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ABSTRACT

The authors consider the transport velocity in boundary layer flows driven by either noisy monochromatic
progressive or standing waves. The central issue addressed here is whether such flows are capable of sustaining
a transport velocity when noise is present in the wave field and, if so, in what ways the noise affects the transport
velocity, the mean wall shear stress, and the total mass flux.

Specifically, the effect of noise due to unresolved processes is addressed. The study is motivated by the fact
that in the natural setting it is the norm rather than the exception that noise is present in the wave field. The
authors find that when noise is added to standing waves, the transport in the boundary layer leads to a nonzero
mass flux. On the other hand, noise due to progressive waves reduces the mass flux. Further, the drift velocity
will have two components: a deterministic one and a diffusive one.

1. Introduction

The theoretical framework of wave-generated motion
in the context of water, acoustic, and plasma waves rests
on the fact that under certain conditions of motion the
Lagrangian particle paths do not describe closed orbits
and thus, over time, the particles that make up the fluid
itself will drift. Perhaps the earliest theoretical studies
of this phenomenon are those of Stokes (1847) and Lord
Rayleigh (1876), thus making this a research topic that
is nearly 150 years old. In the 1950s Longuet-Higgins
(1953) derived an asymptotic expression for the mean
Lagrangian velocity in an oscillating laminar boundary
layer. He also demonstrated that boundary layers, how-
ever thin, have a dramatic effect on the ensuing drift
generated by waves. Further, he suggested that this type
of wave-generated motion could be important in the
transport of sediment and, by extension, in the transport
of pollutants and nutrients. Johns (1970) and Longuet-
Higgins (1958) showed that the situation is not quali-
tatively dissimilar in the case of a mixing-length-type
boundary layer (for a review see Phillips 1978; Mei
1989, and references therein). Streaming due to the os-
cillation of immersed objects in a fluid or the oscillation
of bounding surfaces is also well documented and of
considerable interest in the engineering community; it
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is now a classic topic in fluid mechanics monographs
and textbooks (see Telionis 1981).

On the theoretical side, a geometrical interpretation
of the relation between the averages in the Lagrangian
and the Eulerian frames led Andrews and McIntyre to
formulate a generalized Lagrangian mean theory of
wave-generated transport (Andrews and McIntyre
1978), a theory in which certain geometrical properties
of the flow are preserved, such as Kelvin’s circulation.

Progressive waves induce a steady transport velocity
in a uniform channel (see Mei 1989). On the other hand,
a standing wave field has the potential of producing a
steady spatial structure in a tracer field occupying a
boundary layer. This fact is exploited in models (Res-
trepo and Bona 1995; Restrepo 1997) for the formation
and evolution of large-scale sandbar structures [see
Fredsoe and Deigaard (1992) and Sleath (1984) for re-
views]. Wave-generated transport has been shown to
modify the dynamics of interacting flows. A conse-
quence of momentum and continuity conservation is
that short waves are dynamically modified by the mass
and momentum fluxes due to finite amplitude long
waves (Longuet-Higgins and Stewart 1960, 1961). The
interaction of currents with the streaming induced by a
wave field has been shown to generate circulation cells,
which have a striking resemblance to Langmuir cells in
the ocean and the atmosphere (Craik and Leibovich
1976), and has been shown to modify the Ekman bound-
ary layer in rotating flows (Huang 1979). It has also
been suggested as an important transport mechanism in
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oceanic flows relevant to climate dynamics (Mc-
Williams and Restrepo 1999) and in the shallow reaches
of the continental shelf where waves and currents in-
teract in a significant way (Restrepo 2001).

In this study we consider the effect of idealized noise
on the transport generated by monochromatic progres-
sive or standing waves. Noise in this study is understood
to represent underresolved processes in the external
forcing. When a flow is forced by standing waves, we
show that Gaussian noise, manifesting itself as statistical
perturbations of the phase and amplitude of the waves,
generates a nonzero total mass flux in the boundary
layer. We also show that when the forcing is due to
progressive waves, noise significantly diminishes the
mass flux.

Elucidating ubiquitous aspects of wave-generated
transport, even in an idealized setting, sheds light on
the motion of tracers acted upon by waves in the phys-
ical setting. The particles affected by this transport
mechanism may be passive tracers; they may be me-
chanically interacting particles such as sand, self-pro-
pelled biological organisms, or pollutants that interact
mechanically and chemically. Often, these particles, in
turn, affect the flow in the boundary layer, such as is
the case in a loose sedimentary bed. Our study does not
focus on the dynamics of these particle systems, al-
though we make use of passive tracers to investigate
the transport velocity itself.

We use a Prandtl model to approximate the flow in
the boundary layer in the neighborhood of an ideally
smooth bounding wall (see Schlichting 1987). As shown
by Sleath (1970), the flow under the action of waves in
the boundary layer in a wave channel with a perfectly
smooth bottom is well captured by the progressive-wave
solution of the linear Prandtl boundary layer equations1

u 5 cos(kx 2 vt)1

2 exp(2bz) cos(kx 2 vt 1 bz), (1)

where u1 denotes the horizontal velocity, k is the wave-
number and v the frequency of the wave, x is the hor-
izontal coordinate and z the vertical coordinate, t is the
time, and b [ vzh/ , where n is the dissipation andÏ(2n)
zh is the boundary layer thickness. For the standing wave
case the solution to the linear Prandtl equations is

u 5 cos(kx) cos(vt)1

2 exp(2bz) cos(kx) cos(vt 2 bz). (2)

In this study, however, we do not use these expressions
in the computation of the transport. Instead, we use
numerical means to obtain the approximate solution to
the nonlinear Prandtl model.

