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A B S T R A C T
Atmospheric measurements of O2/N2 and CO2 at up to nine sites have been used to infer the interannual variations in
oceanic O2 exchange with an inverse method. The method distinguishes the regional contributions of three latitudinal
bands, partly the individual contributions of the North Pacific and the North Atlantic also. The interannual variations
of the inferred O2 fluxes in the tropical band correlate significantly with the El Niño/Southern Oscillation. Tropical
O2 variations appear to be dominated by the ventilation of the O2 minimum zone from variations in Pacific equatorial
upwelling. The interannual variations of the northern and southern extratropical bands are of similar amplitude, though
the attribution to mechanisms is less clear. The interannual variations estimated by the inverse method are larger than
those estimated by the current generation of global ocean biogeochemistry models, especially in the North Atlantic,
suggesting that the representation of biological processes plays a role. The comparison further suggests that O2

variability is a more stringent test to validate models than CO2 variability, because the processes driving O2 variability
combine in the same direction and amplify the underlying climatic signal.

1. Introduction

Atmospheric carbon dioxide (CO2) is rising at a rate controlled
by the emissions from fossil-fuel burning and by CO2 exchanges
with the land and oceans. The oceans comprise a strong net sink,
expected to further grow with the atmospheric CO2 increase.
The magnitude of oceanic CO2 uptake in the future, however,
is subject to feedbacks from changing climate. At present, such
climate feedbacks are only poorly understood. Insight may be
gained from investigating the response of ocean biogeochem-
istry to shorter-term natural variations, such as El Niño/Southern
Oscillation (ENSO), Northern Annual Mode (NAM) or South-
ern Annual Mode (SAM). In principle, atmospheric CO2 con-
centration measurements could reveal the signatures of these
shorter-term variations in the oceanic CO2 exchange. However,
land processes entail atmospheric CO2 variability on the same
timescales but with higher amplitudes, so that conclusions about
the ocean exchange are generally difficult.
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The variations in atmospheric CO2 are associated with vari-
ations in atmospheric O2. Most biogeochemical processes—
photosynthesis, autotrophic or heterotrophic respiration, burn-
ing of biomass or fossil fuels—release or consume CO2 and
O2 in specific stoichiometric ratios. On land, CO2 and O2 ex-
changes with the atmosphere directly reflect these stochiome-
tries. In contrast, ocean–atmosphere exchanges of CO2 and O2

are partly decoupled from each other: the buffer effect of the
carbonate chemistry leads to much slower equilibration rates of
CO2 compared with O2. Further, upwelling brings deep water of
various CO2:O2 ratios to the surface. Finally, warming/cooling
leads to outgassing/uptake of both CO2 and O2 due to solubility
changes, that is, exchange of the same rather than the opposite
direction for the two gases. Quantification of O2 fluxes in addi-
tion to that of CO2 therefore gives independent information to
disentangle these oceanic processes.

The atmospheric O2 concentration has been measured reg-
ularly at remote sites for more than 15 years, with the princi-
ple goal of constraining long-term carbon budgets (Langenfelds
et al., 1999; Bender et al., 2005; Tohjima et al., 2003; Manning
and Keeling, 2006). Measuring O2 concentration at the required
precision is demanding because the variations are small com-
pared with the large background. The measurements show that
the long-term CO2 increase is accompanied by a long-term O2
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decrease. These trends are useful for separating land and ocean
contributions in the long-term global carbon sink (Keeling and
Shertz, 1992). In addition, the atmospheric O2 concentration ex-
hibits seasonal cycles, as well as gradients with latitude, which
provide useful constraints on ocean biological production, air–
sea gas exchange and large-scale ocean transport (e.g. Stephens
et al., 1998; Garcia and Keeling, 2001; Gruber et al., 2001; Battle
et al., 2006; Nägler et al., 2007). The loss rate of O2 also shows
considerable variations year-to-year, as do the spatial gradients
between stations. Such shorter-term interannual variability has
received only little attention so far but could help to quantify the
oceanic response to climate variations as outlined above.

An oceanic signal can be isolated from O2 measurements by
combining them with CO2 measurements to compute the tracer
‘atmospheric potential oxygen’ (APO) introduced by Stephens
et al. (1998). Atmospheric potential oxygen is effectively the O2

concentration plus 1.1 times the CO2 concentration, where 1.1
is the approximate average ratio of O2 production/consumption
to CO2 consumption/production by terrestrial photosynthesis
and respiration (Severinghaus, 1995). Any process with such a
stoichiometry does not change APO, because the effect on CO2

cancels the effect on O2. Fossil-fuel burning consumes O2 at
a slightly higher ratio due to hydrogen oxidation and therefore
decreases APO, but this effect can be accounted for, based on
fossil-fuel use statistics. Fossil-fuel corrected APO effectively
responds to oceanic exchange only.

Understanding the origin of APO variations is complicated
because they are caused by sea–air fluxes of both O2 and CO2

(as atmospheric abundances of oxygen are measured in terms of
O2/N2 ratios, there is also a small influence from N2 fluxes). On
seasonal and interannual timescales, the sea–air O2 exchange is
expected to dominate the APO variations due to the dampen-
ing of CO2 exchange by the buffering chemistry (Keeling and
Severinghaus, 2000). Importantly, however, all of the oceanic
processes that drive changes in APO (warming/cooling, biolog-
ical production, gas exchange) are also important for driving ex-
changes of CO2. Atmospheric potential oxygen measurements
can therefore be used to challenge our understanding of the
processes relevant for CO2.

To interpret atmospheric measurements in terms of surface
fluxes, atmospheric transport needs to be taken into account. We
use a tracer transport model that simulates the atmospheric tracer
concentration at the stations in response to surface–air tracer ex-
change. This exchange is then estimated using inverse methods,
determining those fluxes that result in the best match between
modelled and observed concentrations. This ‘atmospheric trans-
port inversion’ is a well-established tool to quantify sources and
sinks of CO2 (or other gases) and their spatial and temporal vari-
ations (e.g. Rayner et al., 1999; Bousquet et al., 2000; Gurney
et al., 2002; Rödenbeck et al., 2003; Baker et al., 2006). This
technique can also be applied to APO to yield estimates of the
surface ‘APO flux’, which can be defined as a combination of
O2, CO2 and N2 fluxes. In contrast to CO2 which is presently

observed at over 100 sites, however, there is only a small number
of sites where multi-year APO records exist so far. On the other
hand, the limitation of a sparse atmospheric network is coun-
teracted by the important advantage of APO that its terrestrial
fluxes can be assumed to vanish, so that only oceanic fluxes need
to be adjusted.

This paper explores the suitability of such an APO inversion
to gain information about interannual ocean variability. In this
preliminary study, we focus on data from the Scripps O2 pro-
gram, as more research is needed before results from multiple
programmes can be combined in this context. We describe the
mathematical setup used to estimate APO fluxes from atmo-
spheric observations, including the specification of data, models
and a-priori assumptions. We present spatial and temporal vari-
ations of the resulting APO fluxes and some measures of their
uncertainty. Implications of these APO flux estimates for the
strength of interannual variations in different latitude bands of
the ocean, and for their relation to climate variability are dis-
cussed. In a companion paper, Hamme and Keeling (2008) dis-
cuss interannual variations in APO data with respect to variations
in ocean ventilation and other possible driving mechanisms.

2. Inversion method

2.1. Formalism

We estimate APO fluxes using a global atmospheric transport
inversion, methodologically similar to previous studies of CO2

(in particular, to Rödenbeck et al., 2003 and its extensions de-
scribed in Rödenbeck, 2005). The primary input is the observed
concentrations. The entire set of measured values at different
times and locations is denoted by the vector cobs (Section 2.2).
An atmospheric tracer transport model (Section 2.3) calculates
modelled concentrations cmod that arise from a temporally and
spatially varying flux field f. The values in cmod are sampled in
the model for every individual time and location where there
is a measured value in cobs. The concentration of a conserved,
passive tracer (i.e. one that doesn’t influence the transport and
is sufficiently unreactive) can be linearly related to the fluxes
according to

cmod = Af + cini, (1)

with the transport matrix A and the initial concentration cini.
The inversion calculation seeks those fluxes f that lead to the
best match between observed and modelled concentrations, in
the sense that the value of the cost function

Jc = 1

2
(cobs − cmod)TQ−1

c (cobs − cmod) (2)

is minimal. The (diagonal) matrix Qc introduces a weighting
among the concentration values, involving assumed measure-
ment uncertainty, location-dependent model uncertainty, and a
data density weighting (see Appendix B1 for details).
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Table 1. Codes, names, locations and model uncertainty classes (see Appendix B1) of the sites
measuring O2 and CO2 concentrations that were used in the inversion.

Station code Name Latitude Longitude Height Mod. Unct.
(◦) (◦) (m a.s.l.) Class

ALT Alert, Canada 82.45 −62.52 210 S
CBA Cold Bay, Alaska 55.20 −162.72 25 S
CGO Cape Grim, Tasmania −40.68 144.68 94 S
KUM Cape Kumukahi, Hawaii 19.52 −154.82 40 R
LJO La Jolla, USA 32.87 −117.25 15 S
MLO Mauna Loa, Hawaii 19.53 −155.58 3397 R
PSA Palmer Station, Antarctica −64.92 −64.00 10 R
SMO Tutuila, Am. Samoa, Pacific −14.25 −170.57 42 R
SPO South Pole −89.98 −24.80 2810 R

However, the data density from discrete surface stations is
too low to reliably determine the large number of degrees of
freedom represented by the vector f (flux values at all the grid
cells of the transport model every day), that is, minimization
of the above cost function with respect to the fluxes would be
an ill-posed problem. As a remedy, additional information is
supplied, based on measurement-derived data sets as well as
on statistical assumptions about APO fluxes. This is done here
by writing the flux field f in terms of a set of dimensionless
adjustable parameters (vector p) as

f(p) = ffix + fadj(p).

