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A laboratory experiment on alongshore currents was conducted for two plane beaches, with gradients 1:40
and 1:100, to investigate the instability of alongshore currents. Complicated and strongly unstable alongshore
current motions were observed. In order to clearly examine the spatial and temporal variations of the shear
instability of the currents, digital images from a charge-coupled device (CCD) recorded the deformations of
dye batches released in the surf zone. Some essential characteristics of the shear instability were obtained
from analyses of images showing the temporal variation of the dye patches.
A high-resolution spectral analysis technique (the maximum entropy method, or MEM) was used to analyze
the dominant frequency of the observed oscillation, along with the trigonometric regression method for
determining the variations of the oscillation strength in the cross-shore direction. The propagation speed of
the dye patch was obtained by tracking the movement over time of fixed locations in the dye patch, such as its
peak, in the longshore direction. This data was then fitted linearly.
Alongshore and cross-shore velocity time series acquired from sensors showed clearly that large-amplitude,
long-period (about 50 s or 100 s) oscillations were present for all sensors deployed in the cross-shore
direction under regular and irregular wave conditions. The analysis found that the maximum shear wave
amplitude was approximately one-sixth of the maximum for the mean alongshore current, and occurred
approximately at the position of themaximum of themean alongshore current for irregular waves. The spatial
structure of the shear waves was studied by analyzing collected images of the dye patches. The phase velocity
of the meandering movements was obtained by measuring the magnitude of the oscillations of the dye
patches in the alongshore direction with respect to time. The results suggest that the propagation speed of the
shear instability was approximately one-half to three-quarters of the maximum mean longshore current for
both regular and irregular waves.
Linear instability analysis theory was applied to the characteristics of alongshore current instability, which
suggested that there are two instability modes related to the observed oscillations: the frontshear mode
observed for the 1:100 slope, and the backshear mode observed for the 1:40 slope. Theoretical analyses
agreed with the experimental results in both cases. The velocity profile of the mean longshore current was
found to affect the instability mode significantly, leading to further investigations on the influence of the
velocity profiles and to provide support for the above conclusions.
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1. Introduction

Field experiments of longshore currents on a sandy beach near
Duck, North Carolina were conducted by Oltman-Shay et al. (1989)
who identified oscillations associated with the presence of alongshore
currents. These oscillations were too short in magnitude to be surface
waves due to gravity at the observed frequencies, and had longer
periods (1000 s) than gravity waves. Bowen and Holman (1989) first
described the essential dynamic of this instability and illustrated the
mechanism of shear instability in terms of background vorticity. Such
oscillations are called shear waves. Subsequent field experiments
performed by Noyes et al. (2004) showed that the total root mean
square shearwave fluctuations are between 10% and 40% of the locally
observed mean alongshore current, and shear waves are generated
primarily in the highly sheared region immediately seaward of the
location of the maximummean alongshore current velocity Vmax. The
observed cross-shore and alongshore structures of shear waves are
similar to the linearly unstable modes predicted by linear instability
theory.

Laboratory experiments on the shear instability of longshore
currents have been carried out, for instance by Visser et al. (1982)
who experimented on alongshore currents on plane slopes 1:10 and
1:20, but their experimental results did not indicate the temporal
variations of alongshore currents. Measurements of the unstable
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motion of alongshore currents by Reniers et al. (1997) suggested that
instability occurs on a barred beach but not on a non-barred beach;
however, although they observed oscillations for both regular waves
and random waves on a barred beach, Reniers et al. (1997) suggested
that such observations do not necessarily preclude shear instability on
a plane beach. Putrevu and Svendsen (1992) attributed the lack of
detection of shear waves in laboratory experiments to the limited
length of the wave basin and the damping effect of bottom friction
(the viscous damping probably suppressing the shear instability in
laboratory experiments).

