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ABSTRACT

Whitecapping affects the Reynolds stresses near the ocean surface. A model for the conservative

dynamics of waves and currents is modified to include the averaged effect of multiple, short-lived, and

random wave-breaking events on large spatiotemporal scales. In this study’s treatment, whitecapping is

parameterized stochastically as an additive uncertainty in the fluid velocity. It is coupled to the Stokes

drift as well as to the current velocity in the form of nonlinear momentum terms in the vortex force and

the Bernoulli head. The effects of whitecapping on tracer dynamics, mass balances, and boundary

conditions are also derived here. Whitecapping also modifies the dynamics and the size of the sea surface

boundary layer. This study does not resolve the boundary layer, however, the authors appeal to tradi-

tional viscosity parameterizations to include these diffusive effects, modified for the context of wave–

current interactions.

The parameterized breaking velocity field is endowed with empirical rules that link their generation in

space and time to properties and dynamics of wave groups. The energy convergence rate of wave groups is

used as an indicator for the onset of wave breaking. A methodology is proposed for evaluating this criterion

over an evolving random Gaussian model for the ocean surface. The expected spatiotemporal statistics of the

breaking events are not imposed, but rather computed, and are found to agree with the general expectation of

its Poisson character. The authors also compute, rather than impose, the shear stress associated with the

breaking events and find it to agree with theoretical expectations.

When the relative role played by waves and breaking events on currents is compared, this study finds that

waves, via the vortex force, purely advect the vorticity of currents that are essentially only dependent on

transverse coordinates. The authors show that currents will tend to get rougher in the direction of steady wind,

when whitecapping is present. Breaking events can alter and even suppress the rate of advection in the vortex

force. When comparing the rates of transport, the waves will tend to dominate the short term and the white-

capping of the long-term rate.

1. Introduction

After the wind has been acting on the ocean surface

for some time, the amplitude of the fastest growing wave

component can reach a critical unstable steepness for
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which whitecapping occurs (for details and references

see Banner and Peregrine 1993). We refer to the process

of steepening, whitecapping, and changing amplitude

as wave breaking. These short-lived, spatiotemporally

random events reduce the excess energy in the wave

field and modify the momentum of the background

currents locally (see Melsom 1996). The dissipation

sometimes changes dramatically when a sudden change

in wind strength and/or wind direction occurs. In addi-

tion to dissipative effects, Melville (1996) recounts in his

review the extent to which we know how wave-breaking

events modify the dynamics of the currents: they affect

the Reynolds stresses and they entrain air bubbles in the

upper layer of these currents. Breaking waves are es-

pecially important in enhancing the wind–sea coupling

(see Terray et al. 1996) and turbulence production at the

surface (see Gemmrich and Farmer 2004). The connec-

tion between wave breaking and near-surface turbulence

is natural and has been considered at some length by

Craig and Banner (1994) and Burchard (2001).

Whitecapping also affects the thickness of the mixed

layer, making boundary layer effects on the currents more

prominent (cf. D’Asaro 2001). Observations suggest that

breaking waves make a large contribution to mixed layer

turbulence levels in the surface layer. For very shallow

mixed layers less than O(10 m) deep, wave breaking plays

an important and direct role in mixed layer deepening.

For intermediate depth layers, the most important con-

tribution of wind–wave forcing consists of driving the

mean motion of the mixed layer and thus the shear at the

mixed layer base. For deeper layers, surface cooling and

convection probably dominate, with wind and breaking

waves keeping the upper mixed layer well stirred.

The inclusion of breaking effects in ocean dynamics

models is often essential. At present, however, we have

only a partial understanding of how wave breaking af-

fects the basic flow quantities, such as velocities and

stresses. Wave breaking has no complete theory yet, and

its modeling is accomplished via parameterizations,

some of which can be very sophisticated (Bauer et al.

1988; Alves and Banner 2003; Komen et al. 1994; see

also Warner and McIntyre 1999 and references therein).

Our focus here is on the large-scale dynamics of the

wave-driven ocean circulation at shelf to basin scales;

scales far greater than those typical of the waves and

whitecapping events. The three-dimensional and time-

dependent conservative dynamics of waves and currents

at these scales have been elaborated in McWilliams and

Restrepo (1999) and more completely in McWilliams

et al. (2004). A comparison between this ‘‘vortex force’’

model and the ‘‘radiation stress’’ formulation for waves

and currents of Hasselmann and others appears in Lane

et al. (2007).

How whitecapping affects wave–current interactions

was addressed, to some extent, within the same frame-

work in Restrepo (2007). There, the proposed parametric

representation of breaking as a diffusion term represents

added uncertainty to a Lagrangian-frame representation

of fluid parcel dynamics. The resulting Langevin-like

stochastic differential equations for fluid parcel motions

were then phase averaged and projected onto the Eu-

lerian frame. The result was a wave–current interaction

model with attendant boundary conditions that took

into account velocity uncertainties.

The fact that noise, modeled as a stochastic process, can

be related to dynamic dissipation at macroscopic scales is

one of the most common yet profound notions of theo-

retical physics of collective phenomena. The Lagrangian

perspective is, in our opinion, a natural setting in which to

develop an appropriate drift–diffusion model for parcel

dynamics with surface breaking. However, we revert here

to an Eulerian perspective to revisit wave–current in-

teraction, with added wave-breaking effects. In contrast

to the strong-noise limit and Lagrangian-based approach

of Restrepo (2007), we will use Gaussian random wave

fields and current knowledge of the kinematics of indi-

vidual breaking events to arrive at an Eulerian-averaged

effect of wave breaking on currents. Eventually we will

make the Lagrangian- and Eulerian-frame characteriza-

tion of the phenomenology physically consistent and

equivalent.

In addition to this, we also develop a computational

procedure for capturing key aspects of the relationship

between wave group dynamics and breaking. (see the

introduction in Tian et al. 2008 as well as Alves and

Banner 2003 for details on the kinematics of wave

breaking). Specifically, we incorporate the wave group

energy convergence rate and use it as a breaking initi-

ation threshold (see Banner and Peirson 2007 and Song

and Banner 2002). Furthermore, we extend the tech-

niques of wave group detection and wave group analy-

sis, pioneered by Longuet-Higgins (1984) and further

developed by Song and Banner (2002), to the two-

dimensional case. Along the way, we also propose the

mean Euler characteristic as an important parameter in

the identification of wave groups in random wave fields.

In some aspects, the model presented here is remi-

niscent of recent work on whitecapping effects to the

mixed layer, near the sea ocean surface, by Sullivan and

collaborators (see Sullivan et al. 2007 and references

therein); we treat breaking events as impulsive stochastic

elements, and we treat the dissipative role of breaking in

the very same way as they did in their work. However, in

addition to focusing on the role played by wave breaking

in the net momentum fluxes in wave–current interactions

and sea surface conditions, we derive the statistical
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distribution of breaking events and predict the mean

momentum flux due to breaking. These two are imposed

in the strategy proposed by Sullivan and collaborators.

Though not crucial to our results owing to our interest in

vastly larger spatiotemporal scales, we also adopt an an-

alytical parameterization of individual breakers, which

they obtained from fitting laboratory data. In the work of

Sullivan et al., the impulsive breakers are added to the

momentum equation. Based upon arguments presented

in Restrepo (2007), we instead propose that the impulsive

breakers appear as an additive uncertainty effect in the

velocity.

