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Extracting Ocean Surface Information From Altimeter Returns' 
The Deconvolution Method 

ERNESTO RODRIGUEZ AND BRUCE CHAPMAN 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena 

We present an evaluation of the deconvolution method for estimating ocean surface parameters from 
ocean altimeter waveforms. We show that this method presents a fast, accurate way of determining the 
ocean surface parameters from noisy altimeter data. Three parameters may be estimated by using this 
method: the altimeter height error, the ocean surface standard deviation, and the ocean surface 
skewness. By means of a Monte Carlo experiment, we determine an "optimum" deconvolution 
algorithm and the accuracies with which the above parameters may be estimated using this algorithm. 
We then examine the influence of instrument effects, such as errors in calibration and pointing angle 
estimation, on the estimated parameters. Finally, we use the deconvolution algorithm to estimate 
height and ocean surface parameters from Seasat data. 

1. INTRODUCTION 

In addition to height information, the return signal of an 
ocean altimeter contains information about the ocean signif- 
icant wave height (SWH), the ocean surface skewness, and 
the scattering cross-section. The emphasis of past altime- 
ters, such as the Seasat and Geosat altimeters, was to obtain 
rough on-board height, SWH, and wind speed estimates and 
to apply subsequent corrections based on look-up tables 
during ground processing. On account of the limitations 
imposed by the speed of computation, the on-board algo- 
rithms used for estimating these parameters had to be very 
simple. Unfortunately, what was gained in computational 
efficiency had to be sacrificed in the accuracy and number of 
the estimated parameters. Thus these two altimeters could 
not estimate the ocean surface skewness, and the algorithms 
used to estimate the height suffered biases which were a 
function of the SWH and the ocean surface skewness [Born 
et al., 1982; Hayne and Hancock, 1982; Barrick and Lipa, 
•985]. 

With the advent of cheaper and faster computers, how- 
ever, one can envisage the implementation of more sophis- 
ticated algorithms which will estimate the SWH, skewness, 
and altimeter height with higher accuracy and in real time. 
One such algorithm, the deconvolution of the specular point 
probability density function (pdf), has been advocated by 
Priester and Miller [1979] and Lipa and Barrick [Lipa and 
Barrick, 1981; Barrick and Lipa, 1985] and refined by one of 
us [Rodr/guez, 1988]. The idea behind this algorithm is as 
follows: the average altimeter return waveform is the con- 
volution of the ocean surface specular point pdf and a 
function which depends on the radar parameters alone and is 
known a priori. One can therefore recover the specular point 
pdf by performing a deconvolution of the return altimeter 
signal. If we assume that geometric optics holds, the func- 
tional form of the specular point pdf as a function of the 
SWH, the ocean surface skewness, and the altimeter tracker 
error is a simple analytic expression which is known from 
theory [Barrick and Lipa, 1985; Srokosz, 1986; Rodriguez, 
1988]. One can easily estimate these parameters by perform- 
ing a functional fitting of the deconvolved pdf. In contrast, it 
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is not possible in general to obtain a closed form analytic 
expression for the mean return power [Rodriguez, 1988]. 
This fact makes the functional fitting of the return waveform 
a significantly more difficult task than the fitting of the 
specular point pdf. 

The advantages of the deconvolution algorithm have en- 
couraged us to make a deeper study of its properties. In this 
paper we study by means of a Monte Carlo experiment the 
optimum way of implementing the deconvolution and deter- 
mine the accuracy of the parameters which may be estimated 
from the resulting deconvolved specular point pdf. 

In the work of Lipa and Barrick [ 1981 ], the deconvolution 
of specular points pdfs was carried out only for waveforms 
that had been averaged for at least 6 s. This limitation was 
imposed by the fact that the straightforward least squares 
deconvolution method (or the equivalent use of Fourier 
transforms) used by Lipa and Barrick is very sensitive to the 
fading noise of the return altimeter waveform (see Parker 
[1977] for a review of inverse theory for noisy data). In order 
to reduce the fading noise to the point where the deconvo- 
lution method could be applied, Lipa and Barrick was forced 
to average their data until an acceptable noise level was 
obtained. 

Is this amount of averaging a fundamental limitation of the 
deconvolution algorithm? If this were the case, the useful- 
ness of such an algorithm would be severely restricted: an 
algorithm of this type could never be considered for real- 
time altimeter tracking and parameter estimation, since such 
data must perforce be obtained at a rate of tens of waveforms 
per second. In addition, the dynamic character of the altim- 
eter tracker [MacArthur, 1978] would restrict the use of an 
algorithm which acts on waveforms averaged over a long 
time period to the cases where the tracker noise and tran- 
sient response could be neglected. 

Fortunately, we have a priori knowledge about the shape 
of the specular point pdf which may be used to reduce the 
effects of noise on the deconvolution process. Experimen- 
tally, we know that the ocean surface pdf is a smooth 
function which closely resembles a Gaussian pdf [Phillips, 
1977]. Requiring that the specular point pdf be "smooth" is 
equivalent to constraining the value of the second derivative 
of the deconvolved pdf. The fact that the pdf resembles a 
Gaussian constrains the high-frequency part of the solution' s 
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spectrum to have negligible components in the high- 
frequency range. Hence one can apply low-pass filtering to 
the noisy solution to obtain a more accurate estimate of the 
pdf. Finally, the fact that the deconvolved function is a pdf 
constrains it to be positive. We have found that, by imple- 
menting one or more of these constraints, it is possible to use 
the deconvolution algorithm on real-time data to obtain 
estimates of the height error which are biased by only small 
amounts. In addition, we can use this algorithm to obtain 
estimates of the significant wave height and ocean surface 
skewness, which are oceanographic parameters of intrinsic 
interest. 

In order to evaluate the results presented in this paper we 
mention the accuracy requirements for the TOPEX altimeter 
[Jet Propulsion Laboratory, 1985]. The height accuracy 
requirement is 2 cm (let) for SWH of 2 m. The SWH 
accuracy requirement is 0.5 m or 10% of SWH, whichever is 
greater. These requirements are set for three second aver- 
ages. There is no requirement on the measurement of ocean 
surface skewness. However, the TOPEX error budget al- 
lows for a maximum height error of I cm at SWH of 2 m 
(assuming skewness of 0.1). In this paper, we will be 
deriving accuracies based on averaging times of 0.1 and 1 s. 
To obtain the corresponding TOPEX requirements for this 
averaging time, we multiply the accuracies by 301/2 and 31/2, 
respectively, to obtain height accuracy of 11 cm (0.1 s) and 
3.5 cm (1 s) for SWH of 2 m; SWH accuracy is 2.7 m or 55% 
(0.1 s) and 0.85 cm or 17% (1 s), whiche• r is greater. The 
TOPEX requirements are the most stringer_ requirements 
set on an ocean altimeter yet. 

The outline of this paper is as follows: in section 2 we 
present a brief review of the two convolution models from 
which the specular point pdf may be obtained starting from 
the altimeter return waveform. In section 3 we present a 
brief description of the deconvolution algorithms which we 
have tested. All of these algorithms already exist in the 
deconvolution literature, but there are no general criteria 
which specify which algorithm is most suitable for a given 
problem. In this section we also describe the fitting algorithm 
which we have used to estimate the various pdf parameters. 
In section 4 we describe our simulation model, its assump- 
tions, and its limitations. Section 5 presents the main body of 
results: we select an optimum algorithm and determine the 
accuracy of the estimated parameters. In section 6 we 
examine the effects of having only approximate knowledge 
of some of the altimeter system parameters on the accuracy 
of the estimated parameters. Finally, in section 7 we use our 
algorithms on a set of Seasat waveforms to estimate the 
various parameters from real data. 

2. CONVOLUTION MODELS 

In this section we present a very brief review of two 
convolution models which may be used for the deconvolu- 
tion of the specular point pdf. A fuller discussion of these 
convolution models is given by Lipa and Barrick [1981], 
Barrick and Lipa [1985], and Rodr[guez [1988]. 

In this paper we assume that the specular point pdf is 
given by [Barrick and Lipa, 1985' Srokosz, 1986' Rodr/guez, 
1988] 

Ap -- (2 rr)1/2o. exp ( - ,/2/2) 1 + • (,/3 _ 3 r/) (1) 

Z, -- Z,T 
r•: (2) 

where cr is the ocean surface standard deviation, ,• is the 
ocean surface skewness, z is the height above the mean 
ocean surface, and the variable zr (the tracker bias) repre- 
sents the shift of the altimeter track point with respect to the 
mean electromagnetic surface. 

In general, the level of the mean electromagnetic surface, 
which is the surface tracked by the altimeter, will not 
coincide with the mean of the true ocean surface. This 

phenomenon is called the electromagnetic (EM) bias [Bar- 
rick and Lipa, 1985; Srokosz, 1986; Rodriguez, 1988] and its 
magnitude is not well determined at present. The total 
tracker bias (i.e., the shift of the altimeter track point with 
respect to the true mean ocean surface) is given by the sum 
of zr and the EM bias. 