Section 2 focuses on a description of the ideal wave

1 These equations are more commonly known as ‘‘Stokes’s second
problem.’’ Since Stokes’s name is invoked in several places and in
different contexts, however, we will call these equations the linear
Prandtl equations to avoid possible confusion.

channel and on details of the Prandtl boundary layer
model and its numerical approximation. A description
of how the transport velocity relates to the properties
of the flow appears in section 3. In this section, we also
review some salient aspects of the transport velocity in
boundary layer flows forced by either progressive or
standing waves in the absence of noise. The former
produces a steady drift velocity with nonzero mean and
no spatial structure the latter a steady drift velocity with
zero mean and spatial structure. We think of the pro-
gressive wave and the standing wave cases as being two
extremes in the transport they generate. The simplest
external forcing that generates a nonzero mean as well
as spatial structure in the steady drift is a ‘‘leaky’’ stand-
ing wave. In this case the external forcing can be char-
acterized by waves with an incident and a reflecting
component that has a relative amplitude 0 , R , 1. As
a function of R the mass transport characteristics of this
flow were explored in detail by Carter et al. (1973).

Examination of these examples leads to an under-
standing of how noise affects the transport when it is
present in the external forcing. The situation when noise
is present is considered in section 4. Conclusions rel-
evant to wave-generated transport derived from this
work appear in section 5.

2. Description of the ideal wave channel

The horizontal coordinate in the computational do-
main, or ‘‘channel,’’ is denoted by x and the vertical
coordinate by z. The z 5 0 plane coincides with the
bottom of the channel, which is assumed to be ideally
smooth and rigid. The channel is taken to be periodic
in x and three wavelengths long.

The relation between the angular frequency v and the
wavenumber k for the waves is assumed to be

2v 5 gk tanh(kh),

where g is the gravity constant and h is the water column
depth.

The size of kh is a determining factor in the pene-
tration depth of these waves; in particular, if kh is small,
we expect the penetration depth of the waves to be
significant. This is relevant to mass transport in the
boundary layer because its strength is determined, to a
large extent, by the amplitude of the forcing immedi-
ately outside the layer. A small kh value implies that
the waves are long compared with the depth of the water
column. In the simulations to be discussed presently, kh
ø 0.2534. The period P of the waves was 8 s, producing
a wavenumber 0.2534 m21 corresponding to waves with
a wavelength of approximately l 5 24.79 m.

The forcing velocity immediately outside of the
boundary layer is denoted by U(x, t). In the experiments
the velocity amplitude was Um ø 0.7456 m s21. The
external forcing velocity was either a progressive or a
standing wave (denoted PW and SW, respectively), with
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FIG. 1. External forcing velocity U(x, t): (a) progressive wave case, (b) standing wave case. See text for a description of the forcing
velocity amplitude, wavelength, and frequency.

FIG. 2. External forcing velocity U(x, t) with added noise, for the progressive wave case: (a) phase noise perturbations at times shorter
than the period (Tn 5 P/20), (b) noise perturbations at times equal or longer than the period (Tn 5 P). The parameters are the same as in
Fig. 1. Noise amplitude is 0.1p.

a phase that may have depended on time. The progres-
sive wave forcing velocity was

U(x, t) 5 U cos(kx 2 vt 2 g(t)),m (3)

with k determined by the dispersion relations given
above, once v was chosen in the experiment. The phase
noise g is a time-dependent Gaussian noise process with
zero mean. The noise source has two parameters: the
noise amplitude, which is related to the variance of the
process, and its frequency, denoted by 1/Tn, where Tn

is given in units of fractions of a period P of the forcing.
The noise frequency determines how often the external
forcing is perturbed.

The standing wave forcing was of the form

U(x, t) 5 U cos(kx) cos(vt 2 g(t)).m (4)

Figure 1 depicts the space–time contours of the forcing
velocity. Shown here is the external velocity during the
last four periods of a numerical experiment. The con-
tours correspond to the absolute value of the velocity
amplitude. Since the forcing is oscillatory, the velocity
will reverse direction during each cycle. For reference,
Fig. 2 shows the effect noise has on the PW external
forcing. Figure 2a shows the external forcing when the
phase is perturbed randomly at times shorter than the
period of oscillation of the external forcing (Tn 5 P/
20). Figure 2b shows the external forcing when the per-
turbations to the phase are made at times commensurate
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with the period. In both figures the noise amplitude is
0.1p.

a. Boundary layer model and its numerical
approximation

The Prandtl equations are

2 2]u ]u ]u S ] u
1 eu 1 ew 2 5 U 1 eUU (5)t x2]t ]x ]z Re ]z

u 1 w 5 0, (6)x z

where the following scaling has been used: x ← x/l, z
← z/d, t ← tv, u ← u/Um, w ← w/Wm, with Wm [ Umd/
l, U ← U/Um, with new ← old, new being the dimen-
sionless variables. Here, d [ is the Stokes layerÏn/v
thickness, and n is the dynamic viscosity of water.

The dimensionless numbers e 5 1/S, where S 5 vl/
Um, and Re 5 vl2/n characterize the flow. These are
S ; 103 and Re ; 107 in all the experiments reported
in this study.

The flow was made periodic at the far and near ends
of the channel. A no-slip boundary condition was ap-
plied at the channel wall, and the velocity at the edge
of the boundary layer matched the external forcing ve-
locity U(x, t). In the numerical experiments the flow
was initialized by using the analytical solution to the
linear Prandtl equations, that is, the solution to the mass
and momentum conservation equations with all terms
proportional to e in (5) set to zero.

A full description of the discretization of the equa-
tions appears in appendix A. The appendix also details
how the results derived by using the Prandtl model and
its numerical approximation compare with those ob-
tained by using a numerical solution of the Navier–
Stokes equations under the same physical conditions.
Since running averages will play an important role as
a diagnostic tool in what follows, in appendix B we
provide the particulars of our tests on the accuracy of
the algorithm used. Running averages were computed
after discarding the first three periods of the simulation,
thereby removing the effect of the initial state of the
channel flow on the resulting averages. The simulations
that produced the data for the analysis were carried out
for a sufficiently long time to establish an approximation
of the asymptotic behavior of the flow and diagnostic
quantities. In each group of simulations the actual length
of the runs is explicitly given; however, figures featuring
the drift or the transport in space and time will show
the flow only during the last four time periods of the
experiment. To assay the characteristics of the transport
velocity under different wave forcing and noise con-
ditions, we also used an algorithm to advect tracers,
thus obtaining approximations of the Lagrangian paths
of ideal tracers. The advection algorithm is described
in detail in appendix C.