2. Large-scale wave current and whitecapping
dynamics

Our goal is to use the very same machinery used in

McWilliams and Restrepo (1999) to derive a consistent

representation for waves and currents and to derive how

the vortex force and the Bernoulli head are modified by

the presence of an additive stochastic component because

of wave breaking. For expository reasons we will not be

using the more complete wave–current dynamics devel-

oped in McWilliams et al. (2004), opting instead for the

derivation in McWilliams and Restrepo (1999). The result

is a far simpler wave–current interaction description, ap-

propriate for planetary-scale quasigeostrophic scales and

dynamics, which do not include effects of currents on

waves or higher-order rotational effects due to waves.

Considered here is an oceanic region on the rotating

earth containing a stratified, incompressible fluid, whose

upper free surface is at z 5 h(x, t), and whose rigid lower

boundary is at z 5 2H(x). The vertical coordinate that is

aligned antiparallel to the local gravitational force and is

denoted by z, z 5 0 corresponds to a quiescent ocean

surface; ẑ will denote the unit upward-pointing vector.

The position vector is denoted by (x, z), where the

transverse or horizontal component is xh 5 (x, y). A time

typical of the wave scales and breaking is denoted by t. A

longer time scale T 5 «2t is typical of the changes in the

currents velocity field (the «� 1 can be justified in terms

of the ratio between wave time scales v21 and the time

scales in which changes in wind forcing appreciably affect

the currents). Here, v is the gravity wave peak frequency.

The transverse component of differential operators

and vector variables has a subscript h; for example,

$ [ $
h
,

›

›z

� �
and

D

Dt
5

›

›t
1 q

h
� $

h
1 v

›

›z
.

The oceanic dynamics are represented, as in Craik and

Leibovich (1976), by the Boussinesq momentum and

continuity equations,

q
t
1 (q � $)q 1 2V 3 q� qẑ 1

1

r
0

$~p 5 $ �Rc, $ � q 5 0,

(1)

where Rc is a stress tensor, g is the gravitational accel-

eration, and r is the density, with r0 its mean value; q is

the Eulerian velocity. The buoyancy field is defined by
~q 5 g(1� r/r0), where the dynamic pressure ~p does not

include the hydrostatic contribution patm 2 gr0z due to

the mean atmospheric surface pressure patm and the

mean density of the resting ocean. The projection of the

Coriolis vector, directed along the earth’s axis of rota-

tion, onto the local Cartesian coordinate system is 2V 5

(0, f (y)(y), f (z)(y)), the superscripts indicating the com-

ponents. Its spatial dependence is a consequence of

variations of the local vertical direction with latitude.

Since energetic, extratropical atmospheric and oceanic

motions typically have large horizontal scales in com-

parison to the thickness of the fluid layer itself, it is usu-

ally possible to neglect the y component of the Coriolis

vector.

We shall assume, for simplicity, that the buoyancy de-

pends linearly on one or more passive tracers ~u(xh, z, t),

such as temperature or salinity, instead of the true non-

linear equation of state for seawater. The equation of

state may thus be written as

~q 5 g �
u

m~u, (2)

where m is the expansion coefficient for ~u, and �
u

de-

notes the sum over all the tracers that contribute to the

buoyancy. In turn, the tracer dynamics are given by

D~u

Dt
5 Q(~u), (3)

where Q is the tracer diffusion term. We further assume

that the tracer and buoyancy fields have a mean vertical

stratification in the absence of any motion. Thus, we write

the total buoyancy field as

~q 5

ðz

N2(z9) dz9 1 q*(x, t), (4)

where N(z) is the Brünt–Väisälä frequency of the mean

buoyancy stratification, and q* is the buoyancy devia-

tion associated with fluid motions. Accompanying the

mean stratification are each of the mean vertical tracer

profiles Q(z), so that

~u 5 Q(z) 1 u*(x, t).

The pressure ~p is assumed to have a mean P(z) and de-

viation p*. The mean pressure is in hydrostatic balance
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with the mean stratification (see McWilliams and Restrepo

1999). The surface boundary conditions at z 5 h(xh, t) are

as follows:

v 5
Dh

Dt
, ~p 5 gr

0
h 1 ~p

atm
, n

›q

›z
5

1

r
0

t, and

k
›~u

›z
5T , (5)

where t and T are the wind stress and surface tracer flux,

respectively.

We are concerned with the situation whereby currents

are influenced by surface gravity waves, characterized by

wave groups of typical amplitude a and mean horizontal

wavenumber with magnitude k 5 jkj. We assume that the

wave slope « 5 ka is a small number and that kjDj � 1

(where D is the typical depth), so that these wave groups,

to leading order, are approximately linear and uninflu-

enced by the ocean bottom. These assumptions lead to

the deep-water dispersion relation s 5
ffiffiffiffiffiffi
gk

p
, where s is

the frequency.

We nondimensionalize (1)–(5) by characteristic wave-

propagation scales, that is, by the time scale 1/s0 and the

space scale 1/k0. The corresponding velocity scale is s0/k0,

the pressure scale is r0(s0/k0)2, the buoyancy scale is

s0
2/k0 3 B0, and the tracer scale is s0

2/(k0gm) 3 B0. The

surface elevation h is scaled by 1/k0. In addition, we

designate the Coriolis scale by s0 3 V0. The Coriolis

value is V0. The Brünt–Väisälä scale by s0 3 N0, the

viscosity and tracer diffusivity scale by s0/k0
2 3 n0, the

wind stress scale by r0(s0/k0)
2 3 t0, and the tracer flux scale

by s3
0 /(k2

0gm) 3T 0. The nondimensional values of the B0,

V0, N0, n0, t0, and T 0 will be chosen to preserve certain

balances in the asymptotic theory. We seek a general form

for the asymptotic theory; that is, we choose values of the

expansion parameters that allow all the various terms to

enter together at the leading nontrivial order in the gov-

erning equations for the evolution of the vorticity v on the

slow time scale. The relations among the nondimensional

parameters that allow this are the following:

V
0
, kRk, N

0
, n

0
5 O(�2); B

0
, t

0
, T

0
5 O(�4). (6)

Later we shall be more specific about the size of these

parameters in the physical setting.

The three-dimensional velocity field q d (qh, wq) is

decomposed into an irrotational wave-associated veloc-

ity, currents, and a breaking velocity field:

q(x, t, T) 5 �uw(x, t) 1 �2vc(x, t, T) 1 �2b(x, t, T). (7)

We will use the convention to overload the definition of

a velocity vector y d (vh, wp), with v representing the

‘‘wave’’ velocity uw, the ‘‘current’’ velocity vc, or the

‘‘breaking’’ velocity b.

In the following, we work out the two main contri-

butions of wave breaking the dynamics of waves and

currents: the modification of the momentum equations

due to Reynolds-like stresses, which we denote as

breaking-generated momentum flux and the enhance-

ment of surface boundary layer effects. The enhanced

diffusivity due to the change in the boundary layer thick-

ness owing to the presence of whitecapping we denote as

the breaking-generated diffusion.

a. The breaking-generated momentum flux

Since the wave velocity field is assumed irrotational,

the total vorticity is given by

$ 3 q 5 �2($ 3 vc 1 $3b) 5 �2(v
0

1 �v
1

1 � � �) 5 �2v.

(8)

The nondimensional vorticity equation thus reads

›v

›t
1 �2 ›v

›T
5 $ 3 [(�uw 1 �2vc 1 �2b)

3 (v
0

1 �v
1

1 �2v
2
� � � 1 2V)]

1 �2$ 3 ($ �Rc) 1 �2$ 3 ẑ[�2u 1 uw].

(9)

The stress term Rc is associated with wave-breaking

diffusion. The details of this term will be worked out

subsequently.

