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ABSTRACT

The existence of an f ~* equilibrium range was hypothesized for middle to high frequencies for a well-developed
sca generated by the physical parameters of gross sea state in the pioneering work of Phillips. Various experimental
studies since then, notably JONSWAP, have shown that if the power law is —5, then the proportionality constant
is frequency dependent. Recent Lake Ontario data has shown an f ¢ variation, which agrees with models of
the equilibrium range as a Kolmogorov cascade. From this, the JONSWAP fetch relations, and appropriate
assumptions about momentum transfer are shown to imply an important new spectral form for energy transfer
from wind to wave, which differs slightly from other recent attempts. With suitable parameter relations, the
midrange spectral energy can be shown to be essentially the same as its well known £~ counterpart.

1. Introduction

In recent years research has focused on several areas
related to wind-wave generation. Better field data has
become available and improved understanding of some
of the basic nonlinear terms has been achieved. Also,
new wave models have been, and are continuing to be,
developed and concepts of remote sensing of the ocean
surface have been fostered. In light of this activity, it
seems appropriate to examine some basic theoretical
concepts relative to the implications of some recent
empirical findings. In particular, in this paper we shall
investigate some consequences of momentum fluxes
within the spectrum, related equilibrium range char-
acteristics, and the general growth rates of wind-driven
waves.

It is generally evident that wind-wave spectra have
a very sharp cutoff at frequencies below the peak, i.e.,
on the forward face, and a somewhat more gently
sloped rear face. In his pioneering work, Phillips (1958)
hypothesized the existence of an equilibrium range in
high frequencies for a wind-generated sea. The limiting
shape geometry of the sharp crests was assumed to be
constrained by breaking of their steepest members; and
dimensional analysis resulted in spectral energy den-
sities for high frequencies of the rear face, given by

H(w) ~ agiw™> (1.1)

Corresponding author address: Dr. Donald T. Resio, Offshore and
Coastal Technologies, Inc., 911 Clay Street, Vicksburg, MS 39180.

© 1989 American Meteorological Society

where o was assumed a universal constant, g is the
gravitational acceleration and w the angular frequency.
Under this hypothesis, the energy levels in the equilib-
rium range were viewed as independent of coincident
wind speeds.

The first systematic attempts at looking for an equi-
librium rear face for the w™> type spectrum were by
Burling (1959) and Kinsman (1960). Subsequently,
Longuet-Higgins (1969) related o to wave age; and
Hasselmann et al. (1973) related « to dimensionless
fetch. These results demonstrated that o was not a uni-
versal constant but rather varied as a function of certain
wave generation parameters. Studies by Garrett (1969),
Ramamonjiarisoa (1973), Toba (1973), Kitaigorodskii
et al. (1975), Mitsuyasu et al. (1975), Forristall (1981)
and Kahma (1981), have since shown that the rear face
might not follow a strict w™> law. Furthermore, Zak-
harov and Filonenko (1967) presented theoretical ar-
guments which suggested that the power law for the
rear slope of a spectrum should be —4, not —5. Thus,
at the beginning of the 1980s substantial uncertainty
existed regarding both the power law of the rear slope
of the spectrum and the response of this portion of the
spectrum to various external mechanisms.

This uncertainty may have important consequences
relative to wave growth rates. Nonlinear wave-wave
interactions, regarded as primarily responsible for the
transfer of energy to the forward face of the spectrum,
are highly dependent on spectral shape, as are most
wind input functions. Toba (1973) demonstrates that
a consequence of an w™* power law is that wave growth
in time follows a different power law than for an >
power law.
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~Donelan et al. (1985) present carefully taken deep-
water wave data from Lake Ontario (Fig. 1). In this
figure, spectral energies are multiplied by w* and nor-
malized by the average level of the spectral estimate
rnultlphed by w* in the region from 1. Swp to 3 Ow,,,
where w, is the peak frequency. The results shown in
Fig. 1 are consistent with recent field studies of the
equilibrium range (Mitsuyasu et al. 1975; Forristall
1981; Kahma 1981). Consequently, empirical support
for the —4 power law is becoming quite convincing,
while support for the —5 power law is dlmmlshmg
The ™ variation observed in recent studies is con-
sistent with Zakharov and Filonenko’s (1967) theoret-
ical result, derived as an exact analog of a Kolmogorov
spectrum, which assumes that energy cascades through
a spectrum from low to high frequencies. This cascade
process was first introduced by Kitaigorodskii (1962)
who in a later work (Kitaigorodskii 1983) starts with
the stationary form of Hasselmann’s (1962, 1963a,b)
Boltzmann integrals for nonlinear transfer due to
wave-wave interactions and obtains an estimate of an
equilibrium range of the form
#(w) ~ €'Pgw™ (1.2)
where ¢ is the energy flux via this cascade process from
a region near w = 0 toward a region near w = 0. In
this process it is presumed that the spectrum adjusts
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with generalizations to finite depth, using the inherent
geometry of the Boltzmann integral to explicitly scale
the nonlinear transfer due to wave-wave interactions.
Expressions for energy flux were also presented, and
were found to be compatible with an w™* equilibrium
range.

