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We present here a new stochastic modelling approach in the constitution of fluid
flow reduced-order models. This framework introduces a spatially inhomogeneous
random field to represent the unresolved small-scale velocity component. Such a
decomposition of the velocity in terms of a smooth large-scale velocity component
and a rough, highly oscillating component gives rise, without any supplementary
assumption, to a large-scale flow dynamics that includes a modified advection
term together with an inhomogeneous diffusion term. Both of those terms, related
respectively to turbophoresis and mixing effects, depend on the variance of the
unresolved small-scale velocity component. They bring an explicit subgrid term to
the reduced system which enables us to take into account the action of the truncated
modes. Besides, a decomposition of the variance tensor in terms of diffusion modes
provides a meaningful statistical representation of the stationary or non-stationary
structuration of the small-scale velocity and of its action on the resolved modes.
This supplies a useful tool for turbulent fluid flow data analysis. We apply this
methodology to circular cylinder wake flow at Reynolds numbers Re = 100 and
Re = 3900. The finite-dimensional models of the wake flows reveal the energy and
the anisotropy distributions of the small-scale diffusion modes. These distributions
identify critical regions where corrective advection effects, as well as structured
energy dissipation effects, take place. In providing rigorously derived subgrid terms,
the proposed approach yields accurate and robust temporal reconstruction of the
low-dimensional models.

Key words: low-dimensional models, turbulence modelling, turbulent mixing

1. Introduction
Surrogate empirical models of flow dynamics with a reduced set of degrees of

freedom are widely used in fluid mechanics for control applications or physical
analysis (Noack, Morzynski & Tadmor 2010). Within such modelling, a few modes

† Email address for correspondence: valentin.resseguier@inria.fr
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Stochastic modelling and diffusion modes for POD models 889

extracted from experimental or numerical measurements are used to represent the
main dynamical behaviour of a flow. The modes in themselves may help in unveiling
recurrent dynamical patterns. Spectral approaches are quite natural for this purpose.
Fourier representation has been used for a long time to characterize hydrodynamic
instabilities. Proper orthogonal decomposition (POD) and the spectral representation of
the velocity auto-correlation matrix are used to extract a descriptive empirical spatial
or temporal basis of the flow (Sirovich 1987; Aubry et al. 1988; Holmes, Lumley
& Berkooz 1996). More recently the dynamic mode decomposition (DMD) approach,
relying on the eigenvectors of the Koopman operator (Koopman 1931) and Takens’s
delay embedding theorem (Takens 1981), has been proposed to represent, from the
evolution of observations, the principal modes of the dynamical system’s attractor
(Mezic 2005; Rowley et al. 2009; Schmid 2010). Combination of both representations
can also be used to provide a suitable energy spectrum representation (Cammilleri
et al. 2013). In all those modal representations the construction of the reduced-order
dynamics requires a truncation operation in which the most ‘influential’ modes, with
respect to a given criterion, are kept to describe the flow. In general, the action of the
discarded modes must be modelled to obtain accurate and stable dynamical systems.
The effect of those neglected processes encompasses dissipation effects but is also
responsible for some energy redistribution and backscattering (Piomelli et al. 1991).

In most of the flow low-order dynamics, the unresolved small-scale processes are
represented on the basis of an eddy-viscosity assumption (Boussinesq 1877). This
takes the form of a damping term in the reduced-order dynamical system. In Galerkin
POD reduced models, this extra dissipation, which is added to the linear molecular
diffusion, is modelled by a constant coefficient (Aubry et al. 1988) or through a
modal constant vector (Rempfer & Fasel 1994; Cazemier, Verstappen & Veldman
1998). Recently, nonlinear functions have been proposed for a bluff body wake flow
(Östh et al. 2014). Although those models have demonstrated their efficiency in
numerous situations, the estimation of the associated parameters and/or the choice
of the nonlinear dependency between the eddy-viscosity coefficients and the modal
coefficients constitute a sensible issue. Furthermore, from a physical interpretation
point of view, the action of the small-scale velocity component is interpreted only
with regard to a homogeneous stationary dissipation effect. Neither preferential local
direction of diffusion related to the flow physics, nor energy redistribution action by
the small scales are considered.

Robust techniques based on optimal control strategies have also been proposed for
building reduced dynamical models from noisy data (D’Adamo et al. 2007; Artana
et al. 2012; Cordier et al. 2013; Semaan et al. 2016) and incomplete knowledge
of the actual flow dynamics (i.e. unknown initial condition, partially known forcing
terms, etc.). Calibration techniques built from very close paradigms have also been
proposed to tune appropriately the dynamics parameters (Couplet, Basdevant &
Sagaut 2005; Buffoni et al. 2006; Perret, Collin & Delville 2006). Those techniques
accurately estimate low-order dynamical systems in the temporal windows on which
the data are available. These methods unfortunately present some limitations for
predicting new states of the system. Furthermore, the physical interpretation of the
unresolved velocity component remains difficult since its contribution is distributed
in an unknown manner over all the coefficients of the dynamical system and on the
error function when weak dynamical constraint is considered (Artana et al. 2012).

In this work, to take into account the unresolved modes in the surrogate dynamic
model, we will rely on a recently proposed stochastic framework (Mémin 2014;
Resseguier, Mémin & Chapron 2017a). In this context, an advection of the large-scale
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890 V. Resseguier, E. Mémin, D. Heitz and B. Chapron

component due to the action of the unresolved random component emerges naturally,
together with an inhomogeneous non-stationary diffusion. This will lead us to consider
corrective advection and diffusion terms driven by the turbulence inhomogeneity
whose local effects can now be physically interpreted.

After presenting the stochastic model in § 2, we describe the derivation of the
associated POD reduced-order model in § 3. Furthermore, we propose a method to
estimate the additional components of the dimensional reduced system from the
residual velocity. Then, the data benchmarks are detailed in § 4. From the estimated
additional components, we analyse the influence of the residual velocity on the
large-scale flow and reconstruct the temporal modes of the reduced-order models
in § 5.

2. Dynamics stochastic modelling
The proposed stochastic principle relies on a Lagrangian random description of the

flow velocity:

dXt

dt
=w(Xt, t)+ η̇(Xt, t). (2.1)

The first term on the right-hand side, w, stands for the large-scale velocity component.
It is a smooth component in time. For turbulent flows, it is associated with a much
larger time scale than the unresolved small-scale velocity component. This latter,
η̇= dη/dt, is associated with fast modes that are rapidly decorrelating at the resolved
time scale. Based on this observation, we will assume that such a component can
be ideally represented through a spatially smooth incompressible (divergence-free)
Gaussian random field uncorrelated in time. This (possibly inhomogeneous) random
field is formally built from an infinite-dimensional Brownian motion. It is associated
with a covariance tensor denoted Q that has the following form:

Qij(x, y, t, t′)=E(dηi(x, t)dηj(y, t′))= cij(x, y, t)δ(t− t′) dt. (2.2)

In the following, the diagonal of the covariance tensor, which plays a central role in
our setting, will be denoted as: a(x) 4= c(x, x, t). This tensor, which may depend on
time, will be referred to as the small-scale variance tensor. It is a symmetric positive
definite matrix at all spatial points, x (excluding degenerate cases) with dimension in
m2 s−1. It thus corresponds to an eddy viscosity term.

This stochastic formulation is related in spirit to the Lagrangian stochastic models
based on Langevin equations that have been intensively used for turbulent dispersion
(Sawford. 1986) or in probability density function modelling of turbulent flows
(Haworth & Pope 1986; Pope 1994, 2000). However, our interest here focuses on the
associated large-scale Eulerian representations of the flow dynamics. This Eulerian
description of the resolved velocity component is obtained through a formulation of
the Reynolds transport theorem adapted to such a stochastic flow.

