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Linear instability of two-dimensional wave fields and its concurrent evolution in
time is here investigated by means of the Alber equation for narrow-banded random
surface waves in deep water subject to inhomogeneous disturbances. The probability
of freak waves in the context of these simulations is also discussed. The instability
is first studied for the symmetric Lorentz spectrum, and continued for the realistic
asymmetric Joint North Sea Wave Project (JONSWAP) spectrum of ocean waves
with variable directional spreading and steepness. It is found that instability depends
on the directional spreading and parameters α and γ of the JONSWAP spectrum,
where α and γ are the energy scale and the peak enhancement factor, respectively.
Both influence the mean steepness of waves with such a spectrum, although in
different ways. Specifically, if the instability stops as a result of the directional
spreading, increase of the steepness by increasing α or γ can reactivate it. A criterion
for the instability is suggested as a dimensionless ‘width parameter’, Π . For the
unstable conditions, long-time evolution is simulated by integrating the Alber equation
numerically. Recurrent evolution is obtained, which is a stochastic counterpart of
the Fermi–Pasta–Ulam recurrence obtained for the cubic Schrödinger equation. This
recurrence enables us to study the probability of freak waves, and the results are
compared to the values given by the Rayleigh distribution. Moreover, it is found that
stability–instability transition, the most unstable mode, recurrence duration and freak
wave probability depend solely on the dimensionless ‘width parameter’, Π .

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
The deterministic nonlinear evolution in time t and in space x= (x1, x2) of an ocean

wave field with a narrow spectral band is governed by the cubic Schrödinger equation
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Homogeneous
Gaussian Yes No

Yes Pierson (1955) Alber (1978)
No Longuet-Higgins (1976) Crawford, Saffman & Yuen (1980)

TABLE 1. Various models for random ocean wave fields.

(see Zakharov 1968):
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where A(x, t) is the complex amplitude envelope, centred around the carrier
wavenumber k0 = (k0, 0), and related to the free-surface elevation η(x, t) by

2η(x, t)= A(x, t) exp[i(k0x1 −
√

gk0 t)] + ∗. (1.2)

In the above and elsewhere, g is the acceleration due to gravity and ∗ stands for the
complex conjugate. It is generally assumed that (1.1) and (1.2) describe the evolution
also when A(x, t) and η(x, t) are random functions.

Indeed, Longuet-Higgins (1976) and Alber (1978) have used (1.1) as their starting
point for the formulation of two rather different stochastic evolution equations.
Longuet-Higgins assumed that the wave field is a homogeneous and nearly Gaussian
random process; whereas Alber enabled the random process to be inhomogeneous,
but required Gaussianity. To somewhat clarify the above terminology, we define the
two-point space correlation function

ρ(x, r, t)= 〈A(x+ 1
2r, t)A∗(x− 1

2r, t)〉, (1.3)

where 〈 〉 denotes the ensemble average and r is the spacing. We further mention a
fourth-order average, which appears during the derivations:

f (x, r, t)= 〈A2(x+ 1
2r, t)A∗(x+ 1

2r, t)A∗(x− 1
2r, t)

−A2(x− 1
2r, t)A∗(x− 1

2r, t)A∗(x+ 1
2r, t)〉. (1.4)

One should note that: (i) for a homogeneous process,

ρh = ρh(r, t) (1.5)

is independent of x; and (ii) for a nearly Gaussian process, (1.4) reduces to

f (x, r, t)= 2ρ(x, r, t)[ρ(x+ 1
2r, 0, t)− ρ(x− 1

2r, 0, t)] + c(x, r, t), (1.6)

where c(x, r, t) is the fourth-order cumulant, assumed to be small under the
assumption of weak non-Gaussianity or zero under the assumption of strict
Gaussianity. It is also important to mention that, for a homogeneous process, (1.6)
becomes

fh(r, t)= ch(r, t), (1.7)

which has to be estimated by using sixth-order averages and a closure given by the
assumption of vanishing sixth-order cumulants. We summarize the four possibilities in
table 1.
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From table 1, it is clear that Crawford et al. (1980) provide the more general option,
but their result is so cumbersome that it has so far never been used. Pierson’s (1955)
model turns out to be stationary also and disregards the contribution of nonlinear
interactions altogether.

Longuet-Higgins’s (1976) result is actually the narrow-band limit of the Hasselmann
(1962) kinetic equation. So far the kinetic equation is the most frequently used in
stochastic models, but its time scale is proportional to ε−4, where ε is a typical small
wave steepness.

Alber (1978) used his equation to study the instability of a homogeneous wave field
to inhomogeneous disturbances. Alber’s findings are actually the stochastic counterpart
of the well-known deterministic Benjamin–Feir instability, which can be described
with the cubic Schrödinger equation. The growth rates of the inhomogeneous
instabilities are proportional to ε2, reflecting the fact that the time scale of the Alber
equation is proportional to ε−2. Although Alber does not state it explicitly, the choice
of his initial small inhomogeneous disturbances discloses a certain correlation between
their phases and those of the homogeneous base state.

From the cubic Schrödinger equation, it is known that the Benjamin–Feir instability
leads not to a permanent end state, but to an unsteady series of modulation and
demodulation cycles, called the Fermi–Pasta–Ulam recurrence phenomenon (see Yuen
& Ferguson 1978a,b; Janssen 1981; Stiassnie & Kroszynski 1982). Stiassnie, Regev
& Agnon (2008) solved the Alber equation in one spatial dimension numerically and
showed that a stochastic parallel to the Fermi–Pasta–Ulam recurrence exists. Their
initial homogeneous wave fields have simple one-dimensional spectra of three different
types: square, Lorentz and Gaussian. This stochastic recurrence enabled them to study
the probability of waves that are higher than twice or three times the significant
wave height, which are usually called freak waves (see Kharif & Pelinovsky 2003;
Onorato et al. 2004; Mori et al. 2007). This classification is related to the work
of Longuet-Higgins (1952), who showed that the wave heights in a wave field
with a narrow spectrum, within the theory of linear waves, are Rayleigh-distributed.
From the Rayleigh distribution one can calculate that the probabilities for waves
that are higher than twice or three times the significant wave height are 3 × 10−4

and 10−8, respectively. The latter is such an extremely rare event that it would
require an unrealistically long period of approximately 30 years to encounter such
an exceptional freak wave (Regev et al. 2008). Moreover, Regev et al. (2008) used the
one-dimensional Alber equation to study the probability of freak waves initialized by a
Gaussian spectrum.

The aforementioned findings are limited to unidirectional wave fields. Real sea
states, however, are characterized by wave components propagating along different
directions. Numerical (e.g. Onorato, Osborne & Serio 2002; Socquet-Juglard et al.
2005; Gramstad & Trulsen 2007; Eliasson & Shukla 2010; Toffoli et al. 2010b)
and experimental (Onorato et al. 2009b; Waseda, Kinoshita & Tamura 2009) studies
have revealed that wave directional spreading reduces the effect of instability and
concurrently reduces the probability of occurrence of freak waves. Although for one-
dimensional wave trains the qualitative features of this instability are well established
(Babanin et al. 2010, 2011b), for the directional wave fields quantitative guidance
exists, but is much less certain (Babanin 2011; Babanin et al. 2011a).

Based on the Alber equation, the present study shows that more realistic Joint North
Sea Wave Project (JONSWAP) spectra of ocean waves with directional distributions
can actually reproduce a stochastic recurrence that is parallel to Fermi–Pasta–Ulam
recurrence and the conditions for its occurrence are also specified. The periodicity
of the stochastic properties in space, and their recurring structure in time, render
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the calculation of extreme conditions such as the occurrence of freak waves
straightforward, by taking one recurrence cycle to establish the probability density
function (p.d.f.) and then calculating the probability of the freak waves.

This paper is organized as follows. The mathematical formulation and background
are given in § 2. Linear stability analysis and long-time stochastic recurrence are
discussed in §§ 3 and 4, respectively. The probability of freak waves is calculated in
§ 5. The main findings are summarized and discussed in § 6. More technical aspects
such as the derivation of invariants of motion (which help to control the accuracy
of the solutions) and the numerical approach are deferred to appendices A and B.
Moreover, the details of the approximate solution of (2.4) for general spectra, which is
called a ‘general method’, and dimensional considerations leading to the definition of
the width parameter, Π , are shown in appendices C and D, respectively.

