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The first- and second-order problems of wave transmission over a step in an oblique 
sea are solved using a Green’s theorem integral equation with a finite-depth Green’s 
function. The first-order transmission and reflection coefficients are shown to be 
consistent with previous results obtained by using the method of matching 
eigenfunction expansions (Newman), the variational formulation (Miles), and 
Galerkin method (Massel). Comparison of the second-order free wave agrees with 
Massel. It is shown that the ratio of the second- to first-order maximum amplitude can 
be over 0.2 for the range where the Stokes theory is valid and that at low frequency the 
second-order potential is more pronounced than the quadratic interaction of the first- 
order potentials. 0 1997 Published by Elsevier Science Ltd. 

1 INTRODUCTION 

We consider the reflection and transmission of water waves 
incident on a depth discontinuity, sketched in Fig. 1, where 
the (x-z)-plane coincides with the undisturbed free surface 
and the y-axis is vertically upwards. The water depth H(X) is 
assumed to change at x = 0, from one constant H(X) = h 1 for 
x < 0 to another H(x) = hz for x > 0. This is an idealized 

situation of waves propagating over a continental shelf, and 
has received much attention in the literature. 

In the limiting case of long waves, solutions appeared in 
Lamb[l] and later in Bartholomeusz,[2] who also formu- 
lated the integral equation for a more generalized problem 
of finite wavelength (see also Mei,[3] Section 4.2). More 
complete solutions were given by Newman,[4] Miles,[S] 
and Mei and Black.[6] Using Havelock’s wavemaker 
theory Newman formulated an integral equation similar to 
Bartholomeusz’s and presented numerical solutions, which 
showed good agreement with Miles’s solutions obtained 
by applying a variational technique. Extensions of these 
approaches can be found in, for example, Kirby and 
Dahymple[7] for a trench and Smith@] for a step with 
horizontal shear. See Rey et a/.,[93 and Evans and 
Linton[lO] for reviews of these methods and their subse- 
quent applications. 

All these studies are based on the linearized wave theory. 
Recently there has been the growing recognition of the non- 
linear effects on wave diffraction, especially, in connection 
with problems of wave interactions with fixed or floating 
obstacles. See, for example, Molin,[l l] Vada,[l2] Eatock 
Taylor et a1.,[13] Kim and Yue,[l4] McIver and 
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McIver,[lS] and Wu.[16] A typical problem is the reso- 
nance of a large offshore structure whose natural modes 
are close to the sum of frequencies of the incident 
waves.[l7] Apart from this engineering interest, it is 
known that the development of a wave spectrum over 
such a variable bottom can be understood better by the 

study of non-linear effects. 
The second-order wave consists of several components, 

which may be separated largely into two parts: a harmonic 
and a mean-surface variation, i.e. a steady set-up or set- 
down. Part of the harmonic, as well as the mean-surface 
variation, comes from interactions of the first-order poten- 
tials only, such as the self- and cross-interaction of the inci- 
dent and reflected waves in the reflected wave field and the 
self-interaction of the transmitted wave in the transmitted 
wave field. To account for the non-linear effect at second- 
order, it is still necessary to calculate the second-order 
potentials. The computation of the second-order potential 
is complicated, however, mainly because of the difficulty 
in dealing with the inhomogeneous free-surface boundary 
condition and the slowly diminishing behaviour at infinity 

of its forcing term. Molin[ 111 (and the subsequent studies) 
showed that the second-order problem can be solved by 
further splitting the second-order potential into two parts, 
an outgoing free wave and a wave locked (in phase) to the 

the first-order wave system. He was then able to transform 
the problem to that for the free wave potential, which is 
similar to a linearized problem. 