The nondimensional (tracer and) buoyancy equation

becomes

›u

›t
1 �2 ›u

›T
1 [�uw 1 �2v 1 �2b] � $[�2u 1 uw] 1 �2N2w

5 �2Q(u), (10)

where Q is the breaking-generated diffusion term asso-

ciated with (tracers and) buoyancy. Here, uw is the ad-

ditive portion of u associated with wave-scale dynamics.

The zero-order vorticity satisfies

›v
0

›t
5 0. (11)

To first order, (9) gives

›v
1

›t
5 $ 3 [uw 3 v

0
]. (12)

Upon integration over small time scales,

v
1
(�, t) 5 $ 3 [Uw 3 v

0
], Uw(�, t)d

ðt

0

uw(�, s) ds. (13)
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To second order,

›v
0

›T
5 $ 3 (Vc 1 Zc) 1 $ 3 [$ �Rc(vc, b)]

1 $ 3 (b 3 Zc) 1 $ 3 [b 3 ($ 3 b)] 1 $

3 [Vc 3 ($ 3 b)] 1 $ 3 ẑu, (14)

where

Vc 5 vc 1 uSt, Zc 5 $ 3 vc 1 2V. (15)

The current velocity equations are thus

›

›T
(v c 1 b) 5 Vc 3 Zc 1 (b 3 Zc) 1 [b 3 ($3 b)]

1 [Vc 3 ($3 b)]�$Fc � 1

2
$ bj j2

1 ẑu 1$ �Rc(v c, b), (16)

where the geopotential Fc is given by

Fc 5 p
0

1
1

2
Vcj j2. (17)

Taking ensemble average and time averages gives

›v c

›T
5 Vc 3 Zc 1 (B 3 Zc) 1 hb 3 ($ 3 b)i

1 [Vc 3 h$ 3 bi]� $Fc � 1

2
h$ bj j2i

1 ẑu 1 h$ �Rc(v c, b)i. (18)

The ensemble average h�i is taken with respect to the

measure describing the random distribution of the break-

ing events. The time average � is with respect to the dom-

inant gravity wave period. B is the time average/ensemble

average of the breaking velocity.

The boundary conditions at z 5 0 are

wc(x
h
, 0, T) 5 $ �M� wb(x

h
, 0, T), M 5 uwhw,

(19)

p(x
h
, 0, t) 5 hc 1 pa � P, P 5

›hw

›t

� �2

, and

(20)

n
›v c

›z
1 S

�
z50

5 t � n
›b

›z

����� z50
,

���
S(x

h
, t) 5

›2uw(x
h
, 0, t)

›z2
hw(x

h
, t), (21)

the sea elevation h being expressed in terms of the sum

of the wave-associated component, with superscript w

and the current-associated component identified with

superscript c.

Next, we derive the slow-time tracer equation and

thereby an equation for the evolution of the buoyancy.

The tracer Eq. (3) is

›u

›t
1 �2 ›u

›T
5��(uw 1 �2vc 1 �2b) � $u 1 �2Q, (22)

as a consequence of (10) and (6). Expanding u 5 u0 1

�u1 1 . . . and substituting into (22), the balance of terms

leads to u0 5 u0(xh, z, T ), to lowest order. Integration in

time of the next-order balance yields

u
1

5�U � $u
0
, (23)

which implies that hui5 u0 1 O(�) and u9 5 �u1 1 O(�2).

The t average of (22), followed by the ensemble av-

erage yields

›u
0

›T
1 (Vc 1 B) � =u

0
5 hQi. (24)

The tracer surface boundary condition (5) is

k
›u

0

›z
5 T at z 5 0, (25)

to lowest order.

b. The breaking-generated diffusion

We now address the parametric construction of the

stress term Rc in (1) and (18). We adapt the approach of

Sullivan et al. (2007) under some modifications to apply

it to the dynamics of waves, currents, and breaking. Let

$ �Rc d
2

3
$e,

where e is the fluctuation kinetic energy. The turbulent

kinetic energy (TKE) equation for e, given in Ferziger

and Peric (1997, pp. 273–275), modified to include the

effect of the Stokes drift uSt and the breaking velocity

mean B, becomes

›e

›t
5 . . .� (uSt

j 1 B
j
)

›e

›x
j

� t
i, j

›(ust
j 1 B

i
)

›x
j

1 W,

where for i, j 5 1, 2, 3,

t
i, j

5
1

2
m

b

›(B
i
1 Vc

i )

›x
j

1
›(B

j
1 Vc

j)

›x
i

" #
.

Here, mb 5 Cb‘be1/2, where Cb is an empirical parameter,

and we use the Reynolds decomposition, b d B 1 b9.
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The mixing length is proportional to the amplitude of

the waves,

‘
b

5 g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘

0

f (s) ds

s
, (26)

where g is an empirical parameter, and f(s) is the wave

spectrum. (Unless the boundary layer dynamics were

resolved in the model, the choice of length scale will

not make a great deal of difference, after tuning is

done. However, we acknowledge that our choice is not

the conventional one.) The source term W in (26) is

found by taking the difference between the transport of

A and its mean field W 5 hb9 � Ai (see Sullivan et al.

2007), where A d b 3 Zc 1 b 3 ($ 3 b) 1 Vc 3 ($ 3 b)2

1/2$jbj2 .

The jth component of the tracer wave diffusion term

Q in (24) is given by

Q
j
5

›

›x
j

�hu9b9
j
i1 m

u

›u
0

›x
j

" #
,

where mb 5 Cu‘be1/2, with Cu as another empirical constant.

3. Parameterization of wave breaking

With the specification of the field b, we obtain a com-

plete description of the large-scale equations of motion

and boundary conditions. There are two aspects of the

random process b that are essential to the construction

of the breaking-generated momentum conversion and

wave-breaking diffusion terms: the space–time locations

where b is nonzero and the distribution of its local

magnitude and direction. One way to pin down b is to

construct a statistical multiparametric model of the fil-

tered total velocity q field data. Whether statistical sta-

bility is practically possible in computing mean breaking

fields from data largely depends on the extent of the

domain of interest and the whitecapping dynamics.

Our approach is to produce a parameterization that

blends wave-breaking kinematics and statistical models.

There are four components to our approach: 1) we adopt

an empirical model for individual breaking events; 2) we

propose a model that predicts the occurrence of break-

ing events, based upon the dynamics of wave groups and

its empirical relation to the occurrence of breaking; 3)

we develop a probabilistic setting that predicts the spa-

tiotemporal distribution and strength of breaking events,

based upon energetics; and 4) we upscale the collective

microdynamics, yielding a macroscopic-scale breaking

velocity field b with dynamics at the spatiotemporal scales

of the currents.

Empirical model for individual breaking events

Sullivan et al. (2004) suggested a parametrization of

breaking events, inspired by experiments conducted in

the laboratory. We use a simplified version of this pa-

rametrization in what follows.

We take the direction of wind propagation as ad
(cosf, sinf, 0). Let us further suppose that the wave

breaks are at position X 5 (X, Y) and at time tb. The force

associated with this single breaking event is assumed to

be directed in the horizontal direction a, and following

Sullivan et al. (2004), can be described mathematically by

A5 k
b

g

2p
X(b)Y(d)Z(g)T (a)a, (27)

where

(a, b, d, g) 5
t � t

b

T
w

,
x�X

ct
,

2(y� Y)

l
,

z

xct

� �
(28)

are the dimensionless time and space coordinates, local

to the breaking event, and

X 5 5.34b3(1� b2), 0 # b # 1,

Y5 1� (d� 1)4, 0 # d # 2,

Z5 (1� g4)2, �1 # g # 0,

T 5 25a(1� a)e�3.4a, 0 # a # 1. (29)

The multiplier kb is the strength of breaking, and the

constant 0 , x , 1 is the aspect ratio of the depth to

the length of the breaker. [The parameterization for the

functions in (29) is simpler than originally proposed in

Sullivan et al. (2004), but nevertheless, it is qualitatively

similar.]