It is well known that the mean return altimeter waveform 

can be expressed as the convolution of the radar point target 
response (ptr), the "smooth surface response" (SSR) 
[Brown, 1977], and the specular point pdf. Symbolically, we 
represent this relationship (which we call the "power con- 
volution model") as 

P(t) -- S(t) (• X(t) (•) fsp(t) (3) 

where P(t) represents the mean return power at time t (t = 0 
is the time of arrival of the signal from the mean ocean 

surface); ,V(t) represents the altimeter power ptr, J•p(t) iS the 
specular point pdf in the time domain (obtained by making 
the change of variables t = -2z/c), and S(t) represents the 
SSR [Brown, 1977; Hayne, 1980; Barrick and Lipa, 1985] 
and is given by 

S(t) = A exp (- at)Io(13tl/2)U(t) (4) 

where A is a scaling constant, and 

In 4 c 1 
cos (2s c) (5) a: sin2 (0/2) h 1 + h/R 

/3: sin2 (0/2) 1 + h/R sin (2s c) (6) 
In these equations, c is the speed of light, h is the altimeter 
height above the mean ocean surface, R is the radius of the 
Earth, s c is the altimeter off-nadir pointing angle, 0 is the 
antenna half-power beam width, and U(t) is the unit step 
function. 

A typical mean return altimeter waveform is presented in 
Figure 1. It can be thought of as consisting of roughly three 
distinct sections: the first, the "thermal noise only" section, 
contains the thermal noise power generated by the altimeter 
prior to the first return of a signal from the ocean surface. 
The second section, the "leading edge," consists of the 
return power from the points within the "pulse-limited 
circle" [Barrick and Lipa, 1985]. This section contains all of 
the useful information about the ocean surface parameters 
and the altimeter height. The last section, the "trailing 
edge," consists of the return power from points outside the 
pulse limited circle. It can be well approximated by a straight 
line whose slope depends on the altimeter radar beam width 
and the off-nadir pointing angle. 

Equation (3) can be thought of as a matrix equation y = 
Mx, where M is the convolution S(t)(•)X(t), x is the specular 



RODRfGUEZ AND CHAPMAN' THE DECONVOLUTION METHOD 9763 

THERMAL 
NOISE 
FLOOR 

I I I 
MEAN ALTIMETER WAVEFORM 

LEADING TRAILING 

-9.2 -5.5 -1.8 1.8 5.5 9.2 

TIME (nsec) (x10) 1 

Fig. 1. Typical mean altimeter return waveform from an ocean 
surface showing the three different sections of which it is composed: 
the thermal noise floor, leading edge, and trailing edge. The param- 
eters used are those of the TOPEX altimeter. 

point pdf, and y is the return power. It is well known that the 
sensitivity of the numerical solution of a matrix equation is 
inversely proportional to the conditioning number (the ratio 
of the largest by the smallest eigenvalue) of the matrix. The 
conditioning number of (3) can be calculated numerically 
using typical ocean altimeter parameters and is of the order 
of 10 9 , which implies that in the presence of any noise, (3) is 
effectively singular. 

In order to overcome this problem, Lipa and Barrick 
[1981] introduced a different, but approximate, convolution 
model. They noticed that when the altimeter antenna gain 

proportional to the convolution of the specular point pdf and 
the radar ptr. Since the radar ptr is very narrow in compar- 
ison with the width of a typical specular point pdf, its matrix 
representation is diagonal dominant. Therefore the matrix 
equation is much better conditioned. Unfortunately, the 
neglect of the antenna pattern introduces unacceptable bi- 
ases on the estimated parameters [Rodrfguez, 1988]. 

It turns out, however, that the effects of the antenna 
pattern are easily incorporated when the off-nadir angle is 
less than a few degrees, which is the situation usually 
encountered in ocean aliimerry. In a separate paper [Rod- 
dguez, 1988], we proved that for off-nadir angles less than or 
of the same order as the antenna beam width, one can 
express the convolution of the point target response and the 
specular point pdf as 

X(t) (•)fsp(t): •, P'(t) + a - P(t) (7) 

where P'(t) is the derivative of the return power with respect 
to the return time. We call this model the "corrected slopes 
convolution model." 

From (1), we see that fitting the deconvolved pdf will allow 
us to estimate three independent parameters: o-, A, and zr. In 
addition, the altimeter return waveform is a function of two 
other parameters which must be estimated separately: the 
mean thermal noise and the altimeter off-nadir pointing 
angle. The effect of the thermal noise is to add a constant 

power level to the mean waveform. We estimate the magni- 
tude of this constant by averaging the return waveform 
signal in the "thermal noise only" section of the return 
waveform. The value of the estimated constant is then 

subtracted from the return signal to obtain a signal which, in 
the mean, has no contributions from thermal noise. 

The value of the off-nadir pointing angle is usually esti- 
mated independently by the satellite. It can also be estimated 
from the waveform by fitting the slope of the trailing edge. In 
section 6 we will examine the effects of inexact knowledge of 
the off-nadir angle on the estimated parameters. 

The data from Seasat and Geosat consist of 60 waveform 

samples, measured at a constant sampling interval of 3.125 
ns. Three additional samples were provided in the central 
part of the leading edge so that the sampling interval in this 
section is 1.5625 ns. In order to perform the deconvolution, 
we approximated the integral equations (3) and (7) by the 
corresponding matrix equations obtained by replacing the 
integrals by the appropriate trapezoidal quadrature formu- 
las. Furthermore, in order to obtain uniformly sampled data 
(necessary for taking fast Fourier transforms, or FFTs), we 
interpolated the data to obtain a uniform 1.5625-ns sampling 
interval throughout the waveform. 

To implement the corrected slopes convolution model, we 
approximated the derivative by 

P(t + At) - P(t - At) 
P'(t) : (8) 

2At 

where At is the sampling interval. It was shown by Rod- 
rfguez [1988] that this approximation of the derivative leads 
to small biases in the estimated parameters. One may be able 
to correct for these biases by making the appropriate cor- 
rections after the parameters are estimated. 

3. I_/ECONVOLU I ION AND F• • • iNG ALGORiiHMS 

For convenience of notation, we will henceforth represent 
the matrix equation corresponding to either of the convolu- 
tion models by the equation 

y = Mx (9) 

The simplest algorithm which can be used to invert (9) is the 
least squares algorithm: 

x = [MTM] - I mTy ( l O) 

where the superscript T denotes matrix transpose. We 
implemented this algorithm by using a standard lower trian- 
gular-upper triangular (LU) decomposition subroutine to 
find the matrix inverse. This algorithm does not make use of 
a priori information about the functional form of the solu- 
tion. It is also very sensitive to noise. We have found that the 
results obtained by using this algorithm are nearly identical 
with the results obtained by applying the FFT based algo- 
rithm used by Lipa and Barrick [1981]. Hence we will not 
specifically mention the FFT algorithm in the sections which 
follow. 

A simple way of forcing the deconvolved function to be 
smooth is to put a constraint on the values which its second 
derivative may take. A way of implementing this constraint 
was introduced by Twomey [1963], who modified equation 
(10) to 

x = [MTM + TB]- I MTy (ll) 
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where 3' is a variable parameter and B is the second deriva- 
tive operator 

1 -2 1 0 0 .. 

-2 5 -4 1 0 

B= 1 -4 6 -4 1 (12) 
0 1 -4 6 -4 

It can be shown that the solution of this equation mini- 
mizes the quantity (Mx - y)r(Mx - y) + 3'xrBx. The second 
derivative of the solution decreases with increasing 3', and 
therefore "smoother" solutions are obtained. We selected 

the parameter 3' by choosing the largest value of 3' which will 
not significantly bias the parameters estimated from noise- 
free pdf's. We have implemented the matrix inversion indi- 
cated via a LU decomposition matrix inversion routine. 

Another constraint which may be applied to the decon- 
volved specular point pdf is to require that it be nonnegative. 
Jansson [1984] has developed an iterative, nonlinear decon- 
volution algorithm which forces the solution to be positive. 
One can write the formula for Gauss-Seidel iterative matrix 

inversion (or point-simultaneous matrix inversion) as [Jans- 
son, 1984] 

œnø'+')=œnq)+•T•,n yn-EM (13) 

where k is a relaxation constant. To implement the positivity 
constraint, Jansson modifies this formula by replacing the 
relaxation constant k by a function of the solution obtained 
in the previous iterative step. This function is constructed 
such that it penalizes negative values of x. A standard 
relaxation function is [Jansson, 1984] 

k[œ?]: ko[œ?(1 - (14) 

where ko is a constant which can be changed as the iteration 
progresses. 

A simple way of reducing the high frequency noise of the 
solution is to Fourier transform the answer obtained from 

the least squares algorithm, truncate its spectrum at a given 
cutoff frequency, and transform back to the time domain. 
We call this method the "low-pass least squares method." 
The cutoff frequency is selected adaptively based on an 
approximate determination of o-. 

A more sophisticated way of reducing the high-frequency 
variation of the waveform is the method of singular value 
decomposition with spectral filtering [Parker, 1977]. This 
method is based on the observation made by Lanczos [1961] 
that the parts of the solution of a matrix equation which are 
most contaminated by noise are those which lie in the 
subspaces spanned by the eigenvectors corresponding to the 
smallest eigenvalues of the matrix operator. Therefore if one 
projects out the parts of the solution which lie in this 
subspace, the resulting solution is a much better approxima- 
tion to the real one (the appendix presents a more mathe- 
matical description of this process). In our case, it is true 
that the eigenvectors corresponding to the smaller eigenval- 
ues of the matrix equation are also the ones which exhibit the 
greatest oscillatory behavior. Therefore spectral filtering 
corresponds to low-pass filtering. 