2.1. Stochastic conservation equations
Considering the flow decomposition (2.1), the rate of change of a scalar quantity (in
the absence of random forcing) within a material volume is given by the following
expression (Mémin 2014; Resseguier et al. 2017a):

d
dt

∫
V(t)

q dx=
∫

V(t)

(
∂q
∂t
+∇ · (qw∗)−∇ ·

(
1
2

a∇q
)
+ η̇ · ∇q

)
dx, (2.3)
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Stochastic modelling and diffusion modes for POD models 891

where the effective advection velocity is given as

w∗ 4=w− 1
2(∇ · a)

T. (2.4)

Equation (2.3) provides a stochastic representation of the so-called Reynolds transport
theorem. It is important to outline that at a given grid point, q is a random value
which depends, among other things, on the Brownian component of the particles
flowing through that point. The second term corresponds to the large-scale advection
by an effective drift, w∗, which includes a contribution related to the divergence
of the small-scale velocity variance tensor (2.4). The third term is a diffusion
expressing the mixing effect exerted by the small-scale velocity component. The
final term corresponds to the scalar advection by the small-scale velocity field. From
this expression a conservation of an extensive property,

∫
V(t) q, such as mass or

internal energy (neglecting diabatic and compressive effects) reads immediately as the
following intensive property evolution equation

∂q
∂t
+∇ · (qw∗)+ η̇ · ∇q=∇ ·

(
1
2

a∇q
)
. (2.5)

As the term on the right-hand side is a smooth temporal component, we observe
immediately that the Brownian terms associated, on the one hand, with the scalar
temporal variation and, on the other hand, with the small-scale advection necessarily
compensate each other. A fluid with a constant density ρ, naturally requires a
divergence-free constraint on the effective advection:

0=∇ · η̇, (2.6)
0=∇ ·w∗ =∇ ·

(
w− 1

2(∇ · a)
)
. (2.7)

This is the case we are dealing with in this study. The two constraints (2.6)–
(2.7) correspond to the incompressibility conditions associated with the stochastic
representation. For isochoric flows with variable density, as in geophysical fluid
dynamics, interested readers can refer to Resseguier et al. (2017a), Resseguier,
Mémin & Chapron (2017b,c).

2.2. Navier–Stokes equations associated with a stochastic representation of the small
scales

Let us denote by ρ the density and by p the pressure. As in Newton’s second law, a
dynamical balance between the temporal differentiation of the stochastic momentum,
ρ dXt, and the action of the forces is assumed. Applying the stochastic representation
of the Reynolds transport theorem (2.3) leads to the following Navier–Stokes equations
(Mémin 2014):

∂w
∂t
+ (w∗ · ∇)w=−

1
ρ
∇p+

d∑
i,j=1

∂

∂xi

(
1
2

aij
∂w
∂xj

)
+ ν4w. (2.8)

This equation corresponds to the large-scale momentum equation. This expression
differs from the classical Reynolds decomposition formulation mainly by the
introduction of both a large-scale dissipation term and a correction term in the
large-scale advection. The dissipative term plays a role that is similar to the
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892 V. Resseguier, E. Mémin, D. Heitz and B. Chapron

eddy-viscosity models which are introduced in classical large-scale representations
(Smagorinsky 1963; Bardina, Ferziger & Reynolds 1980; Lilly 1992) or to spectral
vanishing viscosity (Tadmor 1989; Karamanos & Karniadakis 2000; Pasquetti 2006).
It is also akin to numerical regularization models considered in implicit models (Boris
et al. 1992; Aspden et al. 2008; Lamballais, Fortuné & Laizet 2011). The small-scale
stochastic representation principle is nevertheless more general as it does not rely
on a priori fixed shapes of the subgrid tensor (e.g. the Boussinesq assumption) nor
does it presuppose a given numerical scheme (e.g. implicit models). The subgrid term
takes a general diffusion form whose matrix coefficients are given by the small-scale
variance tensor. The diffusion principal directions are thus aligned with this tensor
principal directions.

The advection correction term is much less intuitive. It is related here to an
advection bias due to the inhomogeneity of the small-scale variance tensor. This
corresponds to the eddy-induced velocity introduced for tracer mean transport in
oceanic or atmospheric circulation models (Andrews & McIntyre 1976; Gent et al.
1995) and more generally to the turbophoresis phenomenon associated with small-scale
inhomogeneity, which drives inertial particles toward the regions of lower diffusivity
(Sehmel 1970; Caporaloni et al. 1975; Reeks 1983; Brooke et al. 1992). Qualitatively,
this drift correction can be understood as follows. Fluid parcels with higher turbulent
kinetic energy (TKE) move faster. It ensues that at large scales, areas associated with
maximum TKE spread whereas areas associated with minimum TKE shrink. Hence,
a large-scale drift oriented toward these maxima/minimum emerges. This orientation
suggests an anticorrelation with the TKE gradient. Since the turbulent velocity
variations are multidimensional, they are better described by the variance tensor. The
drift correction is consequently proportional to the opposite of the variance tensor
divergence. For homogeneous turbulence, the small-scale variance tensor is constant
and this corrective advection does not come into play. It can be noted that this
advection correction is of the same form as that proposed in Caporaloni et al. (1975),
Reeks (1983), Macinnes & Bracco (1992).

The small-scale random field can be freely defined and be in a shape that goes
from isotropic stationary models up to inhomogeneous non-stationary random fields.
However, in the inhomogeneous case (such as the Smagorinsky model) the advection
correction term comes into play. A stochastic representation of the unresolved scales
thus differs significantly from classical large-scale modelling. It relies on less strict
assumptions, which enable us to cope naturally with inhomogeneous anisotropic
turbulence.

This stochastic representation relies on a scale gap assumption, which is coherent
with deterministic justifications of the eddy viscosity (Kraichnan 1987). The stochastic
transport expression (2.3) and the momentum equation (2.8) provide the foundations of
a physically relevant large-scale fluid dynamics formulation. It opens a new paradigm
for large-scale modelling adapted to turbulence inhomogeneity in involving a general
subgrid diffusion together with a small-scale drift correction. In the next section, we
will rely on this model for the construction of reduced-order dynamical systems.

3. Reduced-order models

Dimensional reduction techniques enable the constitution of simplified lower-
dimensional representations of partial differential equations (PDE). They are usually
specified from a Galerkin projection onto a data-based dedicated basis. The proper
orthogonal decomposition, also called empirical orthogonal functions in geophysics, is
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Stochastic modelling and diffusion modes for POD models 893

one of those methods for turbulent flows. In § 3.1 the POD model reduction is briefly
presented. Then, in § 3.2 we introduce the derivation of the reduced-order model from
the stochastic representation principle described in § 2. In § 3.3, different characteristic
time scales are introduced for the different modes, leading to the concept of modal
characteristic time steps. Finally, in § 3.4 a precise specification of the small-scale
variance tensor is proposed with two different estimation methods.

3.1. POD model reduction
POD reduced-order models rely on the linear decomposition of the velocity w on a
reduced number of orthogonal spatial modes (Holmes et al. 1996):

w(x, t)≈ bi(t)φi(x), (3.1)

where we used Einstein summation convention. Unless stated otherwise, this
convention is adopted in this paper.