In the present problem, the free wave may be interpreted 
as the one generated by the presence of the step and scat- 
tered into reflected and transmitted wave fields. Massel[ 181 
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Fig. 1. Sketch of a step shelf. 

appears to be the first who solved this problem. By applying 
Galerkin’s method, used previously by Garret[ 191 for a scat- 
tering problem involving a circular dock, he presented 
numerical results for the first- and second-order solutions. 
His first-order solution showed a good agreement with the 
result of Mei and Black[6] obtained by using the closely 
related variational techniques. In this paper we extend the 
integral equation to the second-order problem with formula- 

tion generalized for an oblique wave. The integral equation 
is identical to that for the first-order problem, except for the 
free-surface integral, and has shown success in other non- 
linear diffraction problems.[ 12,141 Thus, particular atten- 
tion is paid to comparisons with the previous solutions. 

2 FORMULATION 

2.1 Definitions 

The fluid is assumed to be ideal and the flow irrotational, so 
that the flow is described by a velocity potential +(x,y,z,Q as 

@(x y Z t) = +(‘) -t aC2) + 0(E3), 9 3 3 (1) 

where E( < 1) is the wave slope. Here a”) and aC2’ are the 
first- and second-order potentials, respectively, which are 
individually governed by Laplace’s equation and the appro- 
priate boundary conditions. 

Let the subscripts 1 and 2 denote the regions for x < 0 and 
for x > 0, respectively. Let an incident wave train of first- 
order amplitude A, frequency w and wavenumber k’ 
approach from x = - ~0, in water of depth h,, at an angle 

0 with respect to the x axis. By assuming that the shelf is a 
vertical step and that the profile is uniform in the z-direction, 
we write the first-order potential in the form 

a(‘)(~, y, z, t) = Re [+“‘(x, y)eiCkTz - @‘)I, (2) 

where k7 = k,sine. The asymptotic forms of 4”‘(x, y) are 

given as 

4(‘J- Wcoshklti+h’) eik,Xx+Re-ik,CX -- )Y x---M 
0 coshk, h , 

(3) 

and 

+(I)- _ @coshk20, +h~)~~ik~x 
t 

x _ + ~ 
(4) 

W coshk2h2 

where R and Tare the first-order reflection and transmission 
coefficients, respectively, and g is the acceleration due to 
gravity. Here the wavenumbers kl and k2 and their x com- 
ponents k,, and ka are defined as 

k,tanhk,h’=k,, k,,=(k: -k,2f2 (5) 

k2tanhk2h2 = k,, kzr = (k; - kf)“2, (6) 

where kO = 021g. 
The free-surface boundary condition can be found, for 

instance, in Mei[3] (Section 12.9) as 

&p fd2) 
F+g-= ay 

- -$v9”‘)2 

1 a*(‘) a ( a2d’) a&l) + --- 7+g-- 
g at ay at ay > 

on y=O. (7) 

From this and eqn (2), @(2) may be written in the form 

(PC2’(x, y, z, t) = Re [4’2’(x, y)e2’@” - wr)] + $“, (8) 

where ‘I$’ gives at most the third-order contribution to the 
free surface elevation and will be neglected here. 

The free-surface elevation y = nx,z,t) is given by 

((x, z, t) = - ; 2 + +Iq2 [ 1 yq (9) 

which can be expanded in the form 

b(x Z t) = r(‘) + lC2) + 5_ + 0(E3), 7 7 

where l(‘) is the first-order free-surface elevation 

(10) 

r(‘) = %(‘I eiW,z-w0 

[ 1 (11) g y=o 
and Fis the time-independent part of the second-order { 

- & - k#b(‘)12]y=o. (12) 

I$~‘, the time-dependent part of the second-order r, consists 
of several components. Denoting the contributions from 
4(” and +(2) by Si’,l and r:‘,‘,, respectively, 

l(2) = {(2) + r(2) 
1st 2nd’ 

where 

(13) 

2 + (3k: - k;)(4”‘)2 1 e2i(k,z - wr) 

y=o 

(14) 

e2i(kZz-4 = j-f) + j-y). 
(15) 

y=o 

Note that r$,,‘, is further split into the contributions from the 

free-wave ($‘) and locked-wave ( {12’> potentials. 
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2.2 Review of first-order problem 

The problem for 4”’ is defined as 

V24”’ - kiti”’ = 0 in the fluid, 

a+“‘/ay-k&“‘=O on y=O, 

&$“‘/&I = 0 on y = H(x), 

where V2 = a2/8x2 + a2/ay2. 

