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Hydro-acoustic precursors of gravity waves
generated by surface pressure disturbances

localised in space and time
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We consider the mechanics of coupled underwater-acoustic and surface-gravity waves
generated by surface pressure disturbances in a slightly compressible fluid. We show
that pressure changes on the ocean surface, localised in space and time, can induce
appreciable underwater compression waves which are precursors of the surface gravity
waves. Although the physical properties of acoustic-gravity waves have already been
discussed in the literature, such dynamics was not investigated in previous studies.
We derive new results for the underwater compression wave field and discuss the
dynamics of its generation and propagation. This work could lead to the design of
innovative alert systems for coastal flooding management.

Key words: compressible flows, waves/free-surface flows

1. Introduction
In this paper, we show that the generation of transient surface gravity waves by

sudden, localised surface pressure perturbations is associated with the existence of
underwater acoustic precursors directly coupled with the gravity waves. This result
advances previous incompressible and compressible models of ocean surface waves.

The vast majority of wave theories usually neglect the effect of compressibility on
the generation and propagation of ocean surface waves. This is a safe assumption
for many applications in ocean engineering (Mei, Stiassnie & Yue 2005). However,
a quick analysis with the linearised theory of compressible water waves shows that
propagating acoustic-gravity modes exist in addition to the surface gravity wave when
f > f0= c/(4h), where f is the acoustic-gravity wave frequency, c is the speed of sound
in water and h the bottom depth (Stiassnie 2010). Acoustic-gravity waves of frequency
f > f0 propagate at a speed of the order of the speed of sound in water and are
much faster than the leading surface gravity waves (Lighthill 1978; Mei et al. 2005).
This appealing feature of acoustic-gravity waves has only recently been considered in
ocean engineering applications, for example tsunami early warning (Stiassnie 2010;
Sammarco et al. 2013). Indeed, recent analysis of hydrophone data has shown the
occurrence of low-frequency underwater acoustic noise directly coupled with violent
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atmospheric perturbations (Wilson & Makris 2008). This suggests that compressibility
needs to be included into the theory of transient wave generation by surface pressure
variations.

The physical properties of acoustic-gravity waves in compressible water have been
already discussed in the past (Stoneley 1926; Longuet-Higgins 1950; Hasselmann
1963; Guo 1987; Ardhuin & Herbers 2013; Ardhuin et al. 2013). However, except
for Hasselmann’s (1963) statistical approach and Guo’s (1987) deep-water attempt,
little attention has been paid to the hypothesis that underwater compression waves
can be generated together with gravity waves directly by sudden pressure variations
and gustiness present in turbulent air masses during storms or cyclones. Previous
authors considered surface pressure patterns caused by second-order interaction of
gravity waves, neglecting the first-order effects of compressibility (Ardhuin & Herbers
2013). They showed that near-surface nonlinear hydrodynamic interactions of gravity
waves generate pseudo-Rayleigh waves travelling at large depths and acoustic-gravity
modes propagating closer to the ocean surface (Ardhuin et al. 2013). The direct
transient response of a compressible fluid to a surface pressure field localised in
space and time did not receive much attention, despite its potential impact in practical
applications. Such a dynamics strongly depends on the previously neglected first-order
compressibility and, hence, is related to a different phenomenon. We shall refer to
the first-order acoustic-gravity modes as ‘hydro-acoustic’ (HA) waves (Stiassnie 2010;
Sammarco et al. 2013) to distinguish them from the second-order pseudo-Rayleigh
(R) and acoustic-gravity (AG) modes (Ardhuin & Herbers 2013; Ardhuin et al. 2013).
On the one hand, R and AG waves are the effect of interacting surface gravity waves.
On the other hand, HA waves are directly interconnected to the gravity waves as both
are induced by the same source, be it a ground motion (as in the case of tsunamis,
see Stiassnie 2010) or a surface pressure variation. In other words, HA waves are
generated together with (and are not a consequence of) surface gravity waves. We
shall show that, due to the peculiar cogeneration mechanism and different speeds
of propagation in water, HA waves can be interpreted as the forerunners of surface
gravity waves generated by surface pressure disturbances localised in space and time.