We have implemented this algorithm by using a robust 
singular value decomposition routine given by Press et al. 
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Fig. 2. Values of the empirical orthogonal weights for the 
singular value decomposition method of deconvolution plotted using 
the return power for a 4-m SWH noiseless waveform. After a 
threshold number, the expansion weights are very small and the 
corresponding vectors may be neglected in the computation of the 
solution. Notice that for high vector number (which corresponds to 
high-frequency noise), the weights begin to have nonzero values. 
This is due to the singular nature of the matrix equation. 

[1986]. To select the number of vectors used in the spectral 
expansion of the solution, we make a preliminary estimate of 
o-and select the number of vectors necessary to represent a 
Gaussian with this standard deviation. To see that this 

number is well determined, examine Figure 2, which repre- 
sents the weights associated with the spectral expansion for 
the solution of the power convolution kernel (equation (3)) 
and o-= 4 m. As can be seen, the cutoff for the number of 
vectors which enter in the solution is very well defined. This 
is typical of all the situations we examined. 

A way of introducing the positivity constraint while 
smoothing the deconvolved pdf was introduced by Howard 
[1984]. The method, called "Fourier continuation," consists 
of truncating the Fourier transform of the pdf obtained by 
using equation (11), followed by adaptively selecting new 
components in the truncated section of the transformed pdf 
chosen to minimize the negative part of the solution. We 
obtained the spectral cutoff as well as the number of Fourier 
coefficients which are to be varied by trial and error. We 
refer the interested reader to the literature [Jansson, 1984] 
for a fuller account of this algorithm. 

Of the algorithms described in the previous paragraphs, 
only spectral filtering produces an acceptable solution when 
the power convolution model (equation (3)) is used. The 
solutions obtained by using the other algorithms are indis- 
tinguishable from noise owing to the singular nature of this 
equation. In contrast, all of the algorithms mentioned pro- 
duce viable solutions when the corrected slope convolution 
model (equation (7)) is used. 

In order to estimate the specular point pdf parameters, we 
have linearized equation (1), assuming that zr << o', to obtain 
the fitting function 

Ap=aexp(-•2/2) 1+•(•3-3•)+--s r (15) 
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•'= - (16) 

This linearization is a good approximation given the charac- 
teristic behavior of trackers implemented in Seasat, Geosat, 
and TOPEX. The parameter a in (15) is a scaling parameter 
introduced to take into account the fact that the deconvolved 

pdf is not normalized. We have estimated the parameters a, 
o., ,•, and zr by using a nonlinear, iterative, least squares 
fitting algorithm given by Press et al. [1986] based on the 
Levenberg-Marquardt method [Marquardt, 1963]. The fit- 
ting procedure was performed in two steps: The initial step 
performed a rough estimation of the parameters. Based on 
this estimate, the data points outside a 4o-interval about the 
estimated mean of the pdf were set equal to zero. The 
parameters were then estimated using this modified data. 
The reason behind this procedure is that since the waveform 
noise is multiplicative, the noise on the tail of the pdf which 
corresponds to the troughs of the waves is much greater than 
the noise in the rest of the deconvolved pdf. Since we know 
that the pdf is approximately Gaussian, setting the data to 
zero outside a 4o-interval is a good approximation and will 
discard the noisiest parts of the deconvolved pdf. The 
determination to use a 4o-interval was made by trial and 
error. It turns out that if o. is known exactly, a smaller value 
for the size of the interval will give somewhat better results. 
However, due to uncertainties in the estimation of o., a value 
of 4o-proves to be more robust in the presence of noise. 

The total running time of these algorithms varies accord- 
ing to which algorithm is chosen. However, for the "op- 
timum" algorithms chosen in the next section, the total 
running time (including deconvolution and parameter esti- 
mation) was less than 1 s per waveform in a micro-VAXII 
computer. Since we have not optimized the algorithms with 
respect to running time, we expect that an optimum imple- 
mentation which operates in real time is possible. A possible 
way of accomplishing this is to implement a tracking filter for 
the various parameters to be estimated. The previous esti- 
mated value of the parameters can be used as a first 
approximation to the real value. One can then fully linearize 
the fitting function about these values. In this case, the 
parameter estimation reduces to a simple 3 x 3 matrix 
inversion. Furthermore, the previous value of the SWH may 
be used in order to truncate the pdf, as was mentioned in the 
preceding paragraph. 

4. MONTE CARLO SIMULATION 

In order to determine the accuracies with which the 

various parameters may be estimated from deconvolved 
pdf's, we have set up a Monte Carlo simulation of the 
deconvolution and estimation process. The simulation is 
divided into three main parts: (1) noisy waveform genera- 
tion, (2) deconvolution, and (3) estimation of parameters. 
The last two parts were described in the preceding section. 
This section presents a description of the generation of 
simulated noisy altimeter waveform data. 

In order to generate a noisy return waveform, we numer- 
ically perform the convolution of the radar ptr, the surface 
impulse response, and the specular point pdf by means of 
FFTs. The parameters characterizing each of these functions 
can be varied at will, and we can use either a theoretical sin 2 
(z'Bt)/(z'Bt) 2 ptr [Ulaby et al., 1982] (B is the altimeter pulse 
bandwidth), or the ptr's obtained from the calibration of the 

Seasat [Barrick et al., 1980] and Geosat [Applied Physics 
Laboratory, 1985] altimeters. 

After selecting the number of waveforms to be averaged 
together, we superimpose Gaussian random noise on each 
mean waveform sample. The Gaussian noise superimposed 
on the power received at time t has a standard deviation 
given by 

P(t) 

o-p = [Nind(t)]l/2 (17) 
where P(t) is the mean return power at time t and Nind(t ) is 
the number of independent samples at time t. A typical 
altimeter waveform consists of the average of many (typi- 
cally, at least 50) individual returns. Therefore although the 
noise in each return is exponentially distributed, the central 
limit theorem implies that it is a good approximation to 
assume that the averaged return noise is Gaussian. 

It is important to notice that owing to the effects of the 
pulse-to-pulse correlation of the returned field, the number 
of independent samples need not be equal to the number of 
averaged waveforms (see Berger [1972] for a fuller discus- 
sion of this point). This effect is most noticeable in the 
leading edge of the waveform, where there are in general 
fewer independent samples than in the rest of the waveform 
(see Lipa and Barrick [1981] for an empirical confirmation of 
this effect for the Seasat altimeter). This is unfortunate, since 
it is precisely the leading edge of the waveform that contains 
the information about the ocean surface parameters. Not 
including these pulse-to-pulse correlation effects in the sim- 
ulation would result in overly optimistic predictions about 
the accuracy with which parameters can be recovered. 

The number of independent samples can be calculated 
once the correlation time for a given waveform sample is 
known by means of the formula 

),Tve 

Nind = Tcor r (18) 
wileleda lclolc•cHt• the louise repetition •--½quency •r•xr• of 
the altimeter, Tav½ is the averaging time, and Tcorr is the 
correlation time for the waveform sample. Tcor• is related to 
the correlation distance r•. by the relation Tco• = r•./vx, where 
v,. is the spacecraft velocity. We can then write the relation 

Nin d = (19) 
F c 

The correlation length can be calculated by modifying the 
equations derived by Berger [1972] for a Gaussian ptr and a 
flat Earth to include a realistic ptr and a curved Earth. We 
have developed these formulas' however, we have found 
that for our purposes it is adequate to use the van Cittert- 
Zernike (vCZ) theorem [Born and Wolf, 1980; Walsh, 1982] 
to calculate this correlation length. The vCZ theorem states 
that the correlation coefficient of the electric field is propor- 
tional to the Fourier transform of the illumination. (We note 
that the derivation presented by Born and Wolf [1980] 
assumes one-way propagation of radiation. The generaliza- 
tion to round-trip propagation must be made in order to 
apply the theorem to radars. The alteration of the theorem is 
trivial, however, and merely introduces an overall multipli- 
cative factor of 2 in the phase of the transform.) 

It is easy to show that for a nadir-pointing altimeter with a 
pulse of bandwidth B, the illuminated area is well approxi- 
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Altimeter 

Seasat 

Geosat 

TOPEX 

TABLE 1. Altimeter Parameters 

Beam Width, Bandwidth, Sampling Time, 
Height, km deg MHz ns 

800 1.6 320 3.125 

800 2.1 320 3.125 
1334 1.0 320 3.125 

PRF, 
Hz 

1020 

1020 
4000 

mated by (1) a circle of radius p = [hc(t + r/2)/(1 + h/R)] '/2 
for -r/2 -< t -< r/2 (the leading edge of the waveform) and by 
(2) an annulus of outer radius 9 = {hc(t + r/2]/(1 + h/R)} •/2 
for t -> r/2 (the trailing edge). The "effective pulse length" r 
is given by 

r = (20) 

The formula for the correlation coefficient of the electro- 

magnetic field for these illuminated areas is well known 
[Born and Wolf, 1980] (assuming that the illumination can be 
regarded as constant over the illuminated area). Defining the 
first zero crossing of this function as the correlation length, 
one can compute the correlation length for the circle or the 
annulus numerically. We have computed these zero cross- 
ings numerically and programmed them as look-up functions 
in the noise generation part of our simulation. 

