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Abstract

The second-order problem of the propagation of surface gravity waves over an asymmetric rectangular obstacle in an oblique sea is solved
numerically using a Green’s theorem integral-equation method. Published by Elsevier Science Ltd.
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1. Introduction

Study on the harmonic generation of water waves propa-
gating over a discontinuity in depth continues to receive
much attention (for example, Ref. [1]). In addition, in recent
years there have been significant advances in nonlinear
diffraction theory for problems of the wave-body interac-
tions (see, for example, Refs. [2,3] for computations at
third-order). In this short note we extend the Green’s theo-
rem integral-equation method for an asymmetrical ridge in
an oblique sea, shown in Fig. 1, where, with the (x—z)-plane
the undisturbed free-surface and the y-axis positive
upwards, the depth H(x) is given by

I’ll, x<O0
Hx)=1h, 0<x<L (1)
h}, x> L.

In particular, we shall compare numerical results with those
based on Galerkin’s method [4] for a symmetrical ridge
(hy = h3) in normally incident waves. The present method
has previously been used for a shelf (a single vertical step)
[5], and the same formulation is employed here.

This potential-flow problem is well known, and in the
case of linearized long waves in shallow water an exact
solution is available [6]. For similar problems of a ridge
linear solutions can be found in Newman [7] and Mei and
Black [8], and nonlinear solutions for long waves trapped on
a long ridge in Agnon and Mei [9].
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2. Definitions

We use largely the same notation as that used in our
previous paper [5]. It is assumed that h; # h3, hy > hy,
h, < hy with H(x) constant in the z-direction and that
waves of first-order amplitude A and frequency o arrive
obliquely at an angle 6 with respect to the x axis from
X = —oo.

The superscripts (1) and (2) are appended to denote the
first- and second-order functions, respectively. The velocity
potential @ is expressed as

Dx,y,2,0) = PV + &P + 0, )

where (< 1) is the wave slope.

We divide the fluid domain into three separate regions by
drawing vertical lines at x =0 and x = L, and use the
subscripts 1, 2, and 3 to denote the regions x < 0,0 < x <
L,and x > L, respectively. We then define the wavenumbers
ki, k, and k3, and the corresponding x components ki, k,,
and k3, as

kytanh ki = ko, ki = (K — K)'2, 3)
kytanh kyhy = kg, koy = (k3 — kD)2, (4)
kytanh kyhy = kg, kg = (k3 — kD)2, (5)

where ky = wz/g, g is the gravitational acceleration, and

k, = ky sin 6. (6)
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Fig. 1. Sketch of a stepwise obstacle.
In addition, we define The free-surface elevation y = {(x, z, 7) is given by
my tanh mihy = 4ky,  my, = (mi — (2k,)H)", @) Tod 1 | 9® 902
(o)== — + (VD> ——— — | +0(e).
5 S 1n gl ot 2 g adt dyot =0
my tanh myhy = 4k, my, = (my — (2k;)")™", (3) (19)
2 2,172
my tanh mshy = 4k, my, = (m3 — (2k,)7) ™. ©)) The second-order free-surface elevation, { @ consists of
We rewrite the potentials @ and @@ as several components Denoting the contributions from ¢
_ and ¢ by ;‘1 and §(2nd, respectively, and the time-inde-
@V (x,y,z,1) = Re[¢pV(x, y)e!®™ D), (10) pendent part by ®, we write
DD (x,y, 2,0 = Re[$?(x, e ] + @, (any =400+ G+ (20)
where (D(()z) is time-independent. where
With V2 = 9%/ox> + 9%/9y*, the problem for ¢ is
defined as 1 \2
1 a¢p ko
y_ _ L +(312 — ) (¢ )2 Q2itkz—an,
ViV —k2¢" =0 in the fluid, (12) It 4g[( ax ) ( 0 ) =0
(21)
ap P10y — k¢ =0  ony=0, (13)
iw ; ©
8¢(1)/3n =0ony= H(x) (14) 22n)d — [2?(1)(2)] 2 (k.z—wt) __ 4(2) 42)’ (22)
y=
and the problem for ¢ is defined as
V2¢p? — 4k,¢'® =0  in the fluid (15) M
’ _ a¢
[ = [| == (6 - e)e"r] (23)
apP1oy — dkgd® = g(x)  ony=0, (16)
Note that §<22n)d is further split into the contributions from the
(2 — —
I¢“/on=0  ony=H(), a7 free-wave (42)) and locked-wave (£\”) potentials.
where g(x) can be found in the form
d)(l)
q(x) = [( ) 3. Integral equation
g 0x
) For constant depth A, a Green’s function G satisfying
43 Rk )Oy + L d>“) & ¢’ (18) V2G = —8(x — &(y — 1), Egs. (13) and (14), and suitable
2 =0 radiation conditions at x = £oo0 can be found as (see
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Ref. [10])
i2kcosh{k(n + h)}cosh{k(y + B)} .
k. {2kh + sinh(2kh)}