At present, most spectral wave models are still for-
mulated on the basis of an w™> equilibrium range. In
this paper we shall investigate some of the implications
of an w™ equilibrium range on wave generatlon and
spectral characteristics in actively growing seas. Our
approach here will be not to investigate detailed bal-
ances of various source terms, such as have been re-
ported by Komen et al. (1984), Hasselmann et al.
(1985) and Hasselmann and Hasselmann (1985), but,
rather, to focus on establishing a general idea of wave
growth and spectral dynamics that is consistent with
the w™* equilibrium range and observed growth rates
along a fetch.

2. Theoretical considerations

a. Background

In deep water with small ambient current velocities,
the equation for energy transfer into and out of an
element in a directional spectrum of surface waves can
be written as

to a form such that the energy flux is a constant. OE(f, 6) _
Resio (1987) rederived Kitaigorodskii's (1983) results a - ) VEULO >_:, S @D
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FIG. 1. Frequency spectra times »* normalized by the rear face w*®(w), which is the average of w*®(w) in the region
1 5«),, < w < 3w,. The lines corresponding to «™* and ™ are also shown (long-medium dashed). The effect of a 10

cms”

! ambient current with or against the waves is also shown (medium dashed) as is the effect of wind drift in a 10

cm s~! wind (short dashed). The spectra are grouped in classes of U./c, (from Donelan et al. 1985).
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where E(f, 0) is the energy density at frequency fand
propagation direction 8, ¢, is the group velocity vector

for that frequency-direction element and S;is a source/

sink mechanism. Several recent papers examine energy
balances among various source/sink mechanisms un-
der certain conditions (Komen et al. 1984; Hasselmann
et al. 1985; Hasselmann and Hasselmann 1985). Rather
than emphasize that particular approach, we shall ex-
amine only certain gross characteristics of the wave
generation process. In this context, let us examine only
the rate of gain of total energy at a particular point on
the sea surface. In other words, let us examine dE,/dt
where E, is given by

E, = fo i fo " B, 8)dfib.

In the absence of swell, total wave energy must be
related to the shape of the spectrum and the location
of the spectral peak. For an f ~° equilibrium range, we
have a dimensionally consistent spectrum of the form

Sy Dpfe-n ) e

where o, is a dimensionless equilibrium range coeffi-
cient, g is the acceleration due to gravity, f,, is the fre-
quency of the spectral peak, ¥, is a dimensionless shape
function, which depends on the “overshoot” behavior
and the drop-off of energy on the forward face and A,
describes the angular distribution of energy around the
mean angle 6. Similarly, for an f~* equilibrium range
we have a dimensionally consistent spectrum of the

form
S Hufr-nd) o

where V'is a velocity scaling parameter and a3, ¥, and
A, are analogous to «;, ¥; and A, in Eq. (2.3).

Since ¥, and A, are dimensionless, if we assume that
they are not strongly affected by some external param-
eter, the total energy in an £~ spectrum can be rep-
resented as

2.2)

E(f,0) =

E(f, 0) =

Eo, = Ny g3t (2.5)

where the subscript “5” refers to the /'~ equilibrium
range characteristics and A, is a dimensionless con-
stant. Under the same constraints, for an f ~* spectrum
we have .

Eo, = NopgVf, ™ (2.6)

where the subscript “4” refers to the f~* equilibrium
range characteristics and X, is a dimensionless constant.

Hasselmann (1962) established a strong theoretical
foundation for the existence of weak nonlinear inter-
actions among various waves in a wave spectrum. The
governing equation for this process as derived by Has-
selmann can be written as
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?%“L”””D(k,,kz,k;,ko

X Clky, ka, ks, Ka)b(w; + w2 — w3 — wa)
X 8(k; + k; — k3 — ko)dkodksdks (2.7)

where k,, ki, k3 and k4 are the vector wavenumbers
of the four interacting waves, D is a function of the
energy densities at these wavenumbers, C is an alge-
braically complex coupling coefficient and (- ) is the
Kroneker delta function. Webb (1978) showed that a
simpler form of this integral, at least in terms of nu-
merical integration considerations, could be achieved
by removing the delta functions from inside the integral
and re-writing the equation in terms of action density,

n(k), related to energy density by the relationships
NKk) = Rk .

w

Webb’s form of the wave-wave interaction or col-
lision integral can be written as

ﬂ;:‘l_):fks” Clki, ks, ks, Ka)

—1
X Dlki, ko, ks, k) [ | dsdks 2:9)

where D is a function of the action densities at k;, k;,
k3 and k4 given by

D(kla kZa k3$ k4) = N(kl)N(k3)N(k4)
+ N(k2)N(k3)N(ks) — N(k,)N(k3)N(k2)
— N(k)N(k2)N(ks) (2.9)

s and n define alongcontour and normal-to-contour
directions and W = w; + wy — w3 — w4.