The breaker velocity field ~b(a, b, d, g) associated with

a particular breaking event is obtained by solving the

Navier Stokes equations with a body force given by (27),

with suitable boundary conditions. Here, we simplify

this calculation and propose that the breaker velocity be

given by the initial boundary value problem

›
a
~b 5

1

Re
D

b,d,g
~b 1A, $

b,d,g
� ~b 5 0. (30)

Here, Db,d,g is the Laplacian operator and $b,d,g the di-

vergence operator, respectively, in the scaled variables.

The boundary conditions on ~b are periodic in d, and
~bj ! 0
�� as b, g / 6‘.

For illustration let us assume that ~b 5 (b
1
, 0, b

3
) (thus

the incidence angle is w 5 0) and choose kb 5 0.18 and

x 5 0.2 with Re 5 3000 (based on wave scales and the

kinematic viscosity). The Fourier-series solution to (30)
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yields the fields pictured in Fig. 1. The time dependence

of each breaking event is of little concern at current time

scales and thus omitted in this presentation. (According

to Sullivan et al. (2004), a breaking event grows and

decays exponentially in time.)

1) WAVE GROUPS AND WAVE BREAKING

In Song and Banner (2002) and Banner and Peirson

(2007), the authors propose that the onset of wave

breaking in deep-water wave groups of weakly non-

linear unidirectional Stokes waves can be determined

from the mean convergence rate of wave energy and

geometrical steepening following the wave group max-

ima. Here, we develop a strategy to evaluate the occur-

rence of breaking events from realizations of a random

sea surface, where the breaking can result more rapidly

from local wave energy convergence owing to non-

linearity during the superposition of free wave modes.

Song and Banner (2002) also included a variant of this

mechanism (a chirped wave packet) in their study. It is

not known which of these routes to breaking is more

prevalent in the ocean. In any event, using the formu-

lation of the evolving wave field described below can

result in a faster time scale for fluctuations in m(t) be-

cause of the broader spectral bandwidth and di-

rectionality of the free wave modes. Further, the lack of

uniformity in the wave field clearly evident in Fig. 2 can

cause fluctuations in m(t) at the evolving wave group

maximum. We note finally that the effect of longer

waves on the breaking propensity of the smaller waves

(e.g., Phillips and Banner 1974) is not included.

We assume the water surface of the ocean is described

by a zero-mean Gaussian random process denoted by (x,

t): the surface elevation is

h(x, t) 5 Re

ð
R

2
ei(k�x1st)

ffiffiffiffiffiffiffiffiffiffiffiffi
G

h
(k)

q
W(dk)

� 	
d Re h*(x, t)f g,

(31)

FIG. 1. Nondimensional plots of fully developed breaker velocity and associated fields in the (b, g) plane: (a) the

breaking velocity ~b, (b) vorticity $ 3 ~b, (c) $j~bj2, and (d) ~b 3 $ 3 ~b.
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where W is a complex-valued white-noise measure on

R
2, such that

hW(dk),W(dk9)i5 d(k� k9) dk ds; (32)

and the spectral distribution Gh(k, s) is the Fourier trans-

form of the covariance function

G
h
(x9, t9) 5 hh(x, t)h(x 1 x9, t 1 t9)i

5 Re

ð
R

2
ei(k�x91st9)G

h
(k) dk

� �
. (33)

We assume that the waves, to leading order, are linear and

uninfluenced by the ocean bottom, and hence the wave

frequency satisfies the deep-water dispersion relation

s 5 s(k) 5
ffiffiffiffiffiffi
gk

p
. (34)

The waves are assumed to have local horizontal wave-

number k, and speed c 5
ffiffiffiffiffiffiffiffiffiffiffi
(g/k)

p
. The associated wave-

number magnitude, wave period, and wavelength,

respectively, are k 5 jkj, T
w

5 (2p)/
ffiffiffiffiffi
kg

p
, and l 5 (2p)/k.

Wave groups are numerically characterized through

an envelope surface of h in an analogous fashion to the

one-dimensional situation considered by Longuet-Higgins

(1984). For each value of t, the envelope surface r(�, t) is

obtained by applying a low-pass spatial filter to jh*(�, t)j. A

wave group is then defined as a connected component of

the excursion set fx : jr(x, t)j. r*g, where h attains at least

one positive maximum.

The threshold p* may be determined as follows: re-

gard r(x, t) as the norm of a complex Gaussian (sea el-

evation) field, and take the average Euler characteristic,

denoted xEu(r*), of the excursion sets fx : r(x, t) . r*g.

The Euler characteristic is a topological property with

the following feature: if a set has n connected compo-

nents with a total of m holes in them, its Euler charac-

teristic is equal to n 2 m. The definition of xEu for

general sets and manifolds and further properties can be

found in Adler and Taylor (2007). Moreover, analytic

expressions for the expected value of the characteristic

number of excursion sets of general Gaussian pro-

cesses and their complex norm are known (see Adler

1978). In particular, the mean hxEu(r*)i is zero for

r* 5
ffiffiffiffiffiffiffiffiffi
hr*i

p
, and attains its only positive maximum at

r* 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2i(1 1 2hr2i)

p
. We propose taking p* between

these two extrema,

r* 5 (1� a)
ffiffiffiffiffiffiffiffiffi
hr2i

q
1 a

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2i(1 1 2hr2i)

q
, (35)

for an empirical value of ar 2 [0, 1].

The local wave energy is parameterized in Song and

Banner (2002) by

m(t) dh2(x
max

, t)k2(x
max

, t), (36)

where k is the local wavenumber, and xmax 5 xmax(t) is

the position of the maximum crest in the group. The non-

dimensional parametric mean growth rate of wave group

energy is defined as

d(t) 5
1

hsi
Dm

Dt
, (37)

where the material derivative is taken following the wave

group, and hsi is the average frequency. Song and Banner

(2002) identify a threshold d* ’ 1.4 3 1.023 for d that

distinguishes breaking from nonbreaking wave groups.

For each fixed wave group, the start of a breaking event

is defined as time t 5 tb of the first upcrossing of the

threshold d* by d(t). We assume the duration of the event

is, on average, one wave period Tw. The position of the

breaking event is X 5 xmax(tb).