Altimeter returns can also exhibit cogelation between 

different time bins [Lipa and Barrick, 1981]. In the present 
simulation, we have neglected bin-to-bin correlation mainly 
because we have found that implementing it would cause an 
unacceptable increase in our computation time. This neglect 
is justified for the theoretical ptr, since in this case, the 
bin-to-bin correlation is small. However, ptr's which exhibit 
greater side lobes may have larger bin-to-bin correlation. We 
defer consideration of this effect for later work. 

In order to simulate the effects of altimeter tracker jitter, 
we have implemented a simple "a - •" filter [Benedict and 
Bordner, 1962] (the constants a, and •, introduced here 
should not be confused with the constants introduced in 

equation (4)). The equations for this filter are given by 

• = Xp• + a,(x,• - Xp,,) (21) 

o, = o,,_ • + • (x, - %,,) (22) 

Xp,, = 5:,,_ • + Tv,,_ • (23) 

where xn represents the (noisy) height measurement made by 
the altimeter; ;•,, represents the estimated height at the nth 
iteration; 0,• represents the estimated velocity at the nth 
iteration; Xp,represents the predicted height; and T is the 
filter update time. To simulate the behavior of the altimeter 
tracker, we generated random, zero mean, Gaussian values 
of arbitrary standard deviation for x,, and used the tracker 
equation to estimate X'n. We then applied a shift equal to x-,, 
to the simulated waveform. This procedure should provide a 
good simulation of steady state altimeter tracking. It is not 
adequate to simulate transient tracking behavior, since in 
this case the altimeter must make velocity corrections to the 
individual waveforms [MacArthur, 1978] and the details of 
the timing and implementation of the tracker become crucial 
to predicting the tracker behavior. In our simulation we have 
used the values at = 1/4, /3, = 1/64, and T = 0.05 s. These 

values correspond to the ones used for nominal tracking 
mode in the Seasat altimeter. 

In order to compare the behavior of our algorithms against 
the look-up table type algorithms implemented in the Seasat 
and Geosat altimeters, we have followed MacArthur's [1978] 
construction of the look-up tables. The main difference 
between our look-up algorithms and the ones described by 
MacArthur is that we have included both the slope and 
intercept of the height look-up linear templates (Seasat used 
only the slopes). This eliminates the sea state bias mentioned 
by Hayne and Hancock [1982], Born et al. [1982], Douglas 
and Agreen [1983], and Barrick and Lipa [1985]. In addition, 
we have assumed that the SWH is known exactly, so the 
correct look-up template is always consulted. These modifi- 
cations should improve the performance of the simulated 
tracker over that of the Seasat tracker. 

Another instrument effect which was incorporated into 
our simulation is the fact that the gains for the waveform 
sample filters may vary from sample to sample [Townsend, 
1980; Hayne, 1980]. These gains may be determined with 
finite accuracy from calibration data. We model the error in 
determining the gain of each filter as Gaussian multiplicative 
noise. The standard deviation of the noise depends on the 
accuracy with which the gains may be calibrated. 

For any given set of parameters, we used 1000 noisy 
waveform realizations in the Monte Carlo simulation to 

determine the parameter estimation accuracy. We estimated 
the number of realizations needed in order to reduce the 

sampling error by varying the number of realizations used 
and calculating the variance of the estimates for each num- 
ber of realizations. We then extrapolated the 1IN •/2 behavior 
of this variance until it met our accuracy requirement. The 
actual number of realizations chosen (1000) is a conservative 
overestimate of this number. 

5. SIMULATION RESULTS 

In order to select an optimum deconvolution algorithm, 
we have devised a two-step selection procedure. The first 
step is independent of the fitting algorithm and of the specific 
functional form of the pdf used, while the second step uses 
the least squares fitting algorithm to estimate the biases and 
noise peculiar to the algorithms. 

The test data used to evaluate the algorithms were gener- 
ated by using the TOPEX altimeter parameters (see Table 1). 
The ocean surface parameters used were SWH = 2, 4, 8 m 
and ^ = 0.0, 0.3. This Monte Carlo simulation consisted of 
deconvolving 1000 simulated noisy realizations, each wave- 
form corresponding to a 0.1-s averaging time. The results of 
the evaluation are presented in Table 2. 

We have selected four criteria to evaluate the deconvolu- 

tion algorithm independently of the fitting method and func- 
tional form of the pdf. The first criterion is the root sum 
square (rss) difference between the deconvolved pdf and the 
true pdf. In order to make comparisons easier, we first 
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TABLE 2. Evaluation of Algorithms 

Mean 

Algorithm rss Height Variance Complexity Robustness 

Skewness* 

Mean rms 

Height 
Error* SWH* 

Mean rms Mean rms 

Power deconvolution 

SVDSF 1.20 1.00 1.37 low high 
Corrected Slope Deconvolution 

SVDSF 1.14 1.17 1.40 low high 
LU Decomposition 5.53 3.42 10.69 low moderate 
LPLS 1.00 1.95 1.00 moderate moderate 

Fourier Continuation 0.77 0.60 0.06 high low 
Twomey 2.90 2.09 4.18 low high 
Jansson 3.00 38.82 28.17 high low 

2.13 1.57 1.00 1.55 

1.00 1.55 1.74 1.55 

4.15 2.21 2.03 1.65 

2.90 1.00 1.43 1.23 
6.16 0.09 2.13 0.77 
3.05 1.07 2.02 1.00 

7.127 1.257 10.097 1.697 

1.91 1.22 

1.00 1.27 
1.83 1.77 

2.12 1.00 

18.63 0.50 

1.27 1.05 

1.557 1.377 

SVDSF, singular value decomposition with spectral filtering; LPLS, low-pass least squares. 
*Fitted parameters. 
?SWH = 2, 4 m 

normalized the rss with the minimum value of the rss 

difference at each sea state. This number is then relatively 
independent of sea state. We then found the average nor- 
malized rss for each algorithm averaged over the six possible 
sea states. The final comparison is made by normalizing by 
the minimum value, which is associated with the best 
performing algorithm (Fourier continuation was excluded 
owing to its eccentric behavior). This procedure enabled us 
to obtain a clear ranking of each algorithm. 

The second criterion involves the determination of the 

mean surface height bias and variance, where the mean 
height is calculated by means of the formula 

{Z} = •i Zi ?i •i?/ (24) 
where fl. is the ith sample of the deconvolved pdf, and zi is the 
corresponding surface height. This procedure for calculating 
the mean surface height is independent of the functional 
form assumed for the pdf. We calculated the mean height 
bias and its variance, and normalized by sea state and 
algorithm, as we did with the rss (Fourier continuation was 
again excluded). 

The third performance criterion is the "complexity" of the 
algorithm. We judged that an algorithm had "low" complex- 
ity if it could be implemented by using a set of matrix 
inverses (which may depend on SWH and altimeter pointing) 
which may be stored in look-up tables. An algorithm which 
needs, in addition to stored matrix inverses, to take FFTs in 
order to perform low-pass filtering we judged to be "moder- 
ately complex." Finally, an algorithm which has to be 
implemented iteratively we judged as having a "high" com- 
plexity. There is a relation between the complexity (as 
defined here) of an algorithm and the amount of CPU time it 
uses to perform a deconvolution. 

The fourth performance criterion is the "robustness" of 
the algorithm. We called an algorithm of "high" robustness 
if it never encountered a singular matrix or failed to converge 
while deconvolving data corresponding to the shortest aver- 
aging time (and, therefore, greatest noise) used in the simu- 
lation. An algorithm was "moderately robust" if it seldom 
failed to converge or encountered a singular matrix. Con- 
versely, an algorithm was of "low" robustness if it regularly 
encountered singular matrices or failed to converge during 
the deconvolution process. 

The second step of the selection procedure is the compar- 
ison of the estimated parameters obtained by least squares 
fitting (see section 3) of the deconvolved pdf's. We tabulated 
the mean skewness, height error, and SWH for each algo- 
rithm and sea state and then 'calculated the normalized value 

with respect to sea state and algorithm, as we did for the 
comparison of the rss, and the mean height and its variance. 
(Fourier continuation was again excluded on account of its 
eccentric behavior). 

As can be seen from Table 2, the low-pass least squares 
(LPLS) method yields the smallest comparative rss and 
variance, though singular value decomposition with spectral 
filtering (SVDSF) of the power and the corrected slope is 
comparable. The smallest comparative bias in the mean 
height is found by SVDSF of the power. LU decomposition 
and Jansson's method perform the most poorly in estimating 
the mean value of the parameters, while Twomey's algo- 
rithm occupies a middle ground. Fourier continuation appar- 
ently performed very well in the rss, mean height, and the 
variance, but only because the form of the pdf was exces- 
sively smoothed and distorted by the algorithm. This is 
evident from examining the results of the mean of the fitted 
parameters. This is the reason this algorithm was excluded in 
the comparison of the algorithms, though the results are 
included for reference. 

In the estimation of the skewness, SVDSF of the cor- 
rected slope was the least biased, while LPLS had the 
smallest comparative rms. In the estimation of the mean 
height error, SVDSF of the power was the least biased, 
while Twomey's method had the smallest comparative rms. 
In the estimation of the SWH, SVDSF of the corrected slope 
was the least biased, and LPLS had the smallest compara- 
tive rms. The values for Jansson's method are only for SWH 
of 2 and 4 m, as Jansson's method was not robust enough to 
obtain meaningful statistics at a SWH of 8 m. Fourier 
continuation was the most biased for all three parameters. 