3. The transport velocity

We wish to investigate the mean Lagrangian velocity
^uL& because this quantity is related to the transport of
tracers in the flow. The angled brackets denote the mean:
for some quantity f ( · , t), say, the mean at time T is
defined as

t 1T01
^ f (·, T )& [ f (·, t) dt.ET t0

Here, t denotes time, and t0 is the time at which the
average is initiated. This definition of the mean applies
to both periodic and nonperiodic quantities and is fre-
quently used to compute a mean of experimental or field
data.

The connection between the mean Lagrangian veloc-
ity and the mean Eulerian velocity may be expressed as
^uL& 5 ^uE& 1 ũ, with ^uE& representing the averaged
Eulerian velocity. We will refer to ^uE& as the drift ve-
locity. In this study, prominence is given to the drift
velocity because it is a robust measurable diagnostic
quantity for the mass flux. The drift velocity is also
important because it is related to the average shear
stress, which in turn is related to such factors as the
characterization of forces required to dislodge and/or
initiate particle tracer motion in a flow. Since the av-
erage shear stress is

]u
rn ,7 ) 8]z z50

it is approximately equal to the drift velocity, in the
neighborhood of the bottom, times rn/d, where r is the
density, n the viscosity, and d the layer thickness.

Direct calculation of the mean Lagrangian velocity
everywhere in the boundary layer is impractical, and
thus it is difficult to obtain the transport velocity. Since
the calculation of the drift velocity is straightforward,
however, an approximation to the transport velocity is
possible if a good representation of the term ũ is avail-
able. In oscillatory flows such as those considered here,
it is possible to approximate ũ by taking a finite number
of terms in the series expression as derived by Longuet-
Higgins (1953). For smooth boundary layer flows, the
particle orbits do not close on themselves; if the distance
between the starting and the ending points over the pe-
riod is small, an adequate approximation to ũ is obtained
by retaining a small number of terms in the expansion.
The first term in that expansion is

u 5 ^S · =u ( · , t)&,S 1

where S 5 # t u1( · , t9) dt9. Usually uS is called the Stokes
drift velocity (see Phillips 1978). Hence, if higher-order
terms in the expansion of ũ are sufficiently small, the
transport velocity may be well approximated by ^uE& 1
uS. Retaining only one term in the expansion of ũ may
be supported by the following argument. We write u 5
u1 1 u2 1 · · · and ^ũ& 5 uS 1 ^ũ2& 1 · · · . The
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FIG. 3. Contours of the transport velocity (horizontal component) due to (a) progressive waves (PW), (b) standing waves (SW). The
vertical scale is comparable to that of Fig. 4.

time average of u1 is zero since it is the solution to the
linear Prandtl boundary layer equation. We surmise that

t

^u & 5 S(·, t9) · =u (·, t9) dt9 · =u (·, t)2 E 1 17
1

21 S(·, t) · = u (·, t) · S(·, t) .1 82

An estimate of the size of uS in terms of the magnitude
of the velocity Um, the wavenumber k, and the frequency
v of the size of the Stokes drift is uS 5 O( k/v).2U m

Similarly, an estimate of ^ũ2& is O( (k/v)2). The ratio3U m

of ^ũ2& to uS is thus O(Umk/v), which is small in all
cases considered in this study (approximately 1022).

Since we are studying aspects of the transport in a
thin boundary layer whose aspect ratio is very small
when compared with the horizontal spatial scales, we
will speak of the horizontal component of the transport
velocity as the transport velocity itself.

Ideal tracers in a flow move away from locations
along the channel that are subject to high transport ve-
locities and tend to concentrate at locations where the
transport velocity amplitude is low, leading to an uneven
distribution of tracers. If the transport velocity is steady,
however, this distribution will be uniform along the
channel. The horizontal direction in which the tracers
move is given by the sign of the horizontal component
of the transport itself. A useful qualitative characteriza-
tion of the flow is afforded by thinking of the transport,
at any time, as composed of a (spatial) mean, or DC,
and a fluctuating, or residual, component.2 The spatial
mean naturally corresponds to the lowest component of

2 We emphasize that the terms DC and residual apply only to spatial
considerations, not time dependencies.

the space Fourier spectrum and describes the net trans-
port current. More important, the quantity

3l l1
^u & dx,E L3l l 0

which is the total mean flux per unit length of fluid in
the channel, is proportional to the DC. The remaining
portion of the spectrum makes up the residual compo-
nent of the transport velocity. This residual transport is
important because, if it is steady or nearly steady in
time, it implies the existence of spatial structure in the
transport and the potential for a nonuniform mean dis-
tribution of tracers under the action of the flow.

Let us suppose for the moment that the DC is zero
and that steady running average conditions prevail. Then
tracers at locations where the residual transport is zero
do not move. We call these locations traps. An accu-
mulating trap, or node, is one in which there is a zero
in the residual and, in addition, the transport locally has
a negative slope that persists over time. These traps
attract moving particles, and accumulation ensues at
these sites. If the DC component is not zero, however,
the net transport is a result of the DC and the residual
components. In this case, particles accumulate at the
traps only if the tracers have some threshold of motion
higher than the mean but lower than the maximum mag-
nitude of the transport.

a. Transport induced by progressive and standing
waves

In what follows we summarize some qualitative dif-
ferences between the transport velocity induced by pro-
gressive and standing wave external forcing in the ab-
sence of noise.

