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[1] The equilibrium range in wind-driven wave spectra is characterized to have an f�4
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diverse sites are shown to be well fit by an expression involving the wind speed
measured at a fraction of a wavelength above the sea surface in combination with the phase
speed of the spectral peak. Observed energy levels suggest that nonlinear wave-wave
interactions are capable of maintaining the observed energy-flux balance in the
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1. Introduction

[2] The equilibrium range in wind wave spectra has long
been a rich research topic for scientists, engineers and
mathematicians. Though a strong tendency for wave spectra
to exhibit an equilibrium form has long been known
[Phillips, 1958; Kitaigorodskii, 1962; Zakharov and
Filonenko, 1966], the exact cause of such a dynamic
balance in this portion of the wave spectrum is still being
debated. Many theoretical aspects of air-sea interaction and
wind wave spectra, as well as practical considerations
related to wave modeling, can be related to the character-
istics of this balance. Resio et al. [2001] provide an
historical perspective of the development of equilibrium
range concepts for wind-generated wave spectra. Readers
are referred to that paper for greater detail and only a brief
synopsis of that introduction is repeated here.
[3] Initial equilibrium range concepts for waves in deep

water were based solely on dimensional arguments and led
to a spectral form of the type [Phillips, 1958]

E fð Þ � a5 g
2 2pð Þ�4

f �5; ð1Þ

where E( f ) is spectral energy density in a frequency domain,
a5 is a dimensionless equilibrium range coefficient, g is
gravitational acceleration and f is cyclic frequency. Within
this theoretical framework, the coefficient a5 in equation (1)
was expected to be a universal constant since it was
envisioned that wave breaking controlled energy levels in
this part of the spectrum. If true, wind inputs, which become
significant on a scale of tens or hundreds of wavelengths,
would be negligible compared to breaking, which occurs
over a scale of order one wavelength.

[4] Subsequent studies by Mitsuyasu [1968] and
Hasselmann et al. [1973] provided clear evidence that a5

was not a universal constant, but varied substantially as a
function of certain dimensionless wave parameters that were
all based on wind speed. At about the same time, the pioneer-
ing theoretical work of Zakharov and Filonenko [1966] and
empirical results of Toba [1973] were providing evidence that
a more appropriate form for the equilibrium range was

E fð Þ � a4ug 2pð Þ�3
f �4; ð2Þ

where a4 is a dimensionless equilibrium range coefficient
appropriate for this class of spectra, and u is a scaling
parameter with units of velocity. Many papers have now
been written on both types of equilibrium range formula-
tions, and it is generally conceded that the form of equation
(2) is in better agreement with existing observations than
that of equation (1).
[5] Resio et al. [2001] showed that the equilibrium range

for finite depth wave spectra could be expressed in the wave
number-equivalent form of equation (2) as

F kð Þ ¼ a4

2
ug�1=2k�5=2; ð3Þ

where F(k) is spectral energy density in a wave number
domain, and k is wave number (modulus), which is here
related to f by the standard linear dispersion relation

2pfð Þ2¼ gk tanh khð Þ; ð4Þ

where h is water depth. They showed that wave spectra
written in this wave number basis continued to exhibit
strong equilibrium range tendencies well into the finite
depth range of frequencies. Using numerical simulations,
they also showed that this form was consistent with the
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theoretical formulation of Zakharov and Filonenko [1966],
even for cases of spectra with nonisotropic directional
distributions.
[6] The primary purposes of this paper are, first, to

determine whether or not a4 appears to have a ‘‘universal’’
value, based on data covering a wide range of generation
scales; second, to identify the most appropriate scaling
velocity u for use with equations (2) and (3); and, third,
to investigate whether or not our results are consistent with
theoretical arguments based on the kinetic equation for
weak interactions. To accomplish these goals, we use a
compilation of data from six diverse sources: two from
deep-ocean locations, two from nearshore sites and two
from smaller enclosed basins. By incorporating data with
different physical scales and wind speeds from different
sites, our results will hopefully avoid empirically derived
conclusions that are only appropriate over a small range of
scales or at a single site. With u defined and a4 estimated,
nonlinear energy and momentum fluxes through the equi-
librium range can be specified with no arbitrary constants,
using complete integral forms for these properties. Com-
bining such flux calculations with our empirical results
should provide valuable insight into the applicability of
weak interaction theory to the spectral equilibrium range.

2. Theoretical Perspective

[7] Many researchers [e.g., Zakharov and Filonenko,
1966; Kitaigorodskii, 1983; Resio, 1987; Resio and Perrie,
1991; Young and van Vleddar, 1993; Resio et al., 2001]
have shown that observations of the equilibrium range in
nature, as well as in experimental basins, are consistent with
the concept of a balance between wind input near the
spectral peak region and fluxes of energy out of this region
owing to nonlinear wave-wave interactions. For the purpose
of this paper, a conceptual framework for partitioning a
wind-wave spectrum into regions related to nonlinear fluxes
of energy and basic energy balance concepts is given in
Figure 1. Four spectral regions, based on the locations of
three characteristic frequencies, f0, feq and fd, are shown
here. A zero net flux of energy through a spectrum owing to
nonlinear interactions occurs at f0. A spectrum begins to
take on an asymptotic, equilibrium range power law shape
at feq. A dissipation range, where nonlinear energy fluxes
are strongly absorbed by either wave breaking or viscosity,
begins at fd.
[8] In Figure 1, region I represents the spectral peak

region. Its upper bound (at f = f0) is defined as a frequency
at which net energy flux is zero, so the net contribution to
energy gain in region I owing to wave-wave interactions
must also be zero (i.e., the positive front lobe and the
portion of the negative lobe included up to f = f0 are exactly
equal). Thus net gain in total energy in this region must
come only from wind input. Region II represents the
transitional band between region I and the equilibrium
range, region III. As in the equilibrium range, the net flux
in region II is directed toward high frequencies (away from
the spectral peak). Region IV is the part of the spectrum
where all energy fluxes from regions II and III eventually
must be lost to dissipative processes.
[9] It is assumed here that the three traditional deep-water

source terms, wind input Sin, nonlinear wave-wave inter-

actions Snl and wave breaking Sds, can occur in all regions
of the spectrum to some degree. However, for a stable
equilibrium to exist, the sum of these sources must equal
zero. If the sum of wind and breaking wave source terms is
not zero, Snl, the divergence in the nonlinear energy fluxes,
must be nonzero to maintain a net zero balance. Thus, over
some range of frequencies,