Tracy and Resio (1982) and Resio (1987) have
shown that Eq. (2.8) can be further simplified for nu-
merical integration by implementing it on a polar grid
with geometrically spaced increments along the radials.
As shown by Resio (1987) this form of equation allows
us to examine certain inherent dimensional and geo-
metric properties of the collision integral. Consistent
with the findings of Kitaigorodskii (1983), Resio (1987)
showed that a constant energy flux condition, as re-
quired in a dynamic equilibrium, could only exist in
deep water for the case of an f ~ spectrum.

Kitaigorodskii and Resio’s theoretical results appear
to be consistent with Toba’s (1973) form for wave
spectra, but not with the generally accepted JONSWAP
form for equilibrium range wave spectra, or its related
shallow-water spectral form which has been termed the
TMA spectrum.

Recent studies of deep-water wave spectra (Donelan
et al. 1985; Forristall 1981; Kahma 1981) have sup-
ported the existence of an f ~* equilibrium range. Resio
(1987) has presented data which support the existence
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of a generalized finite-depth form of the f~* spectral
shape (Fig. 2). Thus, it now appears that an f ~* equi-
librium range may be more justifiable on theoretical
grounds than an f ~° equilibrium range.

If, in fact, an f ~* spectral shape is more appropriate
than an f = spectral shape for wind generated waves,
what differences exist in the predicted wave growth
patterns? The remainder of this section will examine
this question by first developing some concepts of wave
growth for an f ~* based spectrum. Then, wave growth
with fetch and duration for an /™ spectrum is esti-
mated and compared with growth patterns for an f 5
spectrum.

In a number of wave growth experiments (Mitsuyasu
1968; Hasselmann et al. 1973; Toba 1973; Donelan et
al. 1985), it has been found that the dimensionless en-
ergy, defined as

g ’Ey

Eo=
Cul

(2.10)

where u, is the friction velocity for the wind, is linearly
proportional to the dimensionless fetch,

X == 2.11
x ) (2.11)
where x is the fetch. In other words, we have
 Ey=M% (2.12)

where M, is a dimensionless empirical constant.
Combining Eqgs. (2.10) and (2.11) with (2.12) yields
a relationship for the total energy as a function of fetch
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Ey = M, -tg"ix (2.13)

or for the rate of change of total energy along a fetch
dE, Mu}

o el (2.14)

Another result of a large number of wave studies
has shown that the evolution of wave spectra along a
fetch tends to follow a self-similar pattern (Kitaigorod-
skii 1962; Mitsuyasu 1968; Toba 1973; Hasselmann et
al. 1973; to mention a few). For a self-similar spectrum,
any ensemble average of a spectral function can be
written as a dimensionless coefficient times the value
at the spectral peak, i.e.,

<Cg> = Bl cgm

(&m) = ByCm.

where B, and B, are dimensionless coefficients and
¢, and ¢, are group and phase velocities at the peak.

‘Consequently, from Eq. (2.14) the time-rate of change

of wave growth can be written as

9E, dEo
a Bican ax

M,

= B]Cgm'g_.

2.15)
Equations (2.14) and (2.15) provide fundamental con-
straints on wave growth, since they control the fetch
limited and duration-limited growth rates, respectively.

If we convert Eq. (2.15) into a form for the rate of
change of total wave momentum, M,, we see that

.0150

.0125 ~

.0100 —

SABLE ISLAND
TEXEL SPECTRUM
ENVELOPE OF DUCK

SPECTRA FROM
DECEMBER 1980 STORM

£
fm

FI1G. 2. Similarity shape of TEXEL spectrum, Sable Island data and Duck Pier,
North Carolina, spectra from December 1980 storm. a,, = 2gF(k)k*/(Uw).
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oMy _ 1 OBy _Bice,Miuy Mg
~G

BZ Cm g
which implies that a constant proportion of the mo-
mentum transfer from the wind to the water is retained
by the wave field, independent of fetch and peak fre-
quency.

Let us now formulate a simple conceptual model
that interprets Eq. (2.16) in terms of some basic con-
straints on the wave generation process. In this context,
let us partition an actively growing wave spectrum into
three primary regions (Fig. 3): a “forward-face” region,
a “midrange” region, and a “high-frequency” region.
Of course this partition is only approximate and rep-
resents an idealized situation; but, it still provides a
useful framework for discussing important processes
in each of these regions.

Detailed numerical calculations of the wave-wave
interaction integral have shown that, for most single-
peaked spectra, the net energy transfer due to wave-
wave interactions is characterized by three lobes (Fig.
4). Those three lobes can be visualized as being ap-
proximately coincident with the three spectral regions
shown in Fig. 3. In this context, we see that the non-
linear energy transfers will tend to force a loss of energy
in the midrange and a gain of energy in the front-face
and high-frequency regions. Since these transfers are
conservative, the energy gained in the front-face and
high-frequency regions must be equal to the energy
lost from the midrange region.