The strength of breaking kb, see (27), is determined by

equating the total kinematic energy from the velocity field

in (30) with the total drop of energy during breaking. Let

E(t), t . tb, be the energy of ~b per unit of area transverse to

the propagation direction; namely,

E(t) 5 r
0
c

1

lct

ðt

0

ð
Vb

ð0

�X ct
A(x, z, s) dz dx ds, (38)

where Vb is the (time-dependent) horizontal support

of ~b,

Vb(t) 5 [0, ct] 3 [�l/2, l/2]. (39)

Using (29), the total energy gives

FIG. 2. Simulated ocean surface and boundary of detected wave

groups in a subregion of the modeling area for a fixed time step.
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E(T
w

) 5
0.55gr

0
xk

b

k2
. (40)

On the other hand, as reported in Banner and Peirson

(2007) and Tian et al. (2008), the mean drop in total wave

energy can be computed from the convergence rate d and

the wave energy just prior to breaking, as

E(T
w

) 5 c
E

gr
0
h2(x

max
, t

b
)[d(t

b
)� d*], (41)

where cE is an empirical parameter taken here to be

cE 5 55 as in Tian et al. (2008). One then can use (40) to

solve for kb, and this yields

k
b

5
1.8c

E

X k2h2(x
max

, t
b
)[d(t

b
)� d*]. (42)

2) PARAMETRIC LOCALIZATION OF

WAVE BREAKING

The location in space–time of breaking events on the

ocean surface is modeled by a Poisson-point process

L e f(X, tb)g of locations X 2 R2 and times tb . 0. The

process L is characterized by its constant intensity L . 0,

defined as follows. Let A � R2 be some region of the

ocean surface and [T1, T2] a time interval. If N(A 3 [T1,

T2]) denotes the number of breaking events that occur in

region A and between times T1 and T2, then

L 5
hN(A 3 [T

1
, T

2
])i

(T
2
� T

1
)area(A)

. (43)

To a breaking event, say at (X, tb) 2 L, we associate a

velocity perturbation given at t time scales by ~bp(x�X,

z, t � tb) defined via (30). The subindex p simply denotes

that the vector field ~bp is characterized by random

‘‘breaking parameters’’ p 5 (k(tb), kb) independent of

the position of the breaker and of known probability

density. Furthermore, ~bp(x, z, t) is nonzero only for x 2

X 2 Vb(Tw), z 2 [2xcTw, 0], and t 2 tb 2 [0, Tw], where

Vb(t) 5 Vb(p, t) is given by (39).

The perturbation at T time scales associated to a wave

breaking event is

FIG. 3. Examples of two typical simulated breaking wave groups. (top) The trajectory of the centroid of the wave

groups is shown: (top left) the wave group is moving in the southeast direction and (top right) the trajectory moves

toward the northwest. Red circles correspond to time points where d(t) . d* 5 1.4 3 1023. (bottom left) The growth

of the smoothed running average of the local wave energy parameter is shown. A bold line is used for the first tracked

wave group and crosses to indicate the second. (bottom right) The energy convergence rate d(t) is plotted. It should

be noted that each of the groups is considered to have had one single breaking event during the timeframe plotted.

Quantities associated with these breaking events, for example., k* or kb, are computed as the time average over the

points where d(t) . d*.

MAY 2011 R E S T R E P O E T A L . 845



bp(x, z)d
1

T
w

ðT
w

0

~bp(x, z, t) dt, (44)

and the total breaking velocity field is the random sum

b(x, z, T) 5 �
(X,t

b
)2L

b
p
(x�X, z)d(T � t

b
). (45)

4. Examples of waves, currents, and breaking

a. Wave-breaking simulation

The complex surface field h*(x, t) is obtained by

performing a two-dimensional (fast) inverse Fourier

transform as indicated in (31). For the energy spectrum

in (33), we chose Gh(k) 5 2C(k), where C is the omni-

directional and wind-dependent spectrum proposed in

Elfouhaily et al. (1997) with inverse wave age Vw 5 1.3

and wind speed U10 5 15 m s21. The resulting peak

wavenumber is kp d [g/(U10Vw)]2 5 0.074 m21. We

consider a symmetric wavenumber grid with 512 3 512

values, spaced by dkx 5 dky 5 0.0063 m21 and spanning

between zero and a maximum of 0.4 m21. The resulting

spatial discretization has dx 5 dy 5 7.8 m and a total

extension of 4000 m. Temporal frequencies are com-

puted as s 5 (gk)1/2, which yields hsi 5 0.98 s21 and

a simulation time step of Dt 5 0.67 s. The wave-breaking

simulation was run for 5000 s.

The computation of the wavenumber k(t) 5

ffiffiffiffiffiffiffiffiffiffiffi
k2

x 1

q
k2

y

at the local maxima of h(�,t) is performed by making kx 5

(2p)/lx, where lx is the distance between the consecutive

upcrossing and downcrossing of the level z 5 0 to the right

and left of the local maximum in the x direction. The

same procedure is applied in the y direction to obtain ky.

A Hamming window for wavenumbers satisfying k ,

0.4kp was used to filter jh*(�,t)j to obtain the envelope

surface r(�,t). The threshold value for wave group de-

tection p* is obtained by making ar 5 0.5 in (35). Wave

groups are defined as connected components of the ex-

cursion set fx : jr(x, t)j . r*g with the following prop-

erties: at least one positive maximum of h belongs to the

excursion set, and the extent of the set in each direction

is at least �g[(2p)/kp], where �g is a size parameter taken

as �g 5 1.5 in this example. The filtering window, the

value of ar, and the size parameter �g are chosen so the

simulated wave groups exhibit shapes and sizes similar

to those of oceanic wave groups observed in nature (as

reported in Niedermeier et al. 2005). Figure 2 shows the

generated field h (�,t) for a fixed t and the boundaries of

the detected wave groups.

The location of a wave group is tracked in time by the

position of its centroid xcen(t). Wave groups at t and t 1

Dt are considered subsequent stages of the same wave

group if jxcen(t) 2 xcen(t 1 Dt)j is of the order cDt,

where c is the mean speed of the group. Groups whose

lifetimes are less than tg times its mean period hTi 5

h2p[kg]�(1/2)i are discarded.

As discussed in Song and Banner (2002), the calcula-

tion of hm(t)i and its material derivative are challenging

because of the oscillatory nature of m. To circumvent

that problem, the evaluation of the condition d(t) . d*

on individual wave groups is performed as follows: 1) the

moving average m(t) of m is computed, and this moving

average does not contain the oscillations found in m; 2)

a smoother version of m, denoted as m*(t), is computed

by fitting a cubic spline at time points sampled every

one tenth of hT i; 3) d(t) is computed as the polynomial

derivative of m*; and 4) breaking events are those for

which d(t) . d*. To remove endpoint effects of the

weighted average and the polynomial fitting, breaking

events that include the endpoints of the time series are

suppressed. The final result of the simulation are as fol-

lows: the intensity measure L and the sample joint dis-

tribution of the pair p 5 (k*, kb), where k* 5 k(tb) is the

wavenumber at breaking maxima, and kb is the breaking

strength parameter defined in (42). These statistics are

used to generate random momentum contributions given

by (27) at random positions in space–time.

The local wavenumber at a breaking event k* is com-

puted by taking the mean of k(t) at the maximum of the

wave group over the times where d(t) . d*. We obtain

a mean value of hk*i5 0.082 m21. The breaking strength

parameter kb is then computed using (42), with a value for

the breaker aspect ratio of x 5 0.2 as in Sullivan et al.

(2004). We obtain a mean value hkbi 5 0.055, which

falls into the range of values 0 , kb , 0.36 proposed by

Sullivan et al. (2004). Figure 3 shows the space–time

evolution and the time evolution of two centroids of typ-

ical simulated breaking events. The local wave energy and

the mean growth rate are also shown.

Figure 4 shows the marginal histograms for the mag-

nitude of the mean wavenumber during a breaking event

and the breaking strength parameter.

The total number of groups that exhibited breaking

events was 6021 out of 16590 groups tracked. The

resulting intensity measure is L 5 3.76 3 1028 m22 s21.

The hypothesis of a Poisson distribution for L e f(X,

tb)g (the spatiotemporal position of breaking events) can be

easily tested. Following Illian et al. (2008), one can define

l(r) 5
3hN(B

r
)�1i

4pL

� �1/3

, (46)

where N(Br) denotes the number of points in L such that

j(X, tb) 2 (x0, t0)j, r, for any fixed reference (x0, t0). For

a Poisson process l(r) 5 r. Figure 5 shows the compari-

son between the observed and theoretical l(r).