(16) 

(17) 

(18) 

An integral equation can be obtained for the unknown 4”’ 

atx=O, - hl <y<yzbyapplyingGreen’stheoremto~”’ 
and a suitable Green’s function defined for the entire fluid 
domain. Evans[20] has derived such a Green’s function 

which can be used for more general problems of a irregular 
step shape, but a numerical solution using this function has 
yet to be seen because of the cumbersome procedures for 
evaluating the complicated Green’s function.[ lo] 

In the present case of a vertical step an integral equation is 
obtained for the unknown &$“‘lax at x = 0, - h2 < y < 0 by 
simply using a finite-depth Green’s function for wave 

source. 
For the depth h, the Green’s function G may be written in 

the form[21] 

Gk Y; Et 1; k) = 
i2kcosh(k(q + h)]cosh(kCy+ h)) ilx-51k, 

k, { 2kh + sinh(2kh)) 

(19) 

+lE = 2a,cos{a,(9+h)}cos(~,Ol+h)) -lx-sIp,, 

0, ]2o,h + sin( 
3 

II=’ 

where (t,~) denotes a field point in the fluid region, 
ktanh(kh) = k,,, k, = + (k’ - kz) “2, 0, = + (a!,’ + ki)“‘, 

and (Y, (n = 1,2,3,...) are the positive and real roots of 

cr,tan(a,h) = - kO. 

By using the identity 

(20) 

(21) 

and by assuming the continuity of 4”’ and &$“‘lax at x = 0, 
- h2 < y < 0, the integral equation for ad”‘/ax at x = 0, 

- h2 < y < 0 may be written as[2] 

O a4(1) 

--+I +G2) dy= -A,(O,q), 
-h2 ax (22) 

where G I and GZ denote G for h I and G for h2, respectively, 
i.e. 

GI =G(x,y;t,v;h) and G=G(x,y;t,rl;kd, (23) 

and Ao(t.7) is a contribution from the incident wave poten- 
tial to the line integral at x = - 03, i.e. 

kAcosW(v+hl) ;k,,E 
Ao(t>rl)= - ; 

coshk’h, 
c . (24) 

After eqn (22) yields a+“‘/& on x = 0, $‘I’ is known 
everywhere in the fluid. From Green’s theorem, we have 

separate solutions for x 5 0 and x 2 0, 

4% r)) = 
a+(') 

, G,------ 
ax 

4(I) z dy 

+Aott,d for 5 5 0, (25) 

4% ? 77) = -G2$++“‘s) dy for F 20. 
ax 

(26) 
To find the transmission and reflection coefficients R and T 

defined by eqn (3) and eqn (4) requires c#I(” at x = -t ~0. 
These asymptotic potentials are obtained from eqn (25) and 
eqn (26) and then the magnitudes of R and T are 

IRt = 

iTi = 

%(I)( _ w 0)e-ik14 _ 11 

gA ’ 
(27) 

iw (I) --J$ ( + 03, 0)e - ikzd 1. (28) 

2.3 Second-order transmission 

The problem for 4’2’ is defined as 

V2$(2’ - 4k~~‘*’ = 0 in the fluid, 

adc2)lay - 4ko+(2) = q(x) on y = 0, 

&$(*)/an = 0 on y = H(X), 

where q(x) can be found in the form 

+ $3 - k;)(+“‘)* 

. y=o 

(29) 

(30) 

(31) 

(32) 

The far-field behaviour of the forcing function q(x) is found 
by using eqn (3) and eqn (4), 

jgA* cIe*iklrx + ~~~-2ikt,x + c-, x-+-cc 

q(x) = - 20 
D e2ibrx 

I 9 x- +a 

where 

(33) 

C, = 3(k; - k:), C2 = ClR2, C, = (6(k; - k;) + 2k;,)R, 

D, = 3(k; - k;)T*. 