Let us assume, in a fashion consistent with the ob-
served self-similar growth patterns of wave spectra, that
the main processes governing wave growth are strongly
related to the location of the spectral peak. Detailed
numerical calculations of the wave-wave interaction
integral have shown that transfers of momentum from
midrange frequencies tend to preserve a constant pro-
portion of fluxes to lower frequencies (where it is re-
tained) and to higher frequencies (where it is presumed
lost) (Hasselmann et al. 1973). In a wave spectrum the

(2.16)

FORWARD MID-RANGE HIGH
FACE REGION REQUENC
REGION EGION

elf)

fm -~

FI1G. 3. Transfers of momentum from midrange frequencies
to higher and lower frequencies.
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FACE REGION FREQUENCY
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I3

OE(f)

E(f) ~

FI1G. 4. The nonlinear energy transfer, dE(f)/dt, and the input
energy, E(f), as a function of frequency for two JONSWAP frequency
spectra with ¥ = 3.3 and different shape parameters.

energy levels at frequencies above the spectral peak
remain approximately constant after passing through
an overshoot-undershoot phase; therefore, the per-
manent retention of wave energy must occur at fre-
quencies less than that of the spectral peak. Thus, we
can assume that the net gain of momentum on the
forward face of a spectrum is approximately equal to
the net gain of momentum for the entire spectrum.
Since the momentum flux onto the forward face of the
spectrum represents an approximately constant pro-
portion of the momentum flux out of the midrange
frequencies, we can estimate the rate of momentum
flux out of the midrange frequencies as

=0 (2.17)

where the subscript “m” denotes an integrated quantity
over the midrange frequencies, p, is a constant “par-
titioning” coefficient which represents the ratio of the
momentum transferred into frequencies less than the
frequency of the spectral peak to the total momentum
flux out of the midrange frequencies. In order for a
spectrum to preserve an approximate self-similar form,
this momentum flux must be balanced by an equivalent
momentum flux coming into this region from external
sources such as the wind.

b. The wind source function

Since the wind is the only likely source of momen-
tum to balance the net flux of momentum out of the
midrange frequencies, a reasonable approximation to



198

" the wind momentum source in the midrange frequen-
cies is

1 0My _ My i

[Tswng- L2kt

2.18
Do O 2p g @.18)

where S, (f) is the source function for wind-to-wave
momentum transfer and z is a dimensionless constant.
For a wind source function in terms of rates of energy
transfer, rather than momentum transfers as above,
Eq. (2.18) can be transformed into

f Su(f)dr=2 M‘“jg‘""

where S,,(f) is the energy source function and B, is a
dimensionless constant. Equation (2.19) should provide
some gu1dance for examining integrated wmd source
functions in wave models.

Wind source terms have conventionally been of the
form

(2.19)

Sw(f) = BE(f) (2.20)

where B has dimensions (time)™'. In this form B is
usually represented by the dimensionless form (Snyder
and Cox 1966; Barnett 1968; Lazanoff and Stevenson
1975; Dobson and Elliott 1978; Snyder et al. 1981).

2o

where u is the wind speed at a reference level. Most
representations for B up to the point where the spectral
peak approaches its fully developed limit can be ap-
proximated as

(2.21)

fus _ [luy

B~ 2.22
S 2.22)
This suggests that, in this range,
Zfm
[7eenar~ aeteus. @23)

In £~ spectral parameterizations, « has been found
empirically (Hasselmann et al. 1973) to vary as a func-
tion of dimensionless peak frequency as

« ~fm2/3

where f,, is the dimensionless peak frequency defined
as

(2.24)

— u*fm
Sn 5
Combining Egs. (2.23), (2.24) and (2.25) yields

2fm
[ BECHar~ g7us

(2.25)

(2.26)

which is not equivalent to Eq. (2.19) since it does not
retain the same powers of ¥, and f,,. Equations (2.19)
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and (2.26) might be somewhat difficult to distinguish
from each other over a typical range of parameters ob-
served in the field. However, Eq. (2.26) does not pro-
duce a constant proportion of the total air-to-water
momentum flux entering the wave field consistent with
Egs. (2.16) and (2.17). Also, over a large range of con-
ditions, including laboratory data, differences between
the two forms should be discernable. s
Recently, Phillips (1985) has suggested a new form
for the wind source function intended to be consistent
with spectrum with an f ~* equilibrium range. Although
he wrote his source function in terms of the rate of
gain of action density, it can be rewritten in an equiv-
alent form for rate of gain of energy

Su(f) ~ [EC‘-‘]ZfE(fy

Unfortunately, when one integrates Eq. (2.27) for an
4 self-similar spectral shape, one obtains

(2.27)

Zfm u3
[ sutrar~ 2 (2.28)
fm g

which would become infinite as the z tends toward
infinity. Although this might be remedied by a judicious
selection of z, a somewhat different modification yields
a result that agrees more satisfactorily with the inte-
grated form for the wind source given in Eq. (2.19). If
we multiply Phillips’ form for S..(f) by c/u,, we ob-
tained a modified wind source function of the form

Sw(f) ~ (2.29)

Y rm(1)
C

which agrees with Snyder et al. (1981). Evidence from

the Bight of Abacoo experiment suggests that this is
valid up to us/c,, =~ 2.5 where us is the wind at 5-m
height and beyond this value there is no concensus on
wind input behavior (F. W. Dobson, personal com-
munication). Integration of (2.29) yields

[ s~

which is consistent with Eq. (2.19). Hence, in this paper,
the wind source term will be considered reasonably
represented by the form given in Eq. (2.29).

