range 
resolution, given by c/(ZAf), where c is the speed of light 
and Af is the system bandwidth; and X is the SAR 
azimuth resolution, given by L/2 for full-aperture synthe- 
sis, where L is the antenna length. 

After some tedious algebra, eqn. 5 can be integrated 
analytically to obtain the complex covariance 

(ulu:) = A2Sa,(r, ,  x o ,  8,) exp ( -  ikA)a (13) 
a = Go(a,, 0,Xl - I a , R I )  exp ( - i x a , 6 , )  

x (1 - l a , X I )  exp ( - ina ,6 , )  

(15) kB1 a,  = 
2nr, tan (0, - 7 y )  

kB,  cos 7 y  

ro sin (0, - iy) 
a ,  = 

(17) 
a ,  tan ‘I, a,  = ~ 

2n 
where S is the area of the SAR resolution element, and 
:,(a,, O,), the normalised Fourier transform of the radar 
cross-section as a function of height, is defined as 

x 1 dw exp ( -  ia, w)uo(w, e,) (18) 

When surface slope and misregistration can be neglected, 
notice that 1 - a, the geometric decorrelation, is directly 
proportional to B l / r o ,  the angle subtended by the basel- 
ine viewed from the surface, and inversely proportional 
to the wavelength. 
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A similar derivation to that shown above yields 

(101 1') = ( I ~ z l ' )  = A'Su,, + N (19) 
where N is the mean thermal-noise power (assumed to be 
equal in both receivers). This implies that the correlation 
coefficient between the two signals is given by 

where R,, is the system signal to noise ratio. Notice that 
in the infinite R,, limit, the correlation is given by I a 1 ,  
which we call the geometric correlation, since it depends 
only on geometric parameters. This correlation function 
is the extension of the usual van Cittert-Zernike theorem 
[8] to scatterers distributed in three dimensions. The 
results presented above reduce in the limit of a flat 
surface, no azimuth-coregistration error, no surface tilt, 
and no baseline tilt, to those presented by Li and Gold- 
stein [4]. Their parameter 6, the decorrelation, is defined 
a s & =  1 - y .  

If the phase of a is zero, the mean phase difference 
- kA between the two SAR signals is the interferometric 
phase difference resulting from the path difference 
between the point (x,, , yo,  z o )  and the two extremities of 
the interferometer baseline. This implies that in the mean, 
provided that the phase of a is zero, the interferometric 
phase from a distributed target is equivalent to the inter- 
ferometric phase from a point target located exactly at 
the centre of the SAR resolution cell. This is equivalent to 
saying that, for a flat distributed target the mean phase 
centre of the target lies at its geometric centre, a result 
which is intuitively clear from symmetry considerations. 
This implies that one can use the interferometric phase 
from distributed targets to calculate unambiguously the 
height of the centre of the distributed resolution cell, pro- 
vided that a has zero phase. 

The phase of a can be nonzero for two reasons. First, 
either range or azimuth coregistration errors can induce 
a nonzero phase, as can be seen by inspecting eqn. 14. If 
the interferometer geometry is known, this phase can be 
made very small since the SAR signals can be 
coregistered to a small fraction of a resolution cell size. 

Secondly, the normalised Fourier transform of the 
scattering cross-section as a fmction of height can have a 
nonzero phase. This will happen whenever c,,(w) is not 
symmetric about w = 0. We present two simple models 
for ao(w): one appropriate for bare geologic surfaces; 
another for surfaces covered by vegetation. 

In the first case, we expect the cross-section to be due 
to specular points which closely follow the topography 
within the resolution cell. If the topography is approx- 
imately Gaussian, Z,, can be modelled as [9] 

ata f  i 2 i (ap,)3) (21) 
x exp { -ia,z,, - ~ - 2 6  

where zEM is the specular point mean height, us is the 
specular point standard deviation, I., is the specular point 
skewness, and it is implicitly assumed that the parameters 
of the of the distribution are functions of B o .  

Ignoring the skewness contribution, it is easy to see 
that the phase contribution will induce a height error of 
zEM in the estimated height. This shift of the electromag- 
netic mean level with respect to the mean topography is 
well known in oceanography, where it is called the 'elec- 
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tromagnetic bias' [SI. It is typically quite small compared 
with the accuracies required for topographic mapping. 
Note that, in addition to providing a possible phase shift, 
the vertical distribution of scatterers causes a decrease in 
the geometric correlation: the geometric correlation 
decreases as the vertical variance of the scatterers 
increases. The magnitude of this decrease, and its effect 
on height estimation, will be treated below for a specific 
interferometric design. 

To model vegetation cover, we assume a scattering 
cross-section as a function of height of the form 

= exp ( - f i w t b 0  ground 

x exp { -P (w,  - 4) (22) 
for 0 < w < w,, and zero otherwise. The parameter b, 
which is a function of incidence angle and vegetation 
type, accounts for the radiation attenuation due to the 
scattering and absorption from the vegetation. The nor- 
malised Fourier transform of this function is easily com- 
puted: 

e ~ ground + do w ~ "/(I - e ~ ) 

(23) 
x {exp (p - iv) - 1}(p - iv) 

C O  = 
e ground + tree 

where p = Bw, and v = a,w,. It can be seen that by 
varying the value of 1 one can make the scattering phase 
centre, and hence the interferometer height bias, lie any- 
where between 0 (when no vegetation is present) and w,  
(when the attenuation becomes very large). The magni- 
tude of the correlation coefficient is seen to be inversely 
proportional to lip, the penetration depth, or w, the 
vegetation height, depending on which is smaller. 