When x- - x, the first term in eqn (33) results from the 
self-interaction of the first-order incident waves, the second 
term from the self-interaction of the first-order reflected 
waves, and the constant term (C,) from the interaction of 
the first-order incident and reflected waves. Note that, for 
k ‘h I = m, the wave field in x < 0 is represented by the 
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constant term because there is no contribution to the inci- 
dent and reflected waves at second order. When x - + a, 
q(x) represents the self-interaction of the first-order trans- 
mitted wave. 

To specify the radiation condition, @‘*’ is separated into 
two parts: a free wave which corresponds to a solution to the 

homogeneous free-surface condition and a locked wave 
which corresponds to a solution to the non-homogeneous 
free-surface condition. The far-field form of 4(” is then 

p _ &A2 -- cosh~ (Y + h, )_ - im,,x 

2w coshm, h I 
CI 

cosh2k’o, + h,) - 
4kosinh2kl h, ( 

qe2Q + cze - 2iM) 

1 
- --cs 

4ko 1 ) x- -m, (34) 

$(2’- @A2 T(2) cosb 0, + h2 ) imzrx 
coshm2h2 

cosh2k20, + h2) - 
4kosinh2k2h2 

D, e2iktix x4 +m, (35) 

where m,tanhm,h’ =4ko, m2tanhm2h2 = 4ko, ml, = (rnt - 

(2kd2) ‘I=, rnh = (rnz - (2k,)*)“*. In both eqn (34) and eqn 
(35), the first term is the potential representing an outgoing 
free wave, and R’*’ and ti2’ are related to their magnitudes. 

The remainder is the response to quadratic forcing of the 
first-order incident, reflected and transmitted waves. 

An integral equation can be obtained by closely following 
the procedure described in the previous subsection. Let the 
Green’s functions G I and G2 be redefined as 

GI =W,y;t,v;m~) and G2=G(4y;E9rl;m2). (36) 

Applying Green’s theorem to the regions of h , and h *, 

x=0 

d2k 7) = I 
y=o 

Gdx)h+ 
XT -cc s ac#A2) 

y= _h G1 axd4’ 
2 

- I 
y=o 

y= +4~ 
(2) ~GI 

~dy+A-&v)~ for 4 1% (37) 

+ 
I 

y=o 

.v= +4~ 
(2) aG2 

~dy+A+df,d, for lz 0, (38) 

where A t z are the contributions from the line integrals at 
x= t a, i.e. 

A - 45, v> = (39) 

(40) 

Upon substituting the asymptotic potentials eqn (34) and 
eqn (35) into eqn (39) and eqn (40), respectively, and 
observing that the integrands proportional to RC2’ and T(=’ 

vanish, we obtain A + m in the forms 

2 

A-dt,v)= $ 

0 

_h, 

cosh2k,(y+h,) 

4kosinh2k’ h, 
(CIeWx~ + cze- *ikl,x 

aG1 
ax+ G1 2ikl, 

cosh2k, 0, + h,) 

4kosinh2k’ h, 
(cleWxx _ C2e-*ikl,x dy, 

(41) 

2 

A +& 9) = g 

cosh2k2(y + h2) 
4k sinh2k h 4e2ik2ux 

0 2 2 1 + 2ik cosh2k20, + MD e2iktix 

2r 4kosinh2k2h2 ’ 
(42) 

Assuming the continuity of +(*’ and a$‘*‘lax at x = 0, the 

integral equation for &$(*)/ax at x = 0 can be written as 

y=o s. af#J2) 
x=0 

y=_h2(G’+G2)~dY= - x=_pG,q(x)& 

.r= += 

+ x=o G2q(x)dr-A-,(0-,17)+A+,(O+,rl). 