Figure 3 shows the space–time plot of the horizontal
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FIG. 4. Time history of the drift velocity at some particular position in the channel for the PW case with no added noise: (a) detail during
the first few periods of the simulation, (b) full history. See Fig. 5 for a vertical scale for the amplitude of the transport velocity at the end
of the experiment.

component of the transport velocity. Figure 3a corre-
sponds to PW and Fig. 3b to SW forcing, respectively.
The velocity was measured roughly a Stokes layer depth
above the wall. The figures depict the contours of the
velocity amplitude, with the dark and light patches cor-
responding to low and high velocities, respectively. The
amplitude of the velocity may be inferred from Fig. 5.
At any particular position along the channel, the trans-
port (which is defined in terms of a running average)
exhibits oscillatory behavior and a slowly decaying en-
velope. This is illustrated in Fig. 4, for the PW case.
For these monochromatic, time-harmonic waves, the
mean transport is numerically equal to the value of the
transport itself at times commensurate with the period
of the forcing. Our calculations show that the mean
transport agrees with standard theory (see Batchelor
1981, 353–364; Mei 1989, 420–434). That is, for waves
progressing from left to right, the mean transport for
PW forcing is steady in time and uniform in space. Its
magnitude is nonzero and positive. Figures 5a and 5c
portray the transport at the end of the experiment, for
the PW forcing case, in the absence of noise. Figure 5c
shows the superposition of the transport velocity for the
last few periods. The spatially fluctuating traces in this
figure depict the transport velocity at times incommen-
surate with the period. Traces that are constant across
the entire channel correspond to the mean transport.
These latter ones are colinear and depict the mean trans-
port velocity.

For SW forcing, the transport is steady in time. It is
composed of spatial cells with horizontal dimensions
half the wavelength of the forcing. The spatial mean of
the transport for the SW case in the absence of noise is
zero. The SW transport with no noise present is shown
in Fig. 3b.

With the aid of these figures we can construct a qual-
itative description of how ideal or passive tracers3 would
respond to the transport velocity under PW forcing in
the absence of noise. The space and time symmetries
induced by the sinusoidal forcing imply that the mean
transport must be constant. Intuitively, this reflects the
fact that, as the wave train progresses down the channel,
it imparts the same effect on the flow everywhere along
the channel. If the transport at some given height above
the wall, locally, is found to have a specific value, sym-
metry implies that the transport measured anywhere else
along the channel must be the same, provided that the
averaging process required in computing the transport
is well defined. Indeed, this fact is reflected by our com-
putation. The transport is constant and is always posi-
tive. Since the transport is positive, passive tracers
would advect in the direction of wave motion, toward
the end of the channel. Clearly, the tracer flux is pro-
portional to the spatially averaged transport, which in
this case is equal to the transport itself, and hence the
flux is also positive and constant. Furthermore, since
the mean wall shear stress is proportional to the drift
velocity, the bottom of the tank would experience, on
average, a positive and uniform mean shear stress. These
findings agree with the standard asymptotic theory.

For the SW case, the situation can be summarized as
follows. The spatial mean of the transport is found to
be machine zero; therefore, the mean flux is zero as
well. However, the SW flow produces a transport with
steady spatial structure, proportional to sin(2kx). Thus,
passive tracers will move away from locations of high
transport and tend to concentrate at locations where the

3 As the name implies, ideal tracers trace the Lagrangian path in
a flow.
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FIG. 5. Effect of noise on the drift velocity, PW case. The space–time plot of the drift velocity: (a) no noise, (b) with noise. The superposition
of the drift velocity over the last ten periods of the simulation, as a function of position along the channel: (c) no noise, (d) with noise.
Noise frequency: 1/Tn 5 20/P; noise amplitude: 0.5p.

transport velocity amplitude is zero, forming the cells
that the asymptotic theory predicts. While the total flux
is zero, for the noiseless SW case, ideal particles with
initial position corresponding to one of the transport
cells will stay in that cell for all time.

When the flow is forced by monochromatic progres-
sive waves, nodes are not found in the transport since
the residual transport is zero. This follows from the
observation that, for progressive waves in a uniform
channel, the model is translationally invariant. Tracers
will move in the direction of the progressive waves
because the DC component is nonzero and positive. In
the SW case, however, nodes do occur because the DC
component is zero and the residual has time-steady traps
with negative slopes.

4. The effect of noise in the forcing on the
transport

Noise usually is present both in the laboratory and
in the natural setting. Since wave-generated transport is
typically a relatively weak phenomenon, one expects
noise to have a significant effect on it, especially over
the long time frames required for significant transport
to occur. Our investigation focuses on how the transport
and, by extension, the mass flux and the mean shear
stress are affected by noise derived from unresolved
physical processes.

In the context of the boundary layer problem it is
reasonable to suggest that noise perturbations affect ei-
ther the phase or the amplitude of the wave forcing and
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that the boundary layer itself would respond according
to (5) and (6). At any instant in time, noise perturbations
would induce an uncertainty in the measurements of the
actual location of maxima and minima in the wave, as
well as an uncertainty in the measurement of the wave
amplitude.

Models for the PW and SW forcing that incorporate
the above qualities are (3) and (4). From these expres-
sions it is clear that a nonzero g(t) will affect both the
phase and the amplitude of the forcing. With g(t) a
Gaussian noise process, with zero mean, the resulting
model is one in which the uncertainty in the phase and
the amplitude of the wave grows proportional to the
square root of time. The adoption of Gaussian statistics
is done here in an ad hoc way. However, this assumption
is often invoked (and sometimes abused) in order to
characterize the statistics of a great many oceanic pro-
cesses.

Intuitively, it seems natural to think that phase noise
acts as an effective decorrelator of running averages
since the noise would act as a diffusive process. Indeed,
our results bear this out. However, it is difficult to en-
visage in what way noise actually affects such aspects
of the flow as the transport, the wall shear stress, and
the mass flux. For example, does the transport slowly
decay, completely disappear, destabilize, or develop a
totally different structure?