The number of modes, n, is assumed to be much lower than the state space
dimension. The functions (φi(x))16i6N encoding the spatial flow variations are referred
to as topos and are computed from a Karunen–Loeve decomposition on a series of
N + 1 available velocity snapshots. The topos are sorted by decreasing order of the
snapshots’ empirical covariance eigenvalues: λ1 > · · · > λN . The (bi(t))16i6N denote
the temporal modes; they are called chronos. The chronos are the eigenvectors of
the spatially averaged temporal correlation matrix, whereas the topos constitute the
eigenvectors of the temporally averaged spatial correlation matrix. They are both
computed from the snapshots’ covariance. Function φ0 corresponds to the time
average velocity and b0

4

= λ0
4

= 1. We also denote by T the time between the first
and the last snapshot. The Navier–Stokes equations can be written in the general
following form:

∂w
∂t
= I+ L(w)+C(w,w), (3.2)

where L and C stand respectively for linear and bilinear differential operators. The
first term, I, collates the pressure and the external forces such as gravity. The second
one, L, includes the molecular friction term and possibly the Coriolis force. The last
one, C, encodes the nonlinear advection term. Projecting this PDE on each topos (with
the L2 scalar product noted 〈·, ·〉):

〈∂tw, φi〉 = 〈I, φi〉 + 〈L(w), φi〉 + 〈C(w,w), φi〉, (3.3)

leads to a system of ordinary differential equations for the chronos:

dbi

dt
=

(∫
Ω

φi · I
)

︸ ︷︷ ︸
4
=ii

+

(∫
Ω

φi · L(φp)

)
︸ ︷︷ ︸

4
=lpi

bp +

(∫
Ω

φi ·C(φp, φq)

)
︸ ︷︷ ︸

4
=cpq

i

bpbq. (3.4)

Due to nonlinearity, the temporal modes strongly interact with one another. In
particular, even though the original model (with n = N) is computationally stable
for moderate Reynolds number, a strongly reduced model (n� N) appears unstable
in general. A frequency shift is also often observed. Those artefacts are extensively
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894 V. Resseguier, E. Mémin, D. Heitz and B. Chapron

documented in the literature (Aubry et al. 1988; Rempfer & Fasel 1994; Artana et al.
2012; Östh et al. 2014; Protas, Noack & Östh 2015). The introduction of a damping
eddy-viscosity term to mimic the truncated modes’ dissipation leads to a modified
linear term in (3.4). Unfortunately, as this term is built on empirical grounds its
precise form is difficult to justify. Furthermore, its parametrization has to be tuned
for each simulation to achieve good results. When large wake domains are considered,
the influence of the pressure term (and of the boundaries) is in general negligible
(Deane et al. 1991; Ma et al. 2002; Noack, Papas & Monkevitz 2005). We will also
rely on this assumption, although several authors have shown that neglecting the
pressure term was a source of uncertainty regarding an accurate representation of
the flow dynamics (Noack et al. 2005; Kalb & Deane 2007). To take into account
the effect of the outflow boundary, corrective terms are introduced by some authors
through modifications of the linear (Galetti et al. 2007) or quadratic terms (Noack
et al. 2005).

3.2. Reduced-order modelling associated with the stochastic representation
To overcome the difficulties previously evoked, we propose to derive the reduced-order
model from the stochastic representation principle described previously. To account
for the effect due to the modal truncation, we will assume that the whole field u=
w + η̇ can be decomposed in such a way that the large-scale component lives on
the subspace endowed with the reduced POD basis w =

∑n
i=0 biφi while realisations

of the small-scale component belong to the orthogonal complement subspace η̇ =∑N
i=n+1 biφi. Since ∇ ·u= 0, for all i, ∇ ·φi= 0 and, then, ∇ ·w= 0. The dynamics of

the large-scale component, w, is given by the incompressible Navier–Stokes equations
(2.8). Projecting this equation onto the topos φi now leads for i> 0 to

dbi

dt
= ii + (l

p
i + f̆ p

i (a))bp + cpq
i bpbq, (3.5)

with f̆ p
i (a)

4

=

∫
Ω

φ
(k)
i

−1
2
(∇ · a)∇φp

(k)︸ ︷︷ ︸
Advection

+∇ ·

(
1
2

a∇φp
(k)

)
︸ ︷︷ ︸

Diffusion

 , (3.6)

where φ
(k)
i and φ

p
(k) stand for the kth coordinate of the ith and of the pth topos

respectively.
The additional term f̆ (a) corresponds to the projection on the topos of the effective

advection and the diffusion brought by the stochastic representation of the small
scales. We note that this function is linear and is the only function that depends
on the variance tensor a. This system now includes a natural small-scale dissipation
mechanism, through the diffusion term. But it also corrects the frequency shift through
the additional advective term ensuing from the small-scale inhomogeneity.

To fully define this system, we need to specify the small-scale variance tensor a.
This issue is developed in § 3.4. But before that, we will further elaborate on the
choice of the characteristic times related to the modal truncation.

3.3. Time scale characterisation
Very efficient flow simulations are obtained by reducing as much as possible the
number of modes of the associated surrogate model. An even higher efficiency can
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Stochastic modelling and diffusion modes for POD models 895

be obtained by increasing the evolution time step. Moreover, a larger sampling time
step of the snapshots also reduces the computational cost of the reduced system
computation. This time step can be naturally chosen as a single constant for the
whole system. However, as we shall see, different characteristic time scales can be
fixed for the different modes, leading to the concept of modal characteristic time
steps.

3.3.1. Single time step
As long as the resolved modes, representing w, are smooth with respect to time,

the assumption pertaining to our reduced model construction is valid. The time step
must thus be fixed as the largest value that guarantees that all the chronos remain
smooth. The characteristic time scale associated with the fastest resolved mode (which
is often the least energetic mode) is a good target for that purpose. This time scale
is associated with the highest frequency of the chronos Fourier modes. Quantitatively,
the Shannon–Nyquist theorem provides us with a natural upper bound to fix its value.
This theorem states that a function can be sampled, without loss of information, if the
sampling frequency is at least twice as large as the largest frequency of the original
function. Otherwise, the sampled function undergoes an aliasing artefact characterized
by a folding of the Fourier spectrum and a loss of regularity. We will thus assume that
the required regularity condition is fulfilled if the modes are not affected by aliasing
phenomena. A sufficient condition thus reads

1
1t

> 2 max
i6n
( fmax(bi)), (3.7)

where fmax(bi) is the maximum frequency of the ith mode. Aliasing takes place in
the unresolved temporal modes, which are associated with smaller time scales, and
live on the chronos complement space. However, the stochastic representation is
precisely built from a decorrelation assumption of the small-scale unresolved part of
the velocity. This characteristic time scale of the resolved modes may be thus also
seen as a sampling time at which the unresolved modes appear uncorrelated. So, a
strong subsampling of those components strengthens further the decorrelation property
of the unresolved modes.

3.3.2. Modal characteristic times
The previous model can be enriched by considering that the resolved chronos are

associated with different time scales. Thus, we introduce a new criterion that reads
for each chronos, bi

1
1ti

> 2fmax(bi). (3.8)

A modal variance tensor field for each chronos immediately follows:

a(i)(x) 4=1tiE{η̇η̇T
}(x)=

1ti

1t
ã(x) with ã(x)=1tE{η̇η̇T

}(x). (3.9)

The modal variance tensor ai corresponds to the small-scale velocity variance
over a period given by the time scale of the chronos bi (i.e. it corresponds to
an eddy viscosity associated with the neglected modes expressed with respect to
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896 V. Resseguier, E. Mémin, D. Heitz and B. Chapron

the characteristic time associated with bi). The chronos evolution equation (3.5)
becomes

dbi

dt
= ii +

(
lp
i +

1ti

1t
f̆ p
i (ã)

)
bp + cpq

i bpbq (no sum on i). (3.10)

In practice, the common characteristic time 1t is set up by formula (3.7). Even though
it does not depend on the index i of the chronos, this time is a function of the number
n of resolved modes. The estimation procedures involved in the construction of the
reduced system – detailed in the following – use this characteristic time as a sampling
time step for the velocity snapshots. Let us note that to reconstruct the chronos from
that reduced system, the simulation time step is in general fixed to smaller values
than this characteristic time; it is indeed ruled by a Courant–Friedrichs–Lewy (CFL)
condition in order to ensure the convergence of the temporal discretization scheme.