846 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



Using (42), the contribution due to wave breaking to

the total momentum flux via wind stresses at the ocean

surface is

ht
b
i5 r

0
L

ðT
w

0

ð
Vb(p,T

w
)

A(x, s) dx ds

* +

5 9.91
ffiffiffi
g
p

r
0
Lxhk

b
k�t/2i. (47)

The total momentum flux can be computed as hti 5

r
a
C

d
U2

10, where Cd is the wave age–dependent drag

coefficient (see Donelan 1982). For this particular ex-

ample we used Cd 5 1.84 3 1023, x 5 0.2, and obtained

hti 5 0.497 kg m22 s21, (tb) 5 0.209 kg m22 s21.

Examples for seas at different states of aging and fixed

U10 5 15 m s21 were also performed. The parameter

values and results are summarized in Table 1.

b. Breaking effects on currents

In the following calculations, we will compare the rel-

ative roles of the Stokes drift velocity and the breaking

velocity on a cyclonic–current flow. Under natural cir-

cumstances both effects would be present. We solve (18)

on a basin with periodic boundary conditions. The square

domain was 56 km on each side. The domain was dis-

cretized in the X (horizontal in the figures) and Y di-

rections generating a 32 3 32 grid. The evolution

equation for the currents was discretized, and a constant

time step of 200 s was used in the upwinded/finite volume

scheme for the vorticity. The velocity is computed from

the potential and streamfunction from their respective

elliptic equations. The total time of the calculation was

approximately 12.8 h. This is a very short time span to see

significant changes in the currents; however, the fact that

the cyclone evolves little allows us to discern how the

various velocity fields affect the outcomes.

Shown in Fig. 6a is the initial cyclonic vortex, which

has a peak amplitude of 5 3 1024 s21. It has the shape of

a two-dimensional Gaussian surface with characteristic

width of 7 km. The associated velocity field is shown in

Fig. 6b. In these calculations the gravity wave field was

FIG. 4. Sample probability histograms for the mean wavenumber during breaking events and the breaking

strength parameter.
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composed of deep-water waves that locally form wave

groups and experience breaking events. The wave

breaking field b at the resolution of the current scales

was found by the following upscaling procedure: 1) the

number and location of breaking events (X, tb) are

computed by generating realizations of a Poisson pro-

cess with the calculated intensity measure, L in (43),

over each element of the large-scale grid, and the du-

ration of the large time step. 2) For each event, the

values of the breaking parameters p 5 (k(tb), kb) are

drawn independently from its sample joint distribution

(see Fig. 4). 3) For each generated event, the local ve-

locity field b in (45) and its curl are computed by solving

(30). 4) At each point on the small grid, all the contri-

butions by breaking events are averaged over the du-

ration of the large time step. 5) The spatial mean is taken

over the area encompassed by the element of the large-

scale grid.

The velocity field associated with a breaking event

has support given by (39). At the subgrid scale, these

individual solutions are uncorrelated and smoothly con-

nected. The magnitude and intensity of the averaged

wave-breaking velocity has dimensionally appropriate

intensities and magnitudes, without adjustable parameters.

In the calculations that follow, we omit the breaking-

generated diffusion term; its effect is to diffuse away

momentum, primarily at high frequencies, especially at

breaking scales.

The Stokes drift corresponding to the random wave

field was computed following Huang (1979). The re-

sultant Stokes drift velocity, evaluated at the free sur-

face is uStjz50 d uSt 5 (0.259, 0), wSt 5 0. (directed from

left to right in the plots).

Figure 7 shows results for the evolution of the cyclone

after 12.8 h of simulation, in the absence of the breaking

velocity field. Figure 7a shows the vorticity field when

the Stokes drift is present, and Fig. 7b shows the dif-

ference between the vorticity fields with and without

vortex force. The picture shows the degree to which the

Stokes drift affects the currents via the vortex force over

a very short time span; its primary effect is to modify the

resulting advection of the vorticity. Hence, on spatial

spans on the order of tens of kilometers, and small time

spans, the Stokes drift affects the advection of vorticity

via the (conservative) vortex force in a very slight way,

as expected.

Before considering the cyclonic–flow example, we il-

lustrate what happens when the initial current velocity is

zero everywhere. The plots in Fig. 8 show the velocity

after 12.8 h of simulation. The vorticity and spectrum of

vorticity are shown in Fig. 9. The combined effect of the

Stokes drift velocity and breaking waves appears in the

left column of Figs. 8 and 9. In contrast, the right-most

plots in these figures show the corresponding results

with the Stokes drift suppressed. The breaking of waves

affects the velocity and vorticity fields considerably on

a wide range of scales, as is evident from the spectral

plots. Comparison of Figs. 8a and 9b show that these

fields are more spatially homogeneous in the latter case,

when the Stokes drift is zero. This is also shown in Figs.

9c and 9d, by way of the spectrum. The variance in both

is comparable but there is a slight red shift in the mean of

the spectrum along the X direction. More strikingly,

there is a banded structure; the figures do not show that

there are spectral components everywhere but there is

an enhanced band in the X direction of wavenumber

space, which is in the direction of the wind (the wind

direction is imprinted in the currents via the breaking

of the waves). The banded structure results from the

X derivative of the vortex force. Since the breaking

velocity is strictly directed in the X direction and it is

TABLE 1. Simulation results for three different values of sea age

and wind velocity U10 5 15 m s21. The threshold energy conver-

gence rate for wave breaking was kept constant at d* 5 1.4 3 1023.

Vw 1.0 1.3 1.6

Kp (m21) 0.043 0.073 0.11

ar 0.55 0.5 0.25

No. of groups 5569 16 590 36 916

No. of breaks 1646 6021 7255

L (m22 s21) 1.03 3 1028 3.73 3 1028 4.53 3 1028

hk*i (m21) 0.066 0.082 0.113

hkbi 0.086 0.055 0.032

Cd 1.30 3 1023 1.84 3 1023 2.19 3 1023

hti (kg m22 s21) 0.35 0.49 0.59

htbi (kg m22 s21) 0.162 0.209 0.327

FIG. 5. Comparison between a statistic for l(r) and the identity

function. See Illian et al. (2008) for details.
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only a function of the transverse coordinates, this X

derivative is the only derivative in the curl of the vortex

force that contributes to the vorticity equation.

Figures 10 and 11 show the effects of the breaking

velocity and the Stokes drift on the dynamics of the

cyclone, after 12.8 h of simulation. The initial conditions

on the current are those appearing in Fig. 6. In Figs. 11a

and 11d, we observe differences in the position of the

cyclone center as well as differences in the spatial ho-

mogeneity in the structure of the flow itself. High vor-

ticity is mostly concentrated close to the cyclone in the

no-drift case (see Figs. 11b and 11e), and this is reflected

in the respective spectra; there is a remnant of the

spectrum of the vorticity of the cyclone shown in Fig. 6

for the nonbreaking case. The effect of the breaking

velocity on the currents via the breaking momentum flux

terms is not gradual here; this results from the fact that

the dominant time scales for breaking, waves, and cur-

rents are separated by two orders of magnitude. For

every integration time step, which is 200 s long, there is

an expected 2.3 3 104 breaking event on the whole of the

simulation domain, since the intensity measure L 5 3.76 3

1028 m22 s21.