This paper aims: (i) to formalise the problem with a compressible Cauchy–Poisson
system and to show that the latter does admit HA waves (§ 2); (ii) to derive new
formulae for the HA pressure field (§ 3); (iii) to show that HA waves can be regarded
as the Sommerfeld precursors (or forerunners) of the gravity surface waves generated
by sudden surface pressure disturbances (§ 4). The practical aspects of this fact are
significant, in that HA waves could be used for the early detection of rogue waves or
surges generated by atmospheric perturbations approaching coastal areas.

2. Mathematical model
2.1. Governing equations

Consider an ocean of constant depth h which extends infinitely along the horizontal
direction x. Assume that the characteristic extension of the surface pressure
disturbance along the longitudinal axis x is much smaller than that along the transverse
direction y, e.g. in a trailing squall line of a cyclone. Therefore, the problem can be
investigated in the two-dimensional vertical plane (x, z). The z axis rises from the
unperturbed water level z = 0 and is positive upwards, the bottom being at z = −h.
Assume that the fluid is inviscid and weakly compressible and that the water motion
is irrotational. The water density ρ=ρ0+ρ ′ can be regarded as the sum of a constant
ambient density ρ0 and a perturbation ρ ′� ρ0. Assume that the fluid is barotropic, so
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that the pressure p= p(ρ). Taylor-expanding the latter expression about the constant
density ρ0 yields

p(ρ)= p(ρ0)+ c2ρ ′ +O(ρ ′2), (2.1)

where
dp/dρ = c2 (2.2)

is the square of the (assumed constant) speed of sound in water (Lighthill 1978). In
the following, all physical quantities of order O(ρ ′2) and higher will be neglected upon
the hypothesis of weakly compressible fluid. Irrotationality of the wavefield allows
the existence of a velocity potential φ(x, z, t) such that the velocity vector v satisfies
v(x, z, t)=∇φ, t being time and ∇f (x, z, t)= (fx, fz). Subscripts denote differentiation
with respect to the relevant variable. The equation of mass conservation yields

ρ ′t + ρ0∇2φ = 0. (2.3)

In the latter expression, the convective term v ·∇ρ ′ and the quantity ρ ′∇ · v have been
neglected as higher-order effects of compressibility (Lighthill 1978). The linearised
momentum equation in Bernoulli’s form reads

gz+
∫

dp
ρ
+ φt =C(t), (2.4)

where g is the acceleration due to gravity. Here, C(t) = 0 since no standing waves
are expected to be generated (Ardhuin & Herbers 2013). Combination of (2.4) with
(2.1)–(2.3) yields the well-known wave equation

φtt = c2∇2φ, x ∈R, z ∈ (−h, 0). (2.5)

On the free surface, the linearised kinematic boundary condition reads

ζt = φz, z= 0. (2.6)

Here, ζ (x, t) being the free-surface elevation. Applying the Bernoulli equation (2.4)
on the linearised free surface yields the dynamic boundary condition

φt + gζ =−Pa(x, t)/ρ0, z= 0, (2.7)

where Pa is the prescribed localised and transient pressure disturbance acting on the
free surface. We require that Pa→ 0 as |x|→∞ and as t→∞. Physically, Pa offers a
simple representation of the action of convective downdrafts generated by rain-cooled
air, fast sinking inside the squall line. Finally, at the bottom the no-flux condition
reads

φz = 0, z=−h. (2.8)

We assume that the external forcing initiates at t= 0 and that the fluid is unperturbed
for all t< 0. Then the following initial conditions apply:

φ(x, z, 0)= 0, z ∈ [−h, 0]; ζ (x, 0)= 0. (2.9a,b)

As a consequence, (2.7) yields

φt(x, 0, 0)=−Pa(x, 0)/ρ0. (2.10)
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Unlike for an incompressible fluid, when the fluid is compressible a sudden pressure
change on the free surface is not transmitted instantaneously underneath. Therefore,
we need to prescribe the state of all fluid particles in the fluid domain at t= 0. Below
the free surface, the fluid is still at rest at t=0, so that the pressure there is distributed
hydrostatically, i.e.

φt(x, z, 0)= 0, z ∈ [−h, 0). (2.11)

This condition is peculiar to the compressible problem and does not appear in the
incompressible case (see e.g. Mei et al. 2005).