3.4. Estimation of the small-scale variance tensor
The full definitions of the reduced-order models (3.5) and (3.10) require a precise
specification of the small-scale variance tensor. We compare here two different
estimation methods for this tensor. A first method will rely on a stationarity
assumption while a second technique will allow us to define a non-stationary tensor.
To avoid misunderstanding, note that the time steps 1t and 1ti – previously described
– are a priori not related to the possible time variations of the variance tensor. Indeed,
the characteristic time steps 1t and 1ti are by definition associated with the fastest
time variations of the resolved chronos. In contrast, the possible time variations of
the variance tensor is defined as the time evolution of the variance of the unresolved
modes.

3.4.1. Stationary small-scale variance tensor
This case corresponds to the model developed in Mémin (2014). The small-scale

velocity variance, a/1t, can be computed through a temporal averaging of the
residual velocity second moment (v − w)(v − w)T(ti) at all spatial locations. This
simple scheme thus provides a representation of a spatially varying stationary variance
tensor. The computational cost of this estimator linearly depends on the number of
snapshots and is thus inversely proportional to the sampling characteristic time step
1t of the unresolved modes.

3.4.2. Small-scale variance tensor in the chronos subspace
A stationary model has obvious limitations in terms of turbulence intermittency

modelling. A time-dependent variance tensor is nevertheless more complex to
estimate as in this case only a single realization of the small-scale velocity trajectory,
(v(x, t) − w(x, t)), is available. However considering a temporal basis it is possible
to estimate, at a fixed point, the matrix coefficients, z i(x), of the tensor, a(x, t)
(Genon-Catalot, Laredo & Picard 1992). We term those coefficients the diffusion
modes, as they correspond to a modal decomposition of the principal diffusion
directions. With the chronos reduced basis we obtain

ã(x, t)= bj(t)z j(x). (3.11)

Note that even though the residual velocity, (v − w), lives in the subspace which
is orthogonal to the chronos reduced basis, its one-point one-time covariance, and
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Stochastic modelling and diffusion modes for POD models 897

hence the variance tensor, do not. So, it seems natural to introduce the decomposition
(3.11). Using the orthogonality of the chronos,

∫ T
0 bkbl dt= δklλkT (no sum on k), leads

without sum on j to:

z j(x)=
∫ T

0

bj(t)
Tλj

ã(x, t) dt≈
1t

N + 1

N∑
k=0

bj(tk)

λj
(v −w)(x, tk)((v −w)(x, tk))

T, (3.12)

where N = T/1t. Again, the computational costs of these estimators are inversely
proportional to the sampling time step 1t. The formulas (3.11) and (3.12), rigorously
supported by stochastic calculus theory (Genon-Catalot et al. 1992), can be heuristically
understood as a time smoothing of the square residua, (v − w)(v − w)T. Indeed, by
the projections of this square residua onto the large-scale chronos we only keep the
large-scale patterns of the square residua. It can be noticed that keeping only the
zero-diffusion mode and cancelling the others: zi = 0, ∀i > 1, brings us back to the
stationary variance tensor model. The non-zero modes introduce a non-stationary
variance. However, it is important to outline that the reduced-order model (3.5)
remains a quadratic autonomous system. As a matter of fact from (3.11), we obtain
the following system:

dbi

dt
= ii + lp

i bp + (c
pq
i + f pq

i )bpbq, where f pq
i
4

=
1ti

1t
f̆ q
i (z

p) (no sum on i). (3.13)

Finally, we can combine the parametrization based on single or modal characteristic
times with the stationary or with the non-stationary variance tensor model. As
such, we obtain four distinct methods. Even with their large adaptabilities, each of
these methods only requires simple estimation algorithms and yields an autonomous
quadratic reduced-order model.

4. Flow configuration and numerical simulations
To evaluate the pertinence of the modelling developed in the previous section for

the specification of a low-order dynamical system and to analyse the contribution
of the small-scale component, we consider two-dimensional and three-dimensional
incompressible flows past a circular cylinder at Reynolds number Re = 100 and
Re = 3900 respectively. For the Reynolds Re = 100, we performed direct numerical
simulations (DNS) using Incompact3d, a high-order flow solver based on the
discretization of the incompressible Navier–Stokes equations with finite-difference
sixth-order schemes on a Cartesian mesh (Laizet & Lamballais 2009). A second-order
Adams–Bashforth scheme was used for the time advancement. The incompressibility
condition is treated with a fractional step method based on the resolution of a Poisson
equation in spectral space, allowing here for the velocity field the use of periodic
boundary conditions in the two lateral directions y and z. A constant flow is imposed
at the inlet of the computational domain and a simple convection equation is solved at
the exit. Using the concept of the modified wavenumber, the divergence-free condition
is ensured up to machine accuracy. The pressure field is staggered from the velocity
field by half a mesh to avoid spurious oscillations. The modelling of circular cylinder
of diameter D inside the computational domain was performed here with a simple
immersed boundary method (IBM). This is based on a direct forcing to ensure a zero
velocities boundary condition at the wall and inside the solid body. We performed the
DNS at Reynolds number Re= 100 on a domain extending over 20D× 20D× 0.5D
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Case Re (Lx × Ly × Lz)/D nx × ny × nz Stretching Snapshots Sheddings

DNS 100 20× 12× 0.5 241× 145× 8 None 10 000 100
LES 3900 20× 20×π 481× 481× 48 Along y 1 460 73

TABLE 1. Summary of simulations and of extracted data.

with 241 × 145 × 8 points in the streamwise, perpendicular and spanwise directions,
respectively. This reduced spanwise length corresponds to the minimum domain size
possible with Incompact3d and led to a three-dimensional wake flow simulation with
a very short periodicity in the spanwise direction. We highlight the fact that the third
dimension is here only for a practical numerical reason. Incompact3d cannot be used
without this spanwise direction. However, no three-dimensional structures are present
here. This low Reynolds choice was made to reduce the computational cost and to
simulate a longer time series, necessary for the POD analysis. N = 10 000 snapshots
are saved to observe 100 vortex shedding cycles.

In addition, a large-eddy numerical simulation (LES) was performed with
Incompact3d. This code solved incompressible Navier–Stokes equations on a grid
stretched along the y direction in a non-staggered configuration. It uses the customized
IBM technique of Gautier, Laizet & Lamballais (2014) to avoid discontinuities on
the velocity field, leading to the creation of spurious oscillations when high-order
centred schemes are used. Except for the grid stretching and the resolution, the
simulation configuration is similar to that described in Parnaudeau et al. (2008). The
subgrid-scale model proposed by Smagorinsky (1963) was combined with a fixed
filter length which is estimated as the cubic root of the mesh volume. The subgrid
parametrization is a classic Smagorinsky subgrid model with the constant Cs= 0.1 as
suggested by Ouvrard et al. (2010). To provide long-time integration data, this LES
was carried out with the low spatial resolution configuration used by Parnaudeau
et al. (2008). The LES was computed on a domain size of 20D × 20D × πD with
481 × 481 × 48 points in the streamwise, perpendicular and spanwise directions,
respectively. We extracted from this simulation 1460 equidistant snapshots over 73
vortex shedding cycles.

