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Abstmct 

The aim of this paper is to present an analytical expression for the vertical distribution of the 
correlation between the horizontal (ii) and vertical (%) wave velocity components. This quantity, 
(W), which appears explicitly in the time-averaged momentum balance equations, has been shown 
to play an important role in the vertical distribution of wave-induced currents. 

The proposed formulation for (i&G> is based on an identity that relates the effective (wave) shear 
stress (E) to the effective (wave) normal stresses ( (CI)~ and (%)‘) and to the vorticity of the 
oscillatory flow 6. This general expression has been applied to simplified situations and has been 
shown 1.0 degenerate into other existing formulations with comparable simplifying assumptions, viz. 
irrotational waves in shallow water over an arbitrary bottom topography and breaking waves over a 
horizontal bottom. 

The model has also been applied to the case of waves interacting with a depth-varying current over 
a horizontal bottom, in which preliminary results have been obtained for a simplified situation invoking 
linear (small-amplitude) wave theory. 

1. Introduction 

The correlation between horizontal (a) and vertical (E) components of the oscillatory 

(wave) motion plays an important role in the analysis of the vertical distribution of wave- 
induced currents, shear stresses, sediment transport, etc. (see e.g. Deigaard and Fredsee, 
1989, IDe Vriend and Kitou, 1990b and Arcilla et al., 1992, to mention three recent refer- 
ences) . Focusing on wave-induced circulation models - which of course need the corre- 
sponding shear stress as an input - it is apparent that most models have, until very recently, 
neglected the (CL%) contribution ( ( ) denotes the time-averaging operator) by simply 
arguing that the two wave velocity components, ti and iT, are 90” out of phase. This result, 
which corresponds to periodic waves of permanent form, is not valid for real waves prop- 
agating over a sloping bottom and with energy dissipation (be it in the bottom boundary 
layer or in the free surface area for the roller of breaking waves). In conclusion, neglecting 
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(tiw) contributions in the momentum balance equations leads to inconsistencies in the 
wave-induced stresses. This would also have to result in inconsistencies in any result derived 
from those momentum balance equations. The fact that some of the obtained results do not 
appear to show this ill-behaviour is due to the large number of uncertainties and free fit 
parameters that are included in this kind of models. Furthermore, the smallness of (uw) 
compared to other effective wave stresses, such as (6)” and (ti)’ (according to what most 
irrotational wave theories predict), and the lack of reliable experimental data have hindered 
any definite conclusions. The recent literature on wave-induced circulation in the surf zone 
clearly illustrates this situation. 

This paper focuses on the evaluation of (tiw) terms for waves in the presence of an 
ambient current and/or a sloping bottom. For such cases, several sources of non-zero (fiti) 

have been described in the literature. They are the following: 
(a) Sloping bottom effects. As already shown in Battjes ( 1968)) when waves propagate 

over a sloping bottom, wave fronts generally exhibit a vertical curvature in addition to the 
curvature in the horizontal plane due to refraction. Because of this, the (oscillatory) velocity 
components B and w are no longer 90” out of phase, and therefore, the correlation (uw) is 
not nil. Considering all irrotational effects associated to the sloping bottom, a perturbation 
solution based on linear wave theory may be obtained for the wave velocity potential. This 
solution, fulfilling the no-flow bottom boundary condition for the actual sloping bottom has 
been derived in De Vriend and Kitou ( 1990a), and turns out to give, in the first-order 

approximation, a linear distribution of (fiti) over depth: 

in which x is the horizontal coordinate in the wave propagation direction, z is the vertical 
coordinate positive upwards, zb is the bottom vertical coordinate, h is the mean water depth, 
k is the wavenumber, E is the wave energy density, p is the water mass density, and G = 2khl 
sinh( 2kh). The corresponding values for the other effective (wave) stresses appearing in 
the momentum balance equations, namely, (a)’ and (w)‘, coincide with the values obtained 
from standard linear wave theory. 