The present study examined whether shear instability does occur—
and, if so, how it behaves on a plane slope— by performing a laboratory
simulation of longshore currents on differently sloping plane beaches
under different wave conditions (regular and irregular waves). A
particular study was carried out as to whether the assumption that the
eigenvalue with the largest imaginary component dominates the
instability of that wavenumber was valid for all cases in the present
experiment, bearing in mind that many previous researchers have
employed the assumptionwhen investigating shear instabilities since it
was first proposed by Bowen et al. (1989). Tiessen et al. (2010)
developed an algorithm to identify the more physically significant
model predictions, but their predictions were still based on this
assumption. Thepresent study is significant in gaininganunderstanding
of the physics of the formation of such rhythmic crescent-shaped
b) Bottom profile

a) Experimental layout

Fig. 1. Experime
features, and is particularly useful for coastal engineers when making
quantitative predictions in the field.

Waves incident on a beach induce different alongshore currents
depending on whether they are regular waves produced by sea swell
or random waves produced by wind. The shear instability of
longshore currents occurs as a result of these flows. For similar
incident wave heights, the longshore current velocity profile is
narrow for regular waves due to the temporally constant wave
height, but a broader velocity profile results from the temporal and
spatial variation of the height of random waves. The influence of the
different incident wave types and velocity profiles on the instability
characteristics of the longshore currents were investigated in the
present study. Previously, researchers have not paid particular
attention to this problem. Haller and Kirby (1999) did a numerical
study on the effects of lateral mixing and friction coefficient on the
mean longshore current and the corresponding shear wave (the shear
instability of longshore currents). They suggested that decrease in
friction coefficient leads to a stronger mean longshore current and
a faster, more energetic vortex structure produced by the shear
instability of longshore current, and that an increase in the mixing
coefficient causes relatively small variations in the propagation
speeds of the shear waves.

Variations in longshore current velocity gradients in the surf zone
cause the shear instability to increase, according to the linear
ntal set-up.



Table 1
The distances (x) of velocity meters from the shoreline.

VM x (m) VM x (m)

Slope (1:40) Slope (1:100) Slope (1:40) Slope (1:100)

1 1.5 2.0 9 5.5 6.0
2 2.0 2.5 10 6.0 6.5
3 2.5 3.0 11 6.5 7.0
4 3.0 3.5 12 7.0 8.0
5 3.5 4.0 13 8.0 9.0
6 4.0 4.5 14 9.0 10.0
7 4.5 5.0 15 10.0 11.0
8 5.0 5.5 16 11.0 12.0
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instability theory of Bowen and Holman (1989). Shear waves are
observed when the driving velocity gradients are energetic. The
velocity gradient profile of alongshore currents for irregular waves is
stronger than for regular waves of similar height. Therefore, although
it can be speculated that shear waves are more likely to be observed
when the waves are irregular, this does not imply that shear waves do
not also occur in the case of regular waves. The present experimental
results show that shear waves occur for both regular and irregular
waves of large amplitude.

Baquerizo et al. (2001) proved the existence of instability due to
the presence of a second extremum of background vorticity at the
front side of longshore currents. The frontshear and backshear waves
may have similar growth rates, with similar wave number and angular
frequency, leading to the possibility of modulated shear waves. Their
results from a case study on a planar beach showed that increased
shear on the shoreward side of the mean current was required for
unstable modes to appear due to the background vorticity (the cross-
shore gradient of the longshore current velocity) at the shoreward
side of the longshore current velocity profile. The existence of another
instability mode, the backshear mode, has been recognized in many
Table 2
Test conditions and instabilities.

Case Incident waves Slope D (cm)

1 Regular waves 1:100 18
2 Regular waves 1:100 18
3 Regular waves 1:100 18
4 Regular waves 1:100 18
5 Regular waves 1:100 18
6 Regular waves 1:100 18
7 Regular waves 1:40 45
8 Regular waves 1:40 45
9 Regular waves 1:40 45
10 Regular waves 1:40 45
11 Regular waves 1:40 45
12 Regular waves 1:40 45
13 Regular waves 1:40 45
14 Regular waves 1:40 45
15 Regular waves 1:40 45
16 Random waves 1:100 18
17 Random waves 1:100 18
18 Random waves 1:100 18
19 Random waves 1:100 18
20 Random waves 1:100 18
21 Random waves 1:100 18
22 Random waves 1:40 45
23 Random waves 1:40 45
24 Random waves 1:40 45
25 Random waves 1:40 45
26 Random waves 1:40 45
27 Random waves 1:40 45
28 Random waves 1:40 45
29 Random waves 1:40 45
30 Random waves 1:40 45