= ffix + Fp (3)

This relation represents a simple linear statistical flux model, to
be detailed in Section 2.4 below. In short, each of the adjustable
parameters in p acts as a multiplier to one of the columns of the
matrix F. These columns represent elementary spatio-temporal
flux patterns (like elementary flux pulses) composing the total
flux. They incorporate both an assumed spatio-temporal weight-
ing of the surface flux (e.g. determining areas of large versus
small expected flux variability) and its spatial and temporal
coherence (e.g. determining expected characteristic length and
timescales of flux variability). In addition, a fixed flux field ffix

is split off from the adjustable component. It accounts for flux
contributions considered better constrained from external infor-
mation than from the expected atmospheric information (e.g.
contributions due to fossil-fuel burning). Mathematical stability
of the flux estimation is ensured by adding a second term to the
cost function,

J = Jc + 1

2
pTp, (4)

which ‘penalizes’ larger deviation of the parameters from zero.
This augmented cost function J follows from usual Bayesian
estimation theory and corresponds to introduction of an a-priori
probability distribution with best-guess 〈f〉pri = ffix and an im-

plied covariance matrix1 Qf,pri = FFT. The flux model can also
be viewed as a stabilizing ‘preconditioner’ because the number
of degrees of freedom is now the number of parameters, chosen
to be as small as possible.

The minimization of the cost function J with respect to the pa-
rameters p has been done using a Conjugate Gradients algorithm
with re-orthogonalization after each step (Rödenbeck, 2005).

2.2. Atmospheric data

The inversions performed here focus on O2 and CO2 data from
the programme of R. F. Keeling at the Scripps Institution of
Oceanography, which includes data from flasks collected at the
sites listed in Table 1. We used data from the archive version of
28 June 2006 (cf. Hamme and Keeling, 2008). Flask values are
screened based on agreement with replicates and other known
analytical or sampling artefacts. Each data point used in the
calculation reflects the average of the retained flask replicates
(typically three in number) collected at a given date and station.

Sampling at the different stations began at different times, so
the Scripps data set is not homogeneous with time. The sudden
appearance of a new station can lead to spurious flux variations
in inversion calculations.2 To eliminate this problem, we have
grouped the sites into differently large sets based on record
length (Fig. 1). In any figures or statistical computation below,

1 Traditionally, a-priori uncertainties and correlations are specified
through the a-priori flux covariance matrix Q f ,pri in a cost function,
written in terms of fluxes. Here, a-priori uncertainties and correlations
are specified ‘implicitly’ through the matrix F, to gain more flexibility
and transparency in the definition of the a-priori constraints. The implied
flux covariance matrix Qf,pri = FFT itself is not used anywhere in the
calculation (Rödenbeck, 2005).
2 Such jumps can arise as the region of influence of a site changes from
prior-constrained to data-constrained, with generally different mean val-
ues. Though this transition would potentially be detectable from an ac-
companying decrease in the a-posteriori uncertainty, the resulting time-
series would be hard to interpret.
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688 C. RÖDENBECK ET AL.

Fig. 1. Left-hand panel: Data availability for each site, shown as number of measurement instants per month. Sites are ordered according to latitude.
For MLO and SPO, the narrow bands indicate data that have been excluded. Right-hand panel: Membership of the sites in the various sets. The
colours correspond to the results’ figures.

the flux results will be truncated to the respective time periods,
where the records of all involved sites actually contain data (see
vertical lines in Fig. 1). The main runs were done using sets S5,
S7 or S9.

For MLO (Mauna Loa, Hawaii) and SPO (South Pole, Antarc-
tica), Manning and Keeling (2006) document sampling problems
for all data before mid 1998 (though the seasonality may still
be well represented). Therefore, results using these two sites are
only considered after mid 1998.

2.3. Transport model

Atmospheric transport (matrix A) is calculated by the global off-
line atmospheric transport model TM3 (Heimann and Körner,
2003) with different spatial resolutions (Table 2). The model
is driven by 6-hourly meteorological fields derived from the
NCEP reanalysis (Kalnay et al., 1996) that covers all our target
period in a consistent manner. The meteorological input varies
interannually according to the true year of simulation. Modelled
concentration values are picked from the model grid box that
contains the respective site (in the case of MLO, an elevated
model level is sampled to account of the mountain location not
represented in the model topography). Each modelled value is
taken at the same date and time at which the corresponding
measured value has been sampled. The initial concentration cini

represents a well-mixed atmosphere with a fixed APO mixing
ratio (Appendix B2).

2.4. The flux model (‘a-priori information’)

In specifying the ‘flux model’ (i.e. F and ffix of eq. 3), we have
tried to only include just as much detail as necessary to ensure
that the inversion is well-posed mathematically. In particular,
we avoided almost any explicit time dependence on interannual
scale in these constraints, in order that all temporal features of the
estimated APO flux can be traced to atmospheric information.

Table 2. Summary of alternative choices taken in the various inversion
runs. The unlabelled choice in each category represents the standard

Label Description

Data

Station set S5
S7 Station set S7
S9 Station set S9
S5sm Station set S5, global mean subtr. from data
S5a=1 Station set S5, stoichiometry α = 1.0

Inversion setup

Standard setup as of Section 2.4
loose priors A priori SD increased by factor 2
tight priors A priori SD decreased by factor 2
long corr. A priori correlation length incr. by factor 2
high freq. A priori correlation time decreased by factor 2

Transport model resolution

≈8◦ lat. ×10◦ long. × 9 vert. levels
fg ≈4◦ lat. ×5◦ long. × 19 vert. levels

Transport model drivers

Meteorology of actual years
1990 winds Repeated 1990 meteorology
1995 winds Repeated 1995 meteorology
1997 winds Repeated 1997 meteorology

2.4.1. Flux components and processes. To a very good ap-
proximation (Appendix A), the APO flux can be written as

fAPO = fO2 + 1.1fCO2 − X
O2
0

X
N2
0

fN2 , (5)

where XO2
0 and XN2

0 denote reference mixing ratios of O2 and N2.
The APO flux can further be expanded into different contributing
processes:

fAPO =
(

fO2,oc + 1.1fCO2,oc − X
O2
0

X
N2
0

fN2,oc

)
,

+(fO2,ff + 1.1fCO2,ff )
(6)
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where superscript ‘oc’ refers to oceanic processes and ‘ff’ to
fossil-fuel burning or other anthropogenic processes. By con-
struction of APO, any contribution from the land biosphere
(fAPO,lbio = fO2,lbio + 1.1 fCO2,lbio) is cancelling out to the ex-
tent that the stoichiometric ratio is fO2,lbio = −1.1 fCO2,lbio. N2

fluxes fN2,lbio from nitrogen fixation or denitrification have been
neglected, assuming that they are much smaller than the oceanic
fluxes fN2,oc driven by solubility changes from warming and
cooling.

Each of the APO flux contributions in the right-hand side
(r.h.s.) of eq. (6) can be further split into its respective contribu-
tions to the fixed and the adjustable terms of the flux model eq.
(3). Part of the oceanic contributions, as well as all the fossil-fuel
contributions, are split off to form the fixed term,

fAPO
fix =

(
f

O2,oc
fix + 1.1 f

CO2,oc
fix − X

O2
0

X
N2
0

f
N2,oc
fix

)

+ (
f

O2,ff
fix + 1.1 f

CO2,ff
fix

)
.

(7)

Consequently, the adjustable term only has oceanic contribu-
tions,

fAPO
adj =

(
f

O2,oc
adj + 1.1 f

CO2,oc
adj − X

O2
0

X
N2
0

f
N2,oc
adj

)
. (8)

2.4.2. Specification of the fixed terms. The following data sets
have been chosen to form the fixed APO flux fAPO

fix of eq. (7):
The contribution from sea–air oxygen fluxes (fO2,oc

fix ) has been
taken from the results of the ocean transport inversion, based on
ocean interior data by Gruber et al. (2001), smoothed in space.
It is constant in time.

The contribution from sea–air CO2 fluxes (fCO2,oc
fix ) represents

a climatological seasonal cycle. The long-term mean is taken
from the ocean inversion by Gloor et al. (2003), smoothed in
space. The seasonal and fine-scale spatial patterns are taken
from the �pCO2-based estimates by Takahashi et al. (2002) (cf.
Fig. 13).

Sea–air nitrogen fluxes arise from temperature-induced solu-
bility changes in the ocean. A contribution to the fixed term has
been calculated from NCEP heat fluxes (Kalnay et al., 1996),
using the temperature and salinity dependent formula by Weiss
(1970). We use a climatological nitrogen correction fN2,oc

fix with-
out interannual variations (compare Fig. 13).

CO2 emissions from fossil-fuel burning and cement manu-
facturing (fCO2,ff

fix ) are taken from energy consumption statistics
(Olivier and Berdowski, 2001). The corresponding fossil-fuel
O2 flux is computed by scaling the CO2 flux according to

f
O2,ff
fix = −1.4 f

CO2,ff
fix . (9)

The factor of −1.40 is supported by the estimates of the global
emissions over various fuel types and cement (CDIAC) and fuel
composition data from Keeling (1988). The global stoichiometry
can vary due to changes in the mix of fuel burned but, in fact,
was highly constant over the relevant period (range from 1.39

to 1.40). Our approach also neglects geographic variability in
the fuel mix. The employed data set f

CO2,ff
fix includes the slight

changes from year to year, but any seasonal, weekly or diurnal
variations of fossil-fuel emissions are neglected. The emissions
are heterogeneous in space due to point-like sources.