(b) Wave amplitude gradient effects. Even in the framework of linear wave theory, wave 
amplitude gradients are known to generate non-zero (uw) (Mei, 1983). This quantity has 
been usually related to wave energy dissipation (Deigaard and Fredsoe, 1989). When this 
dissipation takes place in the bottom boundary layer a perturbation solution, similar to the 
one derived for tidal waves with bottom friction, may be obtained. The resulting (a%) 
distribution is given by Deigaard and Fredsde ( 1989) : 

(+f$j](l-7) (2) 

which is also linear with z. When the dissipation takes place near the surface area - due to 
the roller associated to breaking waves - it is also easy to derive the wave orbital velocity 
associated to a linearly decreasing wave height. This is done expressing B and \?r in terms 
of av/& by using the continuity equation ( 77 is the free-surface elevation with respect to the 
mean water level). The resulting (fiti) expression is (Deigaard and Fredsoe, 1989) : 
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(iN)= -;[-$)](y (3) 

It should finally be remarked that, whenever there are gradients in the wave amplitude field, 
even if they are not due to energy dissipation, there will be a non-zero (a%) contribution. 
This case may be illustrated by gradients in wave amplitude due to diffraction, e.g. behind 

a detached breakwater. Expressions to evaluate (C) for such a case have been proposed 
in Arcillla et al. ( 1992) in which, starting from a wave velocity potential 4: 

& 
C/F= --_Az(z-zb) .e’S 

u 
(4) 

the (CC) term is derived in a straightforward manner by assuming a spatially varying wave 
amplitude field A (x,y) : 

(5) 

where Z( z - zb) is the vertical shape function of the velocity potential, A the wave amplitude, 
cr the angular wave frequency, and S the phase function. 

( c) Vorticity effects induced by viscosity near solid boundaries. The oscillatory boundary- 
layer streaming (Longuet-Higgins, 1953) is a consequence of the (W) contribution, which 
is in turn produced by the vorticity generation and diffusion in the bottom boundary layer. 
This vorticity-based explanation is an alternative to the dissipation-based explanation and 
should lead to equivalent expressions. However, since the bottom (oscillatory) boundary 
layer is not considered in detail in this paper, this point will not be further analyzed. 

(d) Vorticity effects induced by depth-varying currents. In the presence of ambient depth- 
varying currents, a nonlinear vorticity transfer from the current to the wave motion takes 
place (Peregrine, 1976), which induces effective stresses (fiti> directly related, as will be 
shown l.ater, to the vorticity transfer (River0 and Arcilla, 1993). 

In what follows an attempt is made to develop a theory to evaluate (titi). This theory 
should Iencompass the various sources of non-zero wave correlations just described. It will 

be shown that the quantity (iI%) is strongly related to the vorticity of the oscillatory flow. 

2. Governing equation 

The physical problem is here confined, for simplicity, to a 2DV situation, in which waves 
propagate along the x-direction. The z-axis is directed vertically upwards with origin fixed 
at a given reference level. See Fig. 1. 

The velocity field (u,w) is decomposed into a mean component ( U, W) and an oscillatory 
component (u,ti) : 

u==u+ii (64 

w:= w+i% (6b) 

By definition, the time-averaged value of the oscillatory component is zero: 
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Waves 

Fig. 1. Domain definition sketch (2DV situation) 

(ii)=0 

(i%)=O 

where ( ) denotes the time-averaging operator over a wave period. 
In a similar way, the scalar vorticity w, defined as 

au aw 

w=az-dx 

(7a) 

(7b) 

(8) 

is split into a mean component ( 0) and an oscillatory component ( 9) : 

co=~+(; 

where 

(9) 

(104 

(lob) 

Notice that, according to definition (7), the time-averaged value of the oscillatory vor- 

ticity 8 is also nil: 

(cs)=O (11) 

As will be shown here, the quantity (ti6) is directly related to the vertical distribution 

of (6%). Multiplying % by G, (lob), it is obtained: 