Snl �
@�E

@f
¼ Sin þ Sds; ð5Þ

where �E is the net flux of energy through the spectrum. If
Sin and Sds exactly cancel each other in this range, the
divergence would be identically zero and the flux would be
exactly constant.
[10] Nonlinear interactions transfer energy from low to

high frequencies and from high to low frequencies simul-
taneously. In some previous papers, the term flux has been
used to describe positive directed fluxes (from low to high
frequencies), while negative directed fluxes (from high to
low frequencies) are termed inverse fluxes. Since �E repre-
sents the net sum of fluxes in the two directions, it is given
by

�E ¼ �þ
E þ ��

E ; ð6Þ

where superscripts ‘‘+’’ and ‘‘�’’ denote fluxes toward
higher and lower frequencies, respectively. Resio et al.
[2001] show both theoretically and numerically that non-
linear fluxes within the equilibrium range tend to force a
spectrum toward an f�4 form (in deep water, toward a k�5/2

Figure 1. Conceptual depiction of a frequency spectrum
E(f), a characteristic shape of the wave-wave interaction
source term Snl( f ), and approximate locations of frequen-
cies demarking four spectral regions that are identified by
dominant energy flux processes.
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form more generally). Data used in their study suggested
that this characteristic equilibrium range form extended also
to most situations with active wave generation. Thus their
data showed that even in cases where significant wind
inputs and wave breaking should be occurring, the k�5/2

equilibrium form was maintained.
[11] Resio et al. [2001] show that, within the equilibrium

range, the net flux of energy is from lower to higher
frequencies (i.e., �þ

E > ��
E

�� ��), and is given in a form
equivalent to

�E ¼ Cnlg
1=2b3; ð7Þ

where Cnl is a dimensionless coefficient that depends
weakly on angular spreading and proximity to the spectral
peak, and b is a wave steepness parameter equivalent to
1
2
a4ug

�1=2 in equation (3). To a first approximation, the
divergence of this flux can be written as

@�E

@f
� Z

@x3

@f
; ð8Þ

where Z is a coefficient with suitable dimensions and x is a
normalized spectral density of the general form

x ¼ 2F kð Þg1=2k5=2
a4u

¼ F kð Þk5=2
b

; ð9aÞ

from equation (3), and which takes the deep-water,
f-dependent form

x ¼ 2pð Þ3E fð Þf 4
a4ug

¼ 2pð Þ3E fð Þf 4

2bg3=2
ð9bÞ

from equation (2). It should be noted here that, from
equations (2) and (3), x � 1 if the f�4 (or k�5/2) power law is
followed exactly. The approximation (8) is reasonably
accurate as long as dominant interactions involve waves that
are all in the same vicinity within the spectrum. Integration
of equations (5) and (8) from f = feq (the low-frequency end
of spectral region III in Figure 1, typically about two to
three times the spectral peak frequency) to some arbitrary
higher frequency leads to

�E fð Þ � �E feq
� �

� Z

Zf
feq

@x3

@f
df �

Zf
feq

Sin fð Þ þ Sds fð Þ½ 	 df : ð10Þ

Two points are worth noting in equation (10). First, the
divergence term has a cubic dependence on energy
densities; thus a relatively small deviation in the slope
from its equilibrium form can produce a large net flux
divergence. Second, because the right-hand side is an
integral, the local slope will depend on the rate of local
input at a given frequency to the accumulated input from f0
to that frequency.
[12] There has been considerable debate among research-

ers regarding the relative role of different source terms in
the energy balance within wave spectra. Kitaigorodskii

[1983] argued that spectral densities within the equilibrium
range are primarily controlled by the condition of constant
nonlinear energy flux. Phillips [1985] argued that it is
possible to maintain an equilibrium range with a character-
istic f�4 shape, even for situations in which the other source
terms are significant, provided that the wind input and wave
breaking terms both exhibit f�4 behavior. From equation
(10), we see that any net gain or loss of energy within the
equilibrium range would tend to force the spectrum away
from an f�4 shape (i.e., the x of equation (9b) would not be
constant), even if the external source balance (wind plus
breaking) had an f�4 dependence; however, if the nonlinear
term was very small compared to the other terms, this effect
might be negligible. For a net gain (wind input exceeding
wave breaking) and significant nonlinear interactions, the
equilibrium spectrum would have to fall off less steeply
than f�4 for the flux divergence to achieve a local energy
balance. For a net loss at these frequencies (wave breaking
exceeding wind input), the spectrum would fall off more
steeply than f�4 for the flux divergence to balance the
system. If the net effect of Sin + Sds is negligible within
the equilibrium range, the flux of energy and x should be
constant. In an alternative interpretation, x could be approx-
imately constant through this range if the nonlinear fluxes
are negligible compared to Sin + Sds; hence it is important to
examine estimated flux rates in an absolute sense, and not to
speculate that just because they can produce an f�4 behavior
in the equilibrium range, they are capable of effecting the
observed behavior.
[13] As noted previously, there is a frequency f0 near the

spectral peak where the net nonlinear flux is zero, i.e.,

�E f0ð Þ ¼ �þ
E f0ð Þ þ ��

E f0ð Þ ¼ 0; ð11Þ

so that, at lower frequencies (region I in Figure 1), the
primary source of energy can only be wind input. Though
the net nonlinear flux is zero at f0, the separate positive and
negative directed fluxes are not necessarily zero. In fact,
computations show that the separate fluxes typically are
very large at f0. Consequently, the behavior of these fluxes
plus the effects of any additional sources at frequencies
between f0 and feq (region II of Figure 1) are very important
for characterizing the energy flowing out of region II and
into region III (i.e., across feq).
[14] On the basis of an expression given by Resio and

Perrie [1991], the positive directed energy flux past fre-
quency fa, with corresponding wave number modulus ka
following equation (4), has the form

�þ
E fað Þ ¼

ZZI
C2D

@W

@n

����
����
�1

ds H �
I

C2D
@W

@n

����
����
�1

ds

 !