2.4.3. Specification of the adjustable terms. The adjustable
term fadj = Fp is not implemented as an explicit sum of O2, CO2

and N2 contributions, but rather expanded into timescales –
long-term flux (superscript ‘lt’), mean seasonality (‘seas’), and
non-seasonal variations (‘var’, interannual and high-frequency
variations):

fAPO
adj = f

APO,lt
adj + f

APO,seas
adj + f

APO,var
adj . (10)

Each contribution is of the form f i
adj =Fi pi with i standing for ‘lt’,

‘seas’ or ‘var’, where the vectors pi denote the respective subsets
of parameters in p and the matrices Fi denote the corresponding
groups of columns of F. To further explain their construction,
the vector notation F, with vector elements referring to the grid
cells and time steps of the model, is replaced by the field notation
f(x, y, t) highlighting the space and time dependence. Then, each
of the three terms f i

adj has the structure

f i
adj(x, y, t) =

fsh,i(x, y)
Nt,i∑

mt=1

Ns,i∑
ms=1

gtime
mt,i

(t)gspace
ms,i

(x, y)pmt,ms,i . (11)

Each column of F i corresponds to one of the terms (mt, ms)
of this sum, to be scaled during estimation by the adjustable
parameter pmt,ms,i . The sums run over a set of temporal elements
gtime

mt,i
(t) and a set of spatial elements gspace

ms,i
(x, y), which represent

decompositions of the inversion’s time interval and the Earth’s
surface, respectively.

The temporal decomposition (sum over mt) is a Fourier series,
where f seas

adj only contains the seasonal Fourier components (those
with frequencies 1/yr, 2/yr, etc.), f var

adj the non-seasonal Fourier
components (all other frequencies, comprising interannual and
short-term variations), and f lt

adj the (single) time-mean Fourier
term. The individual Fourier terms are multiplied by spectral
weights corresponding to a low-pass filter with an upper limit
frequency of 12/yr (i.e. half-monthly, Fig. 4, upper panel). By
the properties of the Fourier transformation, this is equivalent
to a-priori temporal correlations on a timescale of the order of
around two weeks. The choice of this frequency reflects, on
the one hand, the fact that there is no information on higher
frequencies in the mainly two-weekly flask data. On the other
hand, we also expect temporal correlations due to the inertia of
the oceanic processes and because gas exchange and upwelling
are driven by the atmosphere on synoptic time-scales. As the real
correlation timescales are not well known, the limit frequency
will be varied in a sensitivity test (‘high freq.’, Table 2).

The spatial decomposition is a sum (over ms) of small regional
elements gspace

ms,i
(x, y), centred along a regular grid of pixels ≈ 8◦

latitude ×10◦ longitude in size (aggregates of 4 pixels of the
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Fig. 2. Top panel: regular grid of regions used in the flux model:
spatially, there is one parameter per such region.
Middle panel: Example of a spatial element gspace

ms,i
(x, y) as in eq. (11).

Bottom panel: Implied spatial correlation coefficients with respect to
an example location.

transport model, see Fig. 2, top panel). Each of these spatial ele-
ments overlaps its neighbours with exponentially decaying tails,
as shown by the example element in Fig. 2, middle panel. Due
to these tails, fluxes in adjacent locations are partially linked to-
gether, leading to a-priori correlations. The bottom panel shows
the resulting correlation coefficients with respect to an example
location. The chosen e-folding lengths (≈3200 km in longitude
and ≈960 km in latitude) are largely arbitrary and will therefore
be varied in a sensitivity test (‘long corr.’, Table 2). The spatial
correlation structure is identical for non-seasonal, seasonal and
constant terms.

Finally, the adjustable terms are, at each location (x, y) and
each time t, proportional to the spatial weighting (‘shape’)
fsh,i(x, y). By construction, this ‘shape’ determines the a-priori
standard deviation of the adjustable term at every point and in-
stant (given suitable normalization of the spatial and temporal
decompositions, Rödenbeck, 2005). As flux adjustments at any
location/time are the more penalized the larger they are in units
of their respective a-priori standard deviation, this weighting
guides the inversion so that signals in the data will preferably
lead to flux signals in areas where fsh,i(x, y) is large. In that way,
the ‘shape’ defines the domain of activity of the flux compo-
nent. For all three timescales, the ‘shape’ is non-zero only over
ice-free ocean areas:

(1) For the seasonal variations (term f
APO,seas
adj ), the ‘shape’ at

any point equals the seasonal cycle amplitude (standard devia-
tion) of the oxygen flux data set by Garcia and Keeling (2001)
based on air–sea difference in partial pressure (smoothed in
space), enhanced by an arbitrary factor of 3 meant to prevent
undue damping of seasonality (Fig. 3, middle panel). The choice
of the Garcia and Keeling (2001) data set reflects that APO flux
seasonality is assumed to be dominated by O2 and that a sea-
sonal CO2 and N2 contribution is already contained in the fixed
term fAPO

fix .
(2) In contrast, for the non-seasonal variations (interannual

and high-frequency, term f
APO,var
adj ), no such detailed expectations

on the spatial distribution of variability amplitudes are available
a-priori; therefore, the local standard deviation is simply set to
a constant per-area value in all ice-free areas (Fig. 3, bottom
panel). The value itself is determined from the normalization
condition that the globally integrated and interannually filtered
(as described in Section 2.5) flux component f

APO,var
adj has an

a-priori standard deviation of 612 Tmol/yr at any time. This
choice (corresponding to f sh,var(x, y) = 1μmol m−2s−1 in the
open ocean for the standard choices of the correlation parame-
ters) is largely arbitrary and will therefore be varied in sensitivity
tests (‘loose priors’ and ‘tight priors’, Table 2).

(3) The ‘shape’ of the long-term APO fluxes (constant term
f

APO,lt
adj ) is proportional to that of the non-seasonal variations, but

scaled such that f
APO,lt
adj is tighter (a-priori sigma of only 56%)

than the constant Fourier term that would correspond to f
APO,var
adj .

Due to this tighter standard deviation, the long-term APO fluxes
are more strongly determined by the data-based a-priori long-
term values of Section 2.4.2, reflecting that atmospheric inver-
sions are generally considered weak at estimating long-term
fluxes and that our focus is on the interannual variations.

2.5. Postprocessing: filtering and aggregation

Although the numerical time resolution of the inversion is daily,
the results are smooth on timescales shorter than around two
weeks, due to the a-priori prescribed correlations. As we fo-
cus on interannual variations, however, we further filter the
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Fig. 3. Flux model: Spatial structure of the ‘shapes’ f sh,i for the 3
considered timescales (μmol m−2 s−1); (The stripe structure in some
maps only results from insignificant numerical deviations in the
normalization which are unavoidable due to the aggregated pixels.)

results by subtracting the mean seasonal cycle and most varia-
tions faster than 1 yr (Gaussian spectral weights, see ‘Filt0.5gd’
of Rödenbeck, 2005, Fig. 4, lower panel). This filter essentially
retains annual averages.

Likewise, although the inversion numerically provides flux
estimates on pixel resolution, the results are smooth at any
scales smaller than a few 1000 km. For most of the analysis,
however, we integrate the fluxes into three latitudinal bands (ap-
prox. 90◦S–20◦S, 20◦S–20◦N and 20◦N–90◦N). This takes into
account the actual spatial resolution of the atmospheric informa-
tion, determined by the distance between the atmospheric sites,
as suggested by a resolution analysis (next section).

Fig. 4. Upper panel: relative spectral weights used to define the
temporal a-priori correlations in the adjustable terms (standard setup,
blue—seasonal component, red—non-seasonal component).
Lower panel: relative spectral weights of the interannual filter used in
the post-processing of the inversion results.

2.6. Testing the method

As a consistency check, the flux estimates from the inversion
have been used as input to a run of our transport model (i.e.
they have been substituted into eq. 1). The thus modelled con-
centrations should closely match the data (formally within the
uncertainty bounds specified in Qc). The outcome will be dis-
cussed later in Section 3.2.1 (Fig. 7).

To test the suitability of the algorithm for estimating interan-
nual APO variations, we assessed how well a given APO flux
field can be reproduced by the inversion algorithm from pseudo-
data, created by a forward transport model run of those fluxes.
As described in Appendix C, these synthetic inversions estab-
lish that seasonality and interannual variations of the fluxes can
be reconstructed in at least the three latitudinal bands used for
post-aggregation.

A further test is provided by comparison of APO flux varia-
tions with independent data-based estimates. Appendix D con-
firms good phase agreement between APO flux seasonality es-
timated by the inversion and that from oxygen partial pressure
differences.

3. Results

3.1. Estimated interannual variability of APO fluxes

Interannually filtered time-series of estimated APO fluxes for
the global ocean and for each of the three latitude bands are
shown in Fig. 5. The different lines correspond to runs based on
the measurements of station sets S5, S7 and S9 of Fig. 1, using
the standard setup as described in Section 2. The longest line
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Fig. 5. Interannual variations of APO fluxes retrieved from the
atmospheric data (5, 7 or 9 sites, standard setup). APO fluxes have been
integrated over the total ocean (top) and over three latitude bands
(approx. 90◦S–20◦S, 20◦S–20◦N, 20◦N–90◦N). Time-series are
deseasonalized and filtered for interannual variability (as in
Rödenbeck, 2005), and the mean (1993–2005) has been subtracted
(anomalies only; positive values denote an increased source into the
atmosphere). Tropical fluxes are shown with a monthly ENSO index
(MEI) over-plotted in red.

(using S5 and the standard setup) will be referred to as the ‘base
run’.