(43) 

When a+‘2’lax has been obtained on x = 0, tpc2’ is found 

everywhere in the fluid through the use of the expressions 
eqn (37) and eqn (38). The constants RC2’ and T’*’ in eqn 
(34) and eqn (35) are then determined with +(2) computed at 
large 1x1. 

Now, the free-surface elevation $b,, defined by eqn (15) 
can be obtained everywhere. In particular, we find the ele- 
vation of the free wave $’ at PI = m in the forms 

s:” = A2R(2je - iml,xe2i(k,z - W(‘, x _ _ cf, (44) 

(7) = ,&-(2’ei%Xe2i(k;Z - mf’, x _ + ccj. (45) 

3 REMARKS ON NUMERICAL PROCEDURES 

A system of N linear algebraic equations was solved by 
discretizing eqn (43) (and eqn (22)). We chose to divide 
the line, x = 0 and h2 < y < 0, into N equal segments 
and approximated the velocity by a piecewise step function. 
The solutions were then sought for the mid points of the 
segments. To deal with the problem of the singularity in the 
velocity in the vicinity of the sharp corner of the step, we 
simply increased the total number of segments N until suffi- 
cient accuracy was obtained. The present results were com- 
puted with 32 5 N 5 100. In evaluating the Green’s 
function, the logarithmic singularity was separated expli- 
citly, and the integrals were calculated analytically. The 
numerical techniques used are standard. What follows is a 
brief description for the procedures handling the integrals in 
the right-hand side of eqn (43) (and eqn (37) and eqn (38)). 

These infinite integrals are not convergent in the usual 
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sense, since the integrands Glq and Gzq oscillate with ever- 

lasting amplitude as /XI - w. For numerical solutions, we 

apply Green’s theorem in the finite fluid domain, replacing 
the intervals ( - ~0, 0) and (0, + 00) with ( - x1,0) and (Ox,), 
respectively, where XI and xr are finite. For xl, x, large 
enough, we can find the limits so that the solution is vir- 
tually unaffected no matter how much we increase xl, x, 
beyond these limits. We found that in general the solutions 
are qualitatively independent of the values of xI and xr, if x,, 
X, > 3L, where L is the wavelength. All results presented in 
this paper were obtained with xi, X, 2 1OL. 

For each k,h , and kzhz, values of T’*’ and R’*’ were eval- 
uated accurate to two decimal places (four decimal places 
for T and R) by repeated computations with increasing N, xl, 
xr, and the number of subintervals for xl and x,. 

4 RESULTS 

To compare these computations with the previous solutions 

for an infinite step, we use hzlhl = l/10 and h2/hl = 10/l 
with normally incident waves (0 = 0). Following New- 
man,[4] we express T = jfl ei*T and R = IRle’6R and 
append subscripts 1 and 2 to T and R to denote the case 
ofwaves incident from the deep side (h, > h2) and the 
case of waves incident from the shallow side (hl < h2), 

respectively. 
Fig. 2 shows lT,l, lT21, and (RI. Note that IRIJ = lR21 = 

jR1.[22,23] For large values of k2h2 ( > l), the present reflec- 
tion and transmission coefficients agree well with the two 

previous solutions-there is little difference within graphi- 
cal depiction. For small values of k2h2 ( < l), however, we 
observe the effect of a finite step. For instance, ITI1 for a 
finite step is actually higher than, but within = 6% of, the 
results for an infinite step for 0.2 < k2hz < 0.7. Note that the 
present as well as previous results can be checked with the 
energy conservation law, IRj* + Ifi’ Cg,lC,, = 1, where 
C,, and C,, denote the group velocities for regions of h, 

and h2, respectively, and with the expression given by 
Newman[23] IT,T2( = 1 - (RI*. Also, the results are 