Gx,y; &Emk) =

— 2a,c08{a,(n + h)}cos{a,(y + h)} o héB,
B, {2a,h + sin2a,h)} ’

+
n=1
(24)
where & tanh(kh) = ky, k, = +(k* —k»)'?, and B, =
+(aﬁ + kzzl)”2 with a, (n=1,2,3,---) being the positive
and real roots of
a, tan(a,h) = —ky. (25)

We denote the Green’s functions for the three regions of 4,

301
1.0+
— present
""""" Massel

084 :

hy, and h3 by G, G,, and Gj, respectively, i.e. 0.0 — — ‘ : :
0 02 04 06 08 1 12 14 16
G, =Gy &mk), Gy =Gxy; & miky), k h
(26) 12
G; = G(x,y; & 3 k3). Fig. 2. A comparison of the numerical results with Massel [4]. |{}2)|/A atx =
For the first-order problem, applying Green’s theorem to ; 0; ;Z P lfnzedjfalis;k'hz’ for Gi 0 degrees (normal incidence), f/h, =
W , ! ’ L halhy = 2, Lihy = 8, and Alh, = 0.134.
¢"" and the Green’s function for each region, we find
(0 T . a¢® 4G
[ e - o2 | avaen. £<0,
- | 0x ax |
o aa® 9G 0 agp 0G
¢ (& m = J S .U j A N 27)
—hy | ox ax | —hy 0x ox |,
o[ . ag" 9G
J —G;L + o B dy, E>L,
-hy| 7 0x ox |,
where A((& n) is a contribution from the incident wave potential to the line integral at x = —o0, i.e.
igA cosh ki(n + hy)
Ag(gm) = — S I TR i 28)

w cosh kjhy

We assume the continuity of ¢” and a¢"/dx at the discontinuity in depth (at x = 0 and x = L). Since dG/dx becomes a delta
function as & — 0 and & — L, then we obtain a set of integral equations for d¢ "/ax over the vertical boundaries (x = 0, —h, <

y<Oandx=1L, —h, <y<0)as
JO
0
-1

[G2<L,y; 0.m) + ZJ
&3
AO(()’ T’)3

0 0
j [Gz<0,y;L, m -2 j
—h S

(1)

(1)

0
1G10.550.1) + G(0,3:0. )] fx

(0, y)dy

0

oG
G(0,y; L, u)a—xz(O, u; L, n)du]

2

+ G5(L,y; L, m)] (L, y)dy

ox

0 oG
= 2J Ag(0,y) —=(0,y; L, ))dy.
Iy ox

G
Gl yi L 2 1,150, n)du]

9D
D (L yay
X
(29
(1) 0
3 (O,y)dy—J [Go(L,y; L, 1)
X —n
(30)
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For the second-order problem, we redefine the Green’s functions as
G, = G(x,y; & mmy), Gy = G(x,y; & mymy), G3 = G(x,y; & m;m3) (31)

for the three regions of &y, h,, and hs, respectively. Then applying Green’s theorem to the regions of h,, h,, and h;,