Figure 6 gives statistical properties of the base run over the
period 1993–2005. It also shows statistical properties of many

additional runs explained further below. We draw attention to
the following features in the base run (wide black bars or dots
on the far left-hand side in each group of bars):

(1) Estimated interannual variability (IAV) in the global
APO flux is around ±90 Tmol yr−1 (standard deviation), in good
agreement with the variations computed directly from the atmo-
spheric observations (Hamme and Keeling, 2008).

(2) The three latitudinal bands show variations of similar
amplitude (around ±50 Tmol yr−1 each).

(3) Tropical fluxes tend to show positive anomalies during
El Niño periods (high El Niño index as given by the red line of
Fig. 5) and, even more clearly, negative ones during La Niñas.
The relation to ENSO is confirmed statistically by a moder-
ate, but over 97% significant,3 correlation between the Tropical
variability and the MEI El Niño index (Fig. 6, panel B).

3.2. Uncertainty

Before discussing the implications of these findings, we first
evaluate whether they are robust relative to various conceivable
sources of error.4 Of concern are the sensitivity to various pa-
rameters in the inversion setup, limitations in the data, including
sparse coverage or artefacts and errors in the transport model.
We use a series of test runs with changes in specific setup details,
as listed in Table 2.

3.2.1. Sensitivity to the inversion setup. The inversions are
sensitive to a range of parameters, most notably the tightness
of the a-priori constraint relative to the data constraint, and the
scales of the spatial and temporal smoothing imposed by the g
functions in eq. (11). As these parameters are chosen somewhat
arbitrarily due to the lack of solid independent information, it
needs to be shown that our findings persist over a range of
reasonable values.

If the a-priori standard deviation is reduced (setup ‘tight pri-
ors’) the amplitude of interannual variations in all three bands
is dampened as expected (Fig. 6, panel A). At the same time,
the tropical APO flux gets more strongly correlated with ENSO
(panel B, 99% significant). Conversely, an increased a-priori
standard deviation (‘loose priors’, not shown) enhances tem-
poral variations but deteriorates the ENSO correlation. This
may indicate that the ENSO-related signal component is rather
strong, being able to combat the dampening effect of the

3 Significance has been tested using the algorithm by Ebisuzaki (1997)
based on 1 000 000 random realizations of the time-series with the same
power spectrum but randomized phase. This takes any serial correlations
into account.
4 These robustness tests focus specifically on the particular features
highlighted in Section 3.1. Several other features of the estimated APO
fluxes, such as their long-term spatial pattern, are affected by some error
sources more strongly. Fortunately, these uncertainties do not represent
a problem here because of small a-posteriori correlations with our target
quantities; any such cross-influences would be visible in the specific
tests shown here.
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Fig. 6. Statistical properties of retrieved APO fluxes based on five atmospheric sites (S5) for standard and various test cases (Table 2). For the test
cases, all parameters are identical to the base run except for the change(s) indicated in the colour code. The hollow symbols give OPA-PISCES-T
model results for comparison. The four groups of symbols in each panel correspond to the integration regions as in Fig. 5. (A) Temporal standard
deviation (1994–2005) of interannually filtered flux time-series. (B) Correlation coefficients between interannual flux variations (1994–2005) and
MEI ENSO index. (C) Correlation coefficients between interannually filtered flux time-series (1994–2005) and that of standard run.

a-priori constraints, whereas loosening of these constraints al-
lows second-order signals, or even errors, to grow.5 Increas-

5 The dampening effect of the a-priori constraints on any non-seasonal
variability of the oceanic APO flux (i.e. on the signal of interest of this
paper) arises because the fixed term fAPO

fix is deliberately chosen constant
on these scales, so that the signal of interest is entirely represented in
the adjustable term fAPO

adj . Thus, larger variations (arising from larger
parameter values p) lead to a larger cost function contribution in eq. (4)
and will be more strongly penalized (cmp. Section 3.3.4. of Rödenbeck,
2005).
The choice of an essentially constant fAPO

fix reflects the absence of (data-
based) a-priori knowledge about IAV of large-scale APO fluxes. It en-
sures that the retrieved signal of interest represents atmospheric infor-
mation, rather than a mixture with a-priori signals that would be more
difficult to interpret. Is, however, the dampening effect a problem? In-
deed, the strength of dampening codetermines the amplitude of the inter-
annual APO flux variations, so that this amplitude is only inferred up to a
poorly determined factor. Importantly, however, the features focused on
here (ENSO correlation and relative amplitudes) are shown above to be
robust against variations in prior strength. The dampening is therefore
no problem to the conclusions of this paper.
In a more general view, the additional term in the cost function eq. (4)
mathematically corresponds to a Tikhonov regularization (e.g. Hansen,
1998), a device to suppress errors. It works well if signal and noise

ing the a-priori spatial correlation length (‘long corr.’) does not
change the amplitudes much but tends to improve the ENSO cor-
relation. This behaviour is consistent with the large-scale nature
of the ENSO phenomenon. Allowing more high-frequency de-
grees of freedom (‘high freq.’) reduces amplitudes, but preserves
the ENSO correlation. The reduction of amplitudes may arise
as model-data mismatches can be satisfied through shorter-term
flux variations partly averaging out at the interannual scale.

The ratio of IAV amplitudes in the three latitude bands stays
roughly equal for all cases. It should be noted that this ratio may
be influenced by the ratio of the chosen a-priori sigma intervals,
which is the same among all these cases. To test this influence,
further sensitivity cases have been run, setting the ‘shape’ fsh,var

for each pixel proportional to the amplitude (temporal standard
deviation) of the interannual variations of either the heat flux

have distinct properties (e.g. if they vary on different frequency ranges).
Unfortunately, such a spectral gap cannot be assumed here, so that
dampening the noise involves the risk of dampening the signal. However,
if a particular feature (as the ENSO correlation here) persists under
increased dampening, it can at least be identified against weaker noise
components.
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Fig. 7. Examples (stations Alert [top], and
Cape Grim [bottom] within eight selected
years) illustrating the ability of the inversion
to fit the data (Section 2.6). The observations
(grey diamonds) are compared to modelled
concentrations from the base run (black) and
some sensitivity runs (colours similar to Fig.
6: violet–‘tight priors’, green—‘long corr.’,
light blue—‘high freq.’). The mean seasonal
cycle and the long-term trend have been
subtracted from each line, to highlight the
short-term and interannual variations.

from the NCEP reanalysis or of the sea–air APO exchange of
the OPA-PISCES-T model (see Section 4.3), respectively (the
a-priori flux ffix remains without interannual variations as in the
standard setup, only the spatial pattern of a-priori sigma intervals
is different). The resulting interannual APO flux variations, in
particular the amplitude ratio, stay similar to the base run in
both cases (not shown). However, this is only a very limited
confirmation, because the ratio of the a-priori sigma intervals
in the three latitude bands resulting from these two choices is
(despite of the differences in the fine structure) roughly similar
to that of the base run. Nevertheless, this does confirm that the
a-priori assumption of a flat ‘shape’ in the standard setup is
reasonable.

According to panel C of Fig. 6, correlation of IAV of all cases
to the base run is mostly high, indicating that the timing and
relative amplitudes of anomalies is inferred relatively robustly.

Can we rank the different setups according to their ability to fit
the data? Concentrations modelled from all the sensitivity runs
(Section 2.6) fit the seasonal cycle and the long-term trend of the
APO data well (not shown). The runs differ to some extent in
how closely they match the individual data points (Fig. 7), with
larger mismatches for the more rigid setups (‘tight priors’, ‘long
corr.’), as expected. These differences, however, are mainly in
how closely they follow the short-term variations around the
slower year-to-year pattern, while that slower variability is sim-
ilarly captured by all runs. Unfortunately, the rating of the good-
ness of the fit remains largely subjective: as with inverse methods
in general, a close match to the data is desired, while avoiding
the ‘over-fitting’ of noise (e.g. Hansen, 1998). In the present
case, there is no external information to distinguish signal and
noise, as both may occur at the same timescales. However, the
short-term variations are more likely to reflect signals due to
local flux features, atmospheric transport or analytical errors.
To the extent that this is the case, the less close fit of the ‘tight
priors’ or ‘long corr.’ setups may indicate an advantage rather
than a limitation, in that they manage to extract the larger-scale

features.6 This view is also supported by the finding that runs
based on different station sets or different transport model res-
olutions (to be discussed below), are more closely correlated to
each other when using the ‘tight priors’ rather than the standard
setup.

3.2.2. Sensitivity to data errors. Errors in the fluxes can also
arise from errors in the observations. It is convenient here to dis-
tinguish two classes of errors: those that are correlated between
stations and those that are not. The uncorrelated contributions
include all sources of random error (e.g. random artefacts dur-
ing sampling, storage or imprecision of the analysis), as well as
many kinds of systematic error (e.g. leaks in the sampling system
at a particular site); in addition, a strong influence of local sig-
nals in the data could—even if correctly measured—spuriously
be interpreted by the inversion as a larger-scale feature. The cor-
related contribution is likely dominated by errors in laboratory
calibration, for example, due to drift in the laboratory reference
gases. Calibration drift will impart spurious variability that is
nearly synchronous between all stations because flasks are anal-
ysed from most stations in the Scripps network with similar time
delays after sampling.