2. Formulation and background
The Alber (1978) equation for narrow-banded random surface waves on infinitely

deep water can be expressed as
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Following Landsberg (1955), the correlation function, for a homogeneous sea, ρh,

depends only on r, and is related to the energy spectrum S(k) through

ρh(r)=
∫ ∞
−∞

S(k) exp[i(k− k0) · r] dk. (2.2)

Note that any ρh(r) is a trivial solution of the Alber equation (2.1).
In order to study the instability of homogeneous seas to inhomogeneous

disturbances, we consider a solution of the form:

ρ(x, r, t)= ρh(r)+ δR(r)
{
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where δ = o(1) is a dimensionless inhomogeneity parameter, R(0) is real, (p, q) is the
wavenumber of the disturbance, with p > 0 and q > 0, and Ω is its frequency. To
obtain instability, Ω (I) = Im{Ω} must be positive. Substituting (2.3) into (2.1), and
neglecting terms of order δ2, leads to a linear first-order partial differential equation
for R(r), which has a straightforward solution. For r = 0 this solution produces the
following dispersion relation for the disturbance:
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, (2.4)

which is independent of the choice of R(r).
Equation (2.3) with Ω given by (2.4) constitutes the linear stability analysis of ρh(r),

which by its nature is only valid for short times. Its main contribution is (p(max), q(max)),
i.e. the wavenumber of the disturbance for which the growth rate Ω (I) obtains its
maximum. To study the long-time evolution of the Alber equation’s solutions (2.1),
one needs an elaborate numerical solver in a five-dimensional space (x1, x2, r1, r2, t).
The numerical method to integrate the Alber equation can be found in appendix A.
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Assuming that the long-time evolution of the solution (2.3) maintains its periodicity
in x, one can show that the Alber equation (2.1) has the following invariants of time:
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where all integrals in (2.5)–(2.7) are over the two-dimensional domain x1 ∈ [0, 2π/p],
x2 ∈ [0, 2π/q]. See appendix B for details of the derivations of these invariants.

3. Linear stability analysis
Any further progress with (2.4) requires that S(k) is specified. Here, we initially

study the instability of the ocean surface with symmetric Lorentz spectrum and
continue with the more realistic asymmetric ocean-wave JONSWAP spectrum.

3.1. Lorentz spectrum
The Lorentz spectrum is given by Crawford et al. (1980) as

S(k)= S2(k1, k2)= W1W2a2
0

2π2[(k1 − k0)
2+W2

1 ][k2
2 +W2

2 ]
, (3.1)

where a0 is the wave amplitude and a2
0/2 is the energy density; (W1,W2) are measures

of the spectral width in directions parallel and perpendicular to the carrier, respectively.
Substituting (3.1) into (2.4), and following Crawford et al. (1980), the growth rate of
unstable disturbances is given by
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The one-dimensional counterparts of (3.1) and (3.2) are

S(k)= S1(k1)= W1a2
0
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, (3.3a)
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From (3.3b) and the condition of instability Ω (I)
1 > 0, one can see that (3.3a) is stable

for any p, if

W1

k0
>
√

2a0k0. (3.4)

Note that a0k0 is the steepness of the wave with wavenumber k0 and amplitude a0.
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The point of maximum growth rate is
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and the maximum growth rate itself is

Ω
(max)
1 =Ω (I)

1 (p
(max)
1 )= p(max)

1

4

√
g

k0


√√√√2a2

0k2
0 −

1
4

(
p(max)

1

k0

)2

− W1

k0

 . (3.5b)

For the two-dimensional Lorentz spectrum (3.1), one can prove that the most unstable
mode is

(p(max)
2 , q(max)

2 )= (p(max)
1 , 0) (3.6a)

and that its growth rate is

Ω
(max)
2 =Ω (max)

1 , (3.6b)

independent of W2.
The special features of the Lorentz spectrum (3.1) are its symmetry and the fact that

it enables integration of (2.4) analytically.

3.2. Unidirectional JONSWAP spectrum
A unidirectional JONSWAP spectrum as a function of wavenumber (see Komen et al.
1994; Holthuijsen 2007) is given by

S(k1)= α

2k3
1
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(−5k2

0

4k2
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γ
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[
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where γ and α are the peak enhancement factor and the energy scale of the spectrum,
respectively, and σ = 0.08 defines the peak width. For the total energy density of any
spectrum, we have (Dysthe et al. 2003; Stiassnie et al. 2008)

a2
0/2≡ (ε/k0)

2 /2≡
∫

S(k) dk. (3.7b)

In order to find the maximum growth rate and the point of maximum growth of
this spectrum, (3.7a) is substituted into (2.4). However, since (2.4) cannot be solved
analytically for the JONSWAP spectrum, it is necessary to seek an approximate
solution. To this end, we replace the original spectrum by a sum of weighted Dirac
functions and replace (2.4) by a high-order (up to 70) algebraic equation, seeking the
root with the largest imaginary contribution. The details of this rather ‘general method’
can be found in appendix C. Moreover, its validity is demonstrated in figure 1 using
the Lorentz spectrum, in which the analytical expressions (3.5a) and (3.5b), given by
the solid line, are compared with the approximate results obtained by the ‘general
method’ and marked by dots. The results in figure 1 are given in dimensionless
variables, where ε = a0k0 is the steepness, W̃1 = W1/εk0, P̃(max)

1 = p(max)
1 /εk0 and

Ω̃
(max)
1 = Ω (max)

1 /ε2
√

gk0. We have to emphasize that the main difference between
the JONSWAP spectrum (3.7a) and the Lorentz spectrum (3.3a) is that for the Lorentz
spectrum one can integrate (2.4) analytically whereas for the JONSWAP spectrum one
cannot.
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FIGURE 1. Validation of the ‘general method’ (• • •) against the analytical solution (——)
for a Lorentz spectrum: (a) most unstable mode and (b) its growth rate.

For a JONSWAP spectrum, simple dimensional analysis considerations by applying
the Buckingham theorem (Buckingham 1914) led us to the conclusions that
P̃(max)

1 = p(max)
1 /εk0 and Ω̃ (max)

1 =Ω (max)
1 /ε2

√
gk0 are functions of a dimensionless ‘width

parameter’

Π1 = ε

αγ
. (3.8)

The details of the dimensional analysis approach, which was inspired by the
Benjamin–Feir index (BFI) as introduced by Onorato et al. (2001) and Janssen
(2003), can be found in appendix D. It has to be mentioned that our dimensionless
width parameter shows the detailed meaning of the ratio of wave steepness to wave
bandwidth in the spectral context.

The width parameter Π1 is related to BFI, but is not another form of BFI. The
latter had been introduced for quasi-monochromatic wave trains, being the ratio of
steepness to bandwidth, which are unambiguous properties in such trains. They are not
unambiguous for wave fields with continuous spectrum.

In a JONSWAP spectrum, both α and γ are connected with both steepness and
bandwidth. Moreover, neither of them is constant in evolving wave spectra and, even
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on average, any change to α is accompanied by a change to γ (e.g. Babanin &
Soloviev 1998a; Onorato et al. 2003).

For the spectrum of ocean waves, the JONSWAP spectrum being the most popular
parametrization, the same steepness can be achieved either by varying α and keeping
γ constant, or vice versa. This same steepness, therefore, has different implications for
the spectral bandwidth and for modulational instability. If we increase α, then to keep
the steepness constant we should decrease γ . This means that spectra become broader
and this leads to corresponding implications for the instability of nonlinear groups
– i.e. the growth rates of most unstable modes are expected to decrease or even be
suppressed. If we increase γ , then to keep the steepness constant we should decrease
α. Such a combination will instigate rapid narrowing of the spectral bandwidth of
dominant waves, which we expect to be associated with their instability, and which
is the most important outcome in the practical sense, e.g. for wave breaking or freak
wave probability.

Thus, separation of the relative contributions of α and γ into the total steepness
and the characteristic bandwidth of waves with continuous spectrum identify important
physical differences between wave fields with full spectrum and quasi-monochromatic
wave trains. It does not deny the previous analogies in terms of BFI, but expands them
and is an important new contribution of this paper.