In the following (with the exception of § 5.1), non-dimensional quantities are
considered, and calculated using the cylinder diameter D and the inflow velocity U0.
Dimensionless quantities will be identified by lowercase symbols, e.g. (x, y, z) for the
coordinate system and t for the time. In this frame of reference, the inflow velocity
vector at x= 0 is (u, v,w)= (1, 0, 0) and the cylinder is located at (x, y, z)= (5, 0, z).
Details of the three cases are provided in table 1. Figure 1 shows the spanwise
vorticity component in the plane z = 0 for the DNS at Reynolds number Re = 100
and the LES at Reynolds number Re = 3900 respectively. At Reynolds number
Re= 100 and due to the quasi two-dimensional configuration of the simulation, there
are only few small-scale features. Most of the energy is gathered in the large-scale
vortical structures. In this regime two topos modes are sufficient to reliably describe
the flow. At Reynolds number Re= 3900, a sustained turbulence can be observed in
the far wake of the cylinder and in the recirculation zone just behind the cylinder.
The boundary layer on the body is laminar and transition to turbulence takes place in
the shear layers. The near-wake flow is mostly driven by those two shear layers (Ma,
Karamanos & Karniadakis 2000). Their oscillations trigger the von Kármán vortex
shedding and determine the size of the recirculation area. For this wake flow regime
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FIGURE 1. (Colour online) Spanwise vorticity component in a circular cylinder wake flow
at Reynolds number: (a) Re= 100 (DNS) and (b) Re= 3900 (LES).
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FIGURE 2. (Colour online) Mean stream velocity component in a circular cylinder wake
flow at Reynolds number Re = 3900: (black crosses), particle image velocimetry (PIV)
measurements (Parnaudeau et al. 2008); (blue line), LES used in this paper.

a higher number of modes must be retained. Figure 2 provides a test of the LES
accuracy. There, we plotted the mean stream component of the velocity just after the
cylinder in order to measure the length of the recirculation zone. To define it we
here rely on the so-called bubble length. It is the distance between the base of the
cylinder and the point with null longitudinal mean velocity (u= 0) on the centreline
of the flow (y= 0). Figure 2 shows a bubble length of approximately 1.7. This value
is larger than experimental measurements (Parnaudeau et al. 2008) as expected with
the classical Smagorinsky subgrid model (Chandramouli et al. 2016).

5. Diffusion modes results

We now apply the novel POD modelling, based on a stochastic small-scale
representation as presented in § 3, to the cylinder flow configuration which is
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900 V. Resseguier, E. Mémin, D. Heitz and B. Chapron

described in § 4. The reduced-order dynamics of the cylinder wake flow is known to
be sensitive to the unresolved small-scale velocity component. In § 5.1, the small-scale
energy and anisotropy are linked to small-scale diffusion modes. Assessment of the
stochastic modelling is then performed in the following at the Reynolds number
Re= 100 and Re= 3900, respectively. In § 5.2, contributions of small-scale diffusion
modes to large-scale flows are described and interpreted to determine which physical
mechanisms of the wake flow are concerned. In § 5.3, we assess the performance of
the subgrid term that was introduced by the stochastic representation of the small
scales by comparing the chronos trajectories to the reference.

5.1. Estimation and decomposition of the turbulent velocity components
It can be noticed in the decomposition (3.11), that the diffusion modes z i(x) are d× d
symmetric matrices (with z i = 0 for i> 0 in the stationary case) at all spatial points.
They can be diagonalized in a local orthonormal basis. Let us note however this
decomposition does not ensure that a(x, t)=

∑n
k=0 bk(t)zk(x) is positive definite since

bi(t) takes positive and negative values. In practice, though the stationary coefficient
dominates largely the other coefficients (which gives a positive definite estimation), we
would have to project the variance tensor on the manifold of positive definite matrices.
In the following section, to analyse the small-scale energy and anisotropy we visualize
the absolute values of the eigenvalues associated with the matrix modes, z i. Due to
chronos normalization, the variance tensor diffusion modes must also be normalized
by the chronos’ square root eigenvalues

√
λi, as

ã(x, t)=
n∑

k=0

bk(t)
√
λk
(
√
λkzk(x)) and

1
T

∫ T

0

(
bk
√
λk

)2

= 1 (no sum on k). (5.1a,b)

We note that this normalization puts an even stronger emphasis on the stationary
dissipation zero mode. Then, by (2.4) the corrective drift reads

w?
−w=

n∑
k=0

bk(t)
√
λk
(vc)k with (vc)k =−

1
2
∇ · (

√
λkzk)

T (no sum on k). (5.2)

Before dealing with chronos reconstruction, we propose in § 5.2 a new type of POD
data analysis involving the information contained in the residual velocity. Algorithm 1
summarizes the steps of our data analysis, including the POD, the diffusion modes
and the corrective drift computation.

5.2. Small-scale energy density, stationarity and anisotropy
The turbulent kinetic energy density was computed by the sum of the diffusion
modes eigenvalues, since small-scale TKE is represented (up to a time scale) by the
norm of that tensor. The bigger the TKE, the more important is the diffusion of
the resolved velocity by the small-scale velocity. The diffusion mode energies are
plotted in figure 3(a–c) for the circular cylinder wake flow at Re = 100, with two
POD modes and in the plane z= 0. The mode z0 yields regions of high TKE in the
transitional region just downstream of the recirculation zone, i.e. for 7.5 6 x 6 12.
The other diffusion modes z1 and z2 work together since the two first chronos b1

and b2 are similar up to a phase difference. These diffusion modes are twice weaker
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Algorithm 1 POD and diffusion modes data analysis
function STOCHASTIC_POD_ANALYSIS(n, v(x, t0), . . . , v(x, tN )))

(a) Usual POD
Resolved velocity component

w(x, t)= bi(t)φi(x). (5.3)
(b) Optimal time step

1
∆t
= 2 max

i6n
( fmax(bi)). (5.4)

(c) Diffusion modes analysis: study of the residual velocity component influence
• Residual velocity component

v −w. (5.5)
Decomposition of the residual velocity influence
• for j= 0 to n do

Component of the residual velocity influence associated with the time variability of the chronos bj
(note that b0 = λ0 = 1)
◦ Diffusion mode computation

Projection of the squared residues on the resolved chronos bj

z j(x)=
∆t

N + 1

N∑
k=0

bj(tk)
λj

(v −w)(x, tk)((v −w)(x, tk))
T (no sum on j). (5.6)

◦ Analysis of the diffusion of the resolved velocity w by the residual velocity
— Local diagonalization of the symmetric matrix z i(x)√

λjz j(x)= Pj(x)Λ(j)(x)PT
j (x) (no sum on j), (5.7)

with summation neither on j nor on p

Pj(x)Pj(x)T = Pj(x)TPj(x)= Id and Λ
(j)
pq(x)= δpqΛ

(j)
pp(x). (5.8a,b)

— Inhomogeneity of the turbulent diffusion of the resolved velocity
(proportional to the small-scale kinetic energy)

d∑
p=1

|Λ
(j)
pp(x)| (5.9)

— Anisotropy of the turbulent diffusion of the resolved velocity
(equal to the anisotropy of the small-scale kinetic energy)

maxp |Λ
(j)
pp(x)|

minp |Λ
(j)
pp(x)|

(no sum on p). (5.10)

◦ Corrective drift

(vc)j(x)=−
1
2
∇ · (

√
λjz j)

T(x) (no sum on j). (5.11)

— Vorticity of the corrective drift

∇× (vc)j (5.12)
— Divergence of the corrective drift

∇ · (vc)j (5.13)
• end for

end function
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FIGURE 3. (Colour online) Local spectral representations of the matrix a in a cylinder
wake flow at Re= 100, for n= 2 POD modes and in the plane z= 0. Turbulent kinetic
energy of the diffusion modes: (a) diffusion mode z0; (b) diffusion mode z1; (c) diffusion
mode z2 (square root of the sum of the squared eigenvalues).

than the stationary mode z0. Their spatial patterns are more complex, although the
large diffusion is still confined in the transitional region.