Note: D — still water depth, H — mean wave height, T — peak period.
studies (Bowen and Holman, 1989; Dodd and Thornton, 1990; Noyes
et al., 2004; Putrevu and Svendsen, 1992) as being due to the
extremum of the cross-shore gradient of the longshore current
velocity at the seaward side of the longshore current velocity profile.
This suggests that the shear instability of longshore currents is
sensitive to the configuration of the background velocity profile. The
present study gives a more detailed analysis of this problem by
examining the longshore current instability on 1:100 and 1:40 slopes,
and shows that the former is dominated by the frontshear instability
mode and the latter by the backshear instability mode.

This paper is organized as follows. The experiment setup and test
conditions are described in Section 2. Section 3 gives a description of
time-averaging the alongshore velocities, the spectral analysis pro-
cedures and the method of analyzing the images. Section 4 outlines
the experimental results, including the velocity time series and the
images of dye patch movement. In Section 5, a numerical analysis of
the shear instabilities of longshore currents observed in present
experiment is presented, and calculated and measured periods and
wavelengths are compared. In Section 6, the dimensionless linear
instability equation is used to investigate the difference between the
periods for the 1:100 and 1:40 slopes, and the influences of frontshear
and backshear on the calculated period. A brief discussion is included
in this section. Finally, conclusions are given.

2. Experimental setup

The experiment was performed in the 55 m×34 m×1.0 m deep
wave basin at the State Key Laboratory of Coastal and Offshore
Engineering, Dalian University of Technology. The experimental
layout and bottom profile are shown in Fig. 1. The beach makes an
angle of 30° with respect to the wave generator, creating a large
incident angle and a longer beach and allowing more room for
alongshore current instability to develop. Two plane concrete profiles
with 1:40 and 1:100 slopes were constructed (see Fig. 1 (lower)). The
H (cm) T (s) Current instability

3.5 1.0 Yes
4.5 1.0 Yes
2.7 1.5 Yes
4.2 1.5 Yes
3.0 2.0 Yes
4.5 2.0 Yes
5.0 1.0 Yes
9.4 1.0 Yes

12.6 1.0 Yes
5.9 1.5 Yes

10.5 1.5 Yes
13.0 1.5 Yes
5.2 2.0 Yes

10.0 2.0 Yes
13.0 2.0 Yes
2.4 1.0 Yes
3.9 1.0 Yes
2.3 1.5 Yes
5.0 1.5 Yes
2.1 2.0 Yes
3.4 2.0 Yes
3.6 1.0 Yes
5.5 1.0 Yes
7.8 1.0 Yes
4.0 1.5 Yes
6.3 1.5 Yes
9.0 1.5 Yes
3.7 2.0 Yes
5.7 2.0 Yes
8.7 2.0 Yes
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Fig. 2. Measured mean alongshore velocity for case 13 in two transects at 8 m (circles)
and 12 m (crosses) from the inflow opening.
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still-water depth over the horizontal bottom was 0.45 m for the 1:40
slope experiments and 0.18 m for the 1:100 slope experiments.

A wave generator consisting of individual wave paddles was
located at the offshore end of the basin, having a total length of
24.5 m. The paddles were moved in phase in the present experiments.

It was decided not to recirculate the longshore current using a
pump system in these experiments since it was considered that
inherent difficulties in controlling the pump discharge may have
influenced shear instability measurements (although not the mean
longshore currents). Hence, in order to produce uniform alongshore
currents recirculating in the wave basin, a circulation channel was
constructed around the beach, 3.0 m wide at each end of the beach
and 1.0 m deep (as in the basin where the bottom was horizontal).
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(f) calculated time series of oscillation currents using Ak and θk (- - -∙).
To observe the oscillation motions visually and spatially, a dye-
release experiment was conducted as the longshore currents were
generated. The dye (ink, in this case) was continuously released in the
surf zone using a long, thin tube 0.8 cm in diameter. The dye-release
points were located at x=3 m, y=8m and x=4.5 m, y=8m for the
1:40 and 1:100 slopes respectively, and approximately one-third of
the water depth from the bottom. The image of the dye patch was
recorded by a CCD suspended about 10 m above the basin.