II _x _aiv 

w”=wa,-wa, (12) 

which may be rearranged to yield 

a _I _ati _afi 
*,=G (uw) -“a,_“-& (13) 

Invoking now the continuity equation for the oscillatory motion: 
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it follows 

from which, after time-averaging, it may be written 

~(Oiv)=(SS)-; [ $ ((P)-(a’))] 

(14) 

(15) 

This identity relates the vertical variation of the effective (wave) shear stress (W) to the 
oscillatory vorticity 9, still unknown. The two effective (wave) normal stresses (a’) and 
(\“j’) are assumed to be given by any wave theory, e.g. linear sinusoidal theory, therefore 
allowing to evaluate (G) once the oscillatory vorticity is known. 

Eq. (16) is, in this sense, a circular expression relating wave correlations between 
themselves and to the oscillatory vorticity. It is not, therefore, an alternative or more 
complete wave model to calculate wave correlations, such as the perturbation solution 
proposed in Bijker et al. ( 1974). This solution, based on linear wave theory plus a pertur- 
bation term due to the oscillatory bottom boundary layer, provides values for (a’), (ti’) 
and (OW) . The (a”) and ( Wj’) values so obtained could also be used to feed Eq. ( 16)) from 

which a (Ci\i;) value could be, in turn, obtained. The added value of E!q. ( 16) is, thus, the 
possibility to obtain (a%) in terms of (a’) and ( e2) (assuming d known), much easier to 

calculate using any wave theory. 

3. Irrotational wave motion 

When no ambient currents are present, the oscillatory velocity field (far from solid 
boundaries) may be assumed essentially irrotational (i.e. 6 = 0) as long as the free surface 
remains simply connected and wave breaking does not occur. In such a case, the governing 
equation for (W) ( 16) will read 

(17) 

Invoking linear (small-amplitude) wave theory, the term inside brackets on the right- 
hand side of Eq. ( 17) is seen to be independent of the vertical coordinate (Longuet-Higgins 

and Stewart, 1962): 

(18) 

where G = 2khlsinh (2kh), k is the wavenumber, h is the mean water depth, E = pgH2/ 8 is 
the wave energy density, H is the wave height, p is the fluid density, and g is the gravity 
acceleration. 
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d 

Fig. 2. Simplified model for the oscillatory wave motion near the bed 

Upon vertical integration of Eq. ( 17) from the top of the bottom boundary layer (z = zb) 
to any level z, an explicit expression for (tic) may be obtained: 

(tiCI) =(tiTv)(_,) -; [I$-$]~z-ztJ (19) 

This expression states that the vertical distribution of (Wit> over depth is, in this case, linear. 
Notice that the term inside brackets on the right-hand side of (19), basically varying as 

a/ax(H*//z), is positive for shoaling waves (i.e. (iiti) decreases with z), and negative for 

dissipative waves (i.e.(G) increases with z). 
An approximate value of (G) at the bed (z = zh) may be found from the kinematic 

boundary condition at the bottom (v%,, = -ii&lax, where the subscript b indicates near- 
bed values and d is the ‘still-water depth), as suggested in (Putrevu and Svendsen, 1993)) 
even though these authors do not actually evaluate the (W) term. The procedure, illustrated 
in Fig. 2, consists in calculating (fi+),,=,, from the corresponding tit, and tit, values: 

fib = VWb ( t ) (2Oa) 

where Verb(t) is the horizontal component of the near-bed orbital velocity at the bottom, 
given by linear theory: 

UH 
V,.?rb(t) =-os(ut) 

2smh( Hz) 
(21) 

and u = \lgktanh( kh) is the angular wave frequency. 
According to this model, it is easily found that 

ad 
(22) 

which is seen to coincide with the near-bed value for (W) given by (De Vriend and Kitou, 

1990a). 
An alternative expression for (M) at the top of the bottom boundary layer (z = zb) may 

be obtained from the boundary layer streaming solution over a horizontal bottom (see e.g. 
Phillips, 1977, p. 55): 
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(as),,,,) = -+%(-J (23) 

where X: is the wavenumber, 6 = (2 v/r) “’ is a measure of the boundary layer thickness, 
and v is the molecular viscosity. This (6%) CZ=zb) value has been used e.g. in (Putrevu and 
Svendsen, 1993) using an eddy viscosity coefficient vt instead of the v value for laminar 

flow. Expression (22) has been preferred in the context of this paper because it explicitly 
includes bottom slope effects and does not need to define and calculate v, (or v) . 