Figure 2 shows P̃(max)
1 and Ω̃ (max)

1 as functions of Π1 obtained for the unidirectional
JONSWAP spectrum by using the ‘general method’ (marked by dots), as well as the
best linear fit (for P̃(max)

1 and Ω̃ (max)
1 ).

The equations for the straight lines in figure 2 are

P̃(max)
1 = 2.313− 0.976Π1, (3.9a)

Ω̃
(max)
1 = 0.572− 0.557Π1. (3.9b)

From (3.9b) it is clearly seen that JONSWAP spectra are stable to inhomogeneous
disturbance when Π1 > 1, because for this condition Ω̃ (max)

1 is negative.

3.3. JONSWAP spectrum with a directional distribution
Directional wave fields can be conveniently represented by a JONSWAP spectrum
(3.7a) multiplied by the directional spreading D(θ) = Adcosnθ , |θ | 6 π/2, where θ is
the angle of the directional distribution. Here, Ad is the inverse normalized directional
spectral width, which was defined according to Babanin & Soloviev (1987, 1998b) as

Ad ( f )−1 =
∫ π
−π

K( f , θ) dθ, (3.10a)

where K( f , θ) is the normalized directional spectrum

K( f , θmax)= 1, (3.10b)

i.e. higher values of Ad correspond to narrower directional distributions. The
inverse width Ad is a convenient property to use as a proxy of the directional
spread because there is an extensive parametrization available for its dependences
(Babanin & Soloviev 1987, 1998b) and it is unambiguously analytically connected
with other existing directional-spread characteristics used in the literature, even for
bimodal directional spectra. For example, for the normalized spectrum K( f , θ) =
cosn(f )(θ − θmax), this analytical connection is

Ad = Γ (1+ 0.5n)√
πΓ (0.5+ 0.5n)

, (3.11a)
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FIGURE 2. Results of linear stability analysis for unidirectional JONSWAP spectra as a
function of the ‘width parameter’ Π1: (a) most unstable mode and (b) its growth rate.

and transformed into the wave vector plane (k1, k2), the JONSWAP spectrum with
such directional distribution is

S(k)= αAdkn
1

2 (k2
1 + k2

2)
2+0.5n exp

( −5k2
0

4(k2
1 + k2

2)

)
γ

exp

 −1
2σ2

 (k2
1+k2

2)
0.25

k0.5
0

−1

2

.

(3.11b)

Moreover, this spectrum is a function of four parameters, k0, α, γ and n, which
are the carrier wavenumber, the energy scale, the peak enhancement factor and the
degree of the directional spreading, respectively; where, the higher the value of n,
the narrower the spectrum. Note that Ad and n are unambiguously connected through
(3.11a).

Furthermore, we assume without loss of generality that the maximum growth
rate occurs for q = 0, for any narrow spectrum with carrier (k0, 0); see (3.6a).
This assumption simplifies (2.4), as well as (2.1), substantially. Following a
similar procedure to that outlined in the previous section, we obtained that,
for the JONSWAP spectrum with a directional distribution, P̃(max)

2 = p(max)
2 /εk0

and Ω̃
(max)
2 = Ω (max)

2 /ε2
√

gk0 are functions of a slightly corrected dimensionless
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‘width parameter’,

Π2 = ε

αγ
+ β

εAd
with β� 1. (3.12)

Note that (ε/αγ ) and (1/εAd) are the dimensionless scaled widths in the peak
direction and the transverse direction, respectively (see appendix D for the details
of these dimensionless ‘width parameters’). The corrected width parameter Π2 is a
convenient measure to use, owing to the fact that the directional property Ad employed
by the Π2 formulation, as well as the parameters of the JONSWAP spectrum,
are characteristics of the wave directional spectrum well established experimentally
and in field observations. Comprehensive parametrizations for this property are
available for the wave spectrum and at all stages of wave development (Babanin &
Soloviev 1987, 1998b), and therefore at any stage Π2 can be expressed through both
observation-based one-dimensional wave spectra and directional wave spectra.

Other versions of the parameter, which define the transition from the stable to
unstable conditions for two-dimensional wave fields, are also available. Babanin et al.
(2010) introduced ‘directional BFI’ in the same spectral terms as Π2 here and
extensively used it for investigations, tested and quantified experimentally (Babanin
et al. 2011a,b). Another version of BFI that includes the directional effect has been
introduced by Mori, Onorato & Janssen (2011) as

BFI2D = ε√
δ2
ω + 1

2α2δ
2
θ

, (3.13)

where ε, δω and δθ are the steepness, frequency bandwidth and directional bandwidth,
respectively, while α2 is a constant.

Figure 3 gives P̃(max)
2 and Ω̃

(max)
2 as functions of Π2 for about 120 different

combinations of ε, α, γ and n (marked by dots), as well as the best linear fit
(for P̃(max)

2 and Ω̃ (max)
2 ), which gave β = 0.0256. The equations for the straight lines in

figure 3 are

P̃(max)
2 = 2.355− 0.974Π2, (3.14a)

Ω̃
(max)
2 = 0.571− 0.516Π2. (3.14b)

From (3.14b) it becomes clear that JONSWAP spectra with directional distributions are
stable to inhomogeneous disturbance when Π2 > 1.1 because for this condition Ω̃ (max)

2
is negative.

It appears that the conclusion from two-dimensional Lorentz spectra is different
from the conclusion obtained based on JONSWAP spectra with directional
distributions in terms of dependence on the transverse width of the spectrum. However,
one can easily compare these spectra, namely Lorentz spectra and JONSWAP spectra,
by maintaining that the two spectra have the same total energy and momentum. One
will find that changing the power of the directional distribution of JONSWAP spectra
will change not only the spectral width that is perpendicular to the carrier wave of the
Lorentz spectra, but also the spectral width that is parallel to the carrier wave.

4. Stochastic recurrence
4.1. Recurrence for unidirectional JONSWAP spectrum

The stochastic counterpart of the Fermi–Pasta–Ulam recurrence is studied by
integrating the Alber equation numerically (see details of the numerical scheme in
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FIGURE 3. Results of linear stability analysis for JONSWAP spectra with directional
distributions as a function of the ‘width parameter’ Π2: (a) most unstable mode and (b) its
growth rate.

appendix A). In order to apply the numerical scheme given in (A 5), the initial
value of ρ̃ = k2

0ρ/ε
2 must be given. This initial condition is set by (2.3) and there

are some degrees of freedom, namely, the value of the inhomogeneous disturbance
wavenumber P̃ = p/εk0, the inhomogeneity parameter δ, and the decay R̃(r̃1). In
all our examples, we take δ = 0.1, R̃(r̃1) = ρ̃h(r̃1) = k2

0ρh(r1)/ε
2 as in (2.2) and

P̃(max)
1 = p(max)

1 /εk0 is chosen from the most unstable mode for the unidirectional
JONSWAP spectrum. Note that, for some different choices of P̃ = p/εk0, one can
refer to the work of Stiassnie et al. (2008). In addition, as seen from (2.2), in order
to obtain ρ̃h(r̃1) = k2

0ρh(r1)/ε
2, one has to define a spectrum, and in this case we

use a unidirectional JONSWAP spectrum. However, since (2.2) cannot be integrated
analytically for the JONSWAP spectrum, we, again, replace the spectrum by a sum
of weighted Dirac functions. Moreover, using such spectra, one has to solve the
Alber equation only in three-dimensional space (x1, r1, t), as some of the variables
in (2.1) vanish automatically, which reduces the required computation resources
significantly. As shown in § 3, a unidirectional JONSWAP spectrum is unstable for
‘width parameter’ Π1 < 1. Therefore, we will choose the values of the parameters
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FIGURE 4. Recurrence for unidirectional JONSWAP spectra with γ = 20. Cases (see
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Case α γ ε Π1
(3.8)

P̃(max)
1

(3.9a)
2π/Ω̃ (max)

1
(3.9b)

Numerical
recurrence

time

Peak
enhancement

A 0.010 20 0.13 0.65 1.68 30 27 2.3
B 0.016 20 0.16 0.50 1.83 22 22 3.0
C 0.020 20 0.18 0.45 1.87 20 20 3.2
D 0.025 20 0.20 0.40 1.92 18 19 3.5
E 0.030 20 0.22 0.37 1.95 17 18 3.6
B1 0.016 10 0.13 0.81 1.52 52 37 1.8
B2 0.020 10 0.14 0.70 1.63 35 33 2.0
B3 0.025 10 0.16 0.64 1.69 29 28 2.3
B4 0.030 10 0.18 0.60 1.73 26 26 2.6

TABLE 2. Spectral parameters and evolution features for unidirectional JONSWAP spectra.

of the unidirectional JONSWAP spectra, namely α and γ , so that this condition is
satisfied. To this end, we choose the initial spectra (3.7a), where γ = 20, σ = 0.08
and various values of α = 0.01, 0.016, 0.02, 0.025, 0.03. Note that all of these cases
have the same peak wavenumber of the JONSWAP spectra, that is, k0 = 1.