Because of their small biases and variances, robustness, 
and ease of implementation, we selected the singular value 
decomposition algorithms as the two optimum ones in the set 
we studied. The rest of this section presents a more detailed 
characterization of these two algorithms. 

To test a representative set of altimeters, we used the 
parameters corresponding to the Seasat and TOPEX altim- 
eters (see Table 1). To assess the ability of the algorithms to 
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TABLE 3a. Height Statistics for 0.1-s Time Average Using 
TOPEX Parameters (Power Algorithm) 

Skewness 

TABLE 3c. Skewness Statistics for 0.1-s Time Average Using 
TOPEX Parameters (Power Algorithm) 

Skewness 

0.0 0.15 0.30 0.45 0.0 0.15 0.30 0.45 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

1 0.6 7.7 

2 0.4 10.5 

3 -0.1 13.1 

4 0.2 14.4 

5 0.5 16.7 
6 0.4 15.9 
7 0.5 16.9 
8 0.1 18.6 

9 0.6 18.3 

10 0.0 19.7 

0.4 

0.2 

-0.2 

0.0 

04 
02 

03 
-0 2 

05 

-0 1 

7.7 0.1 7.8 0.1 
10.2 0.0 10.0 -0.2 

12.7 -0.4 12.4 -0.6 
13.9 0.0 13.4 -0.1 

16.0 0.3 15.4 0.2 

15.2 0.1 14.4 0.1 

16.2 0.1 15.5 0.0 

17.8 -0.2 17.0 -0.2 
17.4 0.4 16.5 0.3 

18.8 -0.1 17.9 -0.1 

7.8 

9.8 
12.2 

129 

148 

138 

149 

162 

157 
170 

I 0.16 1.1 0.05 1.1 -0.06 1.1 0.17 1.0 

2 0.07 1.0 0.02 0.9 -0.03 0.9 0.09 0.9 
3 0.06 0.9 0.03 0.9 0.00 0.8 -0.03 0.8 

4 0.07 0.7 0.06 0.7 0.05 0.7 0.03 0.7 
5 0.08 0.7 0.07 0.6 0.06 0.6 0.05 0.6 

6 0.06 0.5 0.05 0.5 0.04 0.5 0.03 0.4 
7 0.05 0.4 0.04 0.4 0.03 0.4 0.03 0.4 

8 0.03 0.4 0.03 0.4 0.02 0.4 0.02 0.4 

9 0.04 0.4 0.04 0.4 0.03 0.3 0.03 0.3 
10 0.03 0.4 0.02 0.4 0.02 0.04 0.02 0.3 

Values are in centimeters. 

perform on telemetry data, we used simulated data corre- 
sponding to an averaging time of 0.1 s (the data rate of the 
Seasat and Geosat altimeters). As an example, the results for 
the TOPEX altimeter using the power algorithm are pre- 
sented in Table 3. A similar set of results for the slope 
algorithm is presented in Table 4. A comparison of the height 
error estimation performance between the deconvolution 
algorithms and the look-up table algorithm is presented in 
Figure 3. 

From these results, the following conclusions may be 
drawn: 

1. The power algorithm suffers from very small biases in 
the estimated height. By contrast, the corrected slopes 
algorithm suffers from centimeter level biases for all values 
of SWH. These biases are due to the approximate way the 
waveform slope was calculated. 

2. The biases due to changing skewhess are negligible 
(millimetric) for the deconvolution algorithms. The skew- 
ness biases incurred by the look-up are much greater than 
those incurred by either of the two deconvolution algo- 
rithms. 

3. The height noise of both deconvolution algorithms is 
about 2 times larger than that of our idealized look-up table 
algorithm for all values of SWH. Nevertheless, the decon- 
volution algorithms still meet the noise performance require- 
ment of the TOPEX mission. 

TABLE 3b. SWH Statistics for 0.1-s Time Average Using 
TOPEX Parameters (Power Algorithm) 

Skewness 

0.0 0.15 0.30 0.45 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

1 25 24 25 24 25 24 25 24 

2 8 33 8 33 9 33 9 34 

3 3 44 3 44 3 45 4 45 

4 -6 49 -5 50 -3 51 -2 52 
5 -5 58 -4 60 -3 61 -1 62 
6 0 58 0 59 1 60 2 61 

7 -1 61 0 62 0 63 1 64 

8 -6 64 -5 65 -3 66 -2 66 

9 -4 68 -3 70 -2 71 -2 72 

10 -5 67 -4 68 -3 69 -1 70 

4. Both deconvolution algorithms have small biases in 
the estimation of SWH. The bias may be corrected with good 
accuracy, since it is not very dependent on SWH or skew- 
ness. 

5. Even for 0.1-s data, the SWH noise meets the Geosat 
and TOPEX performance requirements (10% of SWH or 50 
cm, whichever is greater). This requirement is set for 3-s 
averages. 

6. The bias of the estimated skewness for SWH greater 
than 1 m is small (less than 0.1). The bias is greater for 1-m 
SWH. However, for low values of SWH, the skewness has 
a negligible effect on the altimeter measurement, and its 
effect need not be corrected. 

7. The rms noise on the skewhess decreases with SWH. 

The skewhess estimated from 0.1-s data is too noisy to make 
a useful determination of the skewhess. Therefore if better 

estimates of the skewhess are desired, skewness estimates 
must be averaged. The longer averaging time is also desir- 
able because the biases on the estimated skewhess decrease 

with longer averaging time. 
8. The TOPEX altimeter performed significantly better 

than the Seasat altimeter in the estimation of all the param- 
eters. This is due to the effects of higher PRF. Although the 
number of independent samples in the beginning to middle 
sections of the leading edge is not that much greater for 
TOPEX (owing to pulse-to-pulse correlation), the later part 
of the leading edge, the trailing edge and the noise-only 
sections have 4 times as many independent samples. 

9. Since the height noise performance of both algorithms 
is comparable, but the algorithm which uses the return 
power is less biased than the one which uses the corrected 
slopes, we have selected the SVDSF power algorithm as the 
optimum algorithm from the set of algorithms studied. In the 

TABLE 4a. Height Statistics for 0.1-s Time Average Using 
TOPEX Parameters (Slope Algorithm) 

Skewness 

0.0 0.15 0.30 0.45 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

2 3.6 10.9 3.5 10.6 3.4 10.3 3.2 10.1 
4 3.1 14.5 2.9 14.0 2.7 13.5 2.6 12.9 

8 2.9 17.6 2.7 16.8 2.5 16.1 2.3 15.4 

Values are in centimeters. Values are in centimeters. 
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TABLE 4b. SWH Statistics for 0.1-s Time Average Using 
TOPEX Parameters (Slope Algorithm) 

Skewness 

0.0 0.15 0.30 0.45 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

2 0 34 -1 34 -2 34 -2 35 

4 -7 48 -7 49 -6 50 -6 50 

8 - 5 64 - 5 65 - 5 66 - 5 66 

Values are in centimeters. 

rest of this paper, we will concentrate only on the properties 
of this algorithm. 

To study the behavior of the parameter estimation as a 
function of the averaging time, we simulated data with 
averaging times of 0.05, 0.1, 0.4, 1.6, and 6.4 s. The 
maximum distance traveled by the altimeter during this 
period is approximately 40 km. This is not a large distance 
compared with the scales over which ocean surface param- 
eters are believed to change. (As a reference, for later 
comparison with the Seasat data, we present the character- 
istics of the simulated Seasat altimeter for 1-s averaging time 
in Table 5.) We found that when more than 100 waveforms 
are averaged together, the random noise in the estimated 
parameters decreases as T•-vle/2, where rav e is the averaging 
time. However, if fewer than approximately 400 waveforms 
are averaged, the skewness estimate can be biased high 
significantly. The height and SWH estimates are not simi- 
larly affected. This bias disappears for larger averaging 
times. Since A is not expected to change in the scale of a few 
kilometers, it may be advantageous to estimate it from pdf's 
averaged over a longer time period. 

On the other hand, we have found that when the number 
of waveforms averaged was small (50 for TOPEX, 100 for 
Seasat), the algorithm did not perform as well as the T-1/2 
behavior would predict. This may be due to the fact that the 
correlation between the height bias and the skewness is large 
(about -0.7). When the number of averaged waveforms is 
small, the tail of the pdf tends to be very noisy, and the 
estimated skewness is very biased. This significantly con- 
taminates the height estimate. A corollary of this observa- 
tion is that if the skewness is not estimated, the random 
noise of the height estimate should be significantly lower 
than when both parameters are estimated. That this in fact 
happens is shown in Figure 4, where we present a compar- 
ison of the standard deviation and bias of the height noise of 
0.1-s-averaged waveforms when A is and is not estimated for 
varying SWH. The parameters used are those of the TOPEX 
altimeter. 