3 Interferometric phase estimation 

Due to speckle, it is not advantageous to estimate the 
interferometric phase using one-look SAR data. Rather, 
increased accuracy can be obtained by combining the 
returns from several interferometric pairs of equal mean 
phase (or height). It has been shown in Reference 10 that, 
for homogeneous targets, the maximum-likelihood esti- 
mator (MLE) of interferometric phase from distributed 
targets is given by 

where N L  is the number of looks to be averaged. 
The MLE estimator is unbiased modulo 271, and the 

phase variance can easily be obtained numerically, as 
shown by Li and Goldstein [4]. Fig. 2 presents a plot of 
the phase standard deviation as a function of the decor- 
relation parameter 6 for various numbers of looks. The 
Cramer-Rao bound [IO] for the phase-standard devi- 
ation was shown to be given by 

The phase standard deviation approaches this limit 
asymptotically as the number of looks increases. Fig. 3 
presents a comparison of the actual phase-standard devi- 
ation against the Cramer-Rao bound for various values 
of the decorrelation parameter. As can be seen, the phase- 
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standard deviation decreases much faster than N L  for 
the first four looks, especially if the correlation is high. 
After that, the phase-standard deviation can be approx- 
imated by the Cramer-Rao bound. The fact that the 
phase-standard deviation decreases quickly with the first 
four looks indicates that at least that many looks should 
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Fig. 2 Standard deviation of phase difference between two images 
against decorrelation 6 = I - y for  N ,  varying between I and 16 looks 
For small 6.  the phase variation decreases vary rapidly with looks for the first four 
looks These results calculated using 100 CNXI realisations in a Monte Carlo simu- 
lation similar to that descnted in Reference 4 
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Fig. 3 Comparison of phase standard deviation calculated by Monte 
Carlo and from Cramer-Rao boundlmnximum-likelihood method for 
6 = 0.1,0.2 and 0.4 against number of looks 
MLE result closely approaches Monte Carla result for N ,  > 4 
-0.- delta = 0.1 
-0- MLE delta = 0.1 
-0- delta = 0.2 
-W- MLE delta = 0.2 
-A- delta = 0.4 
--A- MLE delta = 0.4 

always be taken when estimating the interferometric 
phase. 

4 Interferometer height-error budget 

From Fig. 1, one can see that the height z and location x 
of a surface point above a local tangent plane can be 
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obtained by means of the equations 

z = H - r cos 0 

= H - r[cos t J {  1 - sin2(H - 5)) 
- sin 5 sin (8 - 5)] (26) 

= r sin 0 (27) 
where H is the interferometer height above the plane, r is 
the range from the first antenna to the point, and 0 is the 
look angle. The height H is obtained from knowledge of 
the orbit, and r ,  half the round-trip distance, is obtained 
from the SAR internal clock. (Notice that in a SAR inter- 
ferometer, r is not a range to be estimated, as in conven- 
tional altimeters. Rather, it represents the sampling time 
of the compressed return signal, and its accuracy is that 
of the SAR reference clock. The reason r need not be 
estimated is that, as we saw in the last Section, for dis- 
tributed targets the return phase can be assigned to the 
centre of the resolution cell.) The local incidence angle is 
obtained by calculating 

(r + A)' - r2 - B2 
2Br 

sin (0 - 5 )  = 

where 6 is :he estimated interferometric phase difference, 
and A = - @ / k ,  

We distinguish between two types of error in estimat- 
ing topography. The first type, which we call intrinsic 
height error, is due to errors in estimating the height z in 
eqn. 26. The second type, which we call location-induced 
errors, are due to the fact that the correct height is 
reported at the wrong location. If 6 y  (or 6x) is the loca- 
tion error, then the induced-height error, 6z is given by 
6z = 6 y  tan r y  (or, 6z = 6x tan rx) .  

The sensitivity of the estimated height to errors in 
knowledge of the various interferometer parameters, or 
to phase errors, can be obtained by differentiating eqns. 
26-28 with respect to the various system parameters. The 
results are given in the following equations (which incor- 
porate both intrinsic and induced height errors) 

6B 
Sz, = - r  tan (0 - SXsin 8 + cos 8 tan r,,) - 

B (29) 

Szg = <sin 8 + cos H tan ~ $ 5  (30) 

6 6  
r(sin 8 + cos 6 tan r,,) 

623 = 
k B  COS (0 - 5 )  

Sz, = -cos 86r 

6zH = 6 H  

62, = tan r x  6x 

In the previous equations, the location-induced height 
errors are the ones proportional to the surface slope. 
Notice that the surface and scatterer characteristics only 
affect the intrinsic height errors through 66, which is due 
to phase biases or to changes in the geometric corre- 
lation. 

Another useful way of characterising height errors is by 
the corrections which have to be made to the derived 
topography to rectify them. We identify three kinds of 
errors: 

(i) Random errors: These are errors which are indepen- 
dent from pixel to pixel. They cannot be removed by 
using tie points. On the other hand, in the absence of 
phase biases (as in the presence of vegetation), they can 
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be reduced by averaging, at the expense of horizontal 
resolution. For the interferometer, these are the errors 
due to estimation noise on the interferometric phase. 
These errors determine the precision of the interferomet- 
ric system, while the following errors determine the accu- 
racy. 

(ii) Geometric distortion: These are deterministic long- 
wavelength errors which, in general, cannot be removed 
by vertical or horizontal shifts of the topography. 
However, they may be removed by using two, or more, 
tie points. These errors include: 

( a )  Attitude errors: an error in the attitude induces, 
to first order, a height shift and a linear tilt of the 
topography in the crosstrack direction. It can be cor- 
rected by using two tie points. 

(b) Baseline errors: an error in the estimated inter- 
ferometer baseline induces, to first order, a height shift 
and a quadratic surface distortion in the crosstrack 
direction. It can be corrected by using three tie points. 

( c )  Clock timing errors (or atmospheric delay): these 
errors have similar characteristics to baseline errors. 

If the interferometer swath is small enough, it may be 
possible to correct for the bulk of these errors using only 
one tie point, since the residual geometric distortions are 
then small. 

(iii) Position errors: These errors may be removed by a 
simple vertical or horizontal shift in the topography. 
They include orbit error and SAR-processing azimuth- 
location errors. Correction of these errors requires only 
one tie point. 