To measure small-scale anisotropy, we computed the ratio between largest and
smallest eigenvalues, corresponding to the condition number of the local small-scale
velocity variances (see Algorithm 1). The bigger this quantity the more aligned toward
the first local proper direction the small-scale velocity is, i.e. the more anisotropic
the small-scale velocity and the diffusion of the resolved velocity are. Figure 4 shows
the colour map of this quantity for the circular cylinder wake flow at Re = 100. In
regions where the unresolved velocity component is largely anisotropic, the small-scale
velocity is mainly directed towards the eigenvector which is associated with the largest
eigenvalue of the small-scale variance tensor. The small-scale component imposes a
diffusion of the resolved velocity in the same direction. The streamlines in figure 4
show the principal local diffusion directions defined by the largest eigenvectors. The
orthogonal to the streamlines would depict the directions of least diffusion of the
large-scale velocity by the small-scale component. These directions can be interpreted
as those of lowest small-scale uncertainty. The streamlines clearly show the vortex
formation region with the symmetric vortex rolling zone. The two pivotal locations at
y=±0.5 just before station x = 6 where both shear layers start to roll into vortices
are precisely indicated by high values of the small-scale anisotropy. The centreline
of the recirculation zone (just before x= 6 up to x= 7) is also associated with large
anisotropy due to the alternation between formations of clockwise and anticlockwise
vortices. After the transitional region (x > 12), i.e. where regular and aligned vortices
move downstream, the small-scale velocity anisotropy is maximum on the sides of
the von Kármán vortex street (x=±1). This is due to the tails of the vortices visible
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FIGURE 4. (Colour online) Local spectral representations of the matrix a in a cylinder
wake flow at Re = 100, for n = 2 POD modes and in the plane z = 0. Small-scale
anisotropy of the diffusion modes: (a) diffusion mode z0; (b) diffusion mode z1;
(c) diffusion mode z2 (ratio of the absolute value of the largest eigenvalue to the absolute
value of the smallest eigenvalue). The streamlines represent the first proper diffusion
direction (i.e. the eigenvectors corresponding to the largest eigenvalues of the small-scale
variance tensor).

in figure 1. This anisotropy is also visible in the non-stationary diffusion modes z1
and z2.

Another interesting feature of the small-scales stochastic representation principle
concerns the emergence of the small-scale effective velocity (2.4), also called drift
correction, related to the variance tensor inhomogeneity (see Algorithm 1 for the
computation). Though at Re = 100, this contribution is weak as the flow is well
captured with only two POD modes, it is nevertheless interesting to observed the
velocity component that is induced by the neglected POD modes. In figure 5(a–f )
we plot the vorticity and divergence of this advection correction term (2.4) for the
diffusion modes z0 to z2. The small-scale vorticity induced by the neglected modes
is 2 orders of magnitude weaker than the whole flow vorticity (figure 1), which
confirms its minor effect on the large-scale flow. However some interesting patterns
emerge from these figures. In the vorticity map associated with the diffusion mode
z0 (figure 5a) we observe high divergence zones located at 6 6 x 6 7 with y close to
±0.5. In these regions where both shear layers roll into vortices, the vorticity drift
correction due to the unresolved modes enhances the rolling process. Just downstream,
at the boundaries of the shedding zone, elongated vorticity patterns can be observed.
In the divergence map associated with the diffusion mode z0 (figure 5b) we observe
high divergence elongated zones located at 7 6 x 6 9 corresponding the trajectories
of the launched vortices along which their sizes are increasing. Convergence zones
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FIGURE 5. (Colour online) Spanwise vorticity (a,c,e) and divergence (b,d, f ) of the drift
correction −((∇ · a)T)/2 in a cylinder wake flow at Re = 100, for n = 2 POD modes:
(a,b) diffusion mode z0; (c,d) diffusion mode z1; (e, f ) diffusion mode z2.

are also shown at the same stations but between and on both sides of the divergence
regions. Such flow corrections, albeit weak, take place in the region of the flow
where physical mechanisms that give rise to vortex shedding are active and may have
significant contributions if the flow is sensitive in these regions. One interesting
feature, here, is the presence of high values of vorticity, corresponding to the
maximum of anisotropy, at the two pivotal locations of the shear layers rolling into
vortices. The non-stationary corrective advection is even weaker than the stationary
one. The vorticity plots figure 5(c,e) unveil elongated vortices outside the recirculation
zone but also relatively circular ones in the transitional region near the x axis. In
the divergence fields figure 5(c,e), large spots of convergence and divergence zones,
odd with respect to the x axis, appear in the end of the recirculation zone and in the
transitional region.

Next it is of particular interest to analyse how the proposed small-scale stochastic
modelling behaves with a more turbulent wake flow. So we consider the cylinder wake
flow at Reynolds number Re= 3900.

Figure 6 is a mapping of three-dimensional isosurfaces of the energy density for
the diffusion modes z0, z1, z2, z3 and z4, in a cylinder wake flow at Re = 3900.
We observe that the turbulent energy of the diffusion zero mode is approximately
three times larger than for the non-stationary modes. These spatial small-scale
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FIGURE 6. (Colour online) Local spectral representation of the matrix a in a cylinder
wake flow at Re= 3900 (LES), for n= 4 POD modes: small-scale turbulent kinetic energy
isosurfaces of the diffusion modes z0–z4, respectively. At places where the energy is high,
the unresolved velocity and the diffusion are strong. The green isosurfaces are associated
with higher values than the yellow isosurfaces (0.007) and the blue isosurface (0.08)
corresponds to a higher value than the green isosurfaces (0.03).

energy distributions show that the largest magnitudes are reached at the end of
the recirculation region and further downstream in the transitional region.

Let us now examine the small-scale anisotropy spatial distribution together with
the arrows of the principal local diffusion directions plotted in figure 7. Figure 7(a,b)
indicates that the stationary component of the turbulent diffusion of the resolved
velocity is isotropic (i.e. shows a low anisotropy) in the centre of the von Kármán
vortex street and further downstream whereas this stationary diffusion is anisotropic
in the sides of the recirculation zone and of the von Kármán vortex street. There,
the turbulent diffusion mostly acts along the plane perpendicular to the cylinder.
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FIGURE 7. (Colour online) Local spectral representation of the matrix a in a cylinder
wake flow at Re= 3900 (LES), for n= 4 POD modes: Top (a,c,e) and side view (b,d, f )
of the small-scale anisotropy isosurfaces of diffusion modes z0 (a,b), z1 (c,d) and z2
(e, f ), respectively. This is the anisotropy of both the small-scale velocity statistics and
of the diffusion of the large-scale velocity. The green surface (σ = 6) is associated with a
higher anisotropy than the yellow surface (σ = 3). The red cones represent the preferential
diffusion directions (i.e. the eigenvectors corresponding to the largest eigenvalues of the
small-scale variance tensor). For the diffusion modes z1 (c,d) and z2 (e, f ), these direction
fields are spatially smoothed for an easier visualisation.

The anisotropy maximums (highlighted by green surfaces in figure 7a,b) reveals the
two pivotal regions where the shear layers start to roll into vortices.