It is clear that the advection of the vortical structure is

the result of the Stokes drift velocity, however, the

breaking velocity has a significant effect on the dynamics

of the cyclone as well. Figures 11c and 11d have the

banded spectra described before, and the direction of

the wind is again evident in these plots. The variance is

smaller in Fig. 11c, when the drift velocity is present.

FIG. 6. (a) Cross section of symmetric Gaussian initial vorticity (s21) at Y 5 25 km, (b) two-dimensional spectrum

(m s21) of the initial vorticity, and (c) the initial current velocity field vc (m s21). The Stokes drift velocity primarily

modifies the advection of vorticity.
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Remnants of the spectrum of the cyclone are evident,

especially in the lower low-wavenumber regime in Fig.

11d. We tracked the maximum speed of the flow, over

a 12.8 h integration, to get a qualitative assessment of

the overall advection of the same initial cyclone, under

the same Stokes drift velocity. In the absence of break-

ing, the cyclone moved, approximately, a total of 10 and

0 km, respectively, when the drift velocity was present

and otherwise. With breaking present, these numbers

changed to 11.5 and 22 km (to the left of its initial po-

sition), respectively. These are signed distances between

initial and final positions, rather than the length of the

cyclone track. In the absence of breaking, we found the

expected enhancement on the advection of the cyclone

by the presence of the X-directed drift velocity. The

presence of breaking stalled the cyclone, when breaking

and the Stokes drift were present.

Figures 12a and 12c show the mean rate of displace-

ment of 32 tracer particles in the flow, initially placed

at 5 km from the origin of the cyclone and arranged

symetrically. The difference between Fig. 12a and

Fig. 12c is that in the latter we increased the overall

kb strength at all wavenumbers by a factor of about 5.

(The reason we gave the stronger breaking case con-

sideration is because we wanted to infer the asymp-

totic behavior of the rate; the small spatial domain and

periodic boundary conditions lead to the fields self

interacting sometime after about 7 h.) The displacement

FIG. 7. Results after 12.8 h of simulation with the cyclonic initial condition as shown in Fig. 6. No breaking is present.

(a) Vorticity Zc(X) (s21) and (c) spectrum (m2 s21) of vorticity with Stokes drift equal to uSt 5 (0.259, 0) m s21. (b)

The difference vorticity field between the case with Stokes drift and without; (d) the spectrum of that difference.

Note the difference in amplitude scale in (a) and (b). Also note in (d) the effect of the advection due to the Stokes

drift.
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was computed as the Euclidean distance of the particle

relative to its initial position. This distance is averaged

over all particles, and then its time derivative is ap-

proximated and defined here as the rate. The different

rate curves in Figs. 12a and 12c correspond to different

flow conditions. Lighter curves correspond to a case

with no drift velocity present, dark curves with Stokes

drift. The lower thin curves were obtained from the

zero initial conditions run highlighted in Fig. 7; the two

curves show comparable transport rates. For the re-

maining curves we have the comparison of breaking

and nonbreaking cases. Nonbreaking rates are depicted

with circles, and the significantly noisier heavy solid

lines depict the breaking cases. The rate starting as high

as it does in these examples, is clearly a result of the

initial conditions used. In the absence of breaking, the

circled curves would decay significantly and plateau at

a very small value, somewhere less than 0.05 m s21.

With breaking added the rate actually plateaus at a rate

roughly twice as high (which value depends on the wind

intensity). Hence, for the initial conditions chosen, the

initial conditions largely control the rate of displace-

ment, the Stokes drift is secondary in importance—

note the diverging breaking and nonbreaking cases

with Stokes drift (the intermediate pair of datasets). In

the long-time limit, however, the breaking may over-

come the Stokes drift velocity in affecting passive

tracer transport. Since the breaking velocity terms in

the momentum depend on the currents and the Stokes

drift, it is not possible to interpret, in general, whether

the breaking velocity always suppresses transport or

otherwise.

Figures 12b and 12d plot the 2 norm of the gradient of

the vorticity, normalized by the norm of the vorticity

itself, as a function of time. Again, case Fig. 12d corre-

sponds to kb amplitudes roughly 5-times larger, but

otherwise the same as in Fig. 12b. The two thin upper

curves correspond to the case in which the initial con-

dition of the currents was zero (see Fig. 9). Whether the

Stokes drift was present or not resulted in the compa-

rable dispersion rates; the gradient and the vorticity

norms are in equilibrium. For the case in which the

breaking is not present, with nonzero Stokes drift, we

obtain the circled line at the bottom (this is the disper-

sion associated with the flows depicted in Fig. 7). If the

Stokes drift is not present the outcome is comparable.

The dispersion again is nearly constant and thus the

norms are approximately balancing, the norm of the

field being dominant. Comparison of the jagged light

lines and the circled one shows a difference that matches

expectations: the breaking field makes the vorticity field

uniformly rougher. Things are more interesting when

we consider the dispersion associated with the flow de-

picted in Fig. 11. The lower light solid line corresponds

to the no Stokes drift velocity case, and the other one to

when the Stokes drift velocity is present. The dispersion

curves are close to the nonbreaking case initially, then

the trends become slightly different; however, whether

FIG. 8. Results after 12.8 h of simulation with an initially zero velocity field. Velocity contours (m s21): (a) cor-

responding to the case uSt 5 (0.259, 0) m s21, (b) zero Stokes drift. A comparison of (a) and (b) shows that the former

is less spatially homogeneous and this is due to the presence of the drift velocity. Magnitude of the velocity contours

at 0.05 (lighter) and 0.1 m s21 drawn.
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the Stokes drift velocity is present or otherwise, the

dispersion asymptotes to the pure breaking case (the

thin upper curves). The smooth dashed line in Fig. 12d is

an exponential fit to these, with an exponent coefficient

of 1. The exponential behavior is expected and results

from the slow decay of the largest modes under the ac-

tion of advection–diffusion.

5. Concluding remarks

In the model formulated here, whitecapping events

affect currents in two ways: through breaking-generated

momentum flux and breaking-generated diffusion. The

breaking-generated momentum flux refers to modifica-

tions of the Reynolds stresses owing to the presence of

whitecapping. These affect momentum balances via the

vortex force—the Bernoulli head. Breaking affects mass

balance and tracer evolution, and it also affects the

surface boundary conditions.

The breaking-generated momentum flux mechanism

is arrived at by means of wave averaging and ensemble

averaging the equations of motion and the boundary

conditions, assuming that there is a separation of time

scales and spatial scales for wave, current, and white-

capping velocities. The theoretical procedure is, in fact,

the same as the one used to derive the three-dimensional

and time-dependent large spatiotemporal-scale equa-

tions of motion for waves and currents and tracers, along

with attendant boundary conditions (see McWilliams

and Restrepo 1999).

FIG. 9. Results after 12.8 h of simulation with an initially zero velocity field: (a),(c) vorticity Zc(X) (s21); (b),(d)

spectrum (m2 s21) of vorticity. The first column, corresponds to the case uSt 5 (0.259, 0) m s21. The Stokes drift is

zero in the second column. As in Fig. 8, but for the respective velocity fields. A comparison of (c) and (d) shows that

the former is less spatially homogeneous and is the result of the presence of the drift velocity.
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The outcomes depend on how the velocity field is

decomposed, here assumed to be in terms of a breaking

velocity (which has very small time and length scales),

an intermediate scale of waves and wave groups, and the

larger spatiotemporal scales of currents. The assumption

of an additive velocity field is motivated by the results in

Restrepo (2007), where an analysis of the field showed

that if the breaking velocity can be thought of as a pro-

cess that affects the deterministic path diffusively, a

multiplicative noise will mostly affect the waves, whereas

additive noise would affect the currents.