Upon substitution of (22) into ( 19), an approximate expression describing the vertical 
distribution of (a%) in the case of irrotational wave motion is obtained: 

(24) 

This equation is, though similar, essentially different from the one presented in De Vriend 

and Kitou ( 1990a), given by Eq. ( 1) in this paper. The reason for this discrepancy may be 
ascribed to the different methodologies applied in the derivation of (i%): Eq. (24) has 
been derived from identity ( 16), after assuming irrotational wave motion and invoking 
linear theory - to evaluate (O*), (G*), and the near-bed value of (W) - whereas Eq. 
( 1) was obtained by calculating the wave velocity components fi and i+ from a velocity 
potential c$, which was found from a first-order perturbation for mild-sloping bottom of the 
horizontal-bottom linear-wave solution. These two equations, (24) and ( 1) , however, may 
easily be seen to coincide in the shallow-water approximation. In this case (kh + 0)) the 
resulting distribution of (iN> may be written as follows: 

(fig)= _(-E)?&;[g-(-.E)E](y) (25) 

The expression proposed in Deigaard and Fredsae ( 1989) to evaluate (W) for dissipative 
breaking waves - given by Eq. (3) in this paper - may be in turn considered a particular 
case of IEq. (25) if the following two assumptions are made: 
- horizontal bottom (M/ax = 0) 
- negligible horizontal variations of mean water level (ah/& = 0) 

In the: following an attempt is made to give approximate estimates of the vertical distri- 
bution omf (G) for several simplified situations: 

3.1. No,n-dissipative water waves 

3.1.1. Horizontal bottom. According to (22) (6%~) is, in this case, zero at the bottom. If 
it is further assumed that averaged wave properties do not vary in the x-direction (i.e. wave 
energy dissipation is neglected), Eq. (24) gives directly (6%) = 0 at any z-level, which is 
the well-known outcome from irrotational wave theories over a horizontal bed. 

3.1.2. Sloping bottom. From the kinematic boundary conditions at the free surface and at 
the bottom, Battjes ( 1968) showed that wave fronts generally exhibit a vertical curvature 
whenever waves propagate over a sloping bottom (see Fig. 3). The vertical variation of the 
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Waves 

Fig. 3. Vertical curvature of wave fronts over a sloping bottom (after Battjes, 1968). 

wave front can be approximated, in this case, by a circle with a linear variation with depth 
of the corresponding angle (Y (from 0 at the mean free surface to /3 at the bottom). This 

kinematic description already allows an evaluation of the (fiti)-correlation, as suggested 
by (Svendsen and Lorenz, 1989; appendix), which, though different from zero, is not the 
complete one. The reason is that other effects, such as shoaling, are not fully included in 
this simple kinematic description. The general expression (24) can be further elaborated 
for this case applying the energy flux conservation law. 

For simplicity, shallow water conditions will be assumed: 

G=l (26a) 

c,=6 (26b) 

in which C, is the group velocity of the wave train and G has already been defined. The 

conservation of the oscillatory energy flux can then be written as: 

from which it is easy to obtain 

ClE 1 Eah _ ---- 
%- 2hax 

(27) 

(28) 

Substituting (28) into the expression for the vertical distribution of (a%) in the shallow- 
water approximation (24)) it yields: 

(29) 

The resulting vertical distribution of (a@), assuming ad/ax = ah/ax (which seems quite 
reasonable since no large gradients in mean water level (7) are expected for non-dissipative 
waves), is 

(30) 

and is shown in Fig. 4. This result could also be obtained from ( 1) as shallow water 
conditions have been assumed. 
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Waves 

Fig. 4. Vertical distribution of (0%) in the case of non-dissipative waves propagating over a sloping bottom. 