To assess the effect of uncorrelated errors, we have carried
out inversions with two mutually exclusive sets of sites (SE4 and
SE5, see Fig. 1). Due to the lengths of the shortest data records
involved, inversions with these limited data sets can only be
done over the limited period 1998–2005. The results, shown
in Figure 8, column A, yield interannual variability which is
generally similar, even in detail, to each other and to the base
run. The largest discrepancies are found in the tropics, especially

6 According to the formalism of Bayesian inference, the model-data
mismatch covariance matrix Qc should have been chosen to reflect the
expected magnitude and timescale of the noise. If this was the case, the
goodness of fit could just be assessed by comparison with the sigma
intervals. However, for the very difficulties mentioned above, Qc just
represents a largely arbitrary choice itself.
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Fig. 8. Testing the robustness of the fluxes
shown in Fig. 5 by comparing the base run to
sensitivity cases. (A) Results based on two
mutually exclusive sets of sites (standard
setup). (B) Standard result in comparison
with a test run where a global mean APO
concentration time-series has been
subtracted from all data. (C) Comparison to
test runs where atmospheric transport has
been simulated with 1990, 1995 or 1997
meteorology used repeatedly. The grey band
gives the difference to a sensitivity run using
the transport model on finer spatial
resolution (≈ 4◦ latitude × 5◦ longitude ×
19 vertical levels).

for the SE4 subset. However, the SE4 network lacks a station
near the Equator, and synthetic-data inversions with this network
(not shown) also show poor agreement in the tropics. Thus, the
larger deviations for SE4 in the tropics are probably just an
indication of the poor coverage with this limited network (a test
run using the S7 set except for Samoa yields similar behaviour
during 1998–2001 as does SE4). The tropical fluxes for SE4 and
SE5 both show poorer correlation with ENSO (only discussed
qualitatively as the limited available time period 1998–2005 is
not sufficient to calculate meaningful correlation coefficients).
Interestingly, the correlation with ENSO, even with these limited
networks, improves again if the ‘tight priors’ inversion is used.
In any case, these results confirm that the extratropical fluxes
are not dominated by site-specific (i.e. uncorrelated) errors or
by local signals because these fluxes can be reconstructed quite
faithfully with independent networks that share no stations in
common. Only the tropical fluxes are potentially impacted by
site-specific errors. In the tropics, however, the strong correlation
with ENSO helps to establish the reliability of the fluxes. The
conclusions from the comparison of the mutually exclusive sets
are corroborated by the fact that the larger sets S7 and S9 mainly
confirm the results of set S5.

An examination of the stability of the reference gases used at
Scripps suggests that, although the gases appear stable over the
long term, shorter-term drift at the level of ±2 per meg is possible
(Keeling et al., 2007). This is comparable to the observed vari-

ability in the global average APO. Thus, the inferred variability
in total ocean APO flux is near the threshold of detectability.

To assess the impact of correlated errors, we have carried out
a run (S5sm) in which the global mean APO concentration has
been subtracted from all stations (set S5). The global mean is
based on the average of all five stations, with the data points
weighted as in the inversion and the resulting global time-series
smoothed with a 3 month running average (triangular pulse re-
sponse function). Run S5sm effectively makes the extreme as-
sumption that the variability in the global average APO is entirely
due to laboratory calibration artefacts. As shown in Fig. 6 (panels
A and C), run S5sm yields fluxes within the three major zones
that are quite similar to the base case. The within-zone variabil-
ity is evidently tied to station-to-station differences, which are
not sensitive to the stability of the laboratory calibration.

The total ocean flux, however, is found to be considerably
smaller using S5sm. Thus, although the fluxes within the indi-
vidual zones are not sensitive to the stability of the laboratory
calibration, their sum, as reflected in the ocean total, is quite sen-
sitive. Nevertheless, there is indirect evidence that the inferred
variability of the total ocean APO flux is realistic. First, the
tropical fluxes found with S5 show a considerably stronger cor-
relation to the ENSO index than those found with S5sm. Second,
the quadrature sum of the variability within the individual zones
matches the global variability almost perfectly in the S5 case, but
the quadrature sum is larger by 30% in the S5sm case. To account
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Fig. 9. Interannual APO flux variation as Fig. 5, but each latitude band
split into a Pacific (left-hand panel) and Atlantic plus Indian
(right-hand panel) contribution. Moreover, the standard setup has been
replaced by ‘tight priors’ and the transport model has been run at finer
spatial resolution.

for these results assuming that the total ocean APO variability
is artefactual (as for S5sm), the strong correlation with ENSO
and the matched quadrature sum must both be dismissed as co-
incidence. This requires that, by chance, the calibration gases
drifted with a temporal pattern that produced a spurious corre-
lation to ENSO in exactly the latitude band where a correlation
makes the most sense mechanistically, and they drifted with an
amplitude that achieved a match in the global quadrature sum.
Furthermore, one must accept that there are teleconnections be-
tween the zones that cause fluxes in the different zones to be
anti-correlated, thus yielding global variability that is smaller
than expected from the sum of the zonal variations. In contrast,
if the observed global APO variability is accepted at face value
(as for S5), a satisfying result is obtained that the global vari-
ability can be attributed to independent contributions from the
different zones, and the tropical variability is found to correlate
with ENSO. No teleconnections or coincidences are implied. On
this basis it seems likely that the variability in global APO flux
indicated by the base run is realistic.

3.2.3. Sensitivity to transport model errors. Estimated APO
flux variability may be affected by transport model errors. In

particular, as atmospheric transport also varies with ENSO,
the concern arises whether the ENSO correlation in our flux
estimates actually arises from model errors rather than from
the atmospheric data. To explore this possibility, additional in-
versions were run using meteorological driver data from fixed
years (1990, 1995 and 1997 as arbitrary selections), applied
repeatedly to all years of the simulation (thinner bars in Fig.
6; see time-series in Fig. 8 column C). Though this is ex-
pected to degrade the result, the flux fields are not fundamen-
tally changed, with similar variability and with a considerable
correlation to the base run (0.7 in the tropics and higher else-
where). The correlation to ENSO is reduced in two cases (1990
and 1995, remaining at least 90% significant) and slightly en-
hanced in one (1997). Such a situation would be very unlikely
if the ENSO correlation would result from modelled transport
variability.7

How large is the overall magnitude of errors induced by the
transport model? For latitudinal and seasonal APO variations, for
example, Battle et al. (2006) or Nägler et al. (2007) concluded
from comparing forward simulations with different transport
models that model errors are larger than the differences corre-
sponding to using different flux data sets (such as Garcia and
Keeling, 2001 or different ocean process models). The resulting
difficulty of estimating spatial patterns of long-term fluxes has
long been recognized as a general limitation of inversions (e.g.
Bousquet et al., 2000). To obtain a lower limit of the influence
of transport model errors on the particular flux features consid-
ered here, we conducted a run at finer spatial resolution of the
model (‘fg’, ≈4◦ × 5◦). Any difference to the base run can only
be due to model errors. Again most features in the interannual
variability are preserved, with the largest changes being in the
tropics (Fig. 6). The correlation of the tropical fluxes to ENSO
is slightly enhanced while the magnitude of the tropical fluxes is
increased.8 Effects of transport model errors on the amplitude of
interannual and seasonal variability are also discussed in Section
4.3.

Further, as a sizable fraction of conceivable model errors are
site-specific (representation of the local circulation determining
transport pathways and signal dilution, errors due to matching
the nearest model grid box value and a point measurement), we
can again invoke the test with the exclusive sets SE4 and SE5 in

7 These tests cannot rule out, however, the possibility that the ENSO-
related signal in the data is dominated by atmospheric transport in reality,
but that this transport influence is grossly underestimated by the model
both with and without interannually varying meteorology.
8 The increase in tropical amplitude is largely due to the much higher
peak around 1995 (Fig. 8 column C). This peak is over-proportionally
dampened as soon as the ‘tight priors’ setup is used (cf. Fig. 9), suggest-
ing that it is a less robust feature. As a consequence, the model resolution
influence is smaller with ‘tight priors’ (higher correlations to base run,
Fig. 6 panel C, and more similar amplitudes, panel A). Incidentally, the
higher-resolution ‘tight priors’ case shows the highest ENSO correlation
of all runs considered.
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Section 3.2.2 showing that such errors do not dominate the flux
features considered here.

3.2.4. Sensitivity to O2 : CO2 stoichiometry. Any deviation
of the actual O2 : CO2 stoichiometry from the assumed factor of
1.1 in the APO definition will lead to incomplete cancellation of
land signals, which will then spuriously be projected by the in-
version into ocean fluxes. As a particular concern, the estimated
tropical APO variability could be caused this way, as tropical
land CO2 fluxes show large interannual variations closely cor-
related to ENSO. The magnitude of the possible effect has been
assessed by a run where APO data have been calculated with a
factor 1.0 (in the fixed terms of the flux model, the factor has not
been changed). Figure 6 reveals that this hardly changes the re-
sult (almost full correlation to the base run), and the conclusions
about IAV amplitudes and ENSO correlations get confirmed
(the main change is a shift in the long-term flux of the Northern
Hemisphere, where the land fraction is highest). This conclu-
sion would still hold for values of 0.9 or 1.3 which would lead to
twice the absolute change. Though the O2 : CO2 stoichiometry
may differ among physiological processes (photosynthesis, au-
totrophic or heterotrophic respiration, biomass burning) or vary
seasonally or interannually, this will likely lead to errors of the
same order of magnitude only.

4. Discussion

4.1. Contributions to APO flux variability

A variety of processes can contribute to the air–sea exchanges
of O2, CO2 and N2 that drive APO variability. Photosynthe-
sis in surface waters drives O2 outgassing and CO2 ingassing,
whereas the ventilation of subsurface waters impacted by respi-
ration drives O2 ingassing and CO2 outgassing. Warming will
tend to drive outgassing of all three gases, due to solubility ef-
fects, whereas cooling drives ingassing. Air–sea CO2 exchange
is also driven by the changes in atmospheric CO2 concentration
and is heavily influenced by chemistry of the carbonate system
in seawater. A small contribution to the exchange of these gases
may arise from changes in salinity, barometric pressure or from
bubble processes.