H k3j j � kað ÞH ka � k1j jð Þdk3dk1;

ð12Þ

where C2 is the coupling coefficient for the interacting
waves, n and s are transformed wave number coordinates, D
is a sum of triplets of energy densities for resonant
interactions within the spectrum, H(x) is the Heaviside
function (H(x) = 1 for x � 0, H(x) = 0 for x < 0) andW = f1 +
f2 � f3 � f4, where subscripts denote the different waves
involved in each interaction. The contour integration in
equation (12) is around loci such that W = 0. An expression
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for ��
E fað Þ is identical to equation (12) except we reverse the

negative sign preceding the contour integral in the left-most
Heaviside argument. These expressions are evaluated
following methods given by Resio and Perrie [1991] and
Resio et al. [2001]. Readers are referred to those sources for
computational details.
[15] Figure 2 gives the results of computed fluxes

�þ
E fð Þ;��

E fð Þ and their sum �E fð Þ for the class of f�4

spectra defined by

E f ; qð Þ ¼ a4ugf
�4Y

f

fp

� 	
� q� q0ð Þ; ð13aÞ

where fp is the spectral peak frequency, the peak shape
function Y(f/fp) is

Y
f

fp

� 	
¼

ge
f =fp�1ð Þ=2s2

f =fp � 1

f =fp
� �4

ge
f =fp�1ð Þ=2s2

f =fp < 1

8><
>: ð13bÞ

and the angular spreading function �(q � q0) of wave
direction q about mean wave direction q0 satisfies

Z 2p

0

� q� q0ð Þdq ¼ 1: ð13cÞ

For this case, a4 = 0.01, u = 10 m/s, fp = 0.1 Hz, g = 3, s =
0.08, q0 = 0 and � qð Þ ¼ 4

3p cos
4 q. In this figure, we see that

f0 is located at about 1.2fp. This is typical of results for this
class of spectra with g = 3 and a cos4 angular spreading
function. In fact, because the flux equals the integral of Snl,

the location of f0 is constrained to be at the point whereR f0
0
Snl fð Þdf ¼ 0. In other words, the positive area in the

low-frequency lobe of Snl must just balance the portion of
the central negative lobe of Snl to the left of f0. Hence the
location of f0 (for single-peaked spectra, and given that such
a value exists) is essentially always within the negative lobe
of Snl located near the spectral peak. For very peaked
spectra, this location tends to be closer to the spectral peak
than for spectra with low peakedness.
[16] As seen in Figure 2, the positive and negative

directed fluxes both become approximately constant over
an extended range of frequencies beginning at about 2.5fp.
This frequency defines the approximate lower bound feq of
the equilibrium range, which extends to the end of the
integration range. Through this range, the positive directed
flux is larger than the negative directed flux, supporting
our interpretation of Figure 1, with a dominant nonlinear
flow of energy from lower to higher frequencies in both
regions II and III. The positive net flux �E(feq) at feq is the
total amount of energy exiting region II and should equal
the integrated net gain of energy owing to wind input
minus wave breaking throughout region II.
[17] Figure 3 shows plots of average x (based on

equation (9a)) and their standard deviations in discrete
bands of f/fp for all observations in each of the six data
sets described later in this paper. In the plot for Currituck
Sound, examples are given of curves to which the data
would conform if obeying k�3 (equivalent to f�5 in deep
water) and k�2 (f�3 in deep water) power law shapes,
assuming feq/fp = 1.5. These alternate forms clearly do not
fit the data very well. Even though some random devia-
tions and some possibly periodic variations in x are seen,

Figure 2. Computed positive directed �þ
E fð Þ and negative directed ��

E fð Þ nonlinear energy fluxes and
their sum �E(f) plotted versus f/fp for the spectrum defined by equation (13). Here, �E = 0 at f/fp � f0/fp 
1.2, which identifies the no net flux lower bound of region II (transition region) in Figure 1. All fluxes
become approximately constant for a broad range of frequencies beginning at f/fp � feq/fp  2.5, which
identifies the lower bound of region III (equilibrium range) in Figure 1. Within this equilibrium range the
net flux �E is positively directed so that in the absence of significant wind input or wave breaking the
only source of energy is the net flux leaving region II at its high-frequency boundary f = feq.
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the general tendency is for x to remain approximately
constant through a finite range of frequency in each of the
data sets. It should be noted that, because energy flux
depends on the cube of spectral density, it would not
require a very strong deviation from k�5/2 behavior to
accommodate a moderate net input or loss of energy due
to wind input or wave breaking. Thus Figure 3 does not
necessarily support or contradict arguments that the net
gain or loss of energy in the equilibrium range is exactly
zero. However, at least within the theoretical context
presented here, these data indicate that net energy gains
or losses are not so strong that they require large flux
divergences to compensate for them.
[18] We can examine aspects of the energy balance within

a spectrum by considering processes in region II of the
spectrum within the framework developed above. Since the

net nonlinear flux is zero at region II’s lower boundary,
wind input must exceed wave dissipation in region II in
order to supply a positive directed flux past the low-
frequency boundary of region III and into the equilibrium
range. The net gain of energy in region II (wind input minus
wave dissipation) must be balanced by the net nonlinear
flux through its high-frequency boundary. Assuming that
dissipative processes in wave generation can be scaled in a
form functionally consistent with wind input, then, under
steady, uniform conditions, equation (5) becomes

S0in fð Þ � Snl fð Þ ¼ S0in fð Þ � @�E fð Þ
@f

¼ 0: ð14Þ

where the prime on Sin
0 denotes that the wind input has been

replaced by an effective, or net, wind input. Integrating

Figure 3. Means (squares) and standard deviations (error bars) of normalized wave number spectra
within discrete bins of f/fp. Horizontal arrows indicate ranges of f over which b were fitted. Shifted and
extended ranges for Lake George and FRF 625 data reduce biasing effects on b estimates owing to
evident spectral harmonics near f = 2fp. Dashed lines indicate how data would appear if obeying
alternative k�2 or k�3 power law models within an equilibrium range originating at feq = 1.5fp.
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equation (14) over the width of region II from f0 to feq with
the conditions that �E ( f0) = 0, �E ( feq) = Cnlg

1/2b3 from
equation (7) and b ¼ 1

2
a4ug

�1=2 leads to

Z feq

f0

S0in fð Þdf ¼ 1

8
a3
4Cnlu

3g�1 � u3g�1: ð15Þ

[19] In equation (15) the precise interpretation of u is
somewhat indeterminate in at least two senses. First, is u
simply a surrogate for wind speed, or does it involve other,
perhaps wave-related, parameters? Second, if u is wind-
related, what wind speed parameter is most suitable for this
application? In this paper, we shall investigate three poten-
tial wind speed parameters for application to this equation.
These are u10, the wind speed at a fixed reference level of
10 m above the mean water surface, u*, the friction velocity
(=(t/ra)

1/2, where t is wind stress and ra is air density), and
ul, the wind speed at an elevation that is a fraction l of the
spectral peak wavelength as proposed by Donelan and
Pierson [1983], Resio et al. [1999], and others.
[20] On the basis of considerations of work rates in a

boundary layer, one might assume that net energy transfer
rates input waves are proportional to the cube of any one of
these wind speed parameters. Alternatively, Resio and
Perrie [1989] provide arguments that the net wind source
term integrated from fp to a frequency that is within the
equilibrium range might vary as u

*
2cp/g if a constant

proportion of wind momentum is transferred to the wave
field. Thus an alternative model for the equilibrium range
velocity can be taken as u � (u

*
2 cp)

1/3. For completeness,
we shall also examine the alternative models u � (u10

2 cp)
1/3

and u � (ul
2cp)

1/3.
[21] Since it is possible that there also exists a small

threshold wind scale u0 below which a model given by
equation (2) or (3) is no longer valid, a more general form
for u can be written as

u ¼ ua � u0; ð16Þ

with

ua ¼

u*

u10

ul

u2
*
cp

� �1=3
u210cp
� �1=3
u2lcp
� �1=3

;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð17Þ

as our final six candidates for a dynamic velocity scale. In
this paper, we shall rely on observations to help discriminate
among these various forms (and to set u0 as necessary), and
then investigate the consistency of these findings with
weakly nonlinear theory.