TABLE 4c. Skewness Statistics for 0.1-s Time Average Using 
TOPEX Parameters (Slope Algorithm) 

Skewness 

0.0 0.15 0.30 0.45 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

2 0.15 1.1 0.11 1.1 0.08 1.1 0.04 1.1 
4 0.08 0.8 0.07 0.7 0.05 0.7 0.04 0.7 
8 0.03 0.4 0.02 0.4 0.01 0.4 0.01 0.4 
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Fig. 3. (a) Comparison of the height biases of the deconvolution 
algorithm with those of the look-up table for varying SWH and 
skewness. (b) Standard deviations of the estimated height for these 
two estimation algorithms. 

In order to show that the estimation of parameters from 
averaged pdf's is a viable alternative, at least in the case 
where steady state tracking applies, we simulated sequences 
of 0.05-s waveforms for SWH = 2,4 m which suffered from 
tracker jitter. We then averaged the results over various 
averaging times and estimated the parameters. The descrip- 
tion of the tracker jitter implementation was presented in the 
last section. The standard deviation picked for the estimated 
height error was 10 cm for 2-m SWH and 20 cm for 4-m 
SWH. The numbers chosen are noisier than our estimates of 

the tracking jitter noise obtained by our simulation of the 
look-up table algorithm in order to obtain a conservative 
estimate of this effect. The results of this simulation showed 

no noticeable change in the biases or variances from those 
obtained when the tracker jitter was neglected. This result 
implies that at least for situations where the tracker dynam- 
ics can be neglected and where the tracker jitter is of 
reasonable magnitude, one can improve the results of the 
deconvolution algorithm by averaging the deconvolved 
pdf's. The averaging time is then governed by the length 
scale of the oceanographic signal one is trying to observe. 
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TABLE 5a. Height Statistics for 1-s Time Average Using Seasat 
Parameters (Power Algorithm) 

TABLE 5c. Skewness Statistics for 1-s Time Average Using 
Seasat Parameters (Power Algorithm) 

Skewness Skewness 

0.0 0.15 0.30 0.45 0.0 0.15 0.30 0.45 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

1 1.1 

2 0.6 

3 0.1 

4 0.2 

5 0.3 
6 0.4 

7 0.5 

8 0.4 

9 0.4 

10 0.1 

4.1 

6.0 

8O 

102 

107 
107 

112 

130 

123 

138 

0.8 4.1 0.6 4.0 0.4 4.0 

0.3 5.8 0.1 5.6 0.2 5.5 
0.5 7.7 0.2 7.4 0.3 7.1 

0.1 9.8 0.1 9.3 0.1 8.9 
0.3 10.2 0.3 9.7 0.3 9.1 

0.2 10.1 0.1 9.6 0.0 9.1 

0.3 10.6 0.2 10.1 0.0 9.6 

0.3 12.3 0.3 11.7 0.2 11.0 
0.3 11.7 0.2 11.0 0.1 10.4 

0.0 13.1 -0.1 12.4 -0.1 11.7 

1 0.18 0.6 0.07 
2 0.05 0.5 0.0 

3 0.03 0.5 0.0 

4 0.04 0.5 0.03 
5 0.04 0.4 0.04 

6 0.03 0.3 0.02 

7 0.03 0.3 0.02 

8 0.03 0.3 0.02 

9 0.02 0.2 0.02 
10 0.02 0.3 0.01 

06 

O5 

O5 

O5 

04 

03 

O3 

O3 

O2 

O2 

-0.04 0.6 -0.15 

-0.05 0.5 -0.10 

-0.01 0.5 -0.03 

0.02 0.4 0.01 
0.03 0.4 0.03 

0.02 0.3 0.01 

0.02 0.3 0.01 

0.02 0.3 0.02 

0.02 0.2 0.01 

0.01 0.2 0.01 

0.6 

0.5 

0.5 

0.4 

04 

03 

03 

03 

O2 

O2 

Values are in centimeters. 

6. ATTITUDE AND CALIBRATION ERRORS 

In order to perform the deconvolution of the specular 
point pdf, one must have knowledge of the altimeter pointing 
angle. This angle can be obtained either from the satellite 
sensors or from the return waveform [Barrick and Lipa, 
1985; Wingham, 1988]. Either way, the estimated attitude 
will be noisy. In order to test the sensitivity of our algorithm 
to an error in the estimated attitude, we generated noiseless 
waveforms with a given attitude and performed the decon- 
volution assuming a varying attitude error. The parameters 
used were those of the TOPEX altimeter, since its narrow 
beam width makes it the most sensitive to attitude errors. 

The resulting errors in the height and skewness are pre- 
sented in Figure 5 for the case of a nadir-pointing altimeter 
and attitude estimation errors ranging from 0 ø to 0.3 ø. We do 
not plot the SWH error because it is very small. As a 
comparison, we present in Figure 5a the height errors 
induced by mispointing on the look-up table algorithm. 

Examination of Figures 5a and 5b shows that the decon- 
volution algorithm produces results which are only slightly 
biased if the attitude is known to an accuracy of approxi- 
mately 0.2 ø . One should contrast this result with the height 
errors induced on the look-up table algorithm (Figure 5): the 
look-up algorithm is obviously much more sensitive to an 
error in attitude estimation. The pointing accuracy for the 
TOPEX altimeter will be 0.07 ø (1 o-), which will be more than 
adequate as an input to the deconvolution algorithm. 

TABLE 5b. SWH Statistics for 1-s Time Average Using Seasat 
Parameters (Power Algorithm) 

Skewness 

0.0 0.15 0.30 0.45 

SWH, 
m Bias s.d. Bias s.d. Bias s.d. Bias s.d. 

1 24 14 25 14 25 14 25 14 

2 9 19 10 20 10 20 10 20 
3 5 25 5 25 6 26 6 26 
4 2 29 2 30 3 31 3 32 
5 1 33 1 35 2 36 2 37 
6 2 35 2 36 3 37 3 38 

7 2 37 2 38 2 39 3 40 
8 1 38 -1 40 0 41 1 42 

9 0 41 0 43 0 44 1 45 

10 1 42 -1 43 0 45 1 47 

Values are in centimeters. 

A second source of error is the lack of exact calibration of 

the gains associated with each waveform sample. In order to 
study the influence of this error source on the estimated 
parameters, we simulated the error in calibration as multi- 

A 5 

E 
o•. -lO 

o 

• -15 

(.3 
• -2o 

-25 

-30 

-35 

SWH (m) 
I 2 3 4 5 6 7 8 9 10 

- [] NOT ESTIMATED, SKEWNESS - 
0, 0.15, 0.30, 0.45 

__ ß ESTIMATED, SKEWNESS ' _ 
0, 0.15, 0.30, 0.45 

I I I I I I I I I 

20 

18 

16 

12 

10 

[] NOT ESTIMATED, SKEWNESS 
0, 0.15, 0.30, 0.45 

ß ESTIMATED, 
0, 0.15, 0.30, 0.45 

Fig. 4. (a) Comparison of the height biases of the deconvolution 
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plicative Gaussian noise whose variance depends on the 
calibration accuracy. The resulting biases for the estimated 
parameters as a function of the calibration accuracy for 
SWH of 2 m, 4 m, and 8 m are presented in Figure 6. 

It is evident from Figure 6 that in order to perform the 
accurate estimation of the parameters, the filter gains must 
be known to great accuracy. In particular, the estimation of 
the ocean surface skewness is extremely sensitive to errors 
in filter gain calibration. We estimate that in order for this 
parameter to be estimated successfully, one must know the 
filter gains with a precision of at least 1% (or, preferably, 
0.5%) of their true value. 

The altimeter height is also sensitive to calibration errors. 
To achieve a height bias of less than 2 cm for 2-m SWH, one 
must know the gains to an accuracy of 1%. To compare the 
sensitivity to calibration error of the deconvolution algo- 
rithm height estimation to the sensitivity of the look-up table 
algorithm height estimation, we estimated the height biases 
incurred by this last algorithm using the same set of simu- 
lated data. The results are shown in Figure 7. One can see 
that the look-up table algorithm is about half as sensitive to 
calibration gain uncertainties as the deconvolution algo- 
rithm. 
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Fig. 5. (a) Comparison of the height biases induced by an error 
in the estimated attitude on the deconvolution algorithm and the 
look-up table algorithm for 2-m, 4-m, and 8-m SWH. Notice that for 
smaller SWH, the deconvolution algorithm is significantly less 
biased. (b) Biases induced in the estimated skewness for the same 
values of SWH and estimated mispointing. 
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Fig. 6. Biases in (a) height, (b) SWH, and (c) skewness (1 rr) for 
the deconvolution algorithm due to random errors in the altimeter 
filter gain calibration for various values of calibration accuracy. 

The altimeter point target response is determined through 
calibration. There are two main sources of error in using this 
ptr in the deconvolution algorithm: (1) the calibration has 
finite accuracy and (2) we need to interpolate the ptr from the 
calibration points: this introduces interpolation errors. In 
order to simulate these error sources, we used a ptr of the 
form 

sin 2 (rrBt) 
X(t)- (rrBt)2 (1 + n(t)) (25) 

to perform the numerical convolution to obtain the mean 
waveform. In this equation, n(t) is a zero-mean, Gaussian 
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Fig. 7. Height biases (1 tr) for the look-up table algorithm due to 
random errors in the altimeter filter gain calibration for various 
values of calibration accuracy. 

variable whose variance can be varied at will. We then used 

the theoretical ptr to perform the deconvolution. 
The results of this simulation showed that if the ptr was 

known to an accuracy of more than 5% at each time bin, the 
biases incurred were extremely small. This is due to the fact 
that even though the ptr used is noisy, since the noise is 
multiplicative, it roughly maintains the same side lobe struc- 
ture. 