5 Interferometer-design optimisation 

Given the height sensitivities derived in the previous 
Section, it is possible to minimise the height error by 
choosing an optimal set of system parameters. In general, 
this involves searching for a minimum in a space of many 
dimensions, which is often difficult. In this Section, we 
show that by optimising one parameter at a time, while 
holding the other system parameters fixed, one is able to 
arrive at a set of general guidelines for achieving close-to- 
optimal interferometer performance. (In the following 
analysis, we assume that coregistration errors and 
surface-induced errors can be ignored.) 

Baseline-tilt optimisation 
It is obvious from eqn. 29 that if we choose 5 = B o .  the 
62, vanishes at th: centre of the swath. In the low-R,, 
limit, y and thus 6@ are independent of 5, so 

6zg CC COS ~ ' ( e  - 5) 
In the high R,, limit y - I a 1 ,  so 

and 

Bza a cos- 1'2(0 - 5) 
Hence, we conclude that 6 z g  is also minimised by choos- 
ing 5 equal to the interferometer look angle. We note 
that, if the interferometer baseline is not tilted, con- 
straining the baseline error places extremely stringent 
requirements on the measurement for the interferometer 
baseline. These requirements are relaxed at least an order 
of magnitude by tilting the baseline to the optimum 
angle. 
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Optimum bandwith (or geometric correlation) 
Increasing the system bandwidth decreases the geometric 
decorrelation [proportional to (Af)-'] and increases the 
number of looks (proportional to Af) and hence, in the 
high-R,, limit, decreases the height error. On the other 
hand, it decreases the R,, [proportional to (Af)-'], so 
that in the low R,, limit, the height error is increased by 
increasing the bandwidth. Therefore, an optimum band- 
width must exist. 

It is not possible to minimise the height error analyti- 
cally with respect to the bandwidth, since this involves 
solving a 5th-order polynomial equation. However, an 
examination of the height error as a function of band- 
width (or, equivalently, geometric correlation) clarifies the 
criterion for optimum bandwidth. As the bandwidth 
changes, the parameter p = (1 - a)/RNS remains constant. 
Typically, p < 1. In Fig. 4 we plot the normalised height 

""\ 

( I - & )  
Fig. 4 Normalised height error 6z,..,, as U Junction of geometric 
decorrelation ( I  - a) 
Bandwidth IS inversely proportional 10 ( I  ~ a), so this plot implles a very large 
optimal bandwidth 

7 =  10-1 . y =  1 0 - 2  
0 ? =  10-3 

= 10-4 

error 

ZYkB,  cos B k B ,  
6Z1",,, = ,i( 2nr ) 6.2 (35) 

( Y  is the ultimate ground resolution in the y direction) as 
a function of (1  - a) for various values of p. It is clear 
from this Figure that the optimum values of (1 - a) are 
very small for typical values of p. This implies that to 
increase the geometric correlation one should in general 
increase the system bandwidth as much as the data-rate 
constraints will allow. 

Baseline-length (or correlation) optimisation 
It is clear from eqn. 31 that the height error diverges as 
the baseline length approaches zero. On the other hand, 
if the baseline is too large the correlation between the 
two SAR returns approaches zero because of the van 
Cittert-Zernike theorem, and the phase noise diverges. 
Hence, an optimum baseline must exist. This statement is 
equivalent to saying that an optimum correlation 
between the interferometer returns exists since, all other 
parameters being equal, there is a linear relation between 
these two parameters. To find the optimum correlation, 
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we minimise the height error by taking the derivative of 
eqn 31 with respect to the correlation and setting the 
result to zero. The optimum correlation is given by 

(36) 
[J( - 3)](3X* - 2) + 2 + 3x’ 

6x Yopt  = 

113 
x = {; + /( - $+;)I (37) 

6 = RSNARSN + 1) (38) 

Typically, SARs are designed such that R,, 4 1. One can 
therefore expand yopt to obtain the ‘golden rule’ of inter- 
ferometric design: 

(39) 

where 4 = 1.618.. . is the golden mean. Expr. 39 predicts 
that, for a finite R,,, optimum performance is achieved 
by selecting the interferometric baseline to be longer than 
the infinite R,, optimum baseline. 

This value of y conflicts with the very small values of 
(1 - a) required for bandwidth optimisation in the large 
limit. Given an initial baseline and bandwidth, if we suc- 
cessively optimise both quantities they both increase 
until the resolution approaches the electromagnetic 
wavelength. We can see this by combining eqns. 20, 25 
and 31 to obtain 

yap, Y 4 - 1 - 1.171R;G 

where the subscripted quantities are those of the refer- 
ence system and the unsubscripted refer to variable quan- 
tities B and AJ If we assume that B a AA it can be shown 
that, as AJis allowed to increase without bound, both y 
and 6z; go to 0. This strategy cannot be applied in prac- 
tice, of course, since other limits become important, i.e. 
the allowable decorrelation is limited by the requirements 
for successful phase unwrapping, the bandwidth is limited 
by the maximum allowable data rate or onboard pro- 
cessing speed, and the baseline is limited by structural 
considerations. Given a maximum bandwidth, however, 
the optimum baseline may be chosen using the ‘golden 
rule’ above. 