3. Data

[22] Sources of data selected for analysis here include two
deep-ocean buoys maintained by the National Data Buoy

Center (NDBC, www.ndbc.noaa.gov), two nearshore sen-
sors maintained by the U.S. Army Engineer Research and
Development Center’s Field Research Facility (FRF,
www.frf.usace.army.mil), a site on the east side of Lake
George, Australia [Babanin et al., 2001], and a site in
Currituck Sound, which abuts the landward side of the
barrier island upon which the FRF resides. Figures 4–6
show the locations of the sites used in this study. Figure 4
shows the approximate location of one of the NDBC buoy
sites, 46035, in the Bering Sea. The other NDBC buoy site,
41001, is in the Atlantic Ocean, about 300 km east of Cape
Hatteras. Its approximate location is shown in Figure 5
(top), which also shows the general location of the FRF.
Figure 5 (middle) shows the general area of the FRF, and
includes locations of FRF gauge 630, a nondirectional
Waverider buoy about 6 km offshore, FRF gauge 625, a
Baylor gauge affixed to the seaward end of the FRF pier
about 500 m offshore, and the instrumented sled about
900 m from the eastern shore of Currituck Sound. Figure 6
shows the location of the Lake George experiment site.
Anemometers were located directly above wave sensors at
all sites except for FRF 625 and 630, where winds were
measured at the landward end of the FRF pier (Figure 5
(bottom)), and subsequently adjusted to be more represen-
tative of winds at the gauge sites. Appendix A describes this
adjustment as well as additional information about the data
sets and basic analysis methods used here. Table 1 describes
primary instrumentation and ranges of environmental
parameters included in data from these sites.
[23] In choosing these sites, we sought to obtain obser-

vations from a very broad range of conditions where the
present model formulation is valid. Four dimensionless
parameters are relevant in this regard and are based on
keq, the wave number at the low-frequency end of the
equilibrium range (here taken to correspond with feq =
1.5fp), water depth h, variance-based characteristic wave
height Hmo, spectral peak wave number kp, spectral peak
phase speed cp and wind speed scale ua. The four dimen-
sionless parameters are: equilibrium range relative depth

Figure 4. Approximate location of NDBC wind and wave
buoy site 46035 in the Bering Sea.
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keqh, relative wave height Hmo/h, an indicator of validity of
weak interaction theory 1

2
Hmokp= kph

� �3
and inverse wave

age ua/cp (often characterized as u10/cp).
[24] For the first of these, there is an approximate

theoretical lower limit keqh  0.7 below which the wave
number dependence of the equilibrium range may change
form owing to depth-related variations in the behavior of the
coupling coefficient in equation (12) [Resio, 1987].
Zakharov [1999] has shown that for keqh < 0.3, the spectrum
should asymptotically tend toward a k�4/3 form. Here, we
use keqh instead of his parameter kh to reflect the fact that
his theoretical argument is strictly valid only within the
equilibrium range and not in the spectral peak region. In
data used here, the smallest keqh = 0.76, and so extends
nearly to the lower limit of validity of the present model.
The largest keqh exceeds 1000, so the range of relative depth
in these data is quite large.
[25] Relative wave height is important in two ways. On the

one hand, Hmo/h is an indicator of shallow-water wave
breaking. If this parameter becomes greater than about 0.5,
depth-induced wave breaking may become a significant
source term in the spectral energy balance, and the simple
concept of an energy balance between wind input and
nonlinear fluxes utilized here may not be valid. For the
present data, 0.0004 < Hmo/h < 0.4, so we do not expect too
great an influence on our results owing to breaking waves. On
the other hand,Hmo/h is an indirect indicator of the validity of
the weak interaction theory employed here. Zakharov [1999]
has shown that, for the statistical theory of weak interactions
to be formally valid, the ‘‘Stokes number,’’ defined asN = ka/
(kh)3, where, in this context, a is wave amplitude, has some
stringent limitations. Specifically, these are N� 1 for direc-
tionally narrow-banded spectra and (kh)2N = a/h � 1
for directionally broad spectra. If we take a  1

2
Hmo for

Zakharov’s arguments, then a=h  1
2
Hmo=h < 0:2 for the

present data, and his second condition is approximately met.
An approximate Stokes number is N  1

2
Hmokp= kph

� �3
, and,

for the present data, 6 � 10�10 < N < 1.03. Only about 9%
of the cases have N > 0.2, so most of the data are approxi-
mately valid, even if they have narrow directional distribu-

Figure 5. Locations of four data sites: (top) approximate
locations of NDBC buoy site 41001 and the FRF; (middle)
an enlarged view near the FRF showing the locations of
FRF 630 (Waverider buoy), FRF 625 (Baylor gauge), and
the instrumented sled in Currituck Sound; and (bottom) the
600-m FRF pier, the position of FRF 625 and the
anemometer used to estimate winds for FRF 625 and FRF
630. Anemometers were horizontally collocated with wave
gauges at the other two sites.

Figure 6. Site map for Lake George data. Anemometer
and wave gauges were horizontally collocated about 50 m
from the eastern shore. Depth contours are drawn at 0.5 m
intervals, with the deepest contours at 2 m [Babanin et al.,
2001].
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tions. If the spectra have broad directional distributions,
then all of the data should be legitimate samples of weak
interaction processes.
[26] Inverse wave age is commonly used as a measure of

the stage of wave development during generation by the
wind. Values near unity indicate full development, higher
values suggest young, growing seas, and lower values
suggest reduced wind forcing. For the present data, 0.4 <
u10/cp < 6.6, indicating that these observations extend from
the swell domain through full development to include some
very young seas. This range encompasses most conditions
of practical consequence in nature, but does not extend into
conditions typical of laboratory-scale wind flumes.
[27] More observations were available from our six data

sources than were actually used. To ensure that samples were
consistent with the simple model proposed here (single-mode
spectra subject to active, following winds), data were objec-
tively screened prior to analysis using three criteria. First, for
sites located near land (Lake George, Currituck Sound, FRF
625 and FRF 630), only cases where winds had an onshore
component were included. This condition helped establish
that waves were subject to a well-established marine or
lacustrine boundary layer with a reasonably well-modeled
surface roughness. It also helped preclude cases with very
young seas that would not be well resolved by most of the
gauges used. The second criterion was that minimal swell
coexisted with the wind sea. Where a spectrum was bimodal
at its low-frequency end, it was required that the spectral
density of the lower-frequency peak be less than 10% of the
density at the other peak, or else the sample was excluded.
The third criterion was that acceptable cases have u10 > 5m/s.
Like the first criterion, this helped ensure that wave signals
could be reasonably resolved by all the extant instrumentation

and, furthermore, that surface roughness estimates of the
Charnock [1955] form used here (see Appendix A) dominat-
ed alternative roughness scales thatmay be important in flows
with low Reynolds numbers.