2.2. Solution
The set of (2.5)–(2.11) represents a Cauchy–Poisson problem of acoustic-gravity
wave generation by a surface pressure disturbance in a compressible fluid. Let us
now introduce the Laplace transform of the velocity potential

φ̄(x, z; s)=
∫ ∞

0
φ(x, z, t) e−st dt; φ(x, z, t)= 1

2πi

∫
Γ

φ̄(x, z; s) est ds, (2.12a,b)

where Γ is a vertical line lying on the right of the singularities of φ̄(x, z; s) in the
complex s plane (Mei 1997). Note that no Sommerfeld radiation condition can be
required on φ, since the transient nature of the perturbation prevents the system from
reaching a steady sinusoidal state of outgoing radiation at any finite time (Mei et al.
2005). Instead, because of the spatiotemporal localisation of the phenomenon under
analysis, we expect that the disturbance generated at t = 0 by the pressure acting
on the free surface vanishes far from the source at all times. This in turn yields
φ(x, y, t)→ 0 as |x|→∞. As a consequence, the Fourier transform in the unbounded
x domain can be used with no mathematical ambiguity:

ˆ̄φ(z; k, s)=
∫ ∞
−∞

φ̄(x, z; s) e−ikx dx; φ̄(x, z; s)= 1
2π

∫ +∞
−∞
ˆ̄φ(z; k, s) eikx dk. (2.13a,b)

Transforming the system of (2.5)–(2.8) with (2.12)–(2.13) and applying the initial
conditions (2.9)–(2.11) yields the following boundary-value problem for the double
Fourier–Laplace transform of the velocity potential:

ˆ̄φzz −
(

k2 + s2

c2

)
ˆ̄φ = 0, z ∈ (−h, 0) (2.14)

ˆ̄φz + s2

g
ˆ̄φ =− s

ρ0g
ˆ̄Pa(k, s), z= 0 (2.15)

ˆ̄φz = 0, z=−h, (2.16)

where ˆ̄Pa(k, s) is the double Fourier–Laplace transform of the surface pressure
disturbance Pa(x, t). The incompressible version of the Cauchy–Poisson problem
(2.14)–(2.16) has already been analysed by Mei et al. (2005). Indeed, the effect of
water compressibility is responsible for increased complexity and richer dynamics
than in the incompressible case, as shown in the following. The solution of the
boundary-value problem (2.14)–(2.16) is

ˆ̄φ(z; k, s)=−
ˆ̄Pa(k, s)
ρ0

cosh β(z+ h)
cosh βh

s
s2 + gβ tanh βh

, (2.17)
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where

β = β(k, s)=
√

k2 + s2

c2
, k ∈R, s ∈C. (2.18)

The latter expression requires choice of an appropriate Riemann surface to avoid
multivaluedness, which will be discussed shortly. For now, it suffices to note
that (2.17) is even in β. Then ˆ̄φ is unaffected by changes in the sign of β.
The double-inverse transform of (2.17) according to (2.13) and (2.12) yields the
convolution integral

φ(x, z, t)=
∫ t

0

∫ ∞
−∞

Pa(ξ , τ )G(x− ξ, z, t− τ) dξ dτ , (2.19)

where

G(x, z, t)=− 1
4π2i ρ0

∫ +∞
−∞

eikx
∫
Γ

cosh(β(k, s)(z+ h))
cosh(β(k, s) h)

s est

s2 + gβ(k, s) tanh(β(k, s) h)
ds dk

(2.20)
is the Green function of the velocity potential, solution of the problem with Pa(x, t)=
δ(x)δ(t− 0+). We shall now solve the inner integral of the Green function (2.20) by
means of complex analysis. The poles of the integrand in the complex s plane are the
zeros of

s2 + gβ(k, s) tanh(β(k, s) h), s ∈C, k ∈R. (2.21)

Such equation has imaginary zeros at s= iω, where ω∈R satisfies the acoustic-gravity
dispersion relation

ω2 = gβ(k, iω) tanh(β(k, iω)h). (2.22)