On seasonal timescales, APO variability is clearly dominated
by O2 exchanges due to three factors: (1) the larger temper-
ature dependence of the solubility of O2 compared with N2,
(2) the tendency of dissolved O2 to equilibrate more rapidly
with the atmosphere than dissolved CO2 buffered by the car-
bonate chemistry, and (3) the tendency for the thermal, dynamic
and biological effects to reinforce each other in driving O2 ex-
change (e.g. spring warming is accompanied by reduced mixing
and enhanced photosynthesis, all leading to O2 outgassing) but
to counteract each other in driving CO2 exchange (e.g. spring
warming counteracts the reduced mixing and enhanced photo-
synthesis for CO2 fluxes; Keeling et al., 1993). The situation is
schematically depicted in Fig. 10.

Fig. 10. Illustration of the response of the sea–air CO2 exchanges
(hollow arrows) and O2 exchanges (solid arrows) to the seasonality in
the high latitudes (top panels, giving winter and summer situations) and
to the ENSO cycle in the tropics (bottom panels, giving annual means
and respective deviations). The different colours indicate the respective
contributions due to changes in biology (green), thermodynamics (red)
or dynamics (blue). The full line in the middle of each panel separates
the surface mixed layer from the deep ocean. In the case of O2

exchanges in the high latitudes, all three processes act together,
whereas O2 exchanges in the tropics result from competing effects
(upwelling effect in a narrow band along the equator, production and
warming effects in the adjacent bands to the North and South). In
contrast, CO2 exchanges involve competing effects everywhere.

On the interannual timescale emphasized by our inversions,
O2 exchanges are also expected to be more important than
those of CO2 and N2. All three factors listed above are also
relevant on interannual timescales. Keeling and Severinghaus
(2000) have shown that ocean biological processes will tend
to drive larger O2 than CO2 fluxes on all timescales from sea-
sonal to millennial, due to the slow equilibration rate and large
oceanic absorption capacity for CO2 as opposed to O2. Al-
though the increase in atmospheric CO2 drives a large global
air–sea CO2 flux that dominates the global air–sea exchange of
APO on decadal timescales (e.g. Manning and Keeling, 2006),
the variations in atmospheric CO2 are too small to be very
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important in driving APO fluxes on the shorter timescale em-
phasized here.

The importance of O2 flux in driving the APO variability is
also supported by a comparison of the inversion results with
inferred variability in air–sea CO2 exchange. In the tropical
Pacific, CO2 flux variability, expressed as a standard deviation,
is estimated to be of the order of ±10 to ±20 TmolC yr−1 and is
dominated by El Niño phenomenon (Feely et al., 2006). Air–sea
exchange of CO2 in the tropical Pacific is therefore sufficient
to account for only a fraction of the tropical APO variability of
±50 Tmol yr−1 inferred from this inversion. In the extratropics,
CO2 flux variability is less well constrained from observations
but the contributions of the northern and southern extratropics to
the global variability are probably not individually greater than
the contribution from the tropical Pacific. If so, CO2 can also
make only a small contribution to APO flux variability in the
extratropics.

In fact, it seems reasonable that CO2 could make a larger
contribution to interannual APO variability in the tropics than in
other latitude bands. The Equatorial Pacific is an exception to the
general tendency for thermal, dynamic and biological forcing to
have reinforcing effects on O2 flux and cancelling effects on CO2

flux (Feely et al., 2002). Here, the upwelling along the Equator
of O2-undersaturated waters drives a net O2 ingassing which is
counteracted, not reinforced, by simultaneous warming of the
waters and biological production (Stephens et al., 1998, see also
Fig. 10). The warming, however, reinforces the outgassing of
CO2 from the upwelled, CO2-supersaturated waters, though it
is compensated by biological processes. Outside the tropics, the
APO flux variability is probably mostly driven by variations
in seasonal production and ventilation processes, because these
processes would reinforce each other for O2 but cancel each
other for CO2 (Takahashi et al., 2002). The APO flux variability
driven by variations in Equatorial upwelling (e.g. by ENSO)
could therefore be unique in containing a relatively large CO2

contribution.
The interannual APO flux variability was found to be similar

in the three ocean bands. However, this does not necessarily im-
ply that the CO2 flux variability is similar. In fact, if CO2 makes
a larger contribution to the APO variability in the tropics, our
results would then support the conclusion that tropics dominate
the sea–air CO2 flux variability.

The similarity in amplitude of the APO variability in the north-
ern extratropics to that of the other latitude bands is remarkable
as its ocean area is smaller (24%, 37% and 39% for the northern,
tropical and southern bands, respectively). Comparing the two
extratropical bands to each other, the similar amplitudes of inter-
annual variability are consistent with the similar amplitudes of
seasonality (Fig. 13, Appendix D). Hamme and Keeling (2008)
identify interannual variations in ventilation likely to be the most
important driver of the interannual APO fluxes. However, a high
per-area variability in biological processes would also be sup-
ported, by the high biomass of the Northern hemisphere induced

by a relatively well stratified ocean in the Northern summer,
especially in the North Atlantic9 (e.g. Behrenfeld et al., 2006).

4.2. Relation of the APO flux to climate variability

The correlation that we find between tropical APO flux and the El
Niño index appears statistically robust, although the correlation
coefficient is not high, as expected for a complex mechanism
resulting in non-linear relationships: The effect on O2 exchange
is not necessarily proportional to the strength of an El Niño
event. For the strong 1997/1998 El Niño, in particular, there is
no correspondingly strong APO flux anomaly; when omitting a
1- or 2-yr time interval around this event from the computation
of the correlation coefficients, they tend to slightly increase (in
particular for the ‘fg’ results). As a corollary, the Spearman rank
correlation (with less emphasis on amplitudes) yields higher
correlation coefficients than the linear correlation shown here.
Interestingly, an El Niño signal is not manifest in the APO
anomalies at any individual site, so is retrieved by the inversion
from the differences in APO between stations (cf. Hamme and
Keeling, 2008).

The sign of the El Niño response comes as somewhat of a sur-
prise. Keeling et al. (1993) predicted that equatorial upwelling
should result in a net release of O2 to the atmosphere, driven by
the supply of preformed nutrients in the upwelling waters. This
prediction was supported by the studies of Battle et al. (2006)
and Tohjima et al. (2005), which verified the existence of an
atmospheric APO maximum in the tropical Pacific, evidently
tied to the equatorial upwelling. If tropical upwelling causes
O2 outgassing, how can the weakening of upwelling during El
Niño events cause even more O2 outgassing? These earlier stud-
ies recognized that the O2 outgassing resulted from fluxes of
different sign in different regions. In the intense upwelling re-
gion along the Equator in the eastern tropical Pacific, upwelling
causes surface waters to be undersaturated in O2, leading to
net O2 uptake by the oceans. This ingassing is evidently more
than compensated on average by outgassing of O2 driven by
continued warming and biological production in the upwelled
waters as they spread outward from the intense upwelling regions
(Stephens et al., 1998; Najjar and Keeling, 2000). An increase in

9 Indeed, more than half of the northern extratropical variability is at-
tributed to the Atlantic (Fig. 8), despite of the greater area of the North
Pacific. This is a tentative finding, as the inferred flux variations for
Atlantic and Pacific actually share many features and as our station set
lacks longitudinal extent (though changing wind directions at ALT and
CBA conceivably impart some differential information). At least, the
inferred Pacific–Atlantic split is found to be robust with respect to the
sensitivity tests considered above (not shown), and some ability to sep-
arate the northern extratropical Pacific and Atlantic is supported by the
synthetic inversions (Appendix C). Improvements in the longitudinal
resolution are expected from the addition of further atmospheric sites.
In any case, corroboration of the flux variability from the inversion by
independent approaches would be desirable.
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O2 outgassing during El Niño events can therefore be explained
if the O2 exchange with the atmosphere is more strongly mod-
ulated in the intense upwelling regions than in the surrounding
waters. This is possible if the time lag between upwelling and
eventual O2 outgassing is longer than a typical El Niño event.

The APO fluxes can be compared with recent estimates of
interannual changes in ocean biological productivity. During
the strong El Niño to La Niña transition of 1998–1999, when
we infer from the APO inversions that the tropical oceans
were an anomalously large sink for atmospheric O2, the satel-
lite observations indicate that a simultaneous increase of order
200 TmolC yr−1 occurred in net primary production (NPP) over
a broad band in the Pacific from 30◦N to 30◦S (Behrenfeld et al.,
2006). An increase in production would tend to drive an outward
rather than inward flux of O2. Only the fraction of NPP that is
exported from the upper ocean can influence APO, because the
recycled production has no effect on O2 and CO2 concentra-
tions. In tropical waters, this fraction is typically ≈10% (Laws
et al., 2000), which suggests that the increase in export pro-
duction associated with the 1998–1999 transition was of order
20 TmolC yr−1. This estimate is small compared to the change in
APO flux over this period, which from Fig. 5 is ≈100 Tmol/yr.
The comparison both in amplitude and in direction suggests that
changes in production are not the primary control on the APO
flux. Rather the fluxes must be principally driven by changes
in the delivery of O2-undersaturated water to the surface, as
discussed above, though partially offset by changes in photo-
synthesis.