In the experiment, the free surface elevations were measured by 40
capacity-type wave gages deployed in three arrays normal to the
shoreline. A total of 32 two-dimensional velocity meters (VMs) in two
identical arrays of 16 (see Fig. 1) measured the flow field at a sampling
rateof20 Hz. TheseVMswere set at one-thirdof thewaterdepth fromthe
bottom (see Fig. 1), which is approximately the depth at which depth-
averaged alongshore currents occur. The distance of the VMs from the
shoreline, x, is given in Table 1. The strain-type velocity meters used are
suitable for long-period horizontal oscillations (N2 s) and for measuring
long-period unstable alongshore currents in the present study.

Monochromatic, random, unidirectional and obliquely incident waves
were generated in the experiments: see Table 2. Irregular waves were
generated according to a JONSWAP spectrum with peak enhancement
factorγ=2⋅5. Each testwas repeated three times continually throughout
the experiment in order to obtain the compellent results.

For each condition the procedure was firstly to create a uniform
longshore current. The current velocities were measured for 4 min
under regular waves and 8 min under irregular waves as they were
generated. Next, the CCD system recorded the deformation of the dye
patch as the mean longshore currents leveled off.

Fig. 2 shows themeasurement results for case 13, inwhich the cross-
shore profiles of the mean alongshore velocities are compared for the
twoVMarrays. It can be seen that the two profiles are similar, indicating
that the mean alongshore currents were approximately uniform.
150 200 250 300 350 400 450
t(s)

-6

-3

0

3

6

v(
cm

/s
)

v(
cm

/s
)

0 0.01 0.02 0.03 0.04
f(Hz)

0

2

4

6

A
(c

m
/s

)

100 150 200 250 300 350 400 450
t(s)

-6
-4
-2
0
2
4
6

b)

d)

f)

); (c) maximum entropy spectrum; (d) amplitude spectrum Ak; (e) phase spectrum θk;



0 50 100 150 200 250
-25

-5

15

0 50 100 150 200 250
-20

0

20

0 50 100 150 200 250
-40

-20

0

0 50 100 150 200 250
-30

-10

10

x=3.0m

x=3.5mx=3.5m

x=3.0m

t(s)
u(

cm
/s

)

t(s)

u(
cm

/s
)

t(s)

v(
cm

/s
)

v(
cm

/s
)

t(s)
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3. Data analysis

This section describes the process of time-averaging alongshore
velocities in order to obtain the alongshore current profiles, the spectral
analysis procedures used to analyze data obtained from the alongshore
array of VMs, and the method of analyzing the images. Our goal was to
describe varying shear instabilities of approximately longshore-uniform
coasts having essentially depth-uniform longshore currents (Sancho,
1998). Although cross-shore currents within the wave-breaking region
have pronounced depth variation, linear instability theory assumes
depth-averaged currents. Thus, a depth-uniform approximation for the
horizontal currents was adopted in the present study, as in the other
models described earlier. Spectral analysis based on the maximum
entropy method (MEM) was performed in the frequency domain, and
shear wave oscillation amplitudes were simultaneously derived by
trigonometric regression in order to analyze the variation in shearwave
energy for the cross-shore direction. The spectral analysis shows how
much energy is present in a specific frequency bandwidth. However,
this does not necessarily imply that the observed energy in the low-
frequency bandwidths is due to shear instability, but may instead be
caused by shear instability resonance.