4. Results

[28] As already seen in Figure 3, observed spectra, when
compensated by k�5/2, exhibit near-zero slopes over the
range of frequencies consistent with our concept of an
equilibrium range. Less consistent with these observations
are alternative power law models, which follow k�3 (or f�5

in deep water) or k�2(f�3 in deep water). As suggested by
Figure 3, an equilibrium range extends at least to 4fp, and,
possibly, beyond. There are what appear to be shoaling
wave harmonics near f/fp = 2 in Lake George and FRF 625
data, but slopes are quite flat outside this region. Deviant
behavior is seen in Currituck Sound data at high frequen-
cies, owing probably to a high data discretization noise floor
that induces a slight upward bias in low-energy parts of
these spectra. There is a noticeable tendency for normalized
spectra from the two NDBC buoys to become downward
sloping for f/fp > 3.5. Such a pattern might be taken as
supporting the existence of a spectral region controlled by
wave breaking as suggested by Forristall [1981] and
postulated by Hansen et al. [1990]. However, it could also
be an artifact of the measurement systems at these sites,
since both of these are large buoys that are less responsive
to higher frequency waves. Because the focus of this paper
is on spectral energies in the equilibrium range, we will
leave this discrepancy as a topic for future research.
[29] Following the form of equation (9a), b was estimated

from each observation as the average of F(k)k5/2 over a

Table 1. Site Names, Instrumentation, and Parameter Ranges for Data Used in Analysisa

Site

Range of
Observation

Dates
Wave
Sensor

h
Range,

m

Hmo

Range,
m

Wind
Sensor

zm,
m

u10,
Range
m/s

Lake
George

Sept. 1997
to March
1998

capacitance
gauge �1
mm
diameterb

0.60–
1.15

0.05–
0.44

Aanderaa model
2740 speed
3590
direction

10 5.1–
19.8

Currituck
Sound

Oct. 2001
to April
2002

capacitance
rod �4.6
mm
diameterc

2.28–
2.93

0.09–
0.59

R.M. Young
model 09101

5 5.0–
15.7

FRF 625 Oct.1986
to April
1991

Baylor model
23766
impedance gauge

7.5–
10.1

0.67–
3.80

Weathermeasure
Skyvane
model 2101

19.4 5.1–
24.4

FRF 630 Oct. 1986
to April
1991

Datawell
nondirectional
Waverider
0.7-m hull

18.8–
21.6

0.91–
4.72

Weathermeasure
Skyvane
model 2101

19.4 5.1–
27.6

NDBC
46035

Oct., Nov.,
& Dec.
of 1999
& 2000

12-m discus
buoy

>3600 2.30–
11.3

R. M. Young
model 05103

10 7.5–
23.9

NDBC
41001

Oct., Nov.,
& Dec.
of 1999
& 2000

6-m NOMAD
buoy

>4300 1.70–
8.50

R. M. Young
model 05103

5 9.7–
24.4

aHere h is water depth, Hmo is variance-based wave height, zm is nominal anemometer elevation above water surface, and u10 is
estimated 10-m wind speed (see text) for all sites except Lake George and NDBC 46035, where it was measured directly. The zm is
treated as constant for all sites except Currituck Sound, where it was adjusted for variations in h. All anemometers were collocated
with wave sensors except FRF 625 and 630, where data from the land-based sensor were adjusted to be more like over-water winds.

bRichard Brancker Research, LTD, Ottawa, Canada.
cOcean Sensor Systems, Inc., Coral Springs, Florida, USA.
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region of the spectrum taken as representative of the
equilibrium range (see Appendix A). In this section, we
relate the set of estimated b from all of our data to each of
our six candidate velocities ua. As b has the dimension
square root length, we correlate it with the parameter
uag

�1/2 to be consistent both dimensionally and with the
form of equation (3). Note that such an analysis contains
little or no spurious partial correlation because b is estimated
purely from spectral densities away from the spectral peak,

and ua depends primarily on wind speed. Though three of the
velocity scales investigated do contain cp

1/3, the small
exponent indicates that the scales depend only weakly on
fp and this should introduce very little statistical contamina-
tion owing to partial correlation.
[30] Figures 7a–7c and 8a–8c show results for the

six different candidate velocity scales investigated here.
Table 2 contains the regression and correlation coefficients

Figure 7. Correlation (coefficient r2 indicated) of b with
ua/g

1/2 for (a) ua = u*, (b) ua = u10, and (c) ua = ul using
data from Currituck Sound (open triangles, point up), Lake
George (open squares), FRF 630 (open circles), FRF 625
(open triangles, point down), NDBC 41001 (open dia-
monds), and NDBC 46035 (crosses).

Figure 8. Correlation (coefficient r2 indicated) of b with
ua/g

1/2 for (a) ua = (u*
2cp)

1/3, (b) ua = (u10
2 cp)

1/3, and (c) ua =
(ul

2cp)
1/3 using data from Currituck Sound (open triangles,

point up), Lake George (open squares), FRF 630 (open
circles), FRF 625 (open triangles, point down), NDBC
41001 (open diamonds), and NDBC 46035 (crosses).
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corresponding to these plots. In Figures 7a–7c, which
involve the simple velocity scales ua = u

*
, u10 and ul,

respectively, it is seen that a linear dependence of b appears
to fit data from individual sites relatively well, but data from
different sites exhibit very different slopes when analyzed in
this manner. In particular, slopes for data from the two
small-basin sites (Lake George and Currituck Sound) differ
markedly from those evident for the large-basin sites. In
Figures 8a–8c, involving ua = (u

*
2cp)

1/3, (u10
2 cp)