To study the interferometric SAR sensitivity to base- 
line selection, the normalised height error, defined as 

is plotted in Fig. 5. As can be seen, the optimum per- 
formance is obtained when the correlation obeys expr. 39. 
However, the height performance is not very sensitive to 
the choice of baseline, and a range of baselines will give 
similar performance. (Since eqn. 25 underestimates the 
phase standard deviation somewhat for the smaller 
values of the correlation, the actual height error will 
diverge slightly more rapidly in this regime. and the 
height error will be more sensitive to correlation than 
shown in the Figure. However, the basic shape of the 
curve is preserved. Eqn. 25 works well about the 
optimum point.) This range decreases as R,, decreases. A 
good rule of thumb seems to be that the InSAR system 
should be designed, if mechanically possible, such that 
the correlation coefficient is between 0.5 and 0.6. This will 
provide the least degradation with decreasing SNR. 
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Optimum antenna length (or number oflooks) 
In the high-R,, limit, decreasing the antenna length 
increases the number of looks (proportional to L - ’ )  and 
therefore reduces the phase noise. O n  the other hand, as 
the low-R,, limit is reached, decreasing the antenna 
length decreases R,, (proportional to Lz since we assume 
the longest possible pulse, and the minimum PRF goes 
like L- I )  and increases the phase noise. We conclude that 
an optimal antenna length, or, equivalently, an optimal 
number of looks, exists. 

correlat ion 
Fig. 5 Normalised height error 6z,..,, against y for  R,, = 10 dB. 
20 dB and infinity 
Optimal value of 7 for infinite R,, IS 4 - 1. where 4 IS the golden mean. The 
rather hroad bottom of these results indicates that a wide range of 7 wll yield 
near-optimal height error 

~ infinite R,, ~~~~ 20 dB R,, . . . .  . lOdB R,,v 

As the antenna length changes, the parameter x = 
N,RJ/: remains constant. Typically, x + 1 for most inter- 
ferometric systems. Defining U = ( N L / #  = l/R,,, one 
easily obtains an optimum value for U by differentiating 
eqn. 31, and setting the result equal to zero: 

(42) 
J{1 + 3(1 - E’)} - 1 

3 

In the limit of high geometric correlation, this can be 
simplified to R,,,, Y 1 / ( 1  ~ a), or NLopt  = xJ(1 - a). 

- 
1 

uopt = - - 
RSN opr 

0 1 1 1 1 1 1 1 ,  
0.2 0.4 0.6 0.8 1.0 

N L / X  

Fig. 6 
For a given decorrelation and x ,  these plots yield the optimal number oflooks, or 
equivalently the optimal antenna length. since L a I IN, 
+ (I - 9 )  = 0.05 ( I  - OL) = 0.3 
0 ( I  ~ z )  = 0.1 Y ( l - n ) = 0 4  

( I -  x ) = O 2  

Normalised height error 6 2 ,  10,m against N J x  
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Fig. 6 presents the normalised height error 

(43) 

as a function of N,iX, for various values of the geometric 
correlation. As can be seen, it is very advantageous to 
increase the number of looks to the optimum, and the 
height error degrades more gracefully if too many looks 
are taken than if too few looks are taken. This is espe- 
cially true if geometric correlation is close to one, as is 
the case if the bandwidth has been optimised. 

6 Design example 

The following sample design shows how one may employ 
the analytic relations to rationally minimise the height 
error within constraints imposed by physical structure, 
power, weight, data rate etc. The objective is to measure 
the earths topography with a ground resolution of 
30 x 30 m and a height precision of < 3 m in a period 
less than one year. We assume that, due to the demand 
on TDRSS (Tracking and Data Relay Satellite System), 
our data rate must be substantially less than the project- 
ed capability of TDRSS, which will be of the order of 
500 Mbit/s. Assuming that a safe average data rate is of 
the order of 50 Mbit/s, and allowing for the fact that land 
makes up approximately 40% of the earth's surface, we 
conclude that an instantaneous data rate around 100 
Mbitis is the maximum allowable. 

As an additional constraint, and to minimise the 
required transmitter power and launch vehicle expense, 
we assume that the mission will be flown in a 400 km 
high polar orbit. We have identified orbits that will allow 
full global coverage (twice) in less than one year at this 
height, provided that the InSAR swath is greater than 
I O  km. 

The choice of operating frequency is determined 
mainly by the physical limits to the allowable baseline 
separation. If we assume a single-spacecraft design (which 
has substantial cost and simplicity advantages), 10-20 m 
is about all that can be reasonably expected. We can 
rearrange eqn. 20 using the optimum yo,, to find the 
optimum frequency for a given baseline 

(44) 

which yields an optimum wavelength on the order of 
1 mm for a baseline of 12 m, an orbit altitude of 400 km, 
and a look angle of 30", and large R s N .  Clearly, the 
optimum frequency for this design is the highest for 
which we can build powerful amplifiers and sensitive 
receivers, and which is not seriously degraded by clouds 
and water vapour in the atmosphere. For technical 
reasons, then, the operating frequency was determined to 
be 35 GHz. Note that even though our operating y is sig- 
nificantly higher than the optimum value, we can still 
obtain excellent performance, as shown below. 

We mention that another possible approach is to 
assume that two spacecraft may be used to implement the 
interferometer geometry. Such a possibility can be imple- 
mented either as two tethered spacecraft [SI, or using 
repeat passes from a single spacecraft [4]. Since typical 
baseline lengths in this case are of the order of 1 km, the 
optimum frequency for these configurations is much 
lower. We have not chosen the first design approach 
because the need for two attitude-stabilised tethered 
spacecraft increases the complexity, and hence the cost, of 
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the system. We also notice that the tether geometry 
(where the baseline tilt approaches 90") is the least 
optimal according to the analysis above if the incidence 
angle is less than 45". The fact that the baseline is not at 
the optimal tilt also puts significant constraints on the 
accuracy with which it must be measured. The repeat- 
track option, on the other hand, has the advantage that it 
requires only one radar, but suffers from the potentially 
significant disadvantage that the ground surface may 
change from pass to pass, and the two images may not 
correlate. The amount of degradation between passes is a 
subject of current research and a major unknown. 