(2.30)

¢. Wave-wave interaction energy fluxes and the total
energy balance in a spectrum Implications on
spectral shape

For an f~* spectrum, Resio (1987) shows that the
total flux from the central portion of the spectrum can
be parameterized in terms of certain integral properties
of the spectrum and the location of the spectral peak.
The representation given by Resio is for arbitrary depth
and, therefore, is written in terms of wavenumber pa-
rameters. Since we are dealing with a deep-water spec-
tral balance in this paper, we convert Resio’s form for
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the energy flux to high frequencies from a wavenumber
parameterization to a frequency parameterization,
E 359
T = d, —°{£ (2.31)
g
where T'z is the total energy flux from the midrange
frequencies into high frequencies and d, is a dimen-
sionless constant. In terms of a momentum flux, we
have '

EO:Tfm9
g“cm
where T, is the total momentum flux from midrange
frequencies to high frequencies and d, is a dimension-

less constant.

Equation (2.32) provides an explicit estimate for the
momentum flux to high frequencies due to nonlinear
wave-wave interactions. We can examine the conse-
quences of this momentum flux for the spectral balance
in the midrange frequencies, where the spectrum is ex-
pected to tend toward an equilibrium range. Assuming
that the majority (80%-90%) of the wind input enters
the spectrum in the midrange region, say in the range
0.95f» to 1.5, as found in Snyder et al. (1981), an
approximate balance between the integrated wind mo-
mentum source function and the momentum fluxes
to higher and lower frequencies is of the form

I'n=4d; (2.32)

Tin — T ™ Thf ~= 0 (2.33)
where 7, is the rate of momentum transfer from the
atmosphere into the wave field, 74 is the rate transfer
of momentum from the midrange frequencies onto the
forward face of the spectrum and 7y¢is the rate of trans-
fer of momentum from the midrange frequencies into
the high frequency portion of the spectrum. In order
for these to sum to zero, they all must have the same
algebraic form in terms of wind and wave parameters.

As pointed out previously, from considerations of
the behavior of the complete Boltzmann integral (Has-
selmann et al. 1973), it has been found that, indepen-
dent of the details of the spectral shape, a fixed pro-
portion of the total momentum flux from the midrange
frequencies is transferred to the front face and high
frequency regions of the spectrum. Although this may
not be applicable in the near-saturated-wave condition,
it should be applicable in growing sea conditions. Thus,
we have

(2.34)

where p, is a dimensionless partitioning constant. Since
wave-wave interactions are conservative,

T8 = D1Tnf

T+ T =1 +p)rpe= —~Tmr =~ 71n (2.35)

where 7., is the rate of momentum transfer due to
wave-wave interactions out of the midrange frequen-
cies.
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From Eq. (2.35), using similar arguments to those
of Kitaigorodskii (1983), we see that an equilibrium
will be established when

Tin = (1 + p)rae (2.36)
which from Eqgs. (2.16) and (2.32) is equivalent to hav-
ing :

M, S i
— — == 1 + d .
2 g (L4 P g'cm

If we write the spectral density in the equilibrium range
as

(2.37)

E(f)=qgf™* (2.38)

where g is a constant factor with dimensions of velocity
then the total energy in the spectrum can be approxi-
mated as

Eo = \qgfm? (2.39)
which when combined with Eq. (2.37) yields
M k¢
T 2.40
T 200 + pon (2.40)
or
g~ (Uacm)' (2.41)

This is slightly different from the form used by Toba

" (1973) and Kitaigorodskii (1983); however, these dif-

ferences would probably not be very apparent in data
from most field measurements. If we examine Kitai-
gorodskii’s form for the equilibrium range

-4

' au,
= 4
Ef) = oy (2.42)
and transform it into a friction velocity form we have
ayuygf ™
hat. had. 1- S 4
E(f) @ny (2.43)

where a, = af VEI; where Cp is the coefficient of drag.

From Egs. (2.38) and (2.40) we can write our form for

the equilibrium range as

ay(uacm)Pgf ™
2r)’

where oy is expected to be a universal constant. In this
context, the value of «, is expected to vary as

¢ \3
[P i

*

E(f)= (2.44)

(2.45)

which suggests a slight fetch dependence and a rather
large difference between laboratory- and open-ocean-
scale data. The type of relationship that should arise
from Eq. (2.45) is of the form

(2.46)

’ -1/3
Qy ~fm /“:
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whereas Mitsuyasu et al. (1980) report that their data
suggest a relationship of the form

oy ~ f, 7V, (2.47)