PRESENT 

.._....._ NEWMAN 

_______ MILES 

Fig. 2. First-order transmission and reflection coefficients for hJhI = I/IO (-), compared with Newman [4] (...) and Miles [5] (- - -): (a) 
IT,1 and (b) IR,I ( = II?,!). (c) is IT*I for the case where an incident wave arrives from the shallow side with hzlh, = IO/l. 
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90.0 

75.0 

60.0 

45.0 

30.0 

15.0 

0.0 

PRESENT 

NEWMAN 

Fig. 3. Phase shifts of the first-order transmission and reflection coefficients for h2/hl = l/10 (-), compared with Newman[4] (...): (a) 
6T, ( = 8T2), (b) - 6R,, and (c) (VT +A&) for the case where an incident wave arrives from the shallow side with h2/h, = IO/l. 

consistent with the shallow water solutions[ 1,2] 

ITI= 2 
1 + (h2/h,)“*’ 

,R, = 11 - Whd”*~ 

1 + (h*/h,)“* ’ 
(46) 

Note that IT,1 - 1.52, ITI1 - 0.48, and IRI - 0.52 as k2h2 - 0. 
Fig. 3 shows the comparisons of the phase shifts 6T, 6R,, 

and 6R2, where I&“,1 = 16~21 = I&l. Note that these results 

confirm the expression,[23] AR, + 6R2 = ?r + 26T. 

f- 0.20 

t 
PRESENT 

- 0.10 /RI1 

- 0.05 

0.00 
0 0.5 1 1.5 2 2.5 3 

v, 

Fig. 4. Second-order free-wave amplitudes for hzlhI = l/2, A/h1 = 0.134 and A = 0.134 (-), compared with Massel[l8] (...) on normal 
incidence (0 = 0): (a) at x = + m defined by eqn (45) and (b) at x = - x defined by eqn (44). Also shown is the comparison for first-order 

reflection coefficients ki\. Note that the parameter k,h* is the same as kh, in Massel’s Fig. 6. 
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1.2 

1 (a) 

KI 
and 

IRll 

0.8 

0 IO 20 30 40 50 60 70 80 90 

8, degrees 

0.08 

1 

- h,/h,= l/10.0 

fc) ...... h,/h,= 114.0 

O,-,fj-_--__-__ 

- 
- - - - h,/h,= l/2.0 

0.02 - 

0.00 II II I r II I I I r II I’1 
0 10 20 30 40 50 60 70 80 90 

8, degrees 

Fig. 5. Result for an oblique wave incident from x = - 0~ (0 = 0 for normal incidence) with hZlhl = l/IO (-), hzlhl = l/4 (...) and 

h,/hl = l/2 (- - -) (k2h2 = I .O, A/h2 = 0. I): (a) at the first-order transmission coefficient ITI 1, (b) the first-order reflection Coefficient Ik, 1. 

and (c) the second-order free wave at x = -k m defined by eqn (45). 

Fig. 4 shows the second-order free wave amplitude com- 
pared with the result of Massel[ 181 for normal incidence 
(0~0). With the scale provided by the graphs in Massel, 
there seems little difference between the two results 
forsmall k2hz ( < 0.7). Some disparity shown at large k2h2 