Here, β is given by (2.18). As already discussed by Stoneley (1926) and Longuet-
Higgins (1950), expression (2.22) admits the solutions

β = β0 :ω2
0 = gβ0 tanh β0h, β0(k)=

√
k2 − ω

2
0

c2
, |ω0|< |k|c (2.23a,b)

and

β =±iβn :ω2
n =−gβn tan βnh, βn(k)=

√
ω2

n

c2
− k2, |ωn|> |k|c, (2.24a,b)

where n = 1, 2, . . . . Hence, s = ±iω0(k) and s = ±iωn(k) are the poles of the
integrand in (2.20). Note that in the incompressible limit (c → ∞) only (2.23)
survives. Therefore (2.23) relates to the gravity wave, while (2.24) relates to the
HA modes arising because of the compressibility of the fluid. In order to solve
(2.23)–(2.24), the anticipated multivaluedness of β in (2.18) must now be resolved.
The complex function β has two imaginary branch points at s = ±ikc. To make β
single valued, we shall introduce the branch cuts depicted in figure 1(a) and choose
the Riemann sheet for which θ1 ∈ (−3/2 π, 1/2 π] and θ2 ∈ [−1/2 π, 3/2 π). With such
choice, it is immediate to verify that β0 in (2.23) and the βn in (2.24) are positive
real functions. Figure 2(a) shows the graphical solution of (2.23), while figure 2(b)
that of (2.24). We are now ready to solve the inner integral of (2.20) in the complex
plane. Note that no branch-cuts are required for this task since the integrand is single
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Im s

Re s

t > 0 t < 0

Im s

Re s

(a) (b)

r1

r2

s

FIGURE 1. (Colour online) Analysis in the complex s plane. (a) Branch points and branch
cuts for β(k, s) (2.18). The Riemann sheet θ1 ∈ (−3/2 π, 1/2 π], θ2 ∈ [−1/2 π, 3/2 π) is
chosen to avoid multivaluedness. (b) Integration paths to evaluate (2.20). The bold path
is for t> 0, the dashed one for t< 0. Recall that no branch cuts are required in (b) since
the integrand of (2.20) is a single-valued function of s.

valued. For t < 0, integration along the dashed circuit of figure 1(b), application
of the residue theorem and of the Jordan lemma yields G(x, z, t < 0) = 0, which
satisfies the initial rest requirement. For t> 0, integration along the closed circuit of
figure 1(b) and application of the same fundamental theorems of complex analysis
gives G(x, z, t)=Gg(x, z, t)+Gc(x, z, t), where

Gg =− 1
πρ0

∫ +∞
0

cosh(β0(k)(z+ h))
cosh(β0(k) h)

cos kx cos(ω0(k) t)

1+ ω2
0(k)

2c2β2
0 (k)

(
1+ 2β0(k) h

sinh(2β0(k) h)

) dk (2.25)

and

Gc =− 1
πρ0

+∞∑
n=1

∫ +∞
0

cos(βn(k)(z+ h))
cos(βn(k) h)

cos kx cos(ωn(k) t)

1− ω2
n(k)

2c2β2
n (k)

(
1+ 2βn(k) h

sin(2βn(k) h)

) dk. (2.26)

The wavefield is twofold: Gg (2.25) represents a transient propagating gravity wave,
while Gc (2.26) describes the HA component Gc =

∑∞
n=1 Gcn made up by the HA

modes Gcn. Expression (2.26) is in general different from zero and shows that HA
modes can be generated by the application of a surface pressure disturbance. This
extends the results obtained by earlier theories as anticipated in § 1. Note that (2.26) is
formally similar to other compressible-flow potentials, e.g. the potential of the air flow
inside a tube, open at one end and fitted with a movable piston at the other (Stoneley
1926). The solution φ(x, z, t) for a generic surface pressure distribution Pa(x, t) can
now be obtained by substituting G=Gg+Gc back into the convolution integral (2.19)
and solving once Pa(x, t) is assigned. Moving forward from these foundations, in
the next section we shall show with an example that HA waves can be identified
as the ‘acoustic signature’ of surface gravity waves generated by surface pressure
disturbances localised in space and time.
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tanh

FIGURE 2. (Colour online) Acoustic-gravity dispersion relation in the complex s
plane. Graphic solutions to (a) expression (2.23); (b) expression (2.24). Parameters are:
c= 1500 m s−1, k= 0.01 m−1, h= 150 m.