Two properties characterize the noise fluctuations: the
amplitude and the frequency. These become parameters
in our experimental study on the effect of noise on trans-
port. The amplitude is related to the wave uncertainty
in phase. The frequency is related to how often a noise
perturbation occurs. It affects the coherence of the ex-
ternal forcing over time; the lower the frequency, the
higher the degree of spatial coherence, but the longer
it takes for quantities calculated via running averages
to nominally settle. There is a space–time symmetry so
that noise perturbations in time, affecting the whole ex-
tent of the wave, correspond to perturbations in space,
affecting the wave for a long period of time. Hence, the
effect of the noise over time at a single place has a
corresponding description in terms of the effect of noise
over some span of the channel at some particular instant
in time.

In each experiment the code was run for 150 periods.
Measurements, however, were made only in the last 100
periods of the run. We summarize below the outcome
of experiments in which the noise amplitude was varied
in a range 0–p. Coverage of the noise frequency pa-
rameter range was less complete. We did, however, test
noise frequencies that were both higher and lower than
the frequency of external forcing.

For the PW case, noise caused the DC, and thereby
the mass flux, to drop appreciably, compared with the
noiseless case. The DC was no longer steady. The re-
sidual was also modified by the presence of noise, be-
coming amplified significantly. In fact, ignoring the DC
component, we note an interesting qualitative change

on the drift velocity due to noise, namely, the appear-
ance of nodes in the residual. These nodes are not traps
for ideal tracers, however, since the residual is every-
where positive. Hence, although the transport is struc-
tured, a nonzero flux will be present everywhere along
the channel. If ideal tracers were present, they would
eventually reach the end of the tank, regardless of where
in the tank they were placed. On the other hand, if the
tracers had some threshold of motion slightly above the
DC level, it would then be possible for tracers to ac-
cumulate at the nodes.

The most salient structural changes in the drift due
to noise are evidenced in Fig. 5. In Fig. 5a contours of
the drift velocity, noise absent, are portrayed in space
and time. For comparison, Fig. 5b shows the case when
noise is present. To emphasize their symmetry, we have
not shaded the contours; however, it is understood that
in Fig. 5a they would be consistent with Fig. 3a and
that in Fig. 5b the contours would appear as alternate
shaded and unshaded regions. In fact, from Fig. 5b it
is seen that, when noise is present, the residual flow has
a nearly steady structure in time. Figures 5c and 5d
shows a superposition of the drift for the last ten periods
of the run, as a function of position. Figure 5d, which
corresponds to the case in which noise is present, clearly
shows that the running averages are nonuniform in space
and nearly steady in time. Examination of the residual
in both cases depicted in Fig. 5 reveals that the transport
in the noisy case has a significantly lower DC com-
ponent than does the noiseless counterpart, and a resid-
ual that is not present in the noiseless case.

Thus we find that for the PW case, the presence of
noise has two significant effects on the drift. First, the
magnitude of the mean drift is greatly reduced. Second,
the residual flow acquires a nearly steady spatial struc-
ture. These effects are not as sensitive to the amplitude
or frequency of the noise but, rather, to the existence of
a noise perturbation.

For the SW case, noise has a less dramatic but nev-
ertheless significant effect. Whether noise is present or
not, the space–time picture of the transport looks very
similar to that of Fig. 3. This is certainly true for small
but reasonable amplitudes of the noise. The residual is
affected by the appearance of fluctuations inside the
trapping cells. The cases with noise and with no noise
present are depicted in Figs. 6a and 6b, respectively. Of
note is the absence of the periodic appearance of a re-
verse flow in each of the cells of the standing wave
structure in the noisy case. This is evidenced by com-
paring it with the noiseless case in Fig. 6. Examination
of the data reveals that in the absence of noise the DC
is zero and thus the total flux is zero. With noise present,
however, the flux is nonzero and unsteady, sometimes
even becoming negative. Summarizing the findings on
the SW experiments, we find that noise induces a small
nonzero total flux.

Next we quantify the dependence of the transport
velocity on the noise amplitude and frequency. Specif-
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FIG. 6. SW case. Superposition of the drift velocities, at many times corresponding to the last periods of the simulation, as a function of
position along the channel: (a) no noise, (b) with noise. Noise frequency: 1/Tn 5 20/P; noise amplitude: 0.5p.

FIG. 7. Lagrangian particle trajectories: (a) no noise, (b) noise, with frequency 20/P and amplitude 0.5p. PW case.

ically, we calculate the Lagrangian trajectories (for de-
tails, see appendix C), using both the vertical and hor-
izontal components of the Eulerian velocity. As Figs.
7–10 indicate, the vertical component of the velocity is
very small compared with the horizontal component.
Furthermore, by virtue of (6) we can infer that for the
PW case the vertical velocity forms cells of upward and
downward directed motion and that in these cells the
vertical velocity must be monotonic. Thus we expect
that particles will exhibit both a transverse and an up-
ward or downward trend in their motion, when acted
upon by the velocity field in the layer.

The result of calculating the Lagrangian trajectories,
over nine periods of forcing, appears in Fig. 7. The
particles were placed initially at equally spaced hori-

zontal intervals, roughly one Stokes layer above the
wall. The path traced by a particle in the noiseless PW
case appears in Fig. 7a, its noisy counterpart in Fig. 7b.
The noise amplitude and frequency were 0.5p and 20/
P, respectively. The dissipation inherent in the advection
scheme is apparent in the figures by a trend in the orbits
to get smaller in radii. This causes the particle to get
deflected slightly in the vertical direction. The effect is
fairly small, however, when compared with the particles’
reaction to the total velocity field. Overall, the effect of
dissipation is slight: note the aspect ratio of the vertical
and horizontal coordinates on the plots.