The results of all these five different unidirectional JONSWAP spectra are shown in
figure 4. Note that ρ̃max(r̃1 = 0) signifies the maximum values of k2

0ρ(r1 = 0)/ε2 within
the interval x̃1 ∈ (0, 2π/P̃(max)

1 ). Here it is plotted as a function of τ̃ = (ε2
√

gk0)t. The
main features of the evolution are summarized in table 2.

From figure 4 and table 2, it is clear that the decrease in the ‘width parameter’ Π1 is
accompanied by an increase in the peak enhancement and a decrease in the numerical
recurrence duration. In addition, the narrower the spectrum, the higher its maximum
growth rate. Therefore, from all five cases, case E has the highest maximum growth
rate while case A has the lowest maximum growth rate. This is also consistent with
figure 4, where case E has the highest maximum correlation function evaluated at
r̃1 = 0. A more general picture of the values of ρ̃(x̃1, 0, τ̃ ) is given in figure 5. It is
clearly seen from the figure that the maximum values are at x̃1 = 0 and x̃1 = 2π/P̃(max)

1 .
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FIGURE 5. Isolines of ρ̃(x̃1, 0, τ̃ )/ρ̃h(0). Each case refers to table 2.

Changing the peak enhancement of the unidirectional JONSWAP spectrum from
γ = 20 to γ = 10 and following a similar procedure to the previous case, while
keeping the same energy scale for four cases, gives the stochastic recurrence as shown
in figure 6. All of the features of figure 6 are similar to those of figure 4 and are
summarized in table 2. For instance, the decrease in the ‘width parameter’ Π1 is
accompanied by an increase in the peak enhancement and a decrease in the numerical
recurrence duration. Moreover, identical dimensionless ‘width parameter’ Π1 gives
the same maximum growth, the same point of maximum, as well as the same peak
enhancement of the recurrence. Furthermore, a more general picture of the values
of ρ̃(x̃1, 0, τ̃ ) is given in figure 7. It is clearly seen there that the maximum values
are at x̃1 = 0 and x̃1 = 2π/P̃(max)

1 , which is similar to figure 5. In addition, looking at
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FIGURE 6. Recurrence for unidirectional JONSWAP spectra with γ = 10 (see table 2).
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FIGURE 7. Isolines of ρ̃(x̃1, 0, τ̃ )/ρ̃h(0). Each case refers to table 2 for γ = 10.

the case A from figure 5 and case B3 in figure 7, one can see that they are almost
the same. This is apparently because the two cases have almost the same value of the
dimensionless ‘width parameter’ Π1.

Now, as has been mentioned in the introduction, real sea states are not unidirectional
but are characterized by wave components propagating along different directions. In
the following section, these kinds of waves will be studied by including different
directional distributions.
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FIGURE 8. Comparison between the solution for unidirectional JONSWAP spectrum (—–)
and a JONSWAP spectrum with degree of directional distribution n = 90 (× × ×). Both
spectra have the same γ = 20 and ε = 0.13 (α = 0.01). The inset shows a segment at higher
resolution.

4.2. Recurrence for JONSWAP spectrum with a directional distribution

Here we show that, whenever the ‘width parameter’ Π2 < 1.1, the Alber equation
yields recurring solutions. Again, in all our calculations, we take δ = 0.1 and
R(r) = ρh(r). Moreover, for the JONSWAP spectrum with a directional distribution,
one has to solve the Alber equation (2.1) in a four-dimensional domain (x1, r1, r2, t),
which requires substantial computing resources. Furthermore, the main purpose of this
section is to show the influence of the directional spreading on the long-time evolution,
where the degrees of the directional distributions are n = 90, 50, 10 and 2, ranging
from fairly narrow to very broad directional distributions. Note, however, that for
practical purposes it is important to show that the results for the initial unidirectional
JONSWAP spectrum as given in (3.7a) with γ = 20, ε = 0.13 (α = 0.01) and k0 = 1
are identical to those of a JONSWAP spectrum as given in (3.11b) with the same
values of parameters and a degree of directional spreading n= 90. The results of these
two cases are shown in figure 8. As one can see, they are hardly distinguishable.

Now, in order to show the influence of the directional spreading on the long-
time evolution, we use the initial spectra as in (3.11b), which share the same
values of γ = 10, ε = 0.126, α = 0.016. The spectra only differ in their angular
spread, having n = 2, 10, 50, and thus the normalization factor as given in (3.11a)
is Ad = 0.64, 1.29 and 2.84, respectively. Moreover, their ‘width parameters’, as
calculated from (3.12) with β = 0.0256, are Π2 = 1.11, 0.95 and 0.86, respectively.
Note that case A3 is stable (see (3.14a)) and therefore the chosen disturbance P̃(max)

2
does not have any particular physical meaning.

The results are shown in figure 9 for ρ̃max(r̃ = 0), which signifies the maximum
values of k2

0ρ(r = 0)/ε2 within the interval x̃1 ∈ (0, 2π/P̃(max)
2 ), as a function of

τ̃ = ε2
√

gk0 t.
As can be seen from figure 9, it clearly demonstrates the recurrent nature of the

solution for the degree of directional spreading n = 10 and 50, which is from fairly
broad directional spread to fairly narrow directional spread. This is in sharp contrast
to the solution for n = 2, which describes a very broad directional spread. Note the
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FIGURE 9. The influence of the directional spread on the variation of the maximum value of
ρ̃ at r̃= 0, as a function of non-dimensional time.

Case n Ad Π2
(3.12)

P̃(max)
2

(3.14a)
2π/Ω̃ (max)

2
(3.14b)

Numerical
recurrence

time

Peak
enhancement

A1 50 2.84 0.86 1.52 49 37 1.77
A2 10 1.29 0.95 1.43 75 44 1.52
A3 2 0.64 1.11 1.28♣ — — —

TABLE 3. Spectral parameters and evolution features for JONSWAP spectra with three
different degrees of the directional distributions n, and α = 0.016, γ = 10, ε = 0.126.
Here Ad is the normalization factor. Note: ♣ indicates the stable condition.

increase of the peak value and the shortening of the recurrence duration as a result of
the decrease in Π2 (see table 3).

A more general picture of the ρ̃(x̃1, 0, τ̃ ) values is given in figure 10. In these plots
the values were shifted along the x̃1 axis so that the maximum values are at x̃1 = 0 and
x̃1 = 2π/P̃(max)

2 . The curves were also slightly smoothed.
Features of the long-time evolution for JONSWAP spectra with directional

distributions are summarized in table 3. Moreover, as seen from table 3, the narrower
the directional distribution, the smaller the value of Π2. This implies that the narrower
the directional spectrum, the more unstable the wave train is. Looking at tables 2
and 3, one can see that the discrepancy between the numerical recurrence time and
2π/Ω̃ (max)

2 increases with increase of Π2.

5. The probability of freak waves
Regev et al. (2008) reported that freak waves may be an essentially inhomogeneous

phenomenon. They occur at isolated places and times. Thus it is of interest to study
their statistics using a model for inhomogeneous seas, i.e. the Alber equation in our
case. As shown in the previous section, the stochastic recurrence enables us to study
the probability of freak waves. This is because the stochastic recurrence can be used
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FIGURE 10. Isolines of ρ̃(x̃1, 0, τ̃ )/ρ̃h(0). Each case refers to figure 9.

to establish the p.d.f. and then to determine the probability of freak waves in a
straightforward fashion. Therefore, following a procedure similar to that in Regev et al.
(2008), one ends up with the following equation for the wave height probability:

P(H/Hrms0 > Ĥ/Hrms0)=
∫

p.d.f.
(
ρ̃

ρ̃h

)
exp

−( Ĥ

Hrms0

)2(
ρ̃h

ρ̃

) d
(
ρ̃

ρ̃h

)
, (5.1)

where p.d.f.(ρ̃/ρ̃h) stands for the p.d.f. of ρ̃(x̃1, r̃1 = 0, τ̃ )/ρ̃h and Hrms0 is the r.m.s.
wave height of the homogeneous sea where H2

rms0 ∝ ρh(r = 0) = ∫ S(k) dk. Therefore,
in order to apply (5.1), one needs to calculate the p.d.f. of ρ̃/ρ̃h, which will be shown
in the following sections. Moreover, in the following two sections, we will show
the probability of freak waves for unidirectional JONSWAP spectra and JONSWAP
spectra with directional distributions.