Table 1 from Phillips (1985) presents a number of
different evaluations of a, (referenced as « in Phillips’
original table) by different investigators. Examining dif-
ferences expected between laboratory- and prototype-
scale data, we note that typical values for £, in labo-
ratory experiments lie in the range of 0.5 to 1.5, whereas
for field experiments they tend to fall in the range 0.01
to 0.10. The average values of «, in the five sets of
field data shown in Table 1 range from 6 to 11 for
values of f,,, from 0.015 to 0.090. Toba’s (1973).results
indicate that a mean value of a, of 2 might be asso-
ciated with an average f,, value of about 1. Phillips
(1985) argues that this difference might be due purely
to wind-drift effects; however, it is not evident that the
wind-drift effects should be quite this severe. The av-
erage values of a, from the field data are about 3 to 5
times larger than those found in the laboratory. This
ratio is roughly consistent with the expected ratio of
fm'” in the laboratory to £,,'/? in field experiments,
which from Table 1 are seen to be in the neighborhood
of (1/0.04)' or 2.9.

From the preceding arguments, we can see that a
consequence of using momentum conservation con-
straints on the balance of source terms rather than en-
ergy conservation constraints leads to a slightly different
form for the proportionality factor, a, versus aj, but
retains the f ~* equilibrium range.

As will be seen in the next section, the difference
between having ¢ ~ u, as in Toba (1973) and Kitai-
gorodskii (1983) and g ~ (4 c,»)'/* has significant im-
plications relative to wave growth rates through time.

d. Modeling the evolution of an f~* spectrum

Since much effort is currently being devoted toward
a better capacity to predict waves via numerical models,
it is perhaps appropriate to examine wave growth rates
within the context of wave modeling. Hence in this
section, we shall endeavor to examine both the char-
acteristic evolution of wave spectra and some related

'
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concepts important to the numerical modeling of this
evolution.

An important question in the modeling of the non-
linear wave-wave interaction source term is what time
step is required in a model in order to retain the detailed
evolutionary characteristics of the spectrum? Figure 4
showed a sample source term calculated from the
complete Boltzmann integral. The highly nonlinear
shape of this source function near the spectral peaks
makes it very difficult to represent over a long time
step, even if one obtains an exact evaluation of the
Boltzmann integral at the beginning of the time step.
If we represent the energy at the (i + 1)th time step as

E(f)*' = E(fY + Su(f)YAt (2.48)

where the superscript i refers to values at the ith time
step At is the time step and S, (f) is the nonlinear
wave-wave interaction source term, it is obvious that
different results will be obtained for the evolution of a
spectrum over fixed time interval, depending on the
time step used in the integration. To avoid this distor-
tion, one must allow the location of the nonlinear
source pattern to shift over the time interval.
Hasselmann et al. (1976) showed that the charac-
teristic relaxation time for spectral components in the
equilibrium range is about 15 minutes. Thus, to model
perturbation of equilibrium range energies away from
their equilibrium values would require time steps con-
siderably less than 15 minutes in duration. In fact, it

" is not uncommon for time steps of 4 minutes to be

needed for accurately representing spectral evolution
in models that attempt to compute this source term
explicitly. :

Since wind information is available only for time
intervals greater than the characteristic relaxation time
in the equilibrium range, the best treatment of energy
densities in this range may be to restrict them to be
equal to their equilibrium values. On the other hand,
spectral energies on the forward face of the spectrum
are highly transient. Over any finite time step the peak
frequency will shift and with it the location of the net
wave-wave interaction energy transfers. Neglecting
swell decay for now and recognizing that the wave
growth process is approximately self-similar, we can

TABLE 1. A summary of measurement values of Toba’s constant «, with the ranges of dimensionless fetch gx/U?%,, dimensionless
frequency of the dominant wave oou, /g and ‘significant slope’ s of the dominant waves (from Phillips 1985)

Number a gx/U% dolle /g s
Author of spectra (X107%) (X1073) (X1073 (X107?)

Laboratory : :

Toba (1973) —_ 2 c(2X 107 70-130 5
Field

Kondo et al. (1973) 2 6 —_ 2-5 —_

Kawai et al. (1977) 54 6.2+0.1 0.2-2 2-9 1-2

Mitsuyasu et al. (1980) 14 8.7 5-100 2-7 0.8-2

Kahma (1981) ca. 50 11 0.5-6 1.5-6 —_

Forristall (1981) Many 11.0 — 2-6 0.8-2
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parameterize the source function by estimating the
evolution of the spectral peak over a time step

1i+At

BUY =BG+ [ S + Sul)dt 2.49)
i

where ¢; is the time at time step i.

In the context of Eq. (2.49), let us investigate the
primary characteristics of the net source term Si,(f)
+ Sin(f), integrated over time. Since the equilibrium
range is taken as fixed, the only variations which can
be exhibited are in the energy densities for frequencies
in the vicinity of the spectral peak and in the location
of the spectral peak. Recognizing that it is not the details
of the wave-wave interaction fluxes but rather the net
momentum balance constraints derived in section 2b
that should control the total wave growth, we can ex-
amine the evolution of f,, in that context.