For z1 and z2 diffusion modes the structures of the non-stationary anisotropy are
more complex (see figure 7c,e), although large values are mainly confined inside the
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FIGURE 8. (Colour online) Vorticity (a,c,e) and divergence (b,d f ) isosurfaces of the drift
correction −((∇ · a)T)/2 in a cylinder wake flow at Re = 3900, for n = 4 POD modes:
(a,b), diffusion mode z0; (c,d), diffusion mode z1; (e, f ), diffusion mode z2. In (a,c,e),
the green isosurfaces are associated with a vorticity vector aligned downward whereas the
yellow isosurfaces are associated with a vorticity vector aligned upward. In (b,d, f ) the
green surfaces stand for areas with isosurfaces which have negative divergence (convergent
zone) whereas the yellow isosurfaces correspond to a positive divergence (divergent zone).

von Kármán vortex street. The associated non-stationary turbulent diffusion is
preferentially in the spanwise direction. This behaviour can be related to the three-
dimensionalization of the wake flow especially taking place along the spanwise
direction in the transitional region. Our analysis gives an additional comprehension of
this phenomena. In particular, the associated spanwise turbulent viscosity coefficient
is found to be non-stationary.

In figure 8(a,b), respectively the vorticity norm and the divergence of the stationary
drift correction are plotted. Like for the Re = 100 case, stationary vorticity and
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divergence corrections are observed near the shear layers, outside and at the end of
the recirculation zone and just downstream in the launching area. Here again, high
magnitudes of vorticity just downstream the maximum of anisotropy are associated
with the two pivotal regions of the shear layers rolling into vortices. Nevertheless, the
corrective vorticity is here stronger (one order of magnitude weaker than the global
vorticity field). Other corrective vorticity structures can be observed at the end of the
recirculation zone on the non-stationary modes z1 and z2. The vorticity involved in
those modes is approximately twice weaker than for the stationary diffusion mode. We
identify 3 and 4 spanwise vortices in the corrective vorticity fields (∇× (∇ · z1)

T)/2
and (∇ × (∇ · z2)

T)/2 respectively. As in the laminar case, divergence structures can
be observed at the end of the recirculation zone and just downstream in the launching
area. Again, these structures are odd with respect to the x axis. Along the spanwise
direction, periodic structures appear. Downstream no significant corrective velocities
structures are observed, rather indicating a homogeneous character of the small-scale
velocity and of the turbulent diffusion.

The diffusion modes analysis developed in the present paper identifies critical
regions of the wake flow: the anisotropy mainly exhibits the pivotal location of
the shear layers which are associated with large-scale vorticity corrections by the
small-scale unresolved velocity and large-scale divergence corrections also take place
in the vortex formation zone. For the wake flow considered, the results indicate
that far enough downstream and outside the von Kármán vortex street boundaries
an eddy-viscosity assumption is likely to be valid. However in the near wake or
close to the von Kármán vortex street boundaries, such an assumption is too strong
and corrective advection effects as well as structured energy dissipation effects must
be taken into account. These findings support the recent results of Chandramouli
et al. (2016) who demonstrated the significant contributions of such novel stochastic
small-scale modelling in the context of coarse grid large eddy simulation of a
wake flow.

5.3. Chronos reconstruction
In this section we aim at assessing the performance of the subgrid term introduced by
the stochastic representation of the small scales. We compare the chronos trajectories
that were directly reconstructed from the reduced-order dynamical system (3.13)
to the observed chronos. Let us note that almost perfect long-time trajectories
could be recovered through data-assimilation strategies (D’Adamo et al. 2007;
Artana et al. 2012; Cordier et al. 2013; Protas et al. 2015). However, with such
techniques it would be difficult to identify the intrinsic role of the subgrid scheme
compared to a least-squares adaption of all the dynamics coefficients along the whole
sequence. We therefore prefer to rely on a direct reconstruction strategy in which
no identification, like least-squares or data-assimilation estimation procedures of the
dynamical coefficients, is introduced. Note that such a direct reconstruction requires
an additional stabilization, like a closure model, to ensure the long-term boundedness
of the solution. In our model, the stabilization is inherited from the rigorously derived
subgrid terms based on the variance of the unresolved velocity component. In the
following, we compare temporal reconstructions obtained with our stochastic Galerkin
model to those provided by different deterministic POD models.

The results presented so far on the diffusion mode analysis did not necessitate
any knowledge of the Reynolds number to compute both the diffusion and the
drift correction at the large scale by the unresolved small scale. We now turn to
reduced-order dynamical systems which, in contrast, require the Reynolds value.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

ol
um

bi
a 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

, o
n 

16
 A

ug
 2

01
7 

at
 2

1:
50

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.467
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Stochastic modelling and diffusion modes for POD models 909

420 430 440 450 460 470 480 490

–2

0

2

420 430 440 450

t
460 470 480 490

–2

0

2

FIGURE 9. (Colour online) Reconstruction of the first two chronos for a wake flow
at Reynolds number Re = 100, with n = 2 POD modes and with a stationary variance
tensor: (black dots), observed references; (blue line), standard POD–Galerkin; (red line),
proposed stochastic representation; (green line), modal eddy-viscosity reduced-order model.
The initial condition, at t= 0, is identical for all methods.

The modes energy mean, λi, and the topos, φi, are computed from the whole
sequence of snapshots (N = 10 000 for Re= 100 and N = 1, 460 for Re= 3900). As
for the initial condition, we used the referenced values of the chronos, denoted bref

i ,
computed directly from the snapshots covariance diagonalization. Then, regarding the
chronos spectra, an optimal time subsampling 1t is chosen, as explained in § 3.3.
Afterwards, using the residual velocity and the chronos, the variance tensor, a, is
estimated. The coefficients of the reduced-order dynamical system of chronos (3.13)
are directly computed using discrete derivation schemes. The chronos trajectories are
simulated with a fourth-order Runge–Kutta integration method, with bref (t = 0) as
initial condition and 1t/10 as simulation time step.

Figures 9 and 10 show examples of the reconstruction of the chronos for n= 2 at
Reynolds number Re=100 and n=16 at Reynolds number Re=3900, respectively, for
the classical POD method (blue plot) and for the proposed modelling with respectively
a stationary variance tensor (red line in figure 9) and a modal non-stationary variance
tensor defined on the subspace associated with the chronos basis (dashed magenta line
in figure 10) respectively. Each plot is sampled at the frequency 1/1t. At Reynolds
number Re= 100, the first two modes carry most of the energy. The references bref

i
(black plots) and the chronos obtained from an eddy-viscosity model are superimposed
for comparison purposes. The eddy viscosity is optimally fitted by a least-squares
estimation. It can be observed that our stochastic model follows the references quite
well whereas the deterministic model blows up. Let us point out that here our reduced
models are completely parameter free unlike the eddy-viscosity model. Figures 11
and 12 describe the error evolution along time. Approximating the square of the
actual unresolved chronos by the time average of their squares, we defined the error
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FIGURE 10. (Colour online) Reconstruction of the first ten chronos for a wake flow
at Reynolds number Re = 3900 (HR LES), with n = 16 POD modes and with
a variance tensor expressed as a linear function of the chronos and with modal
characteristic times: (black dots), observed references; (blue line), standard POD–Galerkin;
(dashed magenta line), proposed stochastic representation; (dashed green line), modal
eddy-viscosity reduced-order model. The initial condition, at t = 0, is identical for all
methods.
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FIGURE 11. (Colour online) Normalized reconstruction error for a wake flow at Reynolds
number Re= 100, with n= 2 POD modes: (blue line), standard POD–Galerkin (without
eddy viscosity); (red/magenta lines), proposed model with a stationary/non-stationary
variance tensor, solid and dashed line with single and modal characteristic time,
respectively; (green lines), solid and dashed with eddy-viscosity and modal eddy-viscosity
reduced-order model, respectively. The modal eddy-viscosity coefficients are estimated
through a least-squares fit on the whole data sequence. The dashed line indicates the error
associated with the mode truncation:

∑N
i=n+1 λi. The black solid line is the error when we

only consider the temporal mean velocity.
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The dashed line indicates the error associated with the mode truncation:
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black solid line is the error when we only consider the temporal mean velocity.
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as follows:

err(t) = T
‖vref
− v‖L2(Ω)