( 0 9 (2) 0 G x=0 Fle F) (2)
[ e | -] [oo5] o[ Gawars j g2 20 G, 22 )
—hy ax |, Iy 0x  lx=0 x=— hy dx LR N

0 3@ G 0 ap? G
6P ) = J / [ G, 20" d’ + o2 sz dy +J' G, 20" ¢ ¢<z> 2
~h =0 2

x=L
dy + J G,q(x)dx, 0<EéE<L,
L 0

x=, =

0 9 (2) 0 9G x= 00 0 F) (2) 3G
- J [G3 ¢ ] dy + J [¢<2>—3] dy + J Gq(x)dx + J Gy—— ¢ — P dy, £€>1L,
L —hy =L —h x=L hy x=+00

ax x=L ox ax

(32)

where g(x) is defined by Eq. (18).

In a manner analogous to establishing the integral equations for the first-order problem, assuming the continuity of ¢ and
d¢@/9x at x = 0 and x = L we obtain a set of integral equations for a¢@/ax over the vertical boundaries (x = 0, —h, <y < 0
andx=1L, —h, <y<0)as

0 (]5(2)

|, 16:05:0.m + 610,350, 0= 0.8y
0 0 oG 9 (2)

- j [GZ(L,y;o, . 2j oLy L 22 (L 30, n)du]i(L,wdy

—hy ox ox

= Py(0,m), (33)

¢(2) 0

0 0 an
GZ(O’ i L’ 77) -2 G1(07 ys L7 M) (07 u; L7 n)du
—hy —hy 0x

9

= Qo(L, ), (34)
where
x=L 0 @ GGI
ro0.m = [ 600 maar = [ G0 mawa - [ (#7002 - 0m

9 (2) 0 0 9 (2) G
- Gi=o0,3:0,m - ooy))dy 2| [Jh (G3(oo,u;L,y)g’x(oo,u)—qb(z)(oo,u)a;(oo,u;L,y))du

x=L

" J Gy(x, 0: L, y)q(x)dx]—(L ¥:0, m)dy,

(35)

x=L

x=00 0 2
0oL = | Gaw0:Lompguods — | Gatu0:Lomaos — | (G3<oo vt

(0,y)

x=(

@ 0 0 a¢(2) ) aG]
— 620, (0,311, n))dy - j “ (Gl(—oo,u; 0,928 (—co,u) — & (—oo,u)—<—oo,u;o,y))
—hy —h3 0x ox

x=—00

x=0 9
X du — J G, (x,0;0, y)q(X)dX]%(O,y;L, ndy. (36)
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Fig. 3. |§;-2)|/A at x = +oo is plotted against kyh,, for 6 =45 degrees,
hylhy = 4, hylhy = 2, Lihy = 4,8,12 and A/hy = 0.1.

4. Numerical examples

The numerical procedures for solving Eqs. (29) and (30)
(and Egs. (33) and (34)) are standard. A simultaneous set of
2N algebraic equations was solved by dividing each of the
two vertical boundaries at x =0 and x = L into N equal
segments of length of A,/N and by approximating d¢'"/ox
(and a¢?/9x) by a piecewise step function, which is
constant over each segment and evaluated at the midpoints
of the segments. The present results were computed with
50 = 2N = 150.

The integrands G,q(x) and Gsg(x) oscillate with slowly-
varying amplitude as |x| — co. For numerical computation,
we applied Green’s theorem in the finite fluid domain. The
free-surface integrals in Eqgs. (35) and (36) were evaluated
by replacing the infinite intervals [—oo,0] and [L, co] with
the finite intervals [—x;,0] and [L,x,], respectively. The
values of cb(z)(iOO,y) and their derivatives (in Egs. (35)
and (36)) were evaluated by use of the asymptotic forms
of ¢(2)(i00, y) (see Ref. [5]) with large values of x; and x,.
The computations were repeated by increasing the values x;
and x, until the numerical results were qualitatively inde-
pendent from x; and x,. The second-order results presented
here were computed accurate to two decimal places.