3.2. Dissipative water waves 

In this case, where wave amplitude gradients become important, the vertical distribution 
of (Ofi), is given again by the already derived Eq. (24) : 

The only other expression presently available to evaluate (ii%%} for the case of dissipative 
breaking waves was proposed in Deigaard and Fredsoe ( 1989)) and is given by Eq. (3) in 
this paper: 

This Iequation, derived for shallow-water waves ( G = 1) propagating over a horizontal 
bottom (ad/&= 0) and neglecting mean water level variations (S/ax = 0), may be also 
considered a particular case of the general expression (24). The resulting vertical distri- 
bution of (CS%) for this case is shown in Fig. 5. 

However, sloping bottom effects and mean water level variations can be important in the 

calculation of (UB), and a more general expression like (24) should be preferred when 
evaluating (G). In the general case of uneven bottom topography, the present formulation 
(24) differs from that presented by Deigaard and Fredsoe, given by Eq. (3)) in three main 
aspects (see also Fig. 6 for a comparison) : 

Waves 

Fig. 5. Vertical distribution of (ii+) in the case of dissipative waves propagating over a horizontal bottom. 
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(a> (b) 
Fig. 6. Comparison of vertical distributions of (a\?) in the case of dissipative waves propagating over a sloping 

bottom: (a) Deigaard and Fredsoe ( 1989) model; (b) present model. 

(i) Eq. (3) has been derived for long waves in shallow water, thereby neglecting vertical 
variations of the orbital (wave) velocity field; Eq. (24) accounts for these variations through 
the parameter G. 

(ii) Eq. (3) assumes a zero value of (6%) at the bed - as it was derived for a horizontal 
bottom - while the present model starts from non-zero values of (W) due to bed slope 
effects - see Eq. (22) and the non-zero values of (ati) at the bed suggested by e.g. 
Svendsen and Lorenz ( 1989)) De Vriend and Kitou ( 1990a) and Putrevu and Svendsen 

(1993). 
(iii) The vertical variation of (W) is, according to Eq. (3)) 

a(w) 1 aE -=__ - - 
a2 [ 01 2h ax p 

(31) 

and according to Eq. (24)) assuming shallow-water waves (G = 1) - see also Eq. (25), 

(32) 

Although identical in the case of horizontal bottom and negligible mean water level varia- 
tions (ah/ax = 0)) these two expressions are different otherwise. Notice that the effects of 
sloping bottom and mean water level are explicitly included in Eq. (32). For decreasing 
water depth (ah/&x < 0)) for instance, the present model, given by Eq. (32), predicts a 
smaller vertical variation of (afit> than Eq. ( 3 1) , which, although derived for a horizontal 
bed, is also applied for sloping bottom cases. 

The (6%) distribution proposed in Deigaard and Fredsoe ( 1989) for bottom boundary 
layer dissipation - given by Eq. (2) in this paper - cannot be compared to Eq. (24). The 
reason is that all the argumentation behind Eq. (24) makes extensive use of linear wave 
theory disregarding the bottom boundary layer and its effects. 

It should be finally remarked that all these expressions have been derived assuming 
irrotational wave motion, which is not fully consistent with the dissipative character of the 
waves. 
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4. Rotational wave motion 

In the presence of depth-varying currents, wave motion is no longer irrotational, since, 
as will be shown below, there exists in general a vorticity transfer from the mean (current) 
motion to the oscillatory (wave) motion. In this case, the vertical distribution of (W) is 
governNed by Eq. ( 16) : 

; (ati) =(%3) -; [; ((ii”) - (@))I 
in whit h vorticity-induced effects appear explicitly in the (G&j) term. 