Several other constraints must also be imposed on this 
system which will influence the choice of design param- 
eters. The swath must be as large as possible, and be at 
least I O  km to obtain global coverage in less than a year. 
The look angle Bo must be as large as possible to reduce 
the incidence of image layover, which can produce signifi- 
cant problems in phase unwrapping [l 11 as well as a loss 
of height information in the laid-over regions. On the 
other hand, Bo must not be so large as to produce an 
unmanageable data rate, significant shadowing, or an 
uunacceptable loss in signal-to-noise ratio due to angular 
variation of uo.  Optimising these design choices is not an 
easy task, as the requirements on data rate and swath are 
mutually incompatible, and optimisation on a single 
quantity (such as height error) is not possible. These 
requirements define a space of possible choices, and the 
best procedure is to assume several combinations, derive 
the data rates and swaths, and discover some acceptable 
set. For our example, we have chosen Bo = 30", since that 
slope is rarely sustained over a 30 m resolution element$ 
and the minimum swath of I O  km, as we find that our 
instantaneous data rate for this case is less than the 
maximum allowable of 100 Mbits. This swath determines 
the antenna width of 0.45 m. We already known from the 
previous Section that the optimum baseline orientation is 
5 = B o .  Available technology or spacecraft-power limits 
generally determine the transmitted power of the radar, 
and in our case we are limited by current 35 GHz TWT 
amplifier technology to about 250 W of output power. 

Given that the above parameters are fixed by con- 
straints, there are still a number of parameters which may 
now be optimised to minimise the height error, such as 
antenna length L (or equivalently, the number of azimuth 
looks) and the chirp bandwidth A& In addition, it is often 
useful to know how the system would perform if some 
of the constraints were to be relaxed, e.g. if power or data 
bandwidth could be increased. To see the effects of these 
parameter changes clearly, we plot in Fig. 7 the height- 
error performance as a function of L, B, Af and uo 
keeping all other parameters constant. These plots mcy 
be most easily constructed by calculating the a, y. a@, 
and bzg from eqns 14,20, 25 and 31 for a given reference 
design, then scaling the input parameters appropriately 
and repeating the calculations. 

If we assume that the geometric decorrelation is small, 
as it must be for our geometry and a 30m horizontal 
resolution, and that the signal-to-noise ratio is high 
(>  10 dB), we conclude that the condition p < 0.001 is 
easily met by our system. According to the discussion 
above, it is advantageous to increase the bandwidth as 
much as the data rate will allow. To meet our data-rate 
requirements, we select a bandwidth of 15 MHz, which 
results in an instantaneous data rate of 109 Mbitis, and 
an average data rate of 44 Mbit/s. (This data rate can be 

t DIXON. T. Private communication. 
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decreased by a factor of two if onboard range compres- 
sion is used in the spacecraft.) We could obtain better 
performance if the bandwidth were increased, but since 
the data rate is proportional to Af and it is already at the 

15 20 2 5  30 
0 

5 10 
bandwidth, MHz 

a 

B and in the expression for the height error as a function 
of phase error (eqn. 31). Scaling these parameters appro- 
priately allows calculation of the height error as a func- 
tion of baseline, shown in Fig. 7c. The height error 

baseline, m 
C 

"5 l L  - 1 1  -7  -3 1 5 

60 

Fig. 7 
For each plot, all other design parameters were held constant 
a bandwidth 
b antenna length 
c baseline 
d 00 

Design curves showing dependence ofheight error on various parameters 

maximum allowable value, we are data-rate limited in the 
reference system. 

An examination of the previous system parameters 
shows that x = 51.8. According to eqn. 42 this corre- 
sponds to an optimum number of azimuth samples of 
11.2 and an optimum antenna length of 5.6 m. In order 
to have an integer number of samples in our resolution 
cell, and to minimise antenna storage and deployment 
problems, we select a 5 m antenna. As can be seen from 
Fig. 7b, this entails only a small degradation of the height 
error. A longer antenna would increase R,,, but the 
decrease in N ,  would compensate, so there would not be 
much gain in performance. A shorter antenna, however, 
would give up too much in R,, to make up in looks, and 
the performance would degrade significantly. 

The baseline enters the height-error calculation 
through the geometric decorrelation (eqn. 14) where a, a 
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decreases as baseline increases, which is not surprising as 
the optimum baseline from eqn. 44 is 

(45) 

which is 103.2 m for the reference system. Although 
deployable-structure-size constraints limit the baseline to 
< 15 m, it is important for the spacecraft designer to 
know that the largest possible baseline available is the 
most desirable. We summarise our system parameters in 
Table 1. 

It is interesting to consider the implications of the 
sensitivity equations on the knowledge requirements for 
the baseline attitude and the baseline length. If we allow 
the attitude-height error to be or the order of 1 m, we 
obtain the following requirement on the attitude know- 
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Table 1 : System parameters 

Orbit height 400 km 
Look angle 30" 
Baseline tilt 30 
Baseline length 12 m 
Frequency 35 GHz 
Polarisation vv 
Transmit power 250 W 

Bandwidth 15 MHz 
PRF 4kHz 
Pulse timing interleave mode 
Antenna size 0 45 m x 5 m 
Antenna beamwidths 9 9 ' X l O  2 x 1  1 
Antenna peak gain 52 8 dB 
0 0  -10 dB 
Transmit loss 2 5 d B  
Receive loss 1 OdB 
Atmospheric loss (2 way) 2 0 d B  
Receiver noise figure 4 dB 
Noise temperature 917 K 
Signal-to-noise ratio (with quantisation) 
Data rate (raw/average) 
Data rate with onboard compression 

Pulse length a0 

11 9 d8  
109 Mbit/s/43 5 Mbit/s 
54 5 MbitIsl21 8 Mbit/s 

Table 2: Random height error for sample InSAR system. and 
30 m x 30 m resolution element. Note that error would drop 
by a factor of 3.3 if resolution element were 100 m x 100 m, 
and by a factor of 16.7 if resolution element were 500 
m x 500m 

Surface type Random height error (m) 

5% occurrence 
level 

median 
value 

95% occurence 
level 

Dry snow 
Wet snow 
Soil and rock 

surfaces 
Grasses 
Shrubs 
Short vegetation 
Trees 

1.5 
1 5  

1 .a 
1.7 
1.7 
1.6 
(unknown) 

1.5 
1.7 

1.9 
1.9 

1 8  
2.4 

1 .a 

2 2  
3 2  

5.6 
2.4 
2.2 
2.4 
(unknown) 

Table 3: Systematic (or long-wavelength) height errors for 
various mean surface slopes. Slope direction is chosen to 
maximise height error in each case. 