When the particle paths are sampled at times com-
mensurate with the period and their tracks connected by
lines, we obtain Fig. 8a and Fig. 8c for the noiseless
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FIG. 8. Effect of noise on the Lagrangian trajectories, PW case: (a) and (b) no noise, (c) and (d) with noise. Trajectories were sampled
at times commensurate with the period. Noise frequency: 20/P; noise amplitude: 0.5p. The initial and final particle positions are shown in
(b) and (d).

and noisy case, respectively. Figures. 8b and 8d show
the starting and final position particle position along the
channel for these two cases. From this figure it is clear
that the particles are not traveling as far along the chan-
nel in the presence of noise and that the horizontal com-
ponent of the velocity is greatly affected, thus making
the relative effects of the vertical component of the ve-
locity on the particle motion more prominent.

How this manifests itself in the flux can be assessed
by the direct calculation of the flux at some given lo-
cation in the channel. By counting particles traveling
from left to right across x 5 1.2l, say, as positive and
those traveling from right to left across x 5 1.2l as
negative, we can arrive at a net flux value. The choice
of location was arbitrary in this calculation. Figures 9a
and 9b show the flux of tracers for the PW noiseless

and noisy case, respectively. Clearly, the noise reduces
the net flux significantly.

As we said previously, the most salient effect of noise
on the SW case is the creation of a small net flux. This
is borne out in the Lagrangian trajectories shown in Figs.
10a and 10b, which correspond to the noiseless and
noisy case, respectively. As is evident from the noisy
case, tracers leak from cell to cell.

Next we show how the flux is affected by the noise
amplitude and the frequency. The quantitative depen-
dence of the flux on the presence of noise is examined
by the following proxy calculation. We calculate the
statistical mean displacement of a particle over a fixed
time. We then use this data to calculate a transport ve-
locity and thus obtain the flux. Ensemble averages of
the Lagrangian trajectory are computed. Each member



2344 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 9. Lagrangian particle fluxes at x 5 1.2l, PW case: (a) no noise, (b) noise. Note the different vertical scales. Noise frequency: 20/P;
amplitude: 0.5p. Experimental conditions are the same as in Fig. 8.

FIG. 10. Particle trajectories sampled at times commensurate with the period, SW case: (a) no noise, (b) noise. Noise frequency: 20/P;
noise amplitude: 0.5p.

of the ensemble corresponds to the trajectory of 1 of
33 different release times, over the period of the forcing
wave. Hence, each particle is released at a different
phase value of the wave. Furthermore, for any given
Lagrangian path identified by a given initial phase, we
calculate a path under three different noise time series.
Among these three realizations the parameters of noise
amplitude and frequency are the same. When no noise
is present, the three trajectories are identical. With noise,
the three trajectories starting with an initial phase have
no commonality in their time series. In fact, removal of
the deterministic component of all the trajectories shows
that the 99 Lagrangian paths are unique realizations that
share only statistical properties. As before, the total time
of each run is nine periods, and settings for the exper-

iments are the same as in Fig. 8, save for variations in
the noise frequency and amplitude.

The procedure just described yields the ensemble av-
erage unsigned distance, which is defined as | x 2 xf i

· | , where the subscript f denotes the mean par-x 2 xf i

ticle position after nine periods and i the initial position.
We also report on the displacement, which we define to
be the unsigned distance

max |x(T ) 2 x · x(T ) 2 x |,i i
0#T#9P

where P is one period. The distance will thus measure
the average distance an ideal tracer in the fluid would
move in nine periods, and the displacement the relative
scatter of the position of the tracer over this time span.
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TABLE 1. Relative displacement (D ) and distance (d ) of ensemble
trajectory as a function of the noise amplitude (N ). Noise frequency
is 1/20P, total times nine periods.

Progressive wave

N D d

Standing wave

N D d

0.0
0.1
0.3
0.5
0.7
0.9

0.9806
0.9242
0.6098
0.4546
0.2989
0.2455

0.9806
0.9242
0.5817
0.4546
0.2943
0.2440

0.0
0.1
0.3
0.5
0.7
0.9

0.0196
0.0228
0.0717
0.5033
0.0639
0.0164

0.0000
0.0084
0.0005
0.3230
0.0101
0.0033

Both the distance and the displacement are in units of
fractions of a wavelength.

The results of this experiment are tabulated in Table
1. In the PW case the table shows that noise reduces
the flux by significantly diminishing, on average, par-
ticle advection. A fit of the data shows that the distance
drops nearly linearly with noise amplitude. The drop in
the displacement is strikingly similar to the distance,
indicating that the particle, on average, gets further away
the longer the forcing is active, regardless of the amount
of noise, and that on average the maximum displacement
is well captured by the distance itself. In the SW case,
the data indicates that the presence of noise increases
the average distance and displacement of ideal tracers
as the noise amplitude increases, provided that the noise
amplitude is small. When the amplitude of the noise is
large, however, the distance and the displacement drop.
Since the noise has zero mean and is Gaussian, the
results indicate that for large noise levels the noise itself
largely determines the flux in the SW case. Moreover,
the discrepancy between the displacement and the dis-
tance indicates that, on average, particles do not attain
maximum displacement at the final time. Transport in
the large noise amplitude regime is then diffusion dom-
inated.

The noise frequency dependence of the displacement
and the distance is straightforward, given a fixed noise
amplitude. It speaks more about the measurement pro-
cess itself than about the physics. Our comments are
limited to the effect of the noise frequency on the out-
come, for frequencies significantly higher than the forc-
ing frequency. Our findings indicate that the transport
magnitude and shape are not influenced greatly by the
change in noise frequency, regardless of whether the
forcing is PW or SW. The slow convergence of the
running averages, however, means that, as the frequency
of the noise decreases, the running averages of the mon-
itored quantities take longer to converge to within some
small tolerance. When the duration of the experiments
is increased in indirect proportion to the noise frequen-
cy, the results become statistically similar, particularly
in the PW case. Significant changes occur because of
the presence or absence of noise, rather than the noise
frequency value itself.