1/3 and
(ul

2cp)
1/3, respectively, a single regression line appears to

fit the data from all sites more uniformly, and the slope
deviations evident in Figure 7 are much reduced. Partly
because of this, correlation coefficients in Figure 8 are
uniformly higher than those in Figure 7.
[31] For all of the velocity scales used in Figures 7 and 8,

there is a positive offset of the intersection of the regression
curve and the x axis. This offset implies that there is, for
these data, a finite value of u0 in the general form of u given
by equation (16). For regressions of the form b = auag

�1/2 +
b and the result F kð Þ ¼ bk�5=2 ¼ 1

2
a4 ua � u0ð Þg�1=2k�5=2

from using equation (16) in equation (3), it is easy to see
that a4 = 2a and u0 = �bg1/2/a. These derived parameters
are given in Table 2 for each of the linear regression curves
in Figures 7 and 8.
[32] Figures 9a–9c present plots of observed b normal-

ized by their regression estimates auag
�1/2 + b as functions

of keqh for data from Lake George, Currituck Sound, FRF
625 and FRF 630 only. The reason for using a reduced data
set here is to focus on sites where relative depth is approach-
ing shallow water, rather than extending the x axis to the
large keqh typical of the deep-water sites. For completeness,
the mean values of the data for which keqh exceeds the cutoff
value for these plots is shown on the far right-hand side of
each figure, along with the RMS range of the data. As can be
seen here the deep-water values are consistent with the
shallow-water values. Figures 9a–9c are based on regres-
sions using velocity scales ua = (u

*
2cp)

1/3, (u10
2 cp)

1/3 and
(ul

2cp)
1/3, respectively. Two aspects of these plots can be

noted. First, the variation of normalized b with relative depth
is small for all three of these wind scales and essentially zero
for wind scaling based on (ul

2cp)
1/3. Second, (ul

2cp)
1/3 scaling

seems to provide a more consistent representation for the
normalized b in the reduced data set, particularly in the range
6 � keqh � 10, where scaling forms based on (u

*
2cp)

1/3 and
(u10

2 cp)
1/3 both appear to diverge significantly from their

mean values in the range keqh < 6.

5. Discussion

[33] Results obtained in section 4 suggest that velocity-
scaling forms for b that include a phase-speed dependence

Table 2. Parameters of the Model b ¼ 1
2
a4 ua � u0ð Þg�1=2

Deduced From Linear Regressions (Correlation Coefficient r2)

Shown in Figures 7 and 8 for Each of Six Candidate Velocity Scales

ua a4 u0, m/s r2

u* 0.119 0.122 0.817
u10 0.00596 4.56 0.822
ul 0.00545 2.62 0.909

(u*
2cp)

1/3 0.0459 0.291 0.934
(u10

2 cp)
1/3 0.00609 3.25 0.940

(ul
2cp)

1/3 0.00553 1.92 0.939

Figure 9. Estimates of 1
2
a4 ¼ bg1=2= ua � u0ð Þ as func-

tions of equilibrium range relative depth keqh, with keq
corresponding to a nominal equilibrium range frequency feq =
1.5fp and u0 the regression offset velocity from Table 2 for
(a) ua = (u

*
2cp)

1/3, (b) ua = (u10
2cp)

1/3, and (c) ua = (ul
2 cp)

1/3

using data from Currituck Sound (open triangles, point up),
Lake George (open squares), FRF 630 (open circles), and
FRF 625 (open triangles, point down). Solid horizontal lines
are based on regression estimates of a4 from Table 2.
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provide a better fit to the data than those based on a linear
wind speed parameter alone. Furthermore, such forms avoid
site-dependent slope variations implicit in parameterizations
based on wind speed alone. As is particularly evident in
Figure 9, the most effective wind-scale parameter, at least in
terms of reducing scatter around what is presumed to be a
‘‘universal’’ constant, is wind speed taken at a fraction of
the spectral peak wavelength above the water surface. On
the basis of results by Resio et al. [1999], the fraction is
taken here as 0.065. This value is not too far removed from
the height coefficient derived by Miles [1993] for the
‘‘critical layer’’ for wind input, which in his theory is
0.045 times wavelength. Separate computations with data
presented here indicate that results are fairly insensitive to
choices of height coefficients between these two values.
[34] Another interesting aspect of our results is the

apparent lack of dependence of b on relative depth. As
shown in Figure 9, no significant variation in the b � u
relationship is exhibited in any of our finite depth data sets.
It is difficult to reconcile this lack of dependence of b on
keqh with the existence of dominant depth-limited wave
breaking or bottom friction effects within the equilibrium
range in these depths. Recently, Herbers et al. [2002]
showed that spectral peak energy losses in waves at the
FRF site appear to be consistent with the calculated cascade
of energy into the high-frequency spectral tail (where it is
presumably lost because of wave breaking) in their Boussi-
nesq model. The cascade of energy described by Herbers et
al. is dimensionally consistent with nonlinear energy fluxes
presented here, since the phase-dependent interactions in
that model are derivable from the phase-dependent
Zakharov equation. Resio [1987] and Resio et al. [2001]
have also provided arguments suggesting that the scaled
wave-wave interactions, rather than bottom friction, may be
the dominant energy-loss mechanism at the FRF site.
[35] This paper has added confirmation that a k�5/2

equilibrium range occurs in nature over a wide range of
conditions. We have determined the value for a4 in equation
(3) in terms of each of the six candidate wind-scaling
parameters used here. On the basis of the evidence pre-
sented in this paper, the ‘‘best’’ representation of the
equilibrium range is given by

F kð Þ ¼ 1

2
a4 u2lcp
� �1=3�u0

h i
g�1=2k�5=2 ð18Þ

with constants a4 = 0.00553 and u0 = 1.92 m/s. This
appears to hold true for a wide range of wave generation
scales, at least for keqh > 0.7. Although this shows that the
shape of the equilibrium range is consistent with weak
interaction theory, it does not show whether or not the
absolute magnitudes of the fluxes are consistent with the
theory. The remainder of our discussion will focus on
addressing this issue in terms of the energy/momentum
entering the wave spectrum in regions I and II.
[36] It has been long been thought that the majority of the

wind energy/momentum enters the spectrum at frequencies
considerably higher than feq [Stewart, 1974; Snyder et al.,
1981; Kudryavtsev and Makin, 2002]. Momentum input
into waves is generally assumed to be of the form t( f ) �
(u/c)pE( f )(2pf/c), where t( f ) is the momentum flux into
the spectrum at frequency f and p is typically taken to be in

the range of 1 to 2 [Snyder et al., 1981; Resio and Perrie,
1989; Kudryavtsev and Makin, 2002]. Input of this func-
tional form in conjunction with f �4 based spectral shapes,
as described by Resio and Perrie [1989] can be evaluated
numerically from the integral