Error source Systematic height error (m) 

0" slope 10" slope 20' slope 

Baseline knowledge 0.2 0.3 0.3 
Attitude knowledge 1.1 1.4 1.7 
Clock timing 0.1 0 1  0.1 

Ephemeris vertical 0.1 0.1 0 1  

ionospheric errors 0.2 0.2 0.2 

Ephemeris horizontal 0 0.2 0 4  

Atmospheric: 

ledge from eqn. 30 (assuming zero surface slope) 

This is a very stringent requirement, but not beyond the 
capabilities of current star trackers, such as the Astros-1. 
On the other hand, the differential error across the swath 
is less than 10 cm, so that the attitude height error can be 
considered as a mere vertical shift in the topography, and 
can easily be corrected with the presence of only one tie 
point. The precision of the height measurement is not 
affected by this error, only its accuracy, so that local 
topography, needed for hydrologic studies, for instance, 
will not be affected. 

We derive the requirement for baseline-length determi- 
nation by bounding the height error at the edge of the 
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swath (recall that, at the centre of the swath, the baseline 
height error vanishes to first order for a tilted baseline). 
The requirement is then given by 

B6Z 
r tan (O,,/2) sin 0 6B 5 (47) 

where Ob, is half the 3 dB beamwidth, which in our case 
is given by Ob, = 0.55". This results in a requirement on 
the baseline error to be less than 5 mm, for 1 m height 
error, or 1 mm for a 20cm height error. These require- 
ments for control and stability of the baseline are easy to 
satisfy with present technology. 

The height error as a function of backscatter cross- 
section is shown in Fig. 7d, and is easily calculable, since 
uo only impacts the signal-to-noise ratio, which in turn 
affects the height error through y. In our nominal design, 
we have assumed a uo of - 10 dB. As expected, height 
error is a monotonically decreasing function of uo, but 
only relatively small gains in performance are obtained if 
uo increases by more than 3 dB from the reference 
system, while decreases in uo produce more significant 
error increases. In Tables 2 and 3, we present the 
expected system performance as a function of measured 
values of uo for various terrain types at 35 GHz. The 
data used were obtained from the reference volume by 
Ulaby and Dobson 1121. 

7 Simulation results 

The theoretical results previously presented apply to sur- 
faces which can be locally modelled as tilted planes in the 
neighbourhood of the resolution cell. A major unknown 
in the performance is, then, the presence of nonlinear 
topographic features. Of course, the ultimate test of any 
theory is experiment, but it is extremely difficult to find 
well characterised surfaces and well calibrated radar 
systems to carry out such a verification. On the other 
hand, simulation of the scattering and analysis process 
provides a high degree of control over surface and system 
parameters, as well as performance estimates for different 
topographies. The reasons for simulation are thus 
twofold: first, to verify theoretical predictions of height 
error as functions of radar and surface parameters; and 
secondly, to determine the performance of the system 
under more realistic, dynamic conditions of changing 
terrain. 

The simulation proceeds in two major steps: gener- 
ation of the complex images received by each antenna; 
and processing those images to produce a height map. 
The generation of the images begins with a digital ele- 
vation map (DEM) consisting of heights on a 30 x 30 m 
grid. To simulate distributed natural targets, we assume 
that the SAR return can be modelled as the coherent 
addition of many scatterers which are small compared 
with the resolution cell size, but large compared with the 
wavelength, so that the return from each individual scat- 
tering centre has circular Gaussian statistics. This last 
assumption is not necessary, and we have found that the 
results do not change if the scattering centres are model- 
led as deterministic reflectors, and the number of reflec- 
tors per resolution cell exceeds about ten. However, by 
starting with Gaussian statistics, we ensure that the sta- 
tistics of the return signal are Gaussian. 

Because the scattering centres are assumed to be much 
smaller than the SAR-resolution cell size, we can model 
the return from each individual scattering centre as a 
point-target response. For this work we assume that the 
point-target response is given by eqn. 12. However, the 
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simulation has the capability of incorporating nonideal 
point-target responses, thus allowing the study of 
nonideal-InSAR-system errors, such as receiver imbal- 
ance and yaw errors. We intend to report on these results 
in the future. In addition, the simulation incorporates 
shadowing, thermal noise and possible variations of uo 
with incidence angle and terrain. Since the SAR system is 
linear, the return from many point targets can be 
obtained by coherently summing the return from all the 
individual point targets. To simulate a homogeneous 
point target, we sprinkle scattering centres uniformly 
between the points of the DEM. Initially, the scatterer 
heights are obtained by linear interpolation between 
DEM points. An additional random-height component, 
to simulate surface roughness smaller than the DEM 
resolution, may be generated if desired. For the examples 
presented here, we chose a density of 1/3 points per 
square metre, or, equivalently, 16.7 points per one-look- 
SAR resolution cell. The ideal point-target return has 
infinite extent, but decays quickly. In the results present- 
ed below, we have chosen to truncate the point-target 
response after the seventh lobe, in both azimuth and 
range, to minimise computation time. In addition, since 
the effect of thermal noise is well understood, we have 
looked at the infinite R,, case, where the signal decorrel- 
ation is completely determined by the geometric- 
decorrelation factor, which is the true limitation of 
InSAR systems. 

The processing step begins after the generation of the 
two simulated-SAR complex images. First the two images 
are coregistered, and the product of the complex images 
over the number of azimuth looks is averaged as in eqn. 
24. This provides phase-difference estimates on [0,2n] 
over the image. This wrapped phase is then unwrapped 
starting at the centre (for which 6 Y 0 and z = 0 by 
construction) using the algorithm of Goldstein et al. [ I  11.  
We note here that other algorithms which take account 
of the amplitude as well as the phase of the complex 
image product [13] may also be used at this step, but 
since no rigorous error analysis has been presented for 
any of the proposed algorithms we have selected the sim- 
plest one. Research is continuing in this area. After 
unwrapping, the heights are estimated at each point 
using the known geometry and eqns. 26 and 27. Finally 
the resulting height map is rectified, interpolated to a 
15 m grid, and averaged to yield height estimates on the 
same 30 x 30 m grid as the source DEM. 