The (scahr) oscillatory vorticity (3 may be obtained from the vorticity transport equation, 
which reads, ignoring turbulent interactions, 

or, upon substitution of definitions (6) and (9), 

(34) 

In the following an attempt is made to estimate the D distribution, and thus, (tiiro) and 
(fiti), for a simplified situation. The following assumptions, corresponding to the case of a 
horizontal wave-current flume, are made: 

- Horizontal bottom 
- Uniform mean flow in the x-direction (i.e. W/ax = 0, bin/& = 0) 
- Stationary current field (i.e. NT/at = 0, a0lat = 0) 

Notice that these assumptions also imply that the mean vertical velocity W is zero 
everywhere. In this situation, Eq. (34) yields 

ail a5 _a6 _an _a6 
$+u-g+u&+cq&+w-g=o (35) 

and, after some rearrangements, 

aGl 2 

__$+(u+fi) ~+&L -fiau 

az az2 
(36) 

In a frame of reference (x’,z} moving with the current velocity U(x’ =n - Ut), this 
equation will read 

a6 _a6 _a6 _a9 
a,+ug+w~= -waz’ 

or, in terms of the total time-derivative, DIDt = alat +ii( a/ax’) + ti( a/az), 

(37) 

(38) 
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This equation indicates that in the presence of an ambient current field U(z), the wave 
(oscillatory) motion will remain irrotational as long as V’(z) = 0, i.e. when the vertical 
current profile is either uniform or linear. Otherwise ( V(z) f 0)) a vorticity transfer will 
take place from the current motion to the wave motion, so that the wave field will no longer 
be irrotational (Peregrine, 1976). 

Numerical solutions of the non-linear Eq. (37) for finite-amplitude waves with an arbi- 
trary depth-varying current field are given in e.g. Dah-ymple ( 1977) and Thomas ( 1990). 

For simplicity, this paper will deal only with solutions for small-amplitude waves, for which 
the non-linear terms in Eq. (37) may be disregarded to give 

acs -= _+ _mu(Z) 

at 
(39) 

It can easily be shown (Peregrine, 1976) that this equation, together with the continuity 
equation ( 14) and the definition of oscillatory vorticity B ( 1 Ob) , applied to simple harmonic 
wave motion, leads to the Rayleigh equation of classical inviscid stability theory for the 
vertical (wave) oscillatory component vim = ti,cos( k.x - ot) : 

(40) 

for which analytical solutions only exist when V(z) = 0. Numerical solutions for an oth- 

erwise arbitrary current velocity profile U(z) may be found in e.g. Peregrine ( 1976) and 
Thomas (1981). 

Eq. (39) indicates that the rate of variation of 5 is proportional to the vertical velocity 
%, and its sign depends on the sign of U”, i.e. waves following or opposing current (see 
Fig. 7). According to this simple interpretation of Eq. (39)) and assuming quasi-elliptic 
orbital paths for the fluid particles in the new frame of reference, for the waves following 
current case (Fig. 7a) (5 turns out to be positive in the upper half of the cycle (with positive 
horizontal orbital velocities) and negative in the lower half (with negative horizontal orbital 
velocities). For the waves opposing current case (Fig. 7b) ~2 has opposite signs. 

The quantity (GG), needed to estimate the (fiti) distribution, given by Eq. ( 16), may 
easily be shown to be zero in this case since iQ and 5 appear to be 90” out of phase to the 
leading order of approximation. The (E&j) term can also be obtained from Eq. (39) 
multiplied by 6: 

_a&.3 _ _a=u 
“at= -““az’ 

from which, after some rearrangements, 

(41) 

(42) 

Assuming stationary conditions for combined wave-current motion, it follows immedi- 
ately, after time-averaging: 

(43) 
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c2 
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lb) 
Fig. 7. Variation of 6~ and 13 during one wave cycle for small-amplitude waves: (a) Waves following current, (b) 

Waves opposing current. 