5.1. Unidirectional JONSWAP spectrum
In order to find the probability function, p.d.f.(ρ̃/ρ̃h), again, we adopted the method
used in Regev et al. (2008). First, more than 100 locations evenly distributed along the
x̃1 axis from 0 to 2π/P̃(max)

1 were taken. Over one recurrence cycle (see figure 4), ρ̃/ρ̃h

was sampled at 100 evenly distributed sampling times, so that more than 10 000 values
of ρ̃(x̃1, 0, τ̃ )/ρ̃h(0) were used to establish p.d.f.(ρ̃/ρ̃h). The isolines of these ρ̃/ρ̃h are
plotted in figure 5 for the above-mentioned five different cases (table 2).

Second, all of the values were arranged from the lowest to the highest and divided
into 100 evenly spaced increments in ρ̃/ρ̃h, for example, from 0.26 to 4 for γ = 20
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FIGURE 11. Probability density function p.d.f.(ρ̃/ρ̃h) (histogram) and probability function
P(ρ̃/ρ̃h) (solid line) as functions of ρ̃/ρ̃h: (a)–(e) cases A–E, respectively.

and from 0.5 to 2.8 for γ = 10. The probability of each increment was calculated as
the number of elements within the increment divided by the total number of values
used. Figure 11 presents the p.d.f. of ρ̃/ρ̃h by a bar diagram (to ease comparison,
the widths of the bins in all bar diagrams are equal) and the probability function (the
probability of obtaining a value smaller than or equal to ρ̃/ρ̃h) is given by the solid
line for the five different cases. From figures 5 and 11 one can see that, for cases D
and E, many bins are activated and that the number of active bins reduces when the
‘width parameter’ Π1 increases as shown in table 2.

The probability function for the wave height given by (5.1) is calculated on the basis
of the known values of p.d.f.(ρ̃/ρ̃h) as shown in figure 11. In figure 12, these wave-
height probabilities for inhomogeneous seas are then compared with the probability
obtained for the homogeneous sea according to the Rayleigh distribution, as in
equation (8) of Regev et al. (2008) or equation (3.5) of Young (1999). In the figure,
probability values of freak waves, that is, the probability for waves with Ĥ > 2.84Hrms0

(i.e. Ĥ > 2Hs), is plotted (note that our Hrms0 and significant wave height Hs are
connected as Hs =

√
2Hrms0). For reference, the inset shows full comparison (starting

from zero wave height) between the probability of the homogeneous sea and the
probability obtained from the Alber equation for case E. As can be seen from the inset,
the probability up to Ĥ > 1.46Hrms0 is greater for the Rayleigh distribution, but after
the intersection point the probability is greater for the results obtained from the Alber
equation. For other cases, namely for cases A, B, C and D, one can obtain that the
intersection values are in the range Ĥ/Hrms0 ∈ (1.46, 1.53). In addition, as one can see
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FIGURE 12. Probability of freak waves (Ĥ/Hrms0 > 2.84; Ĥ > 2Hs) for Rayleigh distribution
(——) and the probability obtained from the Alber equation (see table 2): case A, (©);
case B, (�); case C, (4); case D, (+); and case E, (�). The vertical dashed line
represents (Ĥ/Hrms0 > 4.26; Ĥ > 3Hs). The inset shows the probability function for Rayleigh
distribution (solid line) and case E (dashed line) starting from zero wave height.

from figure 12, case E gives 40 of 10 000 waves being higher than 2.84Hrms0 (≈2Hs),

as opposed to case A where this is about 17 of 10 000, since this case is closer to the
Rayleigh distribution.

Furthermore, as seen from figure 12, the vertical dashed line represents the
probability of waves whose heights are higher than three times the significant wave
height; the probability values increase from 10−8 for the Rayleigh distribution to 10−5

for case A, 5 × 10−5 for case B, 7 × 10−5 for case C, 11 × 10−5 for case D and
13× 10−5 for case E.

It should be mentioned at this stage that the Alber equation, like the kinetic
equation, the Zakharov equation, the nonlinear Schrödinger equation and other
equations that deal with nonlinear evolution of water waves, does not have
a dissipation mechanism and energy-input mechanism. The kinetic equation, for
example, is most broadly employed by wave forecasting models, but is always
combined with terms that represent wind energy input and wave-breaking dissipation,
among others. Therefore, applying the outcomes of the Alber equation to real waves
in the ocean should be done with caution. It is known, both from solutions of the
nonlinear Schrödinger equation with energy sources/sinks added and from experiments,
that instability of wave trains is altered due to such external forcings (e.g. Trulsen &
Dysthe 1992; Galchenko et al. 2012; Onorato & Proment 2012). Moreover, in theory,
the Alber equation and other equations based on higher-order terms in deep water
allow for infinite wave heights to occur. In reality, there is a limit of wave steepness
beyond which the waves will break (Babanin et al. 2010), and this limit indicates
the maximum ratio of individual wave height to the significant wave height of ∼2.0
(Babanin et al. 2011b). Note, however, that this maximum ratio was obtained from a
one-dimensional quasi-monochromatic wave experiment.

Following a similar procedure to determine the probability of freak waves for the
cases with γ = 10, one obtains figure 13. As seen from figure 13 for the unidirectional
JONSWAP spectrum with a peak enhancement γ = 10 with varying energy scale, case
B4 gives 205 out of 105 waves being higher than 2.84Hrms0 (≈2Hs), as opposed to
case B1, where this is about 95 out of 105; the latter case is closer to a Rayleigh
distribution with 31 out of 105. Similarly, the probability of waves whose heights are
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FIGURE 14. Probability density function p.d.f.(ρ̃/ρ̃h) (histogram) and probability function
P(ρ̃/ρ̃h) (solid line) as functions of ρ̃/ρ̃h: (a) case A1 and (b) case A2 of table 3.

higher than three times the significant wave height increases from values of 10−8 for
the Rayleigh distribution to 2 × 10−6 for case B1, 6 × 10−6 for case B2, 11 × 10−6 for
case B3 and 21× 10−6 for case B4. These cases are indicated by a dashed vertical line.

5.2. JONSWAP spectrum with a directional distribution
Following a similar procedure to that used to determine the p.d.f. in the unidirectional
case, the p.d.f.s for the JONSWAP spectrum with a directional distribution are shown
in figure 14. As one can see, the number of active bins decreases on decreasing
the degree of the directional distribution. In other words, the number of active bins
reduces when the ‘width parameter’ Π2 increases. This trend is consistent with the
unidirectional case.

Figure 15 shows the wave-height probability for an inhomogeneous ocean obtained
from the Alber equation. These results are for the JONSWAP spectra with the degrees
of the directional distribution set at n = 10 (case A2) and n = 50 (case A1) and
parameters γ = 10, ε = 0.126 (α = 0.016). Similar to the unidirectional case, one can
see from the inset of figure 15 that the probability up to Ĥ > 1.49Hrms0 is greater for
the Rayleigh distribution, and after the intersection point the probability is greater for
the results obtained from the Alber equation. As one can see, the probability of freak
waves with wave height larger than two times the significant wave height is 9/10 000
when the degree of the directional distribution is 50 and decreases down to 7/10 000
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when the degree of the directional distribution decreases to 10. Overall, this probability
is significantly lower than in the unidirectional case.