On the other hand, if a ptr with different side lobe 
structure had been used, the estimated parameters would 
have been much more biased. As an example, we used the 
theoretical sin x/x ptr to generate mean waveforms and the 
measured Seasat ptr in the deconvolution for 4-m SWH and 
no skewhess or height error. The biases induced on the 
estimated parameters were: 17-cm height bias; 34-cm SWH 
bias; 0.32 skewhess bias. These results underline the neces- 
sity of using the measured altimeter ptr in the deconvolution 
process. 

7. EXAMPLES FROM SEASAT DATA 

In order to check the consistency of our results with real 
data, we used our algorithm on several waveform sets 
obtained by the Seasat altimeter. Our examples were chosen 
from a set of ascending repeat tracks extending from the 
Antarctic Circumpolar Current (latitude, -59ø; longitude, 
117 ø) to the equator at the Indian Ocean (latitude, 0ø; 
longitude, 80ø). We picked this data set because it contains a 
wide variety of ocean states: during the southern hemisphere 
winter, one usually encounters very large significant wave 
heights around the Antarctic Circumpolar Current, while 
around the equator, the significant wave height is usually 
small. The algorithm thus may be tested over a wide spec- 
trum of SWHs. The rapid changes in SWH also provide an 
interesting set of conditions for observing the dynamical 
changes in the ocean skewhess as the altimeter samples 
ocean spectra with different degrees of development. As an 
additional data set, we selected the hurricane Fico, since this 
data set has been studied by previous researchers [Lipa and 
Barrick, 1981; Hayne, 1980]. 

The Seasat data set, however, is not an ideal data set. For 
various reasons [Townsend, 1980; Lipa and Barrick, 1981; 
Hayne and Hancock, 1982], the Seasat tracker was noisier 
than the tracker of Geosat or the proposed TOPEX altime- 

ter. Also, the calibration of the gate gains was never resolved 
satisfactorily (G. Hayne, private communication, 1988). This 
will introduce unknown biases into the estimated parame- 
ters. Furthermore, the attitude estimated by the satellite 
sensor does not always seem to coincide with the attitude 
expected from waveform analysis (G. Hayne, private com- 
munication, 1988). In spite of these reservations, the Seasat 
data set does represent a widely available data set which has 
been analyzed in the past. While it is probably not feasible to 
expect exact agreement with our simulation, the results 
should be qualitatively the same. 

The largest uncertainty in the filter gains of the Seasat data 
set is at the leading edge of the waveform. The corrections 
proposed in the past [Hayne, 1980] have been small for this 
part of the waveform, and we have decided to ignore them. 
This implies that the parameters we estimate may suffer from 
small biases relative to the ocean parameters. Also, we have 
decided to use the attitude estimated by the spacecraft, since 
we feel that the uncertainty in the gain distortions of the 
waveform, especially the large waveform droop in the last 
part of the trailing edge [Townsend, 1980], preclude a much 
more accurate estimation of the mispointing from the wave- 
form. 

In order to minimize the biases in the estimated skewhess, 
we have deconvolved waveforms averaged over 1 s. This 
corresponds to the Seasat geophysical data records (GDR) 
data rate. In order to study the trends in the behavior of the 
estimated parameters, we removed random noise by apply- 
ing a box filter to the estimated parameters. The box filter 
applied to the estimated parameters was 31 s long. The 
corresponding ground averaging distance is approximately 
200 km, which is roughly of the same order of magnitude as 
the size for mesoscale variability. 

The results for three representative examples of the repeat 
tracks and for the hurricane Fico are presented in Figure 8. 
Examination of the estimated height error shows a marked 
correlation between this quantity and SWH. This effect has 
been noted previously both for the sensor data record (SDR) 
estimated height (before corrections) [Barrick and Lipa, 
1985; Hayne and Hancock, 1982], and for the geophysical 
data record estimated height (after corrections have been 
applied) [Born et al., 1982; Douglas and Agreen, 1983]. In 
particular, it is shown in the first two references that, for the 
SDR data, one should expect a tracker bias that varies from 
about 3% to about 5% of SWH towards the troughs of the 
waves. One should also expect the percentage to increase 
with increasing SWH. This is consistent with what is ob- 
served in our data set. (To help comparison with other 
sources, we note here that the height error we quote here 
corresponds to zr. Hence a positive height error implies the 
mean ocean surface is higher than the altimeter estimate. 
This corresponds to a negative change on the relative height 
of the altimeter to the surface.) 

It should be noted that the final tracker error, i.e., the one 
that appears on the GDR, is different from the SDR tracker 
error. This is due to the fact that corrections may be applied 
on the ground to compensate for the known biases of the 
altimeter tracker (e.g., attitude corrections, or SWH correc- 
tions). A large part of the tracker error is thus eliminated. 
However, these corrections cannot compensate for param- 
eters which are not estimated by the altimeter (e.g., skew- 
hess biases). As we shall see below, these biases can still be 
quite large. 
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Fig. 9. A plot of every thirty-first point (independent points only) 
of the estimated skewness for revolution 1233 with the skewness error 

bars included. Note that while the long-term trend in the skewness 
behavior remains, the high frequency variations lie within the error 
bars. 

A comparison of the parameters estimated over the hur- 
ricane Fico (Figure 8a) with the results found by previous 
researchers, shows a good qualitative agreement. The esti- 
mated SWH is somewhat higher at the peak of the storm 
(about 70 cm) in our estimate; but, for lower significant 
waveheight, there is substantial agreement in the estimated 
SWH. The height error estimated by our algorithm agrees 
substantially with the one estimated by Hayne (when one 
takes into account the effect of the filtering at the peak of the 
hurricane). However, it is consistently smaller than the error 
estimated by Lipa and Barrick. This may be due to the fact 
that Lipa and Barrick neglect the altimeter antenna pattern 
and pointing angle. There is no exact agreement in the 
estimated skewness between the three algorithms, although 
the sign and order of magnitude for the skewness is the same 
for all three estimates. 

Since the altimeter filter gains were not accurately known, 
the estimated skewness is an "effective skewness," which 
includes the effect of waveform distortion by the filter gains. 
Therefore the values estimated may differ somewhat from 
the ocean surface skewness. It should also be mentioned that 

the measured skewness is the skewness of the specular point 
pdf (or electromagnetic skewness), not the skewness of the 
ocean surface pdf. If geometric optics is applicable to this 
scattering situation, the difference between the two skew- 
nesses is small [Rodriguez, 1988]. However, there is a 
possibility that there may be additional differences due to 
unmodeled sources such as foam, wave breaking, or the 
modulation of small capillary waves by the larger gravity 
waves. Nevertheless, the behavior of the estimated skew- 
ness shows remarkable structure and features which one 

would expect from the true surface skewness. 
For instance, the skewness estimated in all our examples 

is preponderantly positive. This is in agreement with the 
prediction of weak nonlinear wave theory [Longuet-Higgins, 
1963]. The magnitude of the skewness seems to vary be- 

tween a minimum of 0 and a maximum of about 0.4. Its 

average value seems to be between 0.2 and 0.3. This is also 
consistent with the limited set of observations by Kinsman 
as quoted by Longuet-Higgins [1963]. 

The estimated skewness also exhibits coherent long wave- 
length trends in all cases. An especially salient example of 
long-range structure is present in the estimated skewness for 
revolution 1233, where a marked change in the skewness 
value coincides with a change in the value of SWH. This 
indicates that the estimated skewness reflects a geophysical 
parameter, since algorithm noise would not exhibit this 
long-term coherence. 

In addition to these long-term trends, the skewness esti- 
mates in Figure 8 seem to exhibit a great deal of internal 
structure. That this structure is artificial, however, can be 
seen if we plot only independent points (i.e., every thirty- 
first point) together with their error bars. Figure 9 presents 
an example for revolution 1233. The error bars are obtained 
by scaling the standard deviations in Table 5c by 1/311/2 to 
take into account the noise reduction due to averaging. As 
can be seen, only the long-wavelength trends are real, while 
the high-frequency variations lie within the error bars. 

The estimated skewness is not strongly correlated with 
wave sea state. Figures 8a and 8b, for instance, show 
situations where high sea state corresponds to low skew- 
ness. Figures 8½ and 8d, on the other hand, show that high 
sea states can also have high skewness values. The same 
type of observation can be made for low sea states. This 
implies that the estimated skewness is a parameter indepen- 
dent of the estimated SWH, and thus not a SWH dependent 
bias in the algorithm. This is the type of bias one would 
observe if the estimated skewness were merely an artifact 
due to the filter gains. A formal correlation analysis of the 
estimated parameters also shows that their correlation is not 
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Fig. 10. A comparison of the estimated height error when 
skewhess is and is not estimated by the deconvolution algorithm for 
revolution 1233. Notice that for the higher values of SWH, when the 
skewhess is small, the two estimates coincide substantially. How- 
ever, for the lower SWH, which has higher skewhess, there is a 
centimeter level difference between the two estimates. The differ- 

ence is of the same magnitude as expected from the measured 
skewhess. This type of bias is of great importance in the accuracy of 
high-precision ocean altimeters, such as TOPEX. 
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Fig. 11. Variability of the estimated parameters as a function of the number of waveforms averaged for the data in 
revolution 1233. (a) Parameters estimated from 0.1-s-averaged waveforms. (b) Parameters estimated from 0.4- 
s-averaged waveforms. These figures should be compared with Figure 8b, which shows the parameters estimated from 
1-s-averaged waveforms for revolution 1233. The three data sets are filtered to the same resolution. 

strong. There does seem to be a correlation between high 
skewness values and the transition regions between different 
values of SWH. However, these are not the only regions 
where high skewness seems to occur. A more detailed study 
of the properties of ocean skewness will be deferred to a 
subsequent paper. 