4.3. Comparison to the OPA-PISCES-T ocean
process model

To illustrate the potential for APO fluxes to test ocean mod-
els, we briefly compare the inversion results to the predictions
of the OPA-PISCES-T model. The OPA-PISCES-T model is
a global ocean general circulation model (OPA) coupled to an
ocean biogeochemistry model (PISCES-T). The simulations pre-
sented here are identical to those published in Le Quéré et al.
(2007). OPA has a resolution of 0.5◦–1.5◦ latitude × 2◦ longi-
tude and 30 vertical levels. It computes mixing along isopycnal
surfaces, includes a parametrization for eddy mixing (Gent and
McWilliams, 1990) and computes explicitly vertical turbulence
and the mixing depth with a 1.5 order turbulent kinetic energy
model (Gaspar et al., 1990). OPA is coupled to a dynamic-
thermodynamic sea-ice model (Fichefet and Maqueda, 1999).
PISCES-T represents the full cycles of C, O2, P, Si, total alka-
linity and a simplified Fe cycle. It also includes a representation
of two phytoplankton (silicifiers and mixed), two zooplankton
(micro and meso) and three types of dead organic particles of
different sinking rates. OPA-PISCES-T is forced by daily winds
and precipitation from NCEP reanalysis (Kalnay et al., 1996).
Heat fluxes and evaporation are computed with a bulk formula
that is a function of the difference between sea surface temper-

ature produced by the model and the 2 m air temperature from
NCEP. These model simulations reproduce the observed inter-
annual variability in CO2 in the equatorial Pacific (Feely et al.,
2006) and the lower amplitude of variability inferred from ob-
servations in the North Pacific and Southern Ocean (McKinley
et al., 2006; Le Quéré et al., 2007) but not the variability of
the North Atlantic (Schuster and Watson, 2007). For compari-
son purposes, the daily fluxes predicted by the OPA-PISCES-T
model were temporally filtered and spatially integrated over the
same three zones as the inversion calculations. The period of
this comparison is 1993–2005, identical to our base inversion
run.

The OPA-PISCES-T model yields variations in APO flux that,
consistent with the theoretical considerations, are dominated
by fluxes of O2. The variations in air–sea O2 flux are roughly
4.4, 1.4 and 4.4 times greater than the CO2 flux in the north,
tropical and southern bands, respectively. In the extratropics,
the CO2 and O2 fluxes are strongly anti-correlated, as expected
due to variations in marine photosynthesis or ventilation. Here
the variations in APO flux are closely tied to the variation in
O2 flux but slightly smaller in magnitude. In the tropics, the
modelled CO2 and O2 fluxes are only weakly anti-correlated.
Here the variations in APO fluxes are slightly larger than O2 flux
variability, but the two are evidently not so closely tied to one
another.

However, the model-predicted variations in APO flux are con-
siderably smaller than those inferred from the inversions (hollow
bars in Fig. 6 panel A). The variability in APO flux inferred from
the base inversion, expressed as a standard deviation, exceeds
that from the OPA-PISCES-T model by factors of 3.5, 2.3 and
1.8 in the northern, tropical and southern bands, respectively.
In contrast to the inversion, the variability in modelled APO
fluxes in the northern and southern extratropics is more nearly
equal in a per-area sense. The discrepancies seem larger than
the uncertainties in the inversions, as implied by the sensitivity
analysis. In contrast to results from the base inversion, tropi-
cal APO fluxes as modelled by OPA-PISCES-T are much more
weakly correlated with the MEI index (Fig. 6, panel B). In fact,
the OPA-PISCES-T model fluxes are only moderately correlated
to the inversion results in any band.

The OPA-PISCES-T model comparison raises the question
whether the inversion results overestimate the flux variability
because of deficiencies that were not addressed in the sensitiv-
ity studies. For example, could the TM3 transport model sys-
tematically overestimate vertical or land–ocean mixing, which
would require spuriously large surface fluxes to account for the
surface APO observations at marine sites? TM3 simulates rea-
sonably well the change in the amplitude of the CO2 seasonal
cycle with elevation, which is diagnostic of vertical mixing over
the continents (Stephens et al., 2007). A diagnostic of vertical
mixing over the oceans and land–ocean mixing is provided by
the seasonally varying air–sea fluxes of O2 in the extratrop-
ics, as estimated by the inversion. We find that the seasonal
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amplitudes in the two extratropical bands are robust within
around 20% to aspects of the inversion setup and to the sta-
tion set, so hinge principally on the transport model. Compared
with the �pO2-based O2 flux climatology of Garcia and Keeling
(2001), the seasonal amplitudes of the inversion are larger by a
factor of around 1.6 in the Northern Extratropics and similar in
the Southern Extratropics (note that this flux climatology has
been used in the spatial weighting of the seasonal amplitudes
and is therefore not independent, but the robustness of the es-
timated seasonal amplitudes to prior tightness shows that they
are not determined by this a-priori setting). The fluxes of Garcia
and Keeling (2001) are not without uncertainty (e.g. they criti-
cally depend on the chosen gas transfer parametrization), but the
comparison raises the possibility that the transport model has too
much mixing in the northern hemisphere. However, the impact of
this deficiency on the interannual variability is certainly smaller
than that on the seasonality, because the interannual signals have
more time to mix uniformly throughout the hemisphere. On this
basis, it seems unlikely that the interannual variability is in er-
ror by more than a factor of 1.5 due to transport deficiencies.
Measurements of APO over continents and aloft would provide
useful diagnostic information.

Our analysis suggests that OPA-PISCES-T underestimates
the variability in APO fluxes by a factor of 1.8 to 3.5, with
largest underestimation at high Northern latitudes. The variabil-
ity of CO2 and O2 fluxes in OPA-PISCES-T is at the upper end
of variability estimated by other global ocean biogeochemistry
models (McKinley et al., 2000, 2006; Peylin et al., 2005), thus
suggesting that existing models share the same deficiencies as
OPA-PISCES-T.

Possible reasons for the deficiencies in APO variability in-
clude: (1) known problems in representing variability in biolog-
ical processes, probably caused by the tight feedbacks between
biological export production and ocean physics in current mod-
els (Le Quéré et al., 2005) and the simplistic representation of
ecosystem response to climate variability, (2) poor horizontal
resolution in the physical model, which does not allow for an
explicit representation of eddies and their associated turbulent
fluxes and (3) possible lack of very high resolution in atmo-
spheric forcing. These problems would have a larger effect on
interannual variations in O2 compared with CO2 because of
the faster equilibration rate of O2 and because of the reinforce-
ment of thermal, dynamic and biological processes in O2 fluxes
at high latitudes (over time-scales of centuries or longer, both
gases would be equally affected).

The variability in APO fluxes provides stronger constraints
on process models than variability in CO2 fluxes because the
processes driving APO variability reinforce one another and
amplify potential deficiencies in physical models. Observations
of APO variability provide new constraints which hopefully
will help to improve global biogeochemistry models and their
response to climate variability on seasonal to millennial time-
scales.

5. Conclusions

We estimated the regional contribution of the ocean to the in-
terannual variability in APO using up to nine atmospheric mea-
surement sites and an inverse method. Most of this variability is
caused by changes in sea–air O2 fluxes.

(1) The data used here are sufficient to constrain interannual
flux variations in three latitudinal bands (90◦ S–20◦ S, 20◦ S–20◦

N, 20◦ N–90◦ N), tentatively with some ability to also resolve
Pacific and Atlantic in the northern band.

(2) A significant and robust correlation has been found be-
tween tropical APO fluxes and ENSO (MEI index), suggesting
that most of the tropical variability is caused by the ventilation
of subsurface O2 from El Niño-induced changes in equatorial
upwelling.

(3) Interannual variations in the northern and southern extra-
tropical bands are estimated to be of similar amplitude than in
the tropical band, where a larger part of the variability in APO
in the Northern hemisphere would be caused by variability in
marine biology.

(4) Our results further suggest that current ocean biogeo-
chemistry models underestimate the interannual variability in
O2 fluxes in all oceanic basins (by about a factor of 2 in the
tropics and Southern Hemisphere and at least 3 at high Northern
latitudes), with maximum discrepancy in the North Atlantic.

Further steps will profit from including further sites from
other atmospheric O2 measurement programmes (e.g. Bender et
al., 1994; Tohjima et al., 2003).
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7. Appendix A: Linking measured and modelled
quantities

Throughout this paper, MO2 , MCO2 and MN2 denote the amount
(number of moles) of the respective species in an air parcel or
air sample, or model grid cell. CO2 measurements are usually
reported as molar mixing ratios on an H2O-free basis defined as

XCO2 = MCO2

Mair
, (A1)

with

Mair = MN2 + MO2 + MCO2 + . . . , (A2)
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where the dots represent minor constituents of air other than
H2O, and which can be neglected in practice. Molar mixing
ratios are always given in ppm = μmol mol−1 here. For the
abundant gases O2 and N2, the molar mixing ratio is not an
appropriate measure, because it is also changed by any changes
in the other gases included in the denominator, where the ratio
of changes is given by the molar mixing ratio of the (abundant)
gas itself. Therefore, O2 measurements are reported as changes
in O2/N2 ratio according to (Keeling and Shertz, 1992)

δ(O2/N2) = (O2/N2) − (O2/N2)ref

(O2/N2)ref
106 per meg, (A3)

where

(O2/N2) = MO2

MN2
(A4)

denotes the ratio of the oxygen and nitrogen amounts in the
sample and (O2/N2)ref the corresponding ratio in the reference
gas. The ‘per meg’ unit specifically refers to this very definition.
In a similar way, APO measurements are reported as (Stephens
et al., 1998)

δ(APO) = δ(O2/N2) + 1.1(XCO2 − X
CO2
0 )

106per meg

X
O2
0

. (A5)

The arbitrary reference value

X
CO2
0 = 350 ppm, (A6)

for the CO2 molar mixing ratio has been introduced for conve-
nience but cancels out for the concentration differences relevant
here. As a further parameter, this definition contains a fixed
reference oxygen mixing ratio set to

X
O2
0 = 209 460 ppm. (A7)

To establish the relation between the APO concentration
δ(APO) and trace gas fluxes to be modelled, we observe that
changes in δ(APO) are related to (flux-induced) changes �M in
the abundances of oxygen, carbon dioxide and nitrogen by

�δ(APO)

= ∂δ(APO)

∂MO2
�MO2 + ∂δ(APO)

∂MCO2
�MCO2 + ∂δ(APO)