The reduction is even more significant for the probability of exceptionally high
freak waves, with wave heights higher than three times the significant wave height.
It is of the order of 10−8 for the Rayleigh distribution, 16 × 10−7 for case A1 and
5 × 10−7 for case A2, as shown in figure 15, which is indicated by a vertical dashed
line. We should note that the maximum wave height limited by wave breaking changes
for three-dimensional waves if compared with two-dimensional, because both limiting
steepness and limiting skewness of waves are different in three dimensions (Toffoli
et al. 2010a; Babanin et al. 2011a). Comparing the probability of freak waves with
wave heights larger than two times the significant wave height for the unidirectional
JONSWAP spectrum as shown in figure 13, with the JONSWAP spectrum with the
degree of the directional distribution set at n = 50, one can see that the former
probability is slightly higher, as expected.

Using these eleven results and four other cases (not shown here), the occurrence
probability of freak waves can be estimated by simple relations using the best fit
available in MATLAB, that is,

P(Hf > 2Hs)= 10−(1.80+1.50Π), (5.2a)

P(Hf > 3Hs)= 10−(2.00+4.65Π), (5.2b)

where Hf and Hs are the freak wave height and the significant wave height,
respectively. We have Π = Π1 < 1 and Π = Π2 < 1.1 for the unidirectional
JONSWAP spectrum and JONSWAP spectrum with the directional distribution,
respectively. The fact that almost any wave field, with a single peak frequency, can
be approximated by a JONSWAP spectrum adds to the applicability of the above-
mentioned result. Finally, we have to emphasize that our results for the probability
of freak waves are in qualitative agreement with both laboratory results such as
Onorato et al. (2009a) and Waseda et al. (2009) and numerical simulations such
as Eliasson & Shukla (2010) and Toffoli et al. (2010b). In particular, all of these
previous results from wave flumes and the numerical simulations conclude that the
occurrence probability of freak waves decreases when the directional spread of the
initial spectrum increases.
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6. Summary and conclusions
In this paper, the Alber equation is used to study the evolution of homogeneous

wave fields, under the influence of small initial inhomogeneous disturbances. We
first conducted an academic test of instability for the two-dimensional symmetric
Lorentz spectrum, and then studied instability of realistic ocean-wave asymmetric
JONSWAP spectra, both unidirectional and with a directional distribution. The
stochastic recurrence, which is parallel to the Fermi–Pasta–Ulam recurrence, and its
application to the probability of freak waves were then investigated.

The simple structure of the two-dimensional Lorentz spectrum shows that the
maximum growth rate is on q = 0, where q is the wavenumber of the disturbance
perpendicular to the carrier wave. For such a symmetric spectrum, (2.4) can be solved
analytically. However, for asymmetric spectra, such as the JONSWAP spectrum, one
has to seek an approximate solution for (2.4). To this end, we have established a
‘general method’, described in appendix C, and validation of this method is shown in
figure 1.

JONSWAP spectra with a directional distribution depend on four basic parameters:
k0, α, γ and n, which are the carrier wavenumber, the energy scale, the peak
enhancement and the degree of the directional distribution, respectively. It is instructive
to observe that the physical issues of: stability–instability transition, the most
unstable mode, recurrence duration and freak-wave probability depend solely on the
dimensionless ‘width parameter’ as defined in (3.8) and (3.12) for unidirectional and
for directional wave fields, respectively. It is found that unidirectional JONSWAP
spectra and JONSWAP spectra with directional wave energy distributions are stable to
inhomogeneous disturbance when the ‘width parameters’ satisfy Π1 > 1 as defined
in (3.8) and Π2 > 1.1 as defined in (3.12), respectively. Note that, for waves
with continuous spectrum, these dimensionless ‘widths’ offer more possibilities than
the traditional Benjamin–Feir index because in the spectral environment the same
steepness or the same bandwidth can be achieved by varying different parameters of
the spectral shape, which imply different physical meanings.

Furthermore, for instability conditions, we have shown that, for realistic ocean-
wave JONSWAP spectra, wave fields exhibit stochastic recurrence analogous to
Fermi–Pasta–Ulam recurrence in deterministic quasi-monochromatic cases. Specifically,
for the unidirectional JONSWAP spectra, the influence of the energy scales has been
investigated, while for JONSWAP spectra with a directional distribution the influence
of the degree of the directional spreading has been simulated.

The stochastic recurrence enables us to study the probability of freak waves. It is
found that the probability of the freak waves is higher by comparison to the classical
values given by the Rayleigh distribution.

It is important to mention that the initial inhomogeneous disturbances that are used
in this work were taken to depend on the homogeneous spectra themselves. Namely:
(i) the wavenumber of the most unstable mode is a property of the spectrum (see
(2.4)); (ii) the function R(r) in (2.3) was taken as ρh(r); and (iii) δ in (2.3) was
assigned the value 0.1, which is typically of the order of ε. The influence of different
choices of disturbances is demonstrated in Regev et al. (2008), Stiassnie et al. (2008),
and more recently in Eliasson & Shukla (2010).

In order to put our findings into appropriate proportion, it is worthwhile to keep
in mind the various choices that we have made in this study. First, we have chosen
to explore the Alber equation rather than other possibilities listed in table 1, in order
to enrich our knowledge about its possible physical consequences. Second, we have
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chosen to study the long-time evolution of unstable homogeneous spectra to their most
unstable inhomogeneous disturbance, a choice that resulted in a recurrent solution.
Taking either stable homogeneous spectra or other inhomogeneous disturbance is
expected to yield a wealth of other types of solutions. To this end, one can refer
to the recent work of Stiassnie et al. (2008). Third, as mentioned earlier in the section,
the specific details of the initial inhomogeneous disturbance were taken to depend on
the homogeneous spectra themselves, but other options are possible – see Regev et al.
(2008). Finally, we took advantage of the periodicity imposed by the initial disturbance
and the consequent recurrent evolution of unstable spectra to calculate the probability
of freak waves, implying that, for stable spectra, the freak wave probability will be
given by the Rayleigh distribution.

To summarize, we are aware that each of the above choices can be open to
criticism since alternative choices are available and we thus consider the interesting
phenomenon of stochastic recurrence as opening a new avenue in the theory of
stochastic weakly nonlinear wave fields, rather than as the generic solution.
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Appendix A. Numerical approach
It is convenient to change the two spatial dimensions in the Alber equation on

infinitely deep water from the dimensional form as in (2.1) to non-dimensional
variables using the relations

ρ̃ = k2
0

ε2
ρ, x̃1 = εk0

(
x1 − 1

2

√
g

k0
t

)
, x̃2 = εk0x2,

r̃1 = εk0r1, r̃2 = εk0r2, τ̃ = ε2
√

gk0 t,

 (A 1)

which yields

i
∂ρ̃

∂τ̃
+ 2λ

∂2ρ̃

∂ x̃1∂ r̃1
+ 2µ

∂2ρ̃

∂ x̃2∂ r̃2

= 2νρ̃(x̃, r̃, τ̃ )[ρ̃(x̃+ 1
2 r̃, 0, τ̃ )− ρ̃(x̃− 1

2 r̃, 0, τ̃ )], (A 2)

where λ=−1/8, µ= 1/4, ν = 1/2.
For simplicity, only a two-dimensional spectrum and one-dimensional perturbation

will be considered. As a result, the third term of (A 2) vanishes automatically and,
therefore, the dimensionless Alber equation can be rewritten as

i
∂ρ̃

∂τ̃
+ 2λ

∂2ρ̃

∂ x̃1∂ r̃1
− 2νρ̃(x̃1, r̃, τ̃ )[ρ̃(x̃1 + 1

2 r̃1, 0, τ̃ )− ρ̃(x̃1 − 1
2 r̃1, 0, τ̃ )] = 0,

(A 3)

where ρ̃ is a function of x̃1, r̃1, r̃2 and τ̃ .
A finite difference method will be used to solve (A 3), where the dimensionless

time derivative is approximated by a forward difference and the dimensionless spatial
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derivatives in x̃1 and r̃1 are approximated by central differences, yielding

i
(
ρ̃(n,j,k,l+1) − ρ̃(n,j,k,l)

1τ̃

)
+ 2λ

41x̃11r̃1
{ρ̃(n+1,j+1,k,l) − ρ̃(n−1,j+1,k,l) − (ρ̃(n+1,j−1,k,l) − ρ̃(n−1,j−1,k,l))}

− 2νρ̃(n,j,k,l)(ρ̃(n+j1r̃1/21x̃1,0,0,l) − ρ̃(n−j1r̃1/21x̃1,0,0,l))= 0. (A 4)