3. Discussion
Pressure fluctuations on the ocean surface are notoriously difficult to represent

mathematically (Guo 1987). Exponential distributions are widely used simplifications
which allow one to obtain the fundamental physical picture of the problem (Guo
1987; Mei et al. 2005). As an example, here we shall consider the HA wavefield
generated by a double Gaussian surface pressure distribution in space and time,

Pa(x, t)= 2I0

πεσ
e−(x/σ)

2
e−(t/ε)

2
, x ∈R, t > 0, (3.1)

where ε and 2σ are, respectively, the characteristic duration and length of the
perturbation and I0 =

∫∞
−∞

∫∞
0 Pa(x, t) dx dt is the total impulse per unit y width.

Substituting (3.1) and the Green function components (2.25)–(2.26) into the
convolution expression (2.19), after some lengthy algebra we obtain φ = φg + φc,
where

φg(x, z, t) = − I0

2πρ0

∫ ∞
0

cosh(β0(k)(z+ h))
cosh(β0(k) h)

e−(σk/2)2

1+ ω2
0(k)

2c2β2
0 (k)

(
1+ 2β0(k) h

sinh(2β0(k) h)

)
× [a0(k, t) cos(ω0(k)t)+ b0(k, t) sin(ω0(k) t)] cos kx dk (3.2)

is the gravity wavefield and

φc(x, z, t) = − I0

2πρ0

∞∑
n=1

∫ ∞
0

cos(βn(k)(z+ h))
cos(βn(k) h)

e−(σk/2)2

1− ω2
n(k)

2c2β2
n (k)

(
1+ 2βn(k) h

sin(2βn(k) h)

)
× [an(k, t) cos(ωn(k)t)+ bn(k, t) sin(ωn(k) t)] cos kx dk (3.3)

is the HA wavefield. The ωn(k), n= 0, 1, . . . are again the solutions of the acoustic-
gravity dispersion relation (2.22). In (3.2) and (3.3)

an(k, t)= e−(εωn(k)/2)2erf
(

t
ε
+ iεωn(k)

2

)
+ c.c. (3.4)
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FIGURE 3. (Colour online) (a) Behaviour of a0 (3.4) and b0 (3.5) versus k for t= 0.5 s
and ε = 1 s. (b) Space–time density plot of the free-surface elevation ζ (3.12) generated
by the double-Gaussian pressure distribution Pa (3.1). Values are in metres. (c) Time series
of the gravity pressure component pg (3.13) at (x0,−h)= (100,−150) m. (d) Time series
of the HA pressure component pc (3.14) at (x0,−h). (e) Time series of the total dynamic
pressure pd= pg+ pc at (x0,−h). The parameters for (b)–(e) are: I0= 1.57× 104 N s m−1,
σ = 5 m, ε = 1 m and h = 150 m. The first 50 acoustic normal modes are considered.
Note that pd = 0 at t= 0 in accordance with the condition (2.11) of hydrostatic pressure
distribution in the inner layers of the fluid at t= 0.

and

bn(k, t)= e−(εωn(k)/2)2
[

i erf
(

t
ε
+ iεωn(k)

2

)
+ erfi

(
εωn(k)

2

)]
+ c.c. (3.5)

are real functions depending on the modal order n = 0, 1, . . . , c.c. is the complex
conjugate of the preceding term. Using the expansion formula (8.254) of Gradshteyn
& Ryzhik (2007) for the error functions in (3.4) and (3.5) reveals that both an and
bn decay as O(1/ωn(k)) for k→∞. This is shown for example in figure 3(a). Hence,
the integrals of (3.2) and (3.3) are convergent. Note that at large time t � ε, the
time-dependent error functions in (3.4) and (3.5) tend to unity and both an and
bn approach values which do not depend on time. Hence, φg (3.2) and φc (3.3),
respectively, represent transient gravity and HA waves generated by the sudden
application of the surface pressure disturbance Pa. Expressions (3.2) and (3.3) are
rather complicated to study either analytically or numerically. Motivated by this fact,
in the following section we shall derive simplified expressions upon solid physical
grounds, which will prove very useful to obtain a clearer physical picture of the
phenomenon.