We recall that h, < hy and that the present method fails
when a linear caustic is present. In addition, we note that the
validity of the second-order solutions are limited to the
range kyAl(kyhy)® < 1 as kyhy — 0 [11].

The presentation of the first-order results is omitted here,
but we remark that we found the present results virtually
identical to the results of Mei and Black [8], for 6 = 0 with
hy = hy and L/h, = 4, 8, 12.

Fig. 2 shows the second-order free wave amplitude |§}2)|
(normalized by A) at x = + oo compared with Massel [4] for
normally incident waves (0 = 0) with h; = h;. With the
scales [4] an accurate comparison is difficult, but we notice

0.16 7

012~
0084, N

0.04 Tl AN

0 15 30 45 60 75 90
6, degrees

Fig. 4. Results for oblique wave incidence. |§;2>\/A at x = +oo is plotted
against the incident-wave angle 6, with k,h, = 1.0, A/hy, = 0.1, hy/h, = 3,
hs/hy =2, and L/h, = 3, 5, 10.

some apparent disparity between the two solutions at
smaller kih, (<0.4) and at large kh, (>0.9).

Fig. 3 shows the second-order free wave amplitude |{}2)|
(normalized by A) at x = +oo for obliquely incident waves
(0 = 45°) with an asymmetric obstacle (h; # h,).

Fig. 4 demonstrates the effect of the incidence angle 6 on
the second-order free wave amplitude |§}2)| (normalized
by A) at x = +o0. The results were obtained with kyh, and
Alh, fixed at 1.0 and 0.1, respectively.

The computations were performed on the Cray T3E, and
the computing time required to generate the present results
was 2000-3000 CPU seconds for each calculation.

In conclusion, the diffraction of obliquely incident water
waves by a stepwise obstacle was investigated using the
integral-equation method based upon Green’s theorem.
With the Green’s function, the method facilitates dealing
with problems of oblique waves. The results are in good
agreement with the previous first-order results [8] but in
some qualitative disagreement with the previous second-
order results [4].

Acknowledgements

The author wishes to thank anonymous referees for their
helpful comments and suggestions. This work was
supported by the US Army Corps of Engineers (USACE)
Engineer Research and Development Center (ERDC) and
its Department of Defense (DOD) High Performance
Computing Center (HPCC). Permission to publish this
paper was granted by the Chief of Engineers.

References

[1] Brossard J, Chagdali M. Experimental investigation of the harmonic
generation by waves over a submerged plate. Coast Engng
2001;42:277-90.



304 J.P. Rhee / Applied Ocean Research 23 (2001) 299-304

2

—

Faltinsen OM, Newman JN, Vinje T. Nonlinear wave loads on a

slender vertical cylinder. J Fluid Mech 1995;289:179-98.

[3] Liu Y, Xue M, Yue DKP. Computations of fully nonlinear three-
dimensional wave—wave and wave—body interactions. Part 2.
Nonlinear waves and forces on a body. J Fluid Mech 2001;438:41-66.

[4] Massel SR. Harmonic generation by waves propagating over a
submerged step. Coast Engng 1983;7:357-80.

[5] Rhee JP. On the transmission of water waves over a shelf. Appl Ocean
Res 1997;19:161-9.

[6] Mei CC. The applied dynamics of ocean surface waves. Singapore:

World Scientific, 1989.

[7] Newman JN. Propagation of water waves past long two-dimensional
obstacles. J Fluid Mech 1965;23:23-9.
[8] Mei CC, Black JL. Scattering of surface waves by rectangular obsta-
cles in water of finite depth. J Fluid Mech 1969;38:499-511.
[9] AgnonY, Mei CC. Trapping and resonance of long shelf waves due to
groups of short waves. J Fluid Mech 1988;195:201-21.
[10] Heins AE. Water waves over a channel of finite depth with a dock.
Am J Math 1948;70:730-48.
[11] Ursell F. The long wave paradox in the theory of gravity waves. Proc
Cambridge Philos Soc 1953;49:685-94.