In (A 4) the index n belongs to points along the x̃1 axis, x̃1 = n1x̃1 (n =
0, 1, 2, . . . ,N), and N + 1 is the number of points along this axis. The index j
represents points along the r̃1 axis, r̃1 = j1r̃1 (j = 0, 1, 2, . . . ,M1), and M1 + 1 is the
number of points along the r̃1 axis. Similarly, the index k represents points along the r̃2

axis, r̃2 = k1r̃2 (k = 0, 1, 2, . . . ,M2), and M2 + 1 is the number of points along the r̃2

axis, and l represents the time steps by τ̃ = l1τ̃ (l= 0, 1, 2, . . . ,T).
Thus, the numerical time stepping scheme is formulated as follows:

ρ̃(n,j,k,l+1) = ρ̃(n,j,k,l) + iλ1τ̃
21x̃11r̃1

{ρ̃(n+1,j+1,k,l) − ρ̃(n−1,j+1,k,l)

− (ρ̃(n+1,j−1,k,l) − ρ̃(n−1,j−1,k,l))}
− 2i1τ̃νρ̃(n,j,k,l)(ρ̃(n+j1r̃1/(21x̃1),0,0,l) − ρ̃(n−j1r̃1/(21x̃1),0,0,l)). (A 5)

The following values for the differential steps were taken after several attempts. For
the one-dimensional case, as a special case, the differential steps are: 1x̃1 = π/100,
1r̃1 = π/44 and 1τ̃ = 5 × 10−5. For the two-dimensional case, the differential steps
are: 1x̃1 = π/75, 1r̃1 = π/35, 1r̃2 = π/25 and 1τ̃ = 4 × 10−5. Taking smaller values
will not have a significant effect. In addition, the size of the domain for the one-
dimensional case is x̃1 ∈ (0, 2π/P̃(max)

1 ), where P̃(max)
1 is the most unstable mode, and

after several attempts we choose r̃1(end) = 15x̃1(end) and hence r̃1 ∈ (0, 30π/P̃(max)
1 ). For

the two-dimensional case, the size of the domain is also x̃1 ∈ (0, 2π/P̃(max)
2 ) and we

also choose r̃1(end) = 15x̃1(end) and r̃2(end) = 15x̃1(end), and hence r̃1 ∈ (0, 30π/P̃(max)
2 )

and r̃2 ∈ (0, 30π/P̃(max)
2 ). In order to decide on the appropriate truncation of the r̃1

axis, we have taken four different values, namely, r̃1(end) = 10x̃1(end), 15x̃1(end), 20x̃1(end)

and 30x̃1(end), and compared their influence on the evolution of ρ̃max(r̃1 = 0) and
the evolution of the invariants. Based on this small study, we decided to choose
r̃1(end) = 15x̃1(end) and r̃2(end) = 15x̃1(end) in our calculation. We restrict ourselves to
periodic solution in x̃1, so that, on the boundaries x̃1 = x̃1(end), ρ̃(N,j,k,l) = ρ̃(0,j,k,l).
Moreover, the last term on the right-hand side of (A 5) depends on the values
of ρ̃ at x̃1 = n + j1r̃1/21x̃1, which can be larger than x̃1(end) = N1x̃1. For this
condition, the periodicity, again, is defined such that ρ̃(x̃1 + 2qπ, r̃, τ̃ ) = ρ̃(x̃1, r̃, τ̃ ),
where q= 1, 2, 3, . . .. This equation can be rewritten as ρ̃(n+qN,j,k,l) = ρ̃(n,j,k,l). Similarly,
the values of ρ̃ at r̃ = 0 depend on points outside the domain 0 6 r̃1 6 r̃1(end) and
0 6 r̃2 6 r̃2(end). In particular, the terms on the right-hand side of (A 5) depend on
ρ̃(n+1,−1,k,l). In order to deal with these problems, the definition of ρ̃, which is the
two-point correlation function in (1.3), will be used, that is, ρ̃(x̃1, r̃, τ̃ )= ρ̃∗(x̃1,−r̃, τ̃ ).
Therefore, the values of ρ̃ along r̃ = 0 can be calculated from the conditions
ρ̃(n+1,−1,k,l) = ρ̃∗(n+1,1,k,l). Moreover, theoretically, the values of spacing, r̃, are from
negative infinity to infinity, or all real numbers. However, using the symmetrical
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properties, the values of r̃ can be taken from zero to infinity. For numerical purposes,
r̃ has to be truncated. Following a similar approach to equation (3.2) of Stiassnie et al.
(2008), one will end up with the following equation:

ρ(x1, r, τ )=
∫ ∞
−∞

ei(k−k0)·r
√

S(k, x1 + r1/2, τ ) S(k, x1 − r1/2, τ ) dk. (A 6)

We now approximate S(k, x1) by a two-dimensional rectangular spectrum in (k1 − k0) ∈
(−Wl,Wr) and k2 ∈ (−W,W), where Wl and Wr are the spectral widths on the
left-hand and right-hand sides of k0, which is the carrier, while W is the spectral
width, which is perpendicular to the carrier. Integrating and switching to dimensionless
quantities leads to the boundary condition used at large r̃1 or r̃2:

ρ̃(x̃1, r̃, τ̃ )=
√
ρ(x̃1 + r̃1/2, 0, τ̃ ) ρ̃(x̃1 − r̃1/2, 0, τ̃ )

(
sin(W̃r̃2)

W̃r̃2

)(
eiW̃r r̃1 − e−iW̃l r̃1

i(W̃l + W̃r)r̃1

)
.

(A 7)

In order to determine the values of W̃, W̃l and W̃r, one needs to compare the
rectangular spectrum with the JONSWAP spectrum by maintaining that both spectra
must have the same total energy and momentum.

As one can see from (A 5), this problem is defined for a four-dimensional space.
Therefore, it requires huge computer memory and a long computational time. Thus,
a parallel programming solution is necessary. To this end, we use OpenMP (Open
Multi-Processing), which allows us to spread the jobs over the processors in one node.
For the one-dimensional problem, which only contains a three-dimensional space, we
use eight processors and it takes a few hours to complete the job. However, for the
two-dimensional case, we use 16 processors and it takes more than two weeks to
complete one job.

Appendix B. Derivation of the invariants
The invariants in (2.5)–(2.7) were derived as follows.

First invariant
Evaluating (2.1) at r= 0 gives

i
(
∂ρ

∂t
+ 1

2

√
g

k0

∂ρ

∂x1

)
− 1

4

√
g

k3
0

(
∂2ρ

∂x1∂r1
− 2

∂2ρ

∂x2∂r2

)
= 0. (B 1)

Integrating (B 1) over the two-dimensional domain x1 ∈ [0, 2π/p], x2 ∈ [0, 2π/q] and
applying the periodicity yields

I1 =
∫
ρ(x, r, t)

∣∣∣∣
r=0

dx, (B 2)

which is related to the wave action.
For all cases in this paper, the first invariant, I1, did not change at all times from its

value at t = 0 throughout the calculations.

Second invariant
The second invariant consists of two components. The first component of this

invariant is defined by taking the first-order partial derivative of (2.1) with respect
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to r1, that is, ∂/∂r1, and evaluating at r= 0, which gives

i
(
∂2ρ

∂r1∂t
+ 1

2

√
g

k0

∂2ρ

∂r1∂x1

)
− 1

4

√
g

k3
0

(
∂3ρ

∂x1∂r2
1

− 2
∂3ρ

∂r1∂x2∂r2

)
=
√

gk5
0

2
∂

∂x
(ρ2(x, 0, t)). (B 3)

Again, integrating (B 3) over the two-dimensional domain x1 ∈ [0, 2π/p], x2 ∈
[0, 2π/q] and applying the periodicity yields

I21 =
∫
∂ρ(x, r, t)

∂r1

∣∣∣∣
r=0

dx, (B 4)

which is related to the wave momentum along r1.
Similarly, taking the first-order partial derivative of (2.1) with respect to r2, that

is, ∂/∂r2, evaluating at r = 0 and then integrating over the two-dimensional domain
x1 ∈ [0, 2π/p], x2 ∈ [0, 2π/q] gives

I22 =
∫
∂ρ(x, r, t)

∂r2

∣∣∣∣
r=0

dx, (B 5)

which is related to the wave momentum along r2.