‖uref‖L2(Ω×[0,T])
,

= T

∥∥∥∥∥
n∑

i=1

(bref
i − bi)φi +

N∑
i=n+1

bref
i φi

∥∥∥∥∥
L2(Ω)∥∥∥∥∥

N∑
i=0

bref
i φi

∥∥∥∥∥
L2(Ω×[0,T])

,

≈


n∑

i=1

(bref
i − bi)

2
+

N∑
i=n+1

λi

‖φ0‖
2
L2(Ω)
+

N∑
i=1

λi


1/2

, (5.14)

which is greater than the minimal error associated with the modal truncation

err(t)>


N∑

i=n+1

λi

‖φ0‖
2
L2(Ω)
+

N∑
i=1

λi


1/2

. (5.15)

Equation (5.14) defines the criterion error plotted in figures 11 and 12, whereas
(5.15) constitutes a lower bound to this error. In figures 11 and 12, we successively
display the error plots obtained for the standard POD–Galerkin model without subgrid
dissipative term, for our model with stationary and non-stationary variance tensors,
and finally for a deterministic modal eddy-viscosity model. This subgrid model,
proposed in Rempfer & Fasel (1994) consists in modifying the reduced-order system
by adding a strong isotropic diffusive term (Laplacian) to stabilize the system. This
eddy viscosity is said to be modal since different viscosity coefficients are attached to
each chronos. Those coefficients are estimated by a least-squares fitting on the whole
data sequence. Modal eddy viscosity in its least-squares form resembles indeed a
data-assimilation strategy in which the best stationary isotropic dissipative forcing is
estimated from the discrepancy between the model and the data. The same isotropic
dissipation is imposed on the whole fluid domain at every time step. As such this
subgrid dissipation is much more difficult to interpret in terms of local signatures of
the small-scale coherent structures.

In figures 11 and 12, the dashed lines indicate the minimal error associated with
the reduced subspace truncation error. The black solid line corresponds to the error
level associated with the temporal mean velocity, i.e. setting all the chronos to 0. In
this case,

err|b=0(t)≈


N∑

i=1

λi

‖φ0‖
2
L2(Ω)
+

N∑
i=1

λi


1/2

. (5.16)
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Stochastic modelling and diffusion modes for POD models 913

This term does not constitute an upper bound of the error. However, it provides the
error level reached by the null model. In figures 11 and 12, fixing a log scale for the y
axis, we readily observe the exponential divergence of the standard POD reduced-order
model (in blue).

We observe that even at Reynolds number Re= 100 the modal eddy-viscosity model
does not capture accurately, on a long-time period, the complex nonlinear dynamics
undergone by the non-resolved modes (figure 11). The eddy-viscosity model over-
damped the chronos, as shown in figure 9.

For the LES at Reynolds number Re = 3900 (figure 12), we compared the
eddy-viscosity approaches (modal and constant) with stationary and non-stationary
models of the variance tensors. In this case the variance tensor as well as the
eddy-viscosity coefficients have been estimated with 1, 460 × 1tobs/1t vortex
shedding cycles where 1tobs is the initial time step of the data (see table 1)
whereas 1t is the optimal subsampling time step given by the criterion (3.7). The
performances of the modal and single characteristic times attached to the variance
tensor have been evaluated and compared. The error plots are shown in figure 12.
The introduction of different small-scale characteristic time steps associated with the
different modes significantly improves the results that were obtained for a single
common characteristic time. Both approaches are equivalent for short time period
only. The introduction of modal characteristic times is clearly beneficial in the
long run. The non-stationary representation performs better than the stationary one
especially for n= 8 modes. Indeed, due to its non-stationarity the associated reduced
system is even better than eddy-viscosity models. Moreover, the piece of information
brought by the non-stationary diffusion modes enables meaningful analysis of the
small-scale contribution (see § 5.2). Except for n= 8 modes, the modal eddy-viscosity
approaches performs well. The constant eddy viscosity appears to only work when a
small number of modes is involved. The (stationary or non-stationary) variance tensor
models that are associated with modal characteristic time scales exhibit nearly the
same stabilizing skills as the eddy-viscosity models (again excepting the case n = 8
modes). Both models lead to similar error levels. Nevertheless, it must be outlined
that the two approaches are based on different assumptions. Eddy viscosity relies
intrinsically on a homogeneous isotropic diffusion with no preferential direction of
energy dissipation. The diffusion remains constant whatever the considered region:
in the near- or far-wake regions, and even in the shear layers. However, as a fixed
constant estimated through a mean squares procedure, it provides the optimal amount
of missing energy dissipation (with respect to a spatio-temporal mean of the squared
norm) that is required to stabilize the reduced dynamical system. Conversely, as
shown in the previous section, the variance tensor and the associated diffusion modes
provide a finer representation of the small-scale action in terms of energy dissipation
but also in terms of energy redistribution. As for the simulation of the reduced
system, both models often lead to comparable error levels. They bring stability to the
system in a similar way, but the variance tensor models unveil important clues on
the small-scale flow structuration.

6. Conclusion
We investigated the study of reduced-order modelling based on a stochastic

representation of the small scales proposed by Mémin (2014) and Resseguier et al.
(2017a). This principle gives rise naturally to a drift correction generated by the
inhomogeneity of the small-scale velocity variance and to an inhomogeneous diffusion
term. The diffusion term is closely related to the eddy-viscosity assumption. Indeed,
for an isotropic divergence-free random field, the stochastic representation boils
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down to the classical eddy-viscosity assumption. A POD–Galerkin projection of the
corresponding stochastic Navier–Stokes equations provides a modified reduced-order
dynamical system that includes a linear term gathering the effects of the effective
advection and of the diffusion exerted by the unresolved small-scale component. This
function directly depends on the small-scale variance that must be specified to close
the system.

We proposed in this study a modelling based on the decomposition of this variance
tensor on the chronos basis. The estimation has been performed on the residuals
between the snapshots’ measurements and their resolved reconstruction on the topos
basis. The coefficients of this decomposition quoted as the diffusion modes constitute
meaningful features for the interpretation of the small-scale statistical organization.
They allow us to examine in details the principal directions of the large-scale energy
dissipation and also to extract advective structures both generated by the small-scale
velocity.

The diffusion modes analysis has been applied to a circular cylinder wake flow. For
this flow configurations in the laminar and in the subcritical regimes, the anisotropy
of the diffusion modes determine regions of the flow that are key players. The largest
magnitudes of the anisotropy zero mode (stationary mode) occur both in the vicinity
of the pivotal zone of the shear layers rolling into vortices and also where the drift
correction is effective.

Finally, the diffusion modes were coupled with modal characteristic time scales to
provide a subgrid model. For wake flows, stabilizing skills are comparable to those
obtained with optimally identified isotropic eddy-viscosity models. Such a stochastic
approach consisting of a rigorously derived subgrid term may easily be applied to
other turbulent flow configurations, for instance boundary layer flows that are known
to develop complex multiscale mechanisms. Moreover, it will be interesting to see
whether our proposed stochastic POD models could be used to design novel physics-
based subgrid-scale models for LES approaches.

In order to obtain better chronos reconstruction results than that of an eddy-viscosity
model, random forcings can be included – as in equation (2.5) – in the stochastic
Navier–Stokes representation (2.8). This additional complexity maintains the variability
of stable temporal modes. This full stochastic extension will be the subject of a next
study. Other extensions of this methodology include online quantification of model
errors for ensemble data-assimilation procedures. The authors are already pursuing
these works in the context of reduced-order models but also in geophysical fluid
dynamics (Yang & Mémin 2017; Resseguier et al. 2017a,b).
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