The enhancement of diffusivity in the boundary layer

due to a local thickening of the boundary layer caused

by whitecapping activity is captured by the breaking-

generated diffusion. This enhanced diffusivity affects

currents and tracers. This effect is modeled here in a

manner similar to the way that is proposed by Sullivan

et al. (2007): it is parameterized as an eddy diffusivity

whose strength depends on the amplitude of the wave

groups. The eddy diffusitivity, however, is triggered by

breaking events, whose location in space–time, in the

absence of any other dynamic effects, follow a Poisson

distribution. The enhancement of the mixed layer due to

whitecapping, captured here by a k–� model for diffu-

sion, could likely be replaced by a more appropriate

model if the boundary layer itself was resolved and

considered in detail. Nevertheless, for the scales of in-

terest to us, namely, the current scales, the upscaling of

the boundary layer effects will produce a model similar

to the one adopted. However, the dependence on wave

and group dynamics would likely improve by a careful

consideration of the boundary layer itself.

Example calculations showed that the presence of

breaking events roughened the velocity and vorticity

fields. It is possible, from the fields themselves or their

spectra, to see in what direction the constant wind was

blowing that created the white caps in the first place. The

spectrum evolves in time; however, this is mostly the

result of the random phase assumption of the waves

composing the groups. The advection of vorticity was

mainly controlled by the Stokes drift velocity, at least for

the wind speeds chosen here. When comparing cases

with and without breaking and tracking the peak vor-

ticity we found, however, that breaking could modify the

advection of vorticity in surprising ways. The rate of

dispersion was found to be controlled by the breaking

waves, in the long-time limit. If there was greater in-

teraction between the waves and the currents, as would

be the case in the shallow-water limit (cf. McWilliams

et al. 2004), breaking effects would induce breaking

momentum flux, changes in the wave refraction via the

currents, and in turn these would affect the vortex force

and the Bernoulli head.

It should be emphasized that the results we presented

here are generally applicable to a large basin, in three

space dimensions and time. The feedback from the

currents to the waves, and to the breaking field, is absent

in this presentation because of our choice of the wave–

current interaction framework—that is, the use of the

basin-scale model in McWilliams and Restrepo (1999)

FIG. 10. Results after 12.8 h of simulation with the cyclonic initial condition as shown in Fig. 6. Velocity contours

(m s21): (a) the case uSt 5 (0.259, 0) m s21 and (b) with the Stokes drift suppressed. Differences in the position of the

cyclone are due to both the Stokes drift and the breaking field. Magnitude of the velocity contours at 0.05 (lighter)

and 0.1 m s21 drawn.
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as opposed to the more complete model in McWilliams

et al. (2004) (the specific wave–current interactions are

a result of the asymptotic balances). Revisiting the

derivation presented here using the shelf model used in

McWilliams et al. (2004) will determine how the effects

on the currents will then feedback onto the large-scale

variation of the waves. Furthermore, the effect of break-

ing events on the vertical transport of stresses, an effect

that could be surmised as being significant from Fig. 1,

was not explored in the example calculation chosen

here.

Our model requires a parameterization of the break-

ing velocity itself. This could be obtained, in principle,

from observational data. Here, we proposed a param-

eterization for the breaking velocity, endowed with

empirical rules that are based upon a priori knowledge

of certain ubiquitous characteristics of wave breaking.

We adopt an empirically derived analytical representa-

tion of the breaking events to make the breaking ve-

locity explicit; however, the form of these is not crucial

at the scales we are interested in as these events happen

at very small spatiotemporal scales, compared to those

of interest. We incorporate a spatiotemporal and ener-

getic rule about energy convergence within nonlinear

wave groups to predict the onset of wave breaking (or

more specifically whitecapping) in the oceanic domain;

this rule has been confirmed for unidirectional waves

in wave tank experiments. We built the statistical dis-

tribution of wave-breaking strength and scale upon the

representation of deep gravity waves by Gaussian

FIG. 11. Results after 12.8 h of simulation with the cyclonic initial condition as shown in Fig. 6. (a),(d) Velocity

contours (m s21) are shown. (a),(b) Vorticity Zc(X) (s21) and (c),(d) spectrum (m2 s21) of vorticity. (a),(c) corre-

spond to the case uSt 5 (0.259, 0) m s21. In (b),(d) the Stokes drift is zero. The spectrum of the cyclone is less evident

in (c) than in (d). See Fig. 10 for corresponding velocity fields.
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surfaces, therefore establishing a modeling bridge be-

tween the physics of breaking events, wind conditions,

and sea age for large scales.

Furthermore, faced with the lack of large-scale

oceanic wave-breaking data for different sea ages, we

proposed a methodology to generate random wave-

breaking events under the assumption of a Gaussian sea

surface of fixed energy spectrum. This methodology is

new, as far as we can tell, and its outcomes are easily

testable should large-scale breaking data become avail-

able. The main advantage of our approach lies in that it

combines in a straightforward fashion the well-established

Gaussian process model for the ocean surface with recent

developments in the diagnosis and dynamics of wave-

breaking events—namely, the use of the wave group

energy convergence rate as a breaking threshold (Banner

and Peirson 2007; Song and Banner 2002) and the

characterization of the momentum in laboratory-scale

wave-breaking events (see Sullivan et al. 2004). To make

this methodology practical, we extended the techniques

of wave group detection and wave group analysis, pio-

neered by Longuet-Higgins (1984) and further devel-

oped by Song and Banner (2002), to the case of random

surfaces in two dimensions. In doing so, we proposed the

mean Euler characteristic as a useful parameter in the

identification of wave groups in random wave fields.

FIG. 12. (a) Average rate of motion of a collection of 32 particles, placed initially at a radius of 5 km from the center

of the cyclone. (b) 2 norm of the gradient of the vorticity, normalized by the norm of the vorticity itself. Light lines, no

Stokes drift; dark lines, with Stokes drift uSt 5 (0.259, 0) m s21. Lines with circles correspond to no breaking, solid

heavy lines correspond to breaking cases. Thin lines correspond to zero initial conditions on the currents, all others

correspond to the cyclonic initial condition shown in Fig. 6. Both figures highlight the fact that dispersive effects are

mostly controlled by the breaking field, when present. (b) It is shown that the dispersion asymptotes to the pure

breaking case, whether the Stokes drift velocity is present or not. The dispersion is smallest when no breaking is

invoked. (c),(d) The average rate of motion and 2 norm of the gradient, with all conditions the same except that the

overall magnitude of kb was forced to be 5 times greater than in the counterparts (a),(b). Dashed line in (d) is an

exponential fit in time.
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The net result of our methodology is that it allowed us to

treat the statistical parameterization and energetic es-

timates of wave breaking as outcomes of the model, not

imposed constraints.

The algorithm for the detection and tracking of wave

groups produces two main outcomes: the intensity mea-

sure of a Poisson-point process with space–time locations

of wave-breaking events and the joint distribution of the

strength and wavenumber of breaking waves (see Fig. 4).

The results are qualitatively compatible with observa-

tions. First, the obtained wave groups are uniformly dis-

tributed in space–time and span 2–3 mean spatial wave

periods—their estimated mean energy and convergence

rate having values within the observed ranges in labora-

tory experiments. Second, the scale of wave-breaking

events was predicted near the dominant wavenumber

and of a strength in concordance with numerical and

experimental results reported in the literature reviewed

above. Finally, the underlying assumption of a Poisson

process for the space–time location of breaking events,

being consistent with the statistical homogeneity of a

Gaussian ocean surface, was tested via simulations (see

Fig. 5).
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