For the first part of the second invariant, one can easily show that its value at t = 0
is imaginary. The relative deviation of the imaginary part of I21 at all times from
its value at t = 0 did not exceed 1.0 % for the one-dimensional case throughout all
calculated evolutions and did not exceed 1.5 % for the two-dimensional case.

Moreover, for the second part of the second invariant, which appears for the two-
dimensional cases, I22 = 0 since ρ(t = 0) is real and symmetric in r2. Thus, one cannot
compare the values of I22 at all times to the initial value.

Third invariant
To obtain the explicit formula for this invariant, first, taking the second-order partial

derivative of (2.1) with respect to r1, that is, ∂2/∂r2
1, evaluating at r= 0 and integrating

over the two-dimensional domain x1 ∈ [0, 2π/p], x2 ∈ [0, 2π/q] as well as applying the
periodicity yields

i
∂ρ

∂t

(∫
∂2ρ

∂r2
1

dx
)
= 2
√

gk5
0

∫
∂ρ

∂r1

∂ρ

∂x1
dx. (B 6)

Applying a similar procedure to r2 gives

i
∂ρ

∂t

(∫
∂2ρ

∂r2
2

dx
)
= 2
√

gk5
0

∫
∂ρ

∂r2

∂ρ

∂x2
dx. (B 7)

Evaluating (2.1) at r= 0, then multiplying by ρ and integrating over x yields

i
∫ (

ρ
∂ρ

∂t
+ 1

2

√
g

k0
ρ
∂ρ

∂x1

)
dx= 1

4

√
g

k3
0

∫ (
ρ
∂2ρ

∂x1∂r1
− 2ρ

∂2ρ

∂x2∂r2

)
dx. (B 8)

Integrating the right-hand side of this equation by parts over x, and applying the
periodicity yields

i
2

∫
∂ρ2

∂t
dx+ 1

4

√
g

k3
0

∫ (
∂ρ

∂r1

∂ρ

∂x1

)
dx− 1

2

√
g

k3
0

∫ (
∂ρ

∂r2

∂ρ

∂x2

)
dx= 0. (B 9)



340 A. Ribal, A. V. Babanin, I. Young, A. Toffoli and M. Stiassnie

Substituting (B 6) and (B 7) into (B 9) gives the third invariant as

I3 =
∫
ρ2(x, r, t)

∣∣∣∣
r=0

dx+ 1
4k4

0

∫
∂2ρ(x, r, t)

∂r2
1

∣∣∣∣
r=0

dx

− 1
2k4

0

∫
∂2ρ(x, r, t)

∂r2
2

∣∣∣∣
r=0

dx, (B 10)

which is related to the energy of the system.
The relative deviation of I3 at all times from its value at t = 0 did not exceed 1.0 %

for the one-dimensional case throughout all calculated evolutions, and did not exceed
1.1 % for the two-dimensional cases.

Appendix C. Approximate solution of (2.4) for general spectra
In order to determine the maximum growth rate and the point of maximum growth

of any spectrum, it is substituted into (2.4). However, since this integral cannot be
solved analytically for an asymmetric spectrum such as a JONSWAP spectrum, it is
necessary to seek an approximate solution. To this end, the original spectrum s(k) will
be replaced by a sum of weighted Dirac delta functions as follows:

s(k)=
lmax∑
lmin

slδ(k − kl), (C 1)

where kl = l1k, sl = s(kl)1k and l= 1, 2, 3, . . . ,L.
Substituting this equation into (2.4) for a one-dimensional case, i.e. q= 0, gives

l= 4k4
0p2

lmax∑
lmin

sl

p4

4
−
[

p(kl − k0)+ 4k2
0Ω√
gk0

]2 . (C 2)

Note that all of the quantities in (C 2) have numerical values, and that only Ω is
unknown. Moreover, using MATLAB, this equation can be reduced to a polynomial
equation of order L= 2(lmax − lmin + 1), that is,

L∑
µ=0

aµΩ
µ = 0, (C 3)

where aµ are the constant coefficients of the polynomial. However, the highest-order
algebraic equation that can be used is L = 70, owing to the limitation of MATLAB
to solve the polynomial for these cases. Note that the convergence has been checked
by taking L = 30, 40, 50, 60 and 70. Furthermore, seeking the root for Ω with
the largest imaginary contribution will give the maximum growth rate of the given
spectrum. From this, one can also get the point of maximum growth. The validity of
this rather ‘general method’ is demonstrated by using the one-dimensional counterpart
of the Lorentz spectrum as given in (3.1) with the growth rate as given in (3.5b).

In order to apply the ‘general method’ to the Lorentz spectrum, the following
procedure was carried out. As known, the limit of k is along the real numbers, but, for
numerical reasons, it has to be truncated. Therefore, let kmin and kmax be the lower limit
and the upper limit of k, respectively; then 1k is defined as

1k = kmax − kmin

L
(C 4)
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and thus

sl = s(kl)(1k)=
(

W1a2
0

2π[(kl − k0)
2+W2

1 ]
)(

kmax − kmin

L

)
, (C 5)

where

kl = kmin +
(

kmax − kmin

L

)(
l− 1

2

)
, l= 1, 2, 3, . . . ,L. (C 6)

The validation of this ‘general method’ is shown in figure 1.

Appendix D. Dimensional considerations leading to the definition of the
width parameter

In order to obtain the dimensionless width parameter, a dimensional analysis
approach is performed in the following. Let Ω

(max)
1 be the growth rate of the

most unstable disturbance, which depends on the physical quantities, namely, the
acceleration due to the gravity, g, the total energy, a2

0/2, the peak wavenumber, k0,
and the spectral width, W, which is defined as the quotient of the total energy
to the spectral peak s0. In particular, for a unidirectional JONSWAP spectrum,
s0 = αγ e−1.25/(2k3

0) and W = a2
0k3

0/(αγ e−1.25). Thus, there must exist a function

f (Ω (max)
1 , g, a2

0/2, k0, a2
0k3

0/(αγ e−1.25))= 0. (D 1)

Using k0 and g as fundamental quantities, Buckingham’s Pi theorem (Buckingham
1914) assures the existence of the function

f1(Ω
(max)
1 /

√
gk0, ε

2, ε2/αγ )= 0, (D 2)

where ε = a0k0 = o(1) is a typical wave steepness. Without loss of generality, f1 can be
replaced by

f2

(
Ω
(max)
1

ε2
√

gk0
,
ε

αγ
, ε

)
= 0. (D 3)

In this equation, Ω (max)
1 /ε2

√
gk0 and ε/αγ are both usually of O(1) whereas ε is o(1),

so that approximately

Ω
(max)
1

ε2
√

gk0
= f3

(
ε

αγ

)
. (D 4)

As seen from (D 4), Ω (max)
1 /ε2

√
gk0, which is the dimensionless maximum growth rate,

is a function of ε/αγ , which we call the dimensionless width parameter, Π1 = ε/αγ
for a unidirectional JONSWAP spectrum.

By approximating the JONSWAP spectrum by a Lorentz spectrum (see Onorato
et al. 2003 for review), one can prove that ε/αγ = 1, which corresponds to the case
of marginal stability. For infinitely deep water, the most unstable mode occurs at q= 0,
where q is the wavenumber of the disturbance perpendicular to the carrier wave. This
enables us to replace the study of two-dimensional spectra, S(k1, k2), by reducing the
problem to its one-dimensional equivalent, s(k1), using the following relation:

s(k1)=
∫ ∞
−∞

S(k1, k2) dk2. (D 5)
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Therefore, for two-dimensional JONSWAP spectra, the dimensionless parameter
Π1 = ε/αγ needs only a slight correction to

Π2 = ε

αγ
+ 0.0256

εAd
, Ad = Γ (1+ n/2)√

πΓ (1/2+ n/2)
. (D 6)

Note that ε/αγ and 1/εAd are the dimensionless scaled widths in the peak direction
and the transverse direction, respectively. The transverse scaled width 1/εAd arises
naturally when the energy a2

0/2 is divided by the spectral peak s0 = αγAde−1.25/(2k3
0)

as well as by the spectral width W = a2
0k3

0/(αγ e−1.25) and finally scaled by ε.
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