3.1. Approximated expressions
Let us start from the HA potential φc (3.3). First consider the relevant dispersion
relation (2.24) and rewrite it as
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δn(k)= gh
ω2

nh2
= −1
βnh tan βnh

. (3.6)

Supported by the fact that HA waves travel much faster than surface gravity waves
(Lighthill 1978), we seek an approximation of (3.6) by assuming that gravity has little
effect on the HA wave propagation. Mathematically, this translates into the assumption
δn� 1 for all n, whose accuracy we shall discuss shortly. An approximated form of
(3.6) can now be obtained in the limit δn→ 0+, which then yields βnh→Bn = (2n−
1)π/2. Taylor-expanding (3.6) in the neighbourhood of βnh = Bn, using (2.24) and
neglecting terms of order O(δn) and higher finally gives

ωn(k)∼ c
h

√
B2

n + (kh)2, (3.7)

which is an approximated form of the dispersion relation for the nth HA mode. In
order to check the degree of accuracy of such an approximation, let us substitute (3.7)
back into (3.6), so that

δn(k)∼ gh
c2

1
B2

n + (kh)2
6

8
π2
γ h, (3.8)

where γ = g/(2c2) ' 2.18 × 10−6 m−1 is the small Longuet–Higgins parameter
(Longuet-Higgins 1950). Expression (3.7) yields an upper bound

δ̃ = 4
π2

gh
c2
= 8

π2
γ h (3.9)

for the sought order of approximation of (3.7). Note that δ̃ is proportional to the
square of the ratio between the speed of propagation cg=√gh of the leading gravity
wave (Mei et al. 2005) and the speed of sound in water, which is usually much
larger than cg. For example, considering h = 150 m and c = 1500 m s−1 gives δ̃ '
2.65 × 10−4 � 1. Note also that δn ∼ n−2 at large n, so that the HA modes have
increasingly less influence on the wavefield as their modal number increases. Within
this framework, Taylor-expanding (3.3) in series of δn� 1 and neglecting the higher-
order terms yields finally

φc(x, z, t) = − I0c2

πρ0h2

+∞∑
n=1

(−1)nBn cos (Bn(1+ z/h))
∫ +∞

0

e−(σk/2)2

ω2
n(k)

× [an(k, t) cos(ωn(k) t)+ bn(k, t) sin(ωn(k) t)] cos kx dk, (3.10)

where the ωn are given by (3.7). Note that cos Bn = 0 for all n = 1, 2, . . . . Within
the approximation δ̃ � 1, expression (3.10) represents a compression wave which
propagates underwater, with no effect on the horizontal velocity and on the pressure
at z = 0. Let us now consider the gravity wave potential φg (3.2). Again, the large
difference cg � c makes in turn the gravity wave almost independent of the HA
modes, the latter travelling well ahead of the former. Within this framework, (2.23)
gives β0 ∼ k and (3.2) simplifies to
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φg(x, z, t) = − I0

2πρ0

∫ +∞
0

cosh k(z+ h)
cosh kh

e−(σk/2)2

× [a0(k, t) cos(ω0(k)t)+ b0(k, t) sin(ω0(k) t)] cos kx dk, (3.11)

where the well-known dispersion relation ω2
0 = gk tanh kh is obtained. Substituting the

simplified expressions (3.10) and (3.11) for φ = φg + φc into the dynamic boundary
condition (2.7) on the free surface and developing the algebra yields finally the
expression for the free-surface elevation

ζ (x, t) = − I0

4πρ0g

∫ +∞
0

e−(σk/2)2ω0(k) {a0(k, t) [sin (kx+ω0(k) t)− sin (kx−ω0(k)t)]

− b0(k, t) [cos (kx+ω0(k) t)+ cos (kx−ω0(k)t)]} dk. (3.12)