∂MN2
�MN2

= �MO2

Mair

[
(O2/N2)

(O2/N2)ref

X
O2
0

XO2
− 1.1XCO2

]
106 per meg

X
O2
0

+1.1
�MCO2

Mair

[
1 − XCO2

] 106 per meg

X
O2
0

−X
O2
0

X
N2
0

�MN2

Mair

[
(O2/N2)

(O2/N2)ref

X
N2
0

XN2

+X
N2
0

X
O2
0

1.1XCO2

]
106 per meg

X
O2
0

.

where the partial derivatives follow from eqs. (A1), (A3)–(A5)
and have been slightly expanded, in the last line introducing a

nitrogen reference mixing ratio set to

X
N2
0 = 790 190 ppm. (A8)

The expansion has been done so that the factors in square
brackets are close to one: assuming anti-correlated changes
in CO2 and O2 mixing ratios on the order of �X ≈ 10 ppm
(i.e. XCO2 ≈ X

CO2
0 + �X and XO2 ≈ X

O2
0 − �X), as well as

(O2/N2)ref ≈ X
O2
0 /X

N2
0 and XN2 ≈ X

N2
0 , these factors can be

approximated by unity with a relative error on the order of 10−4.
Further, the expansion singles out the factor

106per meg

X
O2
0

= 1

0.209 460 ppm
per meg

= 4.7742
per meg

ppm
, (A9)

which relates to a change of units. For technical convenience,
we removed this factor by converting measured APO into

cAPO
obs = 0.209 460

ppm

per meg
· δ(APO), (A10)

directly comparable to the usual ‘ppm’ based model output.
According to the above discussion, changes in cAPO

obs are related
to changes in the amounts of O2, CO2 and N2 by

�cAPO
obs = �MO2

Mair
+ 1.1 · �MCO2

Mair
− X

O2
0

X
N2
0

· �MN2

Mair
, (A11)

with sufficient accuracy.
The atmospheric transport model simulates changes �M in

the abundance of any constituent in all its grid cells resulting
from given surface fluxes f. Due to linearity of transport, the
relation (A11) can be reproduced by using the linear combination
eq. (5) of fluxes.

Since the modelled air mass Mair
mod in the grid cell is derived

from the cell’s horizontal size and vertical pressure gradient,
it neglects the actual changes in Mair generated by fluxes of
O2, CO2 and N2. This introduces another error that, however, is
on the same order as the above-mentioned simplifications.

8. Appendix B: Implementation details

B.1. Concentration uncertainty

The main importance of the covariance matrix Qc in the cost
function eq. (2) is its role as a weighting among the individual
data points. It has been specified here in a way analogous to
the CO2 inversion (Rödenbeck, 2005). Concentration mismatch
uncertainties with respect to an individual value (i.e. diagonal
values of Qc) are specified as a quadratic sum of assumed mea-
surement and model uncertainties. Assumed measurement un-
certainty is always set to 0.4 ppm. Assumed model uncertainty
depends on a site class reflecting the expected difficulty for
the model to simulate the concentration field at the sites’ loca-
tion, given in Table 1. Standard values are 1.5 ppm for class R
(‘remote’) and 2.25 ppm for S (‘shore’). These values are pro-
portional to those of the CO2 inversion of Rödenbeck (2005),
assuming that the ratio of model errors between sites classes is
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sufficiently similar for APO and CO2 (taking into account that
the assumptions underlying these numbers are rough anyway,
and that a common factor multiplying the whole matrix Qc has
less importance). Finally, a data density weighting is applied: If
there is more than one data value within three weeks, the cor-
responding diagonal values of Qc are artificially increased, to
reduce the effect of varying data density in time (mainly relevant
for continuous measurements). All off-diagonal elements of Qc

are set zero, meaning that any error correlations in measurements
or model simulations are neglected.

B.2. Initial atmospheric concentration

The initial state of the atmosphere in the transport model (at
the beginning of the runs in 1992) is chosen to be uniformly
mixed with an APO concentration of −21 ppm. A uniform initial
concentration is convenient as it is not changed by subsequent
transport, thus just leading to a constant offset at any location and
time, so that all elements of the vector cini in eq. (1) have the same
value. The mismatch between this initial concentration field and
the real one is accounted for by introducing some additional
adjustable flux within the first half year of the simulation. The
first year of fluxes, which is influenced by spin-up effects, is
never used in any analysis of the results.

9. Appendix C: How much detail can be
resolved?

The performance of the method to estimate APO fluxes has been
tested by replacing the measurements cobs by synthetic data,
which have been created by a transport model simulation based
on a given set of APO fluxes (the ‘known truth’). These pseudo-
data are taken at the same locations and times as the real data,
thus representing the same amount of information. The APO
flux chosen as ‘known truth’ is intended to be similar to the real
flux (interannual and high-frequency variations of O2 from the
OPA-PISCES-T ocean process model simulation, see Section
4.3, mean and seasonality of O2 from Garcia and Keeling, 2001,
CO2, N2 and fossil-fuel contributions as the fixed terms of the
standard flux model, Section 2.4.2). Inverting such pseudo-data
is instructive as the correct answer would be a reconstruction
of the known truth. Moreover, the transport model can then
be assumed to be error-free. Therefore, discrepancies between
retrieved fluxes and the ‘known truth’ reveal which flux features
cannot be ‘seen’ by the available amount (spatial and temporal
coverage) of atmospheric information or hint at limitations in
the degrees of freedom built into the flux model.

Figure 11 shows ‘synthetic’ inversion estimates for station sets
S5, S7 and S9 (Fig. 1), to be compared with the ‘known truth’
in white. It can be seen that the seasonality (three selected years
in column A) is almost perfectly reconstructed. High-frequency
variations present in the ‘known truth’ are however missing: they
cannot be retrieved from the mainly two-weekly data and have

Fig. 11. Capability of the inversion to retrieve a ‘known truth’ for
different sets of observing sites: (A) full variability (three selected
years), (B) interannually filtered. Fluxes are integrated over the whole
ocean (top row) or three latitude bands (approx. 90◦ S–20◦ S, 20◦

S–20◦ N, 20◦ N–90◦ N; middle and lower rows).

therefore deliberately been excluded from the ‘flux model’, see
Section 2.4.3).

Column B shows the interannual variations (Section 2.5). The
IAV of the global APO flux is also reproduced well. The available
information further suffices to retrieve the main interannual fea-
tures in the latitude bands (errors smaller than flux variability).
The agreement improves the more sites are used, as expected.

Figure 12 is similar to the IAV column of Fig. 11, but fluxes
in each latitudinal band are split into Pacific and Atlantic plus
Indian. This longitudinal split seems still to be resolved in the
Northern Extratropics and Tropics, somewhat surprising given
that there are no observing sites in the Atlantic. The pronounced
swing of the ‘known truth’ in 1997–1998 in the Tropics is cor-
rectly located into the Pacific, though some of it is spuriously
placed into the Atlantic. In the Southern Extratropics, discrep-
ancies increase, in particular when using five sites only.

For even smaller integration regions, the discrepancies further
increase (not shown), indicating that the available information
is clearly insufficient to resolve these finer spatial details. In this
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Fig. 12. As Fig. 11 column B, but each latitude band split into a Pacific
(left-hand panel) and Atlantic plus Indian (right-hand panel)
contribution.

paper, therefore, fluxes are mainly shown for the three latitu-
dinal bands as in Fig. 11 only. Essentially the same conclusion
regarding the spatial resolution of the inversions is also provided
by an examination of the covariance matrix of the a posteriori
flux errors (not shown).

Remark. Though the synthetic-data inversions suggest the
general suitability of the algorithm, they do not provide a suf-
ficient condition. The real ability to resolve the fluxes is also
limited by the various error sources considered in Section 3.2.
Further, the degree of success of synthetic inversions is partly
specific to the particular properties of the chosen ‘known truth’.
This also means that synthetic inversions cannot be used to
discriminate between the particular setups discussed in Section
3.2.1

10. Appendix D: Estimated Seasonality
of APO Fluxes

Figure 13 shows the full temporal variability of estimated APO
fluxes (a-priori CO2 and N2 contributions subtracted). The ex-
tratropical fluxes are dominated by seasonal cycles with peak-
to-peak variations of around 3000 TmolAPO yr−1, opposite in

Fig. 13. The APO flux estimates (full variability, selected years,
a-priori oceanic CO2 and N2 fluxes and fossil-fuel contributions
subtracted), compared with an independent O2 flux climatology
(�p O2-based O2 fluxes by Garcia and Keeling, 2001; with long-term
values from ocean interior oxygen inversion Gruber et al., 2001). The
subtracted a-priori oceanic CO2 and N2 contributions to the total APO
flux are indicated as thin lines.

phase, whereas the Tropics do not show any seasonality. In-
version results are compared with the smoothed climatology of
sea–air O2 fluxes, based on measurements of partial pressure
difference (�pO2) by Garcia and Keeling (2001). The degree
of agreement in the phase of the seasonal cycles, which rep-
resent completely independent information, lends credibility to
the ability of the inversion method to retrieve information on
flux variations (even though seasonal cycles are easier matched

Tellus 60B (2008), 5
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than interannual variations due to their much larger amplitudes
and their very similar phasing within each of the hemispheres).
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Peylin, P., Bousquet, P., Le Quéré, C., Sitch, S., Friedlingstein, P.,
and co-authors. 2005. Multiple constraints on regional CO2 flux
variations over land and oceans. Global Biogeochem. Cycles 19,
doi:10.1029/2003GB002214.

Rayner, P., Enting, I., Francey, R. and Langenfelds, R. 1999. Recon-
structing the recent carbon cycle from atmospheric CO2, δ13CO2 and
O2/N2 observations. Tellus 51B, 213–232.
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