The significant difference between distributed targets 
and point targets is that distributed targets decorrelate as 
the baseline is increased, while point targets remain cor- 
related. As a test of our distributed target simulation, we 
simulated a distributed flat plane and measured the 
correlation between the two simulated images as the 
interferometer baseline was increased. The results are 
compared with the theoretical predictions in Fig. 8. 
Although the trends in this graph are nearly identical, the 
simulated data are always more correlated than the 
theory predicts and, by eqn. 31, the more correlated the 
phases, the lower the height error for a given baseline and 
geometry. It is likely that the source of this error lies 
either in the limited number of points per resolution 
element or the limited number of sidelobes of the point- 
target response included in the simulation. Either would 
produce higher correlation than would actually be 
observed in nature, since the sidelobes of points removed 
from a given range and azimuth bin tend to add-in as 
noise. We note, however, that the difference in height 
errors produced by this idealisation is only - 15 cm, and 
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is swamped by terrain-induced errors when the RMS 
height is sufficiently large. In these and all the following 
simulations, the radar parameters are those in Table 1,  
with the exception of signal-to-noise ratio. 

1.0 - 

6 O B  

0.7 

0.6 

0.5 
0 4 0  6 0  8 0  100 

20  baseline, m 

Fig. 8 Comparison of correlation coefficients measured from simula- 
tion and estimated Jrom eqn. 25for baselines varyingfrom I 2  m to 96 m 
Simulation results are consistently slightly more correlated than expected from 
theory. for reasons discussed in the text 

simulation correlation 
0 ~~ theoretical correlation 

An interesting practical question in determining 
lnSAR performance is the presence of surface roughness 
within the resolution cell. To assess the accuracy of the 
theoretical expressions for height error as a function of 
internal roughness, we compare the predictions of eqns. 
2, 21, 28 and 31 with the results of simulation experi- 
ments. The heights of the scattering points were indepen- 
dently drawn from Gaussian distributions with varying 
RMS height (U,,). The resulting height was found to be 
unbiased, and the error standard deviations ur are 
plotted in Fig. 9 along with the theoretical prediction. 

ON 

0 
0 2 4 6 8 10 

oh, m 
Fig. 9 Comparison oJ height standard deviation measuredfrom simula- 
tion with theoretical estimate from egn. 31 for varying roughness at suh- 
resolution element scales 
Simulation results show lower height variance for small (rk most likely a result of 
the same defects which produced the excess correlation in Fig 8 

The trend in the data is generally correct and is in agree- 
ment with the theory for large U,,, but for small uk the 
simulations show significantly lower U,  than the theoreti- 
cal prediction. The source of this disagreement is due to 
the greater correlation of the simulated data, as discussed 
above. Notice that, even for very large internal rough- 
ness, the height performance degrades gracefully. This 
implies that, in contrast to radar and laser altimeters, 
internal roughness is not a major determinant of the 
InSAR height accuracy. 

The behaviour of the interferometer over varying 
topography is very difficult to treat analytically due to 
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the nonlinear nature of the unwrapping process and the In Fig. 11 we show similar results for various 120 m 
difficulty in characterising topographic change, so here long ramps of 10, 50 and 70 m heights. The RMS height 
simulations play a vital role in the analysis. An important errors for these simulations are 1.09 m, 1.96 m and 
characteristic of any height-estimation system is its 1.71 m, respectively. As might be intuitively expected, 
response to a crosstrack step in the terrain, and we have these errors are somewhat smaller than for the step, 
shown the results of a simulation of 5, 15 and 40 m steps reflecting the smaller rate of change of slope of the ramps. 
in Fig. 10, where each plot shows a crosstrack cut (a 

0 

400 
cross-track distance, m 

b 

-400 0 400 
cross-track distance, m 

0 

50 

4 0  

3 0 -  

- 
- 

.- 
1 g 2 0 -  
1 

10-  

-400 0 LOO 
cross-track distance, m 

b 

-400 0 400 
cross-track distance, m 

C 

Fig. 10 Comparison of step response of interferometer to input D E M  
datafor various step heights 
Flat areas show error less than 2 m, but htgh-slope region shows errors due to 
interrerameter response and layover (40 m step) 
0 5 m step, (A)  = 0.07 m, ab = 1.02 m 
b 15 m step, (A)  = 0.06 m, ab = 1.48 m 
c 40 m step, (A)  = 0.002 m, ab = 4.66 m 

single range line) in the middle of the image; the jagged 
curve is the simulation data and the smooth curve the 
DEM. The RMS height error for the 1 km surrounding 
the steps is 1.02m, 1.48 m, and 4.66 m, respectively, 
reflecting an increasing error magnitude with increasing 
slope produced by the lowpass-filtering effect expecially 
evident in the 40 m step. The large errors for this step are 
produced by the complete layover of the step; the 
unwrapping algorithm did not fail in this case because 
the overall height of the step was less than Az,,,, the 
height increment which produces a phase shift of I[ (for 
the reference system, Az,,, = 82.8 m). Thus, we see that 
InSAR systems have the potential of detecting very 
sudden changes in elevation, consistent with their 
nominal horizontal resolution. 

i401 $ 20 i 
-400 0 400 

cross-track distance, m 
C 

Fig. 11 Comparison of interferometer response to a ramp with the 
D E M  input datafor various ramp lengths 
Errors are smaller than for similar height steps in Fig. IO, due to increase in slope 
rate olchange lor ramps 
(I 10 m ramp, <A) = 0 22 m, ab = 1.09 m 
b 50 m ramp, (A) = 0.36 m, ad = 1.96 m 
c 70 m ramp, (A) = 0.06 m, ob = 1.71 m 

Note that the 70 m ramp is completely laid over, so there 
really is no height information over most of that ramp; 
small variations in height within that ramp would be 
invisible. A 90 m ramp was not only laid over, but also 
caused the unwrapping algorithm to fail, as expected 
since this increment is greater than Az,,, . Overall, there- 
fore our experience with these idealised steps and ramps, 
for which the average error is generally less than 2 m, 
suggests that the interferometer might follow real terrain 
quite accurately. 