The latter is an even function of x∈R and physically represents the sum of left- and
right-going waves. The mathematical structure of (3.12) is similar to that of other
transient water wave solutions (see e.g. Mei et al. 2005; Sammarco & Renzi 2008;
Renzi & Sammarco 2012). Note that (3.5) gives b0(k, 0) = 0; hence, ζ (x, 0) = 0 as
requested. Expression (3.12) confirms that, within the approximation δ̃� 1, the free-
surface elevation is not affected by the HA modes. In other words, the HA component
of the free-surface elevation is of an order O(δ̃) with respect to the gravity component
and hence can be neglected to calculate ζ . This result would not hold if the forcing
surface pressure Pa was a travelling wave whose dispersion relation matched that of
any HA mode. In that circumstance, resonant effects would occur and the surface
displacement would be dominated by the HA modes. Furthermore, note that the HA
component (3.10) can have effects on the vertical velocity which are relevant to the
generation of microbaroms in the atmosphere (Waxler & Gilbert 2006; Ardhuin &
Herbers 2013).

Employing a similar procedure to that used for ζ , but with the Bernoulli equation
(2.4), yields the dynamic pressure pd = pg + pc, where

pg(x, z, t) = − I0

4π

∫ +∞
0

cosh k(z+ h)
cosh kh

e−(σk/2)2ω0(k) {a0(k, t) [sin (kx+ω0(k)t)

− sin (kx−ω0(k)t)]− b0(k, t) [cos (kx+ω0(k)t)+ cos (kx−ω0(k)t)]} dk

+ 2I0

π3/2ε
e−(t/ε)

2
∫ ∞

0

cosh k(z+ h)
cosh kh

e−(σk/2)2 cos kx dk (3.13)

is the gravity pressure component and

pc(x, z, t) = − I0c2

2πh2

+∞∑
n=1

(−1)nBn cos[Bn(1+ z/h)]
{∫ +∞

0

e−(σk/2)2

ωn(k)

× {an(k, t) [sin (kx+ωn(k)t)− sin (kx−ωn(k)t)]− bn(k, t)
× [cos (kx+ωn(k)t)+ cos (kx−ωn(k)t)]} dk

− 8√
πε

e−(t/ε)
2
∫ ∞

0

e−(σk/2)2

ω2
n(k)

cos kx dk

}
(3.14)

is the HA pressure component, i.e. the sought underwater compression wave. Note
that the gravity component pg (3.13) is the sum of two integral terms. The first is

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IF

RE
M

ER
 - 

Br
es

t, 
on

 1
0 

D
ec

 2
01

7 
at

 1
3:

48
:2

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

39
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.398


260 E. Renzi and F. Dias

associated with the transient propagating surface wave (3.12), while the second decays
exponentially with time like Pa (3.1) and therefore is a source-related term. Also, the
HA pressure pc (3.14) is the sum of a transient propagating underwater compression
wave and an evanescent term which decays exponentially with time. The separation
between propagating and evanescent acoustic waves was also obtained in previous
work analysing R and AG solutions (Kibblewhite & Ewans 1996; Ardhuin & Herbers
2013). Note that the vertical cosine dependence of the HA pressure modes in (3.14)
implies the HA pressure be largest at the bottom, despite the forcing is applied on the
free surface! Incidentally, further approximated expressions of the propagating waves
may be obtained by using the method of stationary phase as in Stiassnie (2010).

The present model yields new results with respect to established incompressible
and compressible theories. The incompressible theory (Mei et al. 2005) naturally fails
to capture the underwater HA pressure wave travelling ahead of the surface gravity
wave. Previous compressible models (Longuet-Higgins 1950; Ardhuin & Herbers
2013; Ardhuin et al. 2013), though providing a basis for the present analysis, did
not consider the first-order effects of compressibility in the cogeneration of HA
and gravity waves directly by a sudden, localised pressure disturbance. Our new
results show that the HA pressure signal pc (3.14) can be interpreted as the ‘acoustic
signature’ of the surface gravity wave ζ (3.12) generated by the application of a
surface pressure disturbance localised in space and time. A numerical example further
illustrates this novel result.