5. Conclusions

The transport velocity and the mass flux are associ-
ated with the time-averaged Lagrangian velocity and
thus are important in the dynamics of tracers in a fluid
flow. For waves of finite amplitude, the transport ve-
locity may be approximated by the superposition of the
mean Eulerian velocity and the Stokes drift. In this study
we explored how the transport velocity in a laminar
boundary layer, bounded by an ideal straight wall, under
the action of sinusoidal progressive or standing waves,
is affected by noise. The highly idealized setting of our
experimental configuration enabled us to compare the
effect of the noiseless situation—which is well known—
with that of the noisy situation.

We specifically addressed how noise from underre-
solved dynamics affects the transport, the mean shear
stress, and the fluxes in a laminar boundary layer. For
our numerical simulations we purposely used measuring
techniques that are commonly used in a laboratory or
field setting. The boundary layer asymptotic theory,
though of limited validity, is entirely appropriate for the
perfectly smooth channel that we used in our experi-
ments. Nevertheless, as a further check, we benchmar-
ked our results qualitatively to a direct numerical sim-
ulation of the Navier–Stokes equations in the channel
and found very good agreement. In summary, our results
may show (acceptable) quantitative differences with
what we think of a generally agreed upon model for
fluids, and may show only mild qualitative differences.

The noise perturbation applied in this problem was
Gaussian with zero mean. The noise perturbation pro-
duces monotonic slow growth in the uncertainties in the
wave amplitude and phase that accumulate over time.

We found that noise has a dramatic and somewhat
unexpected effect on the transport velocity in the bound-
ary layer and, by extension, on the mean wall shear
stress and the mass flux. Our general organizing prin-
ciple has been to examine how noise affects two nat-
urally occurring situations: when the forcing external to
the layer is a progressive wave (PW) and when the
forcing is a standing wave (SW). The asymptotic theory
for the deterministic problem shows that these two forc-
ing cases may be viewed as two extremes of the outcome
on the transport in the natural setting. In fact, with these
extremes it is easy to envision, at least qualitatively,
how the situation for the leaky wave will play out [in
this endeavor we are helped by the calculations of the
deterministic case by Carter et al. (1973)].

The findings in this study suggest that the transport
resulting from PW and SW external forcing subject to
noise due to underresolved processes may be charac-
terized by two components: a deterministic one and a
diffusive one. Their relative effect on the transport de-
pends on whether the external flow is PW or SW.

In the PW case, noise in the forcing decreases the
mean and the total mass flux. The spatial mean wall
shear and the transport velocity also decrease. At the
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same time, there is an enhancement of the spatially non-
homogeneous portion, or residual, of the transport ve-
locity and thus of the wall shear stress. The mean flux
drops almost linearly with the noise amplitude. Nev-
ertheless, the mean flux is still positive, and thus ideal
tracers present in the flow still will move in the direction
of the waves, but at a reduced rate compared with the
noiseless case. In the event that these tracers have a
threshold of motion greater than the spatial mean of the
transport but smaller than the maximum transport, the
tracers may produce a nonuniform spatial distribution
along the channel. With respect to the frequency of per-
turbations, the results are more telling about the mea-
surement process itself. For noise frequencies that are
higher than the forcing frequency, the running averages
of quantities such as drift velocity and transport tend to
require more time in reaching an adequate level of con-
vergence. The reason is that these running averages con-
verge at a rate inversely proportional to time, weighted
by the period of the forcing. If the running averages are
taken over commensurably longer time periods, the low-
er the noise frequency is made, the closer they reach
statistical equivalence, all other things remaining the
same. This assumes, of course, that the time steps in
the numerical calculation are sufficiently small that the
noise signal is adequately resolved.

In the SW case it is found that noise induces a very
small mass flux. This mass flux can be in either direction
along the horizontal coordinate of the channel. Hence,
the spatial mean of the transport tends to increase slight-
ly at the expense of the residual. Overall, however, the
SW case shows that the structure and the magnitude of
the transport changes when noise is present, but is rel-
atively insensitive to increases in the noise amplitude
or noise frequency. Compared to the PW case, the La-
grangian path of the SW case displays more statistical
scatter. That is to say, in the PW case it is found, on
average, the mean orbit displacement tends to be closely
related to the beginning and average ending particle
position, over a specified time span. In contrast, the
maximum displacement for the SW case does not usu-
ally agree with the average ending particle position.
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APPENDIX A

Numerical Approximation of the Wave Channel

Solutions to (5) and (6) may be approximated by
using finite difference techniques. The spatial domain
of the periodized wave channel had dimensions 0 # x
, 3l, where l is the wavelength of the external forcing,
and 0 # z # zh. In the horizontal direction, we use an
equally spaced grid with coordinates given by xj 5 jDx,
where Dx is fixed; the grid levels in the z direction were
distributed according to

pz 5 (k/K) ,k (A1)

where p is a real value between 1 and 2, K is the total
number of grid levels in z, and 0 # k # K. The triplet
(j, k; p) uniquely determines any position in the channel.
The discrete domain is denoted by V 5 (xj, zk).

The finite difference approximation of the equations
of fluid motion on V was accomplished by splitting the
hyperbolic and parabolic parts in a standard way (see
Hirsch 1989, 1990). The hyperbolic part was advanced
in time explicitly by using a low-order upwinding
scheme. The parabolic part marched forward in time by
using a Crank–Nicholson scheme. First and second de-
rivatives with respect to z were approximated as

] f 1 =z D f Dz = fi i i iø 1 ,1 2]z (D 1 =)z Dz =zi i i

where Df i 5 f ( · , zi11) 2 f ( · , zi), = f i 5 f ( · , zi) 2
f ( · , zi21), and

2] f 2 D f = fi iø 2 ,
2 1 2]z (D 1 =)z Dz =zi i i

respectively, for some dynamic quantity f .
The accuracy was evaluated by comparing the com-

puted solution with an exact solution. The test problem
was Stokes’s second problem, which describes the
boundary layer flow over a horizontally oscillating plate
(Shlichting 1987, p. 93). The external forcing was set
to the horizontal velocity at the edge of the layer u(x,
1, t) 5 cos(vt). The exact solution of Stokes’s second
problem, for zh sufficiently large, is

u(z, t) 5 exp[2s(1 2 z)] cos[vt 2 s(1 2 z)],

where s 5 . In the test results to be presented, theÏ2/v
forcing frequency was set to v 5 2p and the wave-
number to 6p, which produces a wavelength l 5 1/3.
The equations were integrated for five periods, at which
time the analytic and computed results were compared.
Quadratic convergence was achieved when the grid was
uniform in z. For nonuniform grids, the convergence
was superlinear.