Returning to Eq. (2.15) for the net rate of change of
total wave energy and making use of Egs. (2.39) and
(2.41), we can obtain an estimate for the net rate of
change of f,, as

af 2
Sy
ot g

u:/f) cm2/3

: (2.50)

where A is a dimensionless constant. Integration of
2.50 over a time step, At, yields

i e 9 0 an—ana
St = T 4 S AP A (2.51)

which is similar to the results of Hasselmann et al.
(1976) for an f ~3-based model. If we had used an equi-
librium range without the c,,'/*> dependence, such as
Kitaigorodskii’s form for the equilibrium range, we
would have obtained

. . 9 u T

ot = [( 52+ 3 AIE At] (2.52)
where A’ is a dimensionless constant. Equation (2.52)
can be shown to be similar to Toba’s (1978) results for
the time rate of change of f,,..

The functional form of Eq. (2.51) is very stable com-
putationally, since no dependence on f;, is found in
the second term on the right-hand side of this equation.
This means that the same computational result can be
obtained independent of the time step chosen. It is
somewhat straightforward to see how Eq. (2.51) can
be used to infer a net one-dimensional (nondirectional)
spectrum; however, it is not so obvious how the direc-
tional distributions of energy can be handled. For the
one-dimensional energy density we obtain a parametric
representation of the form

IPIE SNV SN i L
B = ashen sl (. 2) @59
where y is a shape function that includes dependences
on f/f and u/c,,. The directional characteristics can
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be approximated by considering the total wind input
over a time step and recognizing that the wave-wave
interactions cannot alter the mean direction since they
are conservative. Hence the mean wave direction at
the end of a time step can be estimated by the wind
speed and direction over a time step and the initial
directional spectrum. Details of this procedure are be-
yond the scope of this paper since we will be using the
model here to look only at cases where the wind di-
rection is constant and colinear with the wave direction.

e. Evaluation of constants in the f ~*-based model

In section 2b, we showed that the model for wave
growth proposed here is consistent with the existence
of a fixed momentum flux from the wind to the waves.
This in turn was shown to be consistent with the JON-
SWAP results, which suggest a linear growth of wave
energy with fetch. In that section, we were more inter-
ested in the functional forms for various terms so we
did not treat the accompanying empirical constants in
any detail. Before showing our calculated growth rates,
we must estimate the constants that were inherent in
some of the equations presented in section 2b.

Let us begin by looking at the growth of waves with
fetch from the JONSWAP experiment:

Ey=1.6 X107 fx. (2.54)
If we want to convert this relationship into a friction
velocity form, we must obtain an estimate of the char-
acteristic coefficient of drag for the winds in that ex-
periment. Assuming that the coeflicient of drag was
~1.1 X 1073 or so, we can convert Eq. (2.54) into the
form

2

Eo = 1.45 X 107 "?‘x. (2.55)

If we convert this again into a duration-limited form,
we see that

9E, 2
0= 145 % 10-4B|cgmi§

% (2.56)

where B, is a dimensionless constant that relates the
average group velocity of the waves along the X-axis
to the group velocity of the spectral peak. Thus, M, in
Egs. (2.13) and (2.15) is 1.45 X 107, Substituting the
deep-water group velocity formulation into Eq. (2.56)
after some algebraic manipulation of the relationship
between E; and f,, yields

9-57" = 0.725 X 107B,(27)™'Q, ¥/'°E¥"%44}

(2.57)
where O, is a factor such that

Eo= O T,'" (2.58)
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where T, is the peak period (i.e., T, = 1/f,,) and is
given by
A4 a/ u2/3 4/3

0 = W (2.59)
where A\, is a multiplier that relates the total energy in
a spectrum to an integral of the equilibrium range for-
mula from f,, to infinity, as seen in Eq. (2.6). Intuitively
A4 can be seen to relate to “peakedness” of the spectrum
and the percentage of the total energy in the wave spec-
trum at frequencies less than f,,. The value of A4 typ-
ically ranges from 1.3 to 1.7 in measured spectra. Tak-
ing the dependence of c,, on T, onto the right-hand
side of Eq. (2.57) and integrating yields

Eo = [0 0 ™ uf '™ (2.60)
where Q, is given by '
L, = 0.5075 X 10™* 2’- “(2.61)
2

If we factor out g and u, from Q, we obtain our final
form for the duration rate of wave growth as

18/7

Ey=0Qs 21,7 ' (2.62)
where Q; is given by
1.23 X 107%B, '
Qs = T (2.63)
which for values of B, = 0.78, Ay, = 1.60 and «/,

= 0.051 yields as a dimensionless time growth rela-
tionship

Ey =252 X 107" (2.64)
where ¢ = g(t/u,). The choice of B, is motivated by
the relationship between the average phase speed in a

spectrum relative to the phase speed of the spectral
peak. These values for Ay and «/, are based on com-

parisons of spectral shapes and total energies in ob-.

served spectra.

It should be noted here that we are not attempting
simply to fit a number of coefficients independently.
Instead, we have attempted to demonstrate how all of
these coefficients relate to each other and directly affect
wave growth rates. Also, we will show subsequently
that the selection of reasonable values for these coef-
ficients produce wave growth rates not inconsistent
with observational data.