The vertical distribution of (W), given by Eq. ( 16), will thus read for this case: 

from which, assuming (t.W) to be zero at the (horizontal) bed, and invoking linear wave 
theory (see Jonsson, 1990 for a discussion), it follows, after vertical integration, 

(45) 

This expression is consistent with Eq. (24) obtained for irrotational waves. This is not 
surprising considering that wave properties, viz. (a’) and (C’), have been evaluated using 

linear wave theory, which is the same irrotational model used in the previous section. 

5. Preliminary consequences of the presented (fiti) distribution 

The vertical distribution of mean shear stresses (7) (associated with viscous and/or 
turbulent effects) can be found from the time-averaged horizontal momentum equations 
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after assuming a given mean pressure distribution (usually, (p) = (P,,) -p(%“), where 
@,,) is the mean hydrostatic pressure). For simplicity, only a simplified cross-shore momen- 
tum balance equation will be here considered (see e.g. Svendsen, 1984 for the assumptions 
and motivation of this equation) : 

a (G*) - - -g$)+; ((ii’)- (iej’)) +; (is) ( 1 az P 
(46) 

which shows the vertical variation of the mean shear stress (r,,) in the (x,z) vertical plane. 
As already mentioned before, the (W) contribution has been, until very recently, 

neglected throughout the water column except in the bottom boundary layer, in which it led 
to the streaming solution (Longuet-Higgins, 1953). The relevance of the (ati) contribution 
in the vertical distribution of (r,,) can be easily assessed after substitution of identity ( 16) 
into Eq. (46) : 

(47) 

Since the (86) term will be, in general, unknown- it depends on the vertical distribution 
of the current velocity - it may be set to zero as a first approximation, in which case Eq. 
(47) would read 

(48) 

It may thus be seen that the (C)-term first effect is to halve the normal wave stress 

contribution to (T,,). These stresses are usually small compared to g( a( 7) /a~) inside the 
surf zone (Svendsen and Lorenz, 1989) but that is not necessarily the case outside the 
breaker region (Putrevu and Svendsen, 1993). This means that the (C) contribution, and 
therefore the need to calculate it, is expected to be more significant in areas in which mean 
water level gradients do not dominate the momentum balance equation. 

6. Summary and conclusions 

An alternative equation to evaluate (us) has been derived from the definition of oscil- 
latory vorticity. This equation has been further elaborated for the case of h-rotational wave 
motion making use of linear wave theory. The obtained results coincide or degenerate into 
previously presented expressions for irrotational wave motion (shallow-water approxima- 
tion) over a sloping bottom (De Vriend and Kitou, 1990a) and surf-zone breaking waves 
over a horizontal bottom (Deigaard and Fredsoe, 1989). 

The near-bed value of (tW) , starting point to calculate the vertical distribution of ( W%), 

has been obtained by a very simplistic kinematic argument. Further elaborations of the 
proposed equations should include a more accurate treatment of the bottom boundary layer 
and its effects. 

For the case of rotational wave motion the general equation has been particularized using 
a set of simplifying assumptions that correspond to a horizontal wave-current flume. The 
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reason is that it is expected that data accurate and detailed enough to test this kind of 
equations can only be obtained with this type of flume (see e.g. the LIP-13G data set 
described in Luth et al. ( 1994). 

The -proposed expressions, though not an alternative wave theory, allow to calculate the 
effective (wave) shear stress (uw) in terms of the effective (wave) normal stresses, (ti”) 
and (w’), and the oscillatory vorticity 9. This kind of expression highlights the relative 

importance of the various physical mechanisms contributing to (Bw) . The obtained expres- 
sions can also be used with ease for standard validation test cases. They can also be employed 
in the time-averaged momentum balance equations in which they play a fundamental role 
at least from a qualitative standpoint (i.e. to achieve consistency). Ongoing research there- 
fore includes applying the new (iii+) equation to wave-current interaction and wave- 
induced circulation problems. 
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