MR � u2
Zf2
f1

E fð Þw
cpþ1

Y
f

fp

� 	
df

where Mr is the total amount of momentum entering a
spectral region between frequencies f1 and f2. For spectral
peakedness values in the range of 1 to 4, numerical
solutions for the ratio of momentum entering regions I + II
to the momentum entering regions III + IV indicate that
70% or more of the total momentum transfer occurs at
frequencies higher than feq. On the basis of consistency with
field evidence and detailed numerical studies, Kudryavtsev
and Makin [2002] argue that no more than about 50% of the
total momentum leaving the atmosphere enters the wave
field directly. On the basis of their analyses and consistency
with the momentum input given above, no more than 15%
of the total momentum flux from the atmosphere to the
water would be directly entering the wave field in regions I
and II defined here. On the other hand, recent arguments
have been advanced that a larger proportion of the energy/
momentum may be entering the spectrum near the spectral
peak [Alves and Banner, 2003] and that a substantial portion
of this momentum is lost to local dissipative processes in
this part of the spectrum. In either case (little dissipation in
regions I and II or substantial dissipation in regions I and II),
the net nonlinear energy fluxes within the equilibrium range
are still positive (i.e., directed toward higher frequencies) at
feq; thus a positive net source (wind input minus dissipation)
into region II must exist to balance the flux out of region II
into the equilibrium range.
[37] It is clear that alternative arguments for the absolute

proportion of momentum entering the spectrum in region II
can be hypothesized, depending on the magnitude of wave
dissipation assumed. In fact, as long as dissipation is hypoth-
esized to scale consistently with wind input, one could adjust
the absolute magnitudes of the wind input and wave dissi-
pation by an arbitrary constant, under the constraint that it
must be smaller than the total momentum transfer from the
atmosphere. In subsequent discussions given below, it is
recognized that we are dealing with net input (wind input
minus local wave dissipation) and not wind input alone.
[38] From equation (7) and the results shown here, we can

represent the ‘‘variance’’ fluxes through the equilibrium
range as

�E ¼ 1

8
Cnla3

4 ua � u0ð Þ3g�1; ð19Þ

where ua is one of the six candidate wind speed scales, and
a4 and u0 are the corresponding regression constants from
Table 2. Since Cnl can be determined directly from the
interaction integral, equation (19) contains no free param-
eters and can be used to provide an independent estimate for
total wind input in spectral region II, under the assumption
that wave breaking is negligible. The consistency or lack of
consistency of this estimate with existing wave generation
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and air-sea interaction concepts gives at least a first-order
check on the validity of the theoretical framework described
in this paper.
[39] The variance flux of equation (19) can be converted

to energy flux by multiplying both sides of equation (19) by
rwg, where rw is water density. This yields a dimensionally
correct expression of nonlinear energy flux through the
equilibrium range. If the result rwg�E is divided by a phase
speed cII characteristic of spectral region II, we obtain a
measure of the momentum flux from the atmosphere that
enters spectral region II and causes the net wave energy flux
from region II into the equilibrium range. The total
momentum flux from the air is rau*

2; hence the ratio R =
(rwg�E)/(rau*

2cII) represents the fraction of net atmospheric
momentum input entering region II that contributes to the
net flux through the equilibrium range.
[40] To estimate R, we use results based on the parameter

ua = (u
*
2cp)

1/3 because the interpretation of this parameter in
terms of momentum fluxes from the atmosphere is more
direct than that based on ua = (ul

2cp)
1/3 , and it is still

reasonably representative of observations, as seen in Figure
8a. Using equation (19) in the definition of R and simpli-
fying the result, we find

R ¼ 1

8
Cnla3

4 1� u0

ua

� 	3
cp

cII

rw
ra

: ð20Þ

From computations involving realistic spectra in section 2, a
typical value of Cnl  0.4, and its range is relatively small.
We take a4 = 0.0459 from Table 2, let cII correspond to feq
 2fp so that cp/cII  2, and note that rw/ra = O(103). The
bracketed term in equation (20) has two asymptotes, one
where ua ! u0 and one where ua � u0. On the first
asymptote, R goes to zero, suggesting that the atmospheric
input may result in no net flux through the equilibrium
range for some threshold wind speed. Our data contain
values for the bracketed term as low as about 0.2. On the
other asymptote, the bracketed term in equation (20)
approaches unity; however, the maximum ratio for ua/u0
in our data is only about 8.5. Thus the largest value for the
bracketed term in our data is only about 0.7. Using these
estimates, the value of R obtained from the nonlinear
momentum fluxes into the equilibrium range is approxi-
mately 1.5% to 4.5%.
[41] These values for R (the retained momentum fraction

within region II) appear consistent with estimates of retained
total momentum within the wave field from Hasselmann et
al. [1973] and Resio and Perrie [1989], which suggest that in
deep water the wave field retains about 5% of the total
momentum leaving the atmosphere. This fraction should be
approximately equal to the net portion of momentum enter-
ing the wave spectrum in region I. Thus it is not unreason-
able that about 1.5% to 4.5% might be entering the spectrum
in region II. If dissipation is small in regions I and II, these
results would imply that about 6-8% of the total momentum
leaving the atmosphere would be concentrated into regions I
and II. If dissipation is not small, the actual percentages of
momentum inputs into these regions could be somewhat
higher. Additional theoretical, laboratory, and field evidence
will be required to obtain a firm estimate of the absolute
momentum transfer rate into regions I and II (i.e., the total

momentum input into these regions before dissipation is
subtracted); however, results here appear to be consistent
with our estimates of the magnitude of nonlinear fluxes
entering the equilibrium range.
[42] The variation in the bracketed term in equation (20)

indicates that energy levels within the equilibrium range,
under a constant wind speed, will increase with fetch. At
noted earlier, the values of both f0 and feq vary systemati-
cally with peakedness, which has also been found to vary
systematically with dimensionless fetch [Donelan et al.,
1985], so it is possible that this variation is related statis-
tically to this observed phenomenon.

6. Conclusions

[43] An analysis of data sets from two deep-water ocean
sites, two nearshore ocean sites and two small-fetch,
enclosed basins has shown the following: (1) wind waves
subject to a large range of wind speeds, fetches and peak
spectral periods have equilibrium ranges well represented
by a k�5/2 spectral form, at least for cases used here where
keqh > 0.7; (2) energy levels within the equilibrium range
can be represented by a universal relationship involving
wind speed and the phase speed of the spectral peak, even
for sites in relatively shallow water; (3) velocity parame-
terizations, which include the phase speed of the spectral
peak along with wind speed, appear to provide signifi-
cantly improved estimates of equilibrium range energy
levels than those which include wind speed alone; (4)
wind estimates based on a reference level located at a
constant fraction of the spectral peak wavelength above
the mean water level appear to give a slightly more
consistent representation of energy levels in the equilibrium
range than either wind estimates from a fixed 10-m level or
friction velocity; (5) flux rates from solutions to the full
integral solution for weak interactions are consistent with
estimated magnitudes of atmospheric momentum fluxes that
must be conveyed from the near-peak portion of the spec-
trum into the equilibrium range.