The high values and long wavelength changes of the 
skewness found in this study have important consequences 
for high-precision ocean altimeters such as TOPEX. Srokosz 
[1986] and Rodriguez [1988] showed that the skewness bias 
can be approximated by 

SWH 
bias = A (26) 

24 

For a skewness of A = 0.3, this implies a bias of about 1.2% 
of SWH, which is comparable with the centimeter level 
accuracy required for this altimeter. As an example of the 
consequences of not estimating skewness, we present in 
Figure 10 a comparison of the estimated height error when 
skewness is and is not estimated for the data in revolution 

1233. As can be seen, in the areas of high skewness, there is 
a consistent centimeter level difference between the two 

estimates. 

To examine the assumption that waveforms could be aver- 
aged in order to reduce biases in the estimated parameters 
while maintaining the same trends, we estimated the parame- 
ters from revolution 1233 for unaveraged waveforms, and 
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TABLE 6. Seasat Estimated Data Noise 

Average 
SWH, o- h, O-sw ., 

m cm cm Start Time End Time Revolution 

1.8 5.2 20 
2.0 5.9 20 
2.0 5.9 21 
2.5 7.2 24 

2.7 7.0 24 
2.8 7.3 25 
3.1 8.1 28 
3.3 7.7 33 

3.7 10.0 36 

4.1 9.6 43 
4.9 8.9 43 
5.3 10.4 46 

5.4 11.2 45 

5.6 11.8 43 
6.0 12.4 58 

8.2 17 67 

0.52 197:14:17:53 197:14:19:31 

0.55 273:05:41:22 273:05:46:16 
0.55 258:05:30:01 258:05:40:47 

0.48 279:06:05:11 279:06:10:05 
0.47 276:05:51:38 276:06:00:37 
0.49 267:05:15:52 267:05:22:24 

0.46 264:05:01:29 264:05:09:39 
0.44 270:05:20:07 270:05:23:43 
0.51 276:05:46:44 276:05:50:00 
0.46 267:05:04:27 267:05:09:20 

0.38 261:04:38:56 261:04:41:51 

0.37 276:05:44:17 276:05:45:55 
0.39 258:04:26:12 258:04:31:54 
0.37 273:05:34:50 273:05:38:06 
0.39 264:04:54:37 264:04:57:43 

0.47 261:04:44:57 261:04:46:35 

Times are in days: hours: minutes: seconds. 
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waveforms averaged for 0.1, 0.4, and 1 s. We then smoothed 
the data with a 31-s box filter to compare the trends. The results 
for 0.1- and 0.4-s averaging are shown in Figure 11 (the 1-s 
averaging result was shown in Figure 8). As can be seen, the 
skewness for 0.1-s waveforms is significantly biased, as ex- 
pected. On the other hand, both SWH and height errors are 
consistent for the three averaging times. 

In order to obtain an estimate of the noise in our estimates 

with that predicted by our simulation (Table 5), we selected 
areas where the significant waveheight remained approxi- 
mately constant for many data points (in order to allow the 
tracker to achieve a steady state behavior) and calculated the 
standard deviation of the data about the 31-s-averaged data. 
In our limited data set it was not possible to find areas of 
persistently large SWH, since this condition does not usually 
exist over long distances. Nevertheless, we followed the 
same procedure for these cases (approximately for SWH 
higher than 3 m) to get a ballpark estimate of the noise. The 
results are presented in Table 6. Notice that the standard 
deviation we obtain for the height error should correspond to 
the rss sum of the tracker jitter and the algorithm noise. 
Also, for high SWH, the average SWH shown is often 
significantly smaller than the peak SWH in that data seg- 
ment. 

Comparing these results with the ones obtained by the 
simulation, we observe good agreement for the cases of low 
SWH. For the high-SWH cases, there is order of magnitude 
agreement between the two results, but the actual data are 
somewhat noisier, especially in the estimation of SWH. We 
believe this is due to the dynamic behavior of the tracker. 
Additional tracker jitter and drift will cause the size of the 
leading edge to fluctuate more strongly than our simulation 
allowed for. 

8. SUMMARY AND CONCLUSIONS 

In this paper we presented a detailed study of the proper- 
ties of the deconvolution method of estimating ocean surface 
parameters. Our main result was the selection of a "best" 
method of deconvolution to reduce the noise in the estimated 

parameters. This method, which we dub the "power decon- 
volution" method, was then extensively tested in a Monte 

Carlo simulation to determine its performance characteris- 
tics under various conditions. We found that the height 
estimated using this algorithm was unbiased by the ocean 
surface skewness. This is the main advantage of this algo- 
rithm over the ones used for the Seasat and Geosat altime- 

ters. This algorithm has the additional advantage over pre- 
vious parameter estimation algorithms [Hayne and 
Hancock, 1982] that the fitting function is a simple analytic 
function. This simplifies and expedites the fitting process, 
since numerical derivatives do not have to be calculated. 

The running time of our algorithm was shown to be under 
1 s for nonoptimized code on a micro-VAXII computer. We 
expect that this time can be reduced to close to real time in 
the future. This may have important implications in the 
ground processing of the data from the TOPEX altimeter. 

On the other hand, the algorithm was shown to be approx- 
imately 2 times noisier in its height estimate than the 
traditional look-up table algorithm. It is also more sensitive 
to filter gain noise. Hence we conclude that one is justified in 
using this algorithm only if the specular point pdf skewness 
is greater than 0.1. Our results from the Seasat altimeter 
seem to indicate that this is often the case. However, this 
cannot be judged a conclusive proof, since this altimeter was 
subject to various instrument problems and was never fully 
calibrated. We are presently conducting similar studies using 
the Geosat altimeter data and hope to soon be able to better 
answer this question. 

The estimated skewness was shown to be biased when 

estimated from 0.1-s waveforms. However, when longer 
averages were taken, the biases in this parameter decreased. 
The noise level of the estimated SWH was shown to be much 

smaller than the TOPEX performance requirement. The 
estimated skewness, on the other hand, was shown to be 
quite noisy, so that reliable estimates can be obtained only 
by averaging over long time intervals. These time intervals, 
however, are smaller than the typical scale of mesoscale 
variability. 

In order for the algorithm to work, the altimeter attitude 
and point target responses need to be known a priori. 
However, we showed that the algorithm was quite robust 
when errors in the estimates of these quantities were 
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present. On the other hand, it was shown that the estimated 
parameters were sensitive to the calibration of the filter 
gains. We derived requirements on the accuracy of these 
gains. 

Finally, we compared our simulation results with data 
from the Seasat altimeter and found good agreement. We 
also observed the same SWH dependent height biases which 
had been previously observed by many researchers. The 
most intriguing part of the results from real data was the 
magnitude and behavior of the skewness. The magnitude 
was found to be large enough that it would be a significant 
contributor to the height error budget if it were not esti- 
mated. As was mentioned before, if this result also holds for 
better calibrated altimeters, it will have important conse- 
quences for the high-accuracy TOPEX altimeter. It was also 
observed that the skewness showed long-wavelength varia- 
tions which were not obviously correlated with SWH. Fur- 
ther research on the characterization of this behavior is 

currently in vro•ress. 
_ _ 

APPENDIX: SPECTRAL FILTERING 

One can find an orthogonal transformation matrix O such 
that the symmetric matrix F = MM r can be written as 

F = OAO r 

where A is diagonal and its elements are the eigenvalues of 
F, and 

O0 T = oTo = 1 

Then the Lanczos inverse of F is given by 

F[ 1 : OA[ lot (27) 

where A• l is the matrix one obtains by replacing the 
nonzero elements of A by their inverses. It can be shown 
that the Lanczos inverse provides the least squares solution 
of a singular matrix equation. 

Using the Lanczos inverse, one can give the solution of 
equation (9) as follows 

x = MrFff •y (28) 

It is easy to verify that if M is square and not singular, this 
corresponds to the matrix inverse. To obtain the spectral 
representation of the solution, introduce the orthogonal 
matrix 

xlr = A-1/20rM (29) 

whose columns constitute a basis for expanding the solution. 
The expansion weights can be shown to be given by the 
vector 

w = A- •/20ry (30) 

such that 

x = •rrv (31) 

It can be seen from this last expression that in the 
presence of noise, if ,• << '•max, the noise will be magnified 
disproportionately due to the large relative value of the 
expansion weight. The idea of spectral filtering is to discard 
all vectors in the spectral expansion whose weight is such 
that the associated eigenvalues •atisfies the condition 

Amax) ( threshold, where Ama x is the largest eigenvalue and 
the threshold is a preset constant. 
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