To determine the interferometer performance on real 
terrain, we selected as input DEMs two sections of a 
USGS 7 1/2 minute DEM for Kilauea volcano on 
Hawaii, with nominal 30 m horizontal resolution and 
7 m vertical accuracy. The sections were 2.4 km in 
azimuth and 10 km in range (a full swath), and were 
chosen to reflect two kinds of topographic change. 
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Region A, which reprewits the transition of thc Kau 
desert onto the Keamoku lava flow, is characteristic of 
long-wavelength topographic changes with small surface 
slope. Region B, which consists of the transition between 
the Kau desert and Kilauea crater, and includes the very 
steep Keanakakoi and Halemaumau craters, is character- 
istic of regions with very sudden changes in surface 

shows little structure. A cut through the DEM and the 
simulation height results and their difference for A are 
plotted in Fig. 140, which clearly indicates that the height 

height and slope. Fig. 12 shows the results from A and , - ~ ~ ~ ~ ' " " ~ ~ ~ ~ - ~ ~ ~ - ~ ~ r ~ ~ ~ ~ ~  

-1 20 

V 

~ - 

200 

1 GO 
t 

-190 a 
-LO00 -200c 2000 4000 

crosstiaik distorice, m 

Fig. 12 
U left-hand numericdl derirrtire ofthe input DEM (lii mii i ldlc  5idc IightingJ 
h simulation height map similarly presented 
c height dtKerence. grcy \tale runs from 

R e d s  /rum region 4 

Fig. 13 those from B. In each Figutc, the upper image is 
the left-hand numerical derivative of the input DEM (to 
simulate side lighting), the middle image is the simulation 

, ~ o  
: ~ 2 c  

2 5  m to + 2 5  m 

Fig. 13 Results from region B 
Presentation mm1ar to that in Fig 12 

height map similarly presented, and the bottom image IS 
the height difference where the grey scale runs from 
-25 m to + 25 m. For region A, the height noise is 
visible in the simulation image when compared in the 
smoothest sections to the DEM, but the error image 

I58 

Fig. 14 
inpur dot 

\ 

-4000 -2000 0 2000 4000 
crosstrack distance, m 

b 
Comparison of rnterferomerer height esfimotes with 

U for f w o  oreus on Kiloueo, Hawaii 
D E M  

In each case a single range line 1s shown, as well as the difference between the 
input and mterferometer estimates shown ahove it Data are extracted from the 
images in Figs ]:and 13 
a region A. smooth terrain on a lava Ror 
h region E. rough terrain with Kilauea Crater and other craters 

estimates track the DEM very well and the magnitude of 
the error is generally less than 2 m and often much 
smaller, consistent with an overall uz = 1.11 m. 
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The more extreme terrain of B, which included some 
rather steep crater walls (up to 52” and 65 m high) pro- 
duced much greater errors in those regions of high slope, 
as shown by the very dark and light areas of the differ- 
ence image in Fig. 13, which correspond to the high-slope 
features in the DEM and simulation height images above 
it. The lowpass nature of the simulation results is clearly 
evident on the crater walls, similar to the step and ramp 
responses measured previously, and in Fig. 14B, which 
shows the range line in region B running through the 
Kilauea and Keanakakoi craters in the lower middle of 
the image. This figure shows that the errors, which at 
peak may be greater than 25 m in magnitude, still are 
localised to the steeply sloping regions, and away from 
those areas the RMS error is similar to that in A. The 
overall average RMS height difference, even for the 
extreme topography of region B, is still only 1.8 m. 

The concentration of error in the regions of large slope 
may be verified by binning the height error against local 
slope for each region. The results are plotted in Fig. 15; 

T 

-5 -;ill---- -15 -10 -5 0 5 10 15 

range  slope, deg 
a 

slope, deg 
b 

Fig. 15 Mean and standard deviation of height error as ufunction ig 
local .slope 
Estimates are unbiased and standard deviations show little dependence on slope 
for smooth topography, but much greater dependence for more extreme topog- 
raphy of region B 
a reson A 
b region B 

the mean error is plotted and the RMS height variation 
is indicated by the error bars. For region A, (i, 1 1 m 
with very little dependence on local slope, but a much 
greater dependence of the error on local slope is evident 
in region B. In both cases the mean height appears to be 
unbiased. These results suggest that, in the rougher 
terrain, the local slope is correlated with the large-scale 
surface curvature, which is itself directly related to the 
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height error, while in the smoother terrain local slope is 
dominated by local fluctuations which swamp the rather 
small large-scale surface curvature. The error for positive 
slopes is also expected to be greater than for negative 
slopes, because only positive slopes may produce layover, 
which yields increased height error as shown previously 
by the 40 m step response. 

8 Conclusions 

We have presented a derivation of the statistical charac- 
teristics of InSAR returns which include the new effects of 
surface slope and roughness, vegetation and baseline tilt. 
Next, we presented the maximum likelihood estimator 
for phase noise and derived an expression for the estima- 
tion error. Using these results, we derived the InSAR- 
error budget and obtained a set of design criteria for 
optimising InSAR performance. As an illustrative 
example, we applied these results to design a 35 GHz 
InSAR system capable of providing global mapping in 
less than one year with horizontal resolution and height 
accuracy and precision which meet most of the stringent 
scientific requirements. Finally, we verified our theoreti- 
cal predictions by simulation and examined the effect of 
sudden changes in the topography on the interferometer 
height error. We conclude that interferometric mapping 
provides an accurate high-resolution topographic system 
which is capable of operating even over severe topog- 
raphy. 
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