Appendix A

A1. Currituck Sound Observations

[44] References at the beginning of section 3 provide
gauging and site descriptions for all data sources except
Currituck Sound. At this site (Figure 5 (middle)), an instru-
mented sled was deployed from October 2001 to April 2002
to complement the small-scale wave data obtained from
Lake George. The sled was fitted with an array of nine,
surface piercing, capacitance wave gauges and an anemom-
eter (5 m nominal elevation). Collections consisted of 42-
min records of winds and water levels digitally sampled
every 0.2048 s. Representative spectra used here consist of
averaged synoptic spectra from the nine individual gauges.
The discretization noise floor influenced spectral estimates at
frequencies ab ove 2 Hz, especially in very low en ergy
conditions. Thus acceptable data were constrained to have
Hmo > 0.09 m and fp < 0.7 Hz. This constraint provided
reliable estimates of b within the nominal equilibrium range
used here. We note that high-frequency mean spectral
estimates that rise above the k�5/2 normalization in Figure 3
are likely due to the noise floor bias.
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[45] A precision bathymetric survey by the FRF staff,
spanning 500 m north-south and 3000 m east-west in the
vicinity of the sled position, indicated a nearly flat bottom,
with variations of about 0.4 m/km in typically 2.5-m depths,
everywhere except for a steep submerged bank about 500 m
east of the sled location. A NOAA chart of Currituck Sound
was found to be in gross agreement with these observations,
and indicated a generally flat bottom for several km to the
west of the sled position. Irregular FRF survey lines and
local lore indicated shoal areas near the sled position to the
north and south. To ensure results from relatively unob-
structed fetches, sled data were retained only for winds from
within a 140� arc extending from 60� north of west to 80�
south of west (see Figure 5). The sound bottom varies from
hard sand to soft mud, is irregularly patchy, and often
layered. At the sled site, the bottom was hard sand, but
the bottom character along any upwind transect is probably
a mix of textures.

A2. Case Sampling and Spectral Analysis

[46] We acquired sample observations from sites with
near-continuous monitoring (FRF and NDBC) by isolating
20 to 30 storm events and winnowing individual cases
through the screening process described in section 3. For
Lake George and Currituck Sound, we screened all avail-
able data. Conventional Fourier analysis was used to esti-
mate frequency spectra E(f), with degrees of freedom (dof)
varying from site to site. Spectra from Lake George have 58
dof; from Currituck Sound, 120 dof; from FRF 625 and
FRF 630, 192 dof; and from NDBC 41001 and NDBC
46035, 24 dof. The relatively low dof of the NDBC spectra
may account for some of the scatter in results from these
sites evident in Figures 7 and 8. We defined wave number
spectra from frequency spectra using the variance density-
preserving form F(k) = E( f )@f/@k, with @f/@k evaluated
using equation (4).

A3. Adjustment of FRF Wind Speeds

[47] It is well known that land-based wind measurements
can be significantly different from winds measured over
water. At the time of acquisition of data from FRF 625 and
FRF 630 used here, the nearest anemometer was located at
the landward end of the FRF pier (Figure 5 (bottom)). We
compared 4,296 wind measurements from this anemometer
with synoptic measurements from a second anemometer at
the same elevation on a tower at the seaward end of the FRF
pier during a subsequent period when both anemometers
were deployed. A mean ratio of wind speeds computed in
discrete 10�-wide direction bins indicated little difference
between the two sites for winds blowing directly onshore,
but, for highly oblique winds, land-based wind speeds were
lower than pier end winds by as much as 35%. Wind
directions were relatively unaffected. Consequently, we
multiplied land-based wind speeds by the mean ratio of
pier end wind speed to land-based wind speed
corresponding with land-based wind direction. This objec-
tive adjustment yields an improved estimate of winds local
to FRF 625 and FRF 630.

A4. Estimation of Wind Parameters

[48] We deduced wind parameters from measured wind
speed um at elevation zm assuming a conventional logarith-

mic wind profile with neutral stratification. A Charnock
[1955] expression provided an estimate of surface rough-
ness as z0 = acu*

2/g, with ac = 0.015 following Resio et al.
[1999]. Iterative solution of the wind profile equation um =
(u
*
/k)ln(zmg/acu*

2), where k(= 0.41) is von Karman’s
constant, gives an estimate of friction velocity u

*
. Wind

speed at constant height z10 = 10 m is then u10 = (u
*
/k)

ln(z10g/acu*
2). Reference elevation at a fraction l of spectral

peak wavelength Lp is zl = lLp = 2pl/kp, where kp is
spectral peak wave number and l = 0.065 as used by
Resio et al. [1999]. Wind speed at this elevation is then
ul = (u*/k)ln (zlg/acu*

2).

A5. Estimation of B

[49] At a wave number kn for which discrete spectral
density is F(kn), a local estimate bn of the coefficient for
data following a k�5/2 power law is bn = kn

5/2F(kn). The
average of such local estimates over a range of indices
corresponding to frequencies that nominally bound
the equilibrium range provided our estimates of

b ¼ 1
n2�n1þ1

Pn2
n¼n1

k5=2n F knð Þ
. For all sites except Lake George

and FRF 625, we chose indices n1 and n2 such that
corresponding frequencies were in the range 1.5fp � fn �
3fp, following Donelan et al. [1985]. For Lake George and
FRF 625, there appeared (see Figure 3) to be harmonic peaks
at frequencies near 2fp, probably owing to shoaling trans-
formations at these sites of waves near fp. These peaks thus
have apparent energy levels above what would exist in
spectra not subject to shoaling, and estimates of b using
data in the frequency range used at the other sites would be
biased high. To avoid this bias, we modified the fitting range
to include all frequencies satisfying fn � 2.5fp. Though this
modified range extended to high frequencies, notably to 5
Hz in Lake George data, we note that we saw no extended
region that deviated significantly from k�5/2 behavior, and
that the mean normalized spectra for Lake George and FRF
625 in Figure 3 are quite well behaved. The modification is
significant; had we used the same fitting range for these two
sites as for the other four sites, b would be, on average, 9%
higher for FRF 625 data and 28% higher for Lake George
data than what we have found with the modified fitting
range.
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