If we had followed through with an analogous treat-
ment of energy growth based on Eq. (2.52), i.e. Toba’s
(1973) and Kitaigorodskii’s (1983) form for an f~*
spectrum, we would have obtained an energy growth
equation such that E; ~ >, similar to that derived
by Toba (1973). Over a wide range.of physical scales,
this growth form will have significant differences from
the Eg ~ 1'% form derived here.
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3. Discussion

In this paper, we began by noting that the observed
fetch-growth behavior in wind waves is consistent with
the hypothesis that a constant portion of wind-to-water
momentum flux is retained by the wave field. Using
this hypothesis as a point of departure and including
some scaling relationships inherent in the wave-wave
interaction integral, we showed that an f ™ equilibrium
range, in a somewhat modified form from that origi-
nally proposed by Toba (1973) and Kitaigorodskii
(1983), is compatible with the balance of energy fluxes
through a wave spectrum. Interestingly, an additional
consequence of these assumptions is that the idealized
fetch- and duration-growth rates are almost identical
to those presented in Hasselmann et al. (1976) and
Resio (1981), both of which were derived for spectra
with an f~° equilibrium range. Figure S presents a
comparison of fetch-limited growth rates for several
contemporary wave models, relative to the original
JONSWAP results (assuming a mean value for Cp of -
1.I X 1072 in the original data). The results of TO-
HOKU, the model of Toba (1973), are taken from the
intercomparison of Allender et al. (1985). WAM is the
third generation wave model described in Hasselmann
et al. (1985). These data are being reviewed at present
and some variation in the location of the line may
result in the future; however, the characteristic linear
relationship between dimensionless energy and di-

_ mensionless fetch should remain.

Figure 6 presents a comparison of the duration-
growth characteristics in the same models. Most of the
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FiG. 5. Nondimensional fetch-limited growth curves for the total
energy. TOHOKU is the model of Toba (1973) as reported in Allender
etal. (1985). WAM is the third generation model whose growth curves
are first described in Hasselmann et al. (1985).
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models seem to be in reasonable agreement with the
E ~ %7 relationship derived in this paper.

The results derived in this paper have some impli-
cations for the relative importance of various source
terms acting on a wave spectrum. In an historical per-
spective, our results might be viewed as renewed sup-
port for the hypothesis of a self-similar wave generation
process. In the 1960s, wave growth was envisioned as
the sum of two source terms transferring energy directly
from the atmosphere to an entire spectrum of uncou-
pled wave components (Phillips 1957; Miles 1957),
Following JONSWAP (Hasselmann et al. 1973, 1976)
the concept that wave-wave interactions represented
a dominant source term began to find wide acceptance.
Toba (1978) presented evidence that wave growth ap-
peared to be strongly governed by a stochastic process,
which produced self-similar spectra. Resio (1981)
showed that the direct transfer models did not produce
a growth pattern equivalent to that in models domi-
nated by wave-wave interactions. Resio and Vincent
(1982) showed that duration-fetch-growth relationships
in a model with large source functions independent of
Jm could not be transformed into a form equivalent to
models dominated by source functions related to f,,.
Kitaigorodskii (1983) presented an analysis of energy
fluxes in deep-water gravity waves and concluded that
the observed equilibrium range characteristics seemed
consistent with the concept that the primary process
governing the spectral shape was a balance between
wind input and fluxes due to wave-wave interactions.

The above discussion suggests that external source
functions, which do not scale in a self-similar fashion,
may not produce appropriate balances among mo-
mentum fluxes within the front-face, midrange, and
high-frequency regions of the spectrum, for all fetches
and wind speeds. The results of this paper indicate that,
until a better understanding of source terms exists, a
two-term source balance (considering wind inputs and
nonlinear energy fluxes) may be used to provide a
theoretical framework which is consistent with obser-
vation of both equilibrium range characteristics and
wave growth along a fetch. A separate paper by the
authors is in preparation which calculates energy fluxes
from the complete Boltzmann integral and will attempt
to focus on the relative values and roles of various
source terms in different regions of the spectrum.

4. Conclusions

The /5 equilibrium range and associated variable
«a, which originated with Phillips (1958), has dominated
experimental and theoretical concepts almost to the
present. Our aim was to consider revised concepts of
surface gravity wave dynamics brought on by an ex-
perimentally validated f —* equilibrium range (Donelan
et al. 1985), following the hypothesis of a Kolmogorov
regime functioning within the equilibrium range (Ki-
taigorodskii 1983).

We have shown that a momentum transfer law that
is consistent with the fetch relations of JONSWAP and
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theoretical constraints on energy fluxes due to wave-
wave interactions implies a spectral form for one-di-
mensional midrange energy that is consistent with the
field observations of Donelan et al. (1985). Given ap-
propriate parameter relations it has been possible to
show that this new spectral form and related fetch- and
duration-limited wave growth rates are essentially
equivalent to those based on the f~° equilibrium range,
as presented by Hasselmann et al. (1976) and Resio
(1981).
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