4. Numerical example
Figure 3(b) shows the space–time density plot of the free-surface elevation

ζ (3.12), generated by the double-Gaussian perturbation Pa (3.1) of parameters
I0 = 1.57 × 104 N s m−1, 2σ = 10 m and ε = 1 s, for which Pa(0, 0) = 2000 Pa.
This value roughly corresponds to the pressure ρairv

2/2 applied by the air moving at
speed v = 55 m s−1, with ρair ' 1.2 kg m−3. The water depth is h = 150 m. Soon
after the surface pressure is applied, a trough forms close to the origin. At larger
time, new surface waves are generated. Leading long waves travel faster and are
followed by tails of shorter waves, as predicted also by the incompressible model of
Mei et al. (2005). However, the limits of the incompressible theory appear clearly in
figure 3(c,d). These show, respectively, the gravity (3.13) and HA (3.14) components
of the dynamic pressure pd, evaluated at the bottom z = −h, at x = x0 = 100 m,
that is x0/(2σ) = 10. Numerical analysis reveals that the gravity component pg
is much smaller than the HA term pc. Figure 3(e) shows the time series of the
dynamic pressure pd = pg + pc at the bottom. The signal reaches the observation
point (x0, −h) at t ' 0.12 s, that is roughly t ' √x2

0 + h2/c. The fluid elements
are initially compressed and then relaxed by the first pressure wave. The latter
is followed by a train of waves with decreasing amplitude (see again figure 3e),
generated by the boundary reflections of the initial pressure perturbation. Such
reflections are characterised by longer travel times than the first signal and, because
of their transient nature, experience an increasingly stronger attenuation with time.
The average zero-up-crossing frequency of the pressure wave is f ' 2.5 Hz. This
corresponds to the cutoff frequency f0= c/(4h) of the first HA mode, which is indeed
dominant (Eyov et al. 2013). Such a frequency falls outside the typical range of
ultra-low-frequency (ULF) R and AG waves produced by second-order wave-to-wave
interactions described by Ardhuin et al. (2013). Therefore, HA waves generated by
sudden surface pressure disturbances seem to possess a peculiar frequency signature
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which favourably sets them apart from R and AG signals. Note also from figure 3(e)
the characteristic spiky behaviour of the pressure signal, which pulsates in a saw-chain
fashion. This happens since the HA pressure wave is little influenced by the restoring
action of gravity. The latter smooths the free-surface elevation but not the pressure
signal, which then reveals its original impulsive generation mechanism also at later
instants. Finally, comparison of figure 3(b,e) shows that the first HA pressure signal
reaches the observation point (x0, −h) at t ' 0.12 s, much in advance of the arrival
at x0 of the surface gravity wave, which occurs at about t = 5 s. Therefore, the
numerical example of figure 3 confirms that HA pressure waves exist as precursors
of the surface gravity waves generated by sudden surface pressure variations. For
example, they remind us of the capillary forerunners of the initial excitation induced
in a thin layer of mercury before the arrival of the gravity perturbation (Falcon,
Laroche & Fauve 2003). However, while the latter are observed on the fluid surface,
the HA waves are to be detected below the surface, e.g. by means of modern
hydrophones. We also carried out calculations at larger distance from the origin.
Moving away from the source, both the surface gravity wave and the HA pressure
signal attenuate more strongly in our simulations than in those of Stiassnie (2010)
and Sammarco et al. (2013) for earthquake-generated waves. This is likely because
large-scale earthquakes yield a stronger energy release than localised atmospheric
disturbances. This fact does not hinder the practical importance of our results: HA
waves could be used to design alert systems for coastal flooding generated by nearby
atmospheric perturbations.

5. Conclusions
We showed that sudden, localised pressure changes on the free surface of an

ocean can generate a system of HA pressure waves which are the precursors of the
associated surface gravity waves. This result provides an advancement on established
incompressible theories, which naturally fail to capture HA waves, and on previous
compressible models, which did not consider such dynamics. Numerical calculations
show that the underwater compression waves can be interpreted as the ‘acoustic
signature’ of the surface gravity wave. This dynamics can be exploited to design
innovative coastal flooding warning systems based on the detection of underwater
compression waves as the forerunners of the surface gravity waves. Additional work
is being carried out to extend this fundamental theory to three dimensions, uneven
elastic bottom (Eyov et al. 2013) and travelling disturbances, for which a numerical
approach, in the style of Sammarco et al. (2013), would be required.
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