Figure A1 shows cross sections of the computed hor-
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FIG. A1. The computed horizontal velocity u at a fixed location xj, as a function of depth, for different values of K; at some location x,
after five periods of oscillation: (a) uniform mesh, with p 5 1; (b) nonuniform mesh, with p 5 1.75. Notation is crosses: K 5 20; squares:
K 5 40; and dots: K 5 80.

FIG. A2. Wall shear stress: (a) Navier–Stokes, (b) Prandtl.

izontal velocity u as a function of z at a fixed location
xj. The units of the z axis in the figure are given in terms
of boundary layer thicknesses d. The external velocity
was a progressive wave of dimensionless amplitude
0.006. Figure A1a shows the velocity, as approximated
by using a uniform grid (p 5 1 following (7). The K 5
20 case is depicted by crosses, the K 5 40 case by

squares, and the K 5 80 case by dots in the figure. All
cases were computed with M 5 90 and Dt 5 2p/800.
The graph shows the computed solutions converging in
accordance with our expectations of what a typical layer
profile should look like. Figure A1b shows the computed
velocity profiles at the same position in xj and same time
as in Fig. A1a, but these solutions were computed on a
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variable mesh [again following (A1)] with p 5 1.75. It
is clear from these figures that the nonuniform mesh ad-
equately captures the solution, using fewer discretization
points than would otherwise be required with a uniform
grid. Furthermore, Dx 5 l/66, and the time step was set
to t/400, where t is the period of the forcing.

For the flows investigated in this study the mean shear
stress is proportional to the mean Eulerian velocity. Un-
like the mean Eulerian velocity, however, the mean shear
stress depends only on the channel length and time.
Hence, it is a quantity that lends itself to answer the
following question: Do the results obtained by using a
Prandtl model differ qualitatively (and in an appreciable
way, quantitatively) from those obtained by using the
Navier–Stokes equations? We benchmarked the mean
shear stress computed by using a spectral element Na-
vier–Stokes (NS) solver due to Fischer and Patera
(1994). The solver uses periodic boundary conditions
at the far and near ends of the channel and no-slip con-
ditions at the bottom of the channel. The forcing

u 5 U cos(kx 2 vt) cosh(ky)/sinh(kh)m

y 5 U sin(kx 2 vt) sinh(ky)/sinh(kh)m

generates a bulk pressure field that drives the flow. The
initial condition is also derived from the above forcing.
In the comparisons, aspect ratios reached in the Prandtl
code were not accessible in the NS code. Instead of
parameters used in the experiments reported in this
study, the comparison of the time-averaged wall shear
stress was made by using h 5 0.01 m depth, v 5 2p,
and Um 5 0.2hv m s21. The comparison is made at t
5 8 s. The NS solver was run by using 8 cells in the
z direction and 18 in the x direction, and the elements
used polynomials of order 8. Under progressive wave
forcing, the asymptotic wall shear stress ^(]u/]z) | z50&
reported by the NS solver is approximately 10.7 s21,
whereas the shear is 3.41 s21 for the Prandtl model code.
Given that there is no exact description of how thick
the boundary layer should be, for the numerical com-
putation of solutions in the Prandtl model, the quanti-
tative comparison indicates adequate agreement. Qual-
itative agreement can be inferred from Fig. A2.

APPENDIX B

Testing the Running-Average Algorithm

Running averages were used extensively as a diag-
nostic tool in this study. In particular, running averages
were used to calculate the mean Eulerian velocity. The
running averages were tested as follows. A sinusoidal
progressive wave cos(kx 2 vt) replaced the velocity
field within the Prandtl code. All other aspects of the
code remained the same, including the running average
routine itself. The running average output of the code
was then examined at times commensurate with the pe-
riod, over many tens of thousands of time steps. At these

times, the outcome for the running average of this si-
nusoidal signal was machine zero throughout the chan-
nel length, as expected.

APPENDIX C

The Advection Scheme

In addition to characterizing the flow under different
forcing and noise conditions, we were also interested
in assessing how the flow itself affects the distribution
of passive tracers present in the boundary layer. To do
this, we used a tracer tracking algorithm. The algorithm
yields the eventual distribution of a collection of ideal
tracers that are initially placed uniformly along the
length of the channel and then subjected to advection
by the transport velocity.

Specifically, the computed Eulerian velocity u(xj, zi,
tn), n 5 0, 1,· · · , and tn 5 nDt, was used to compute
UT(x, z, tn), a first-order splined semidiscrete interpo-
lation of the advection velocity. This advection velocity
was assumed fixed for a time interval TDt, where T $
1. Np particles were distributed uniformly along the
channel, at locations Xk(t0), where k 5 1, 2,· · ·, Np, at
some height zi, at the initial time t0. We then allowed
the particles to advect according the the local velocity
UT. Hence, particles moved to a new position X(tn 1
TDt) 5 TDtU(X , tn) in time TDt. The new advectiontn

velocity was then calculated and the procedure repeated
to find the new position of the particles.

Since the magnitude of the velocities was small, freez-
ing both the particle velocity and position for T steps
yielded a saving in computational expense. The value of
T in the experiments reported here was 5. This value
increases the dissipation inherent in the advection algo-
rithm. Hence, particle orbits, even for a perfectly linear
acoustic field, would exhibit drift and thus not close on
themselves. Drift, in turn, leads to overestimates in the
particle transport. Hence, particle advection experiments
must be short in duration and particle flux comparisons
made in relative, rather than absolute, terms.
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