( > 1.0) appears well within the range of the numerical 
error. The two results appear to agree well for the magnitude 

of the first-order reflection coefficient IR ,I. 
Fig. 5 shows an example demonstrating the effect of the 

incidence angle 0 on the first- and second-order solutions, 
with k2h2 and A/h2 fixed at 1.0 and 0.1, respectively, for 
depth ratios h2/hI = 10, 4 and 2. The amplitude of the 
second-order free wave ((c{*‘l) at x = - m is not shown 
because its magnitude IJ$“‘/Al is small (in the order < 0.001) 
and comparable to the numerical error. Results appear to be 

sensitive to values of k2h2 in a quantitative sense, but the 

trends seem similar in other cases. 
For an obliquely incident wave, we recall that the condi- 

tions eqn (3) and eqn (4) require that k, < k,, k; < kZ. Thus, 
when h, < h?, a wave incident from the shallow side no 
longer satisfies these conditions if sin0 > k2/kI.[5],[20] In 
this case (not shown). the wave undergoes total reflection at 
first order with the amplitude decreasing exponentially for 
x > 0. However, if sin0 < m2/2k,, the second-order free 
wave can propagate to the deep side (4”’ x eimzPr as x - x). 

Fig. 6 shows the ratio of the second- to first-order maxi- 
mum wave amplitude at x = 5 =, for 8 = 0 and hzlh , = I/ 
10 with A/h 2 = 0.1. The small ratio of A/h z is chosen for the 
expansion eqn (1) to be valid. Recalling Urse11[24] we 
restrict the solution to the range k2Al(k2h2)7 < I as kzhz 
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Ic’2’IIIc”‘I 
- Ic~~~l/lc~l~l 

___--__--- IpI/Ic”‘I 

,...._._........... l&/lQ’q 

-.- T/IC”‘I 

-0.1.1 
0.5 1 1.5 2 2.5 3 

k2h2 

0.2 

1 
fb) 

0.5 1 1.5 2 2.5 3 

w 

Fig. 6. Ratio of second- to first-order wave amplitude for normal incidence (0 = 0) with h21hI = l/10 and A/h2 = 0.1, at (a) x = + 00 and (b) 
x= -XI. (-) l<(2)l/l{‘1)I; (- - -) l~$l/l<(‘)l; (- - -) l{~~~l/l~“‘l; (- -) F/l{“‘l. Results are calculated from eqns (I I)-( 15) using the 

maximum amplitudes. 

becomes small. In addition to the ratio of maximum I<‘*‘] to 

maximum ]r”‘], the figure shows the components of (~‘*‘] and 
j$ ris always negative corresponding to set-down. 

At x = + ~0, we find that ]{(*)]/I~(‘)] reaches the value 

greater than 0.3 when k2h2 becomes small ( < 1.0) but 
within the range where the theory is valid. The ratio remains 
above 0.1 over the entire frequency range. The curves also 
demonstrate that the second-order effects are determined by 
the contributions mainly from the second-order solutions for 
small k2h2 and from the quadratic contributions of the first- 

order solution for large k2h2. 
At x = - 00, r(*’ is largely composed of the contributions 

from r\ti. Our computations find r!$,‘, and c negligible. 
Also,the ratio of the reflected to transmitted free wave 
amplitude (If ’ I) is of the order O(O.01) for the various 

values of hzlh 1. 

5 CONCLUDING REMARKS 

We have obtained the first- and second-order solutions to 
the problem of wave transmission over a step using an inte- 
gral equation with a finite-depth Green’s function in oblique 
waves. 

The present first-order results for a finite step are consis- 
tent with previous solutions for an infinite step obtained by 
using the method of matching eigenfunction expansions[4] 
the variational formulation,[5] and Galerkin’s method. [ 181 
In the limit of shallow water, the results also confirm the 
theory of Lamb[l] and Bartholomeusz.[2] Within the gra- 
phical accuracy given by Massel, the second-order free 
wave appears to agree with that of Massel. 

From the example shown, we find that the ratio of the 
second to first-order maximum wave amplitude can be over 
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0.2 for the range where the Stokes theory is valid. In parti- 

cular, at low frequency the contributions from the second- 
order solutions are more pronounced than the quadratic con- 
tributions from the first-order solutions. The study thus 
demonstrates that, though subtle, the contributions from 

the second-order harmonics to the sea spectrum develop- 
ment can be significant, especially for transmitted waves. 
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