Given that the phase speed of shear instabilities is much lower
than the phase speed associated with (infra-)gravitational waves, the
deformation and motion of the dye patch in the longshore direction
showed whether or not the observed wave energy was due to the
presence of shear instabilities. The CCD images were used to obtain
the propagation speed of the dye patch by measuring the movement
of fixed points (such as the peak) on the dye patch in the longshore
direction with respect to time, and then fitting this data linearly. The
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Fig. 5. Time series of cross-shore velocity u (left) and alongshore velocity v (right) for ca
deformation characteristics of the dye patch are described solely from
observation of the images.
3.1. Spectral analysis

Many studies have identified the shear instability of longshore
currents using frequency−wavenumber spectrum analysis (e.g.
Dodd et al., 1992; Noyes et al., 2004; Oltman-shay et al., 1989;
Özkan-Haller and Kirby, 1999). In the present experiment only two
arrays of velocity meters were set up in the alongshore direction,
as a result of which the frequency−wavenumber spectrum could
not be readily obtained; therefore only the frequency domain
spectrum was analyzed. To compensate for this, the dye dispersion
results were used to study the spatial structures of the shear
waves.

Spectral analysis by the maximum entropy method (MEM) (Burg,
1967) was used to determine the dominant frequencies of the recorded
time series of longshore currentvelocities,whichwere sampled at0.05 s
intervals for both regular and irregularwave conditions. Before carrying
out spectral analysis, the velocity records were all intercepted from
approximately 150 s to 450 s. This range was chosen because obvious
alongshore currents were observed after approximately 150 s, and the
filtered data did not agree well with original data beyond 450 s. Low-
pass filteringwas then applied to the datawith threshold frequencies of
0.02 Hz for irregular waves and 0.04 Hz for regular waves. The filtered
data was then de-meaned and de-trended; in this study, de-trending
involved removing the linear trends from the signals. Fig. 3(a)–(c)
shows the above steps as an example.
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3.2. Amplitudes

Amplitude estimation byMEM is not very reliable (Kane, 1999; Kane
and Trivedi, 1982; Sawada et al., 1997) and was used only to determine
peak frequencies fl (l=1 tom). To determinate oscillation amplitudes,
the trigonometric function regression method was adopted, as set out
below. IfAl and θldenote the amplitudeandphase of the oscillations, and
fl denotes the dominant frequency of the corresponding spectrum, the
filtered time series X(t) may be expressed by:

X tð Þ = ∑
m

l=1
Al cos 2πflt + θlð Þ ð1Þ

The time variable in Eq. (1) is discretized in the usual manner, i.e.
t=(i−1)Δ (Δ=0.05s), where i is an integer.

X iΔð Þ = ∑
m

l=1
Al cos 2πfliΔ + θlð Þ i = 0;1;2; ⋯;Nð Þ

= ∑
m

l=1
Yl cos 2πfliΔð Þ + Yl + m sin 2πfliΔð Þ� � ð2Þ

Hence Eq. (2) can be expressed as:

aY = X ð3Þ

where:

a =
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We wish to determine Y such that

‖aY−X‖ = min ð4Þ

where ‖⋯‖ indicates the Euclidean norm. If Q is an orthogonal matrix,
the relationship is:

‖aY−X‖2¼‖QaY−QX‖2 ð5Þ

hence:

‖aY−X‖ = min ¼‖QaY−QX‖ ð6Þ

Eq. (4) can be solved easily for Y using QR decomposition (Golub
and Van Loan, 1996):

Qa = R
0

� �
ð7Þ

where Q is an orthogonal matrix and R is an upper triangular matrix.
The decomposition of Eq. (7) is via Householder transformations
(Householder, 1958).

‖QaY−QX‖2¼‖ R
0

� �
− C

D

� �
‖2

ð8Þ

where C=Q×(X0, X1, ⋯, X2m−1)T, D=Q×(X2m, X2m+1, ⋯, Xn)T.
Therefore:

‖aY−X‖2 = RY−Cð ÞT RY−Cð Þ + DTD
h i1

2 ð9Þ

When Y=R−1C, the left-hand side of Eq. (9) takes a minimum
value, satisfying Eq. (4). Y can then be obtained easily. Then Al and θl
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(a) and (b); (c) and (d) for irregular waves (1:40 slope).
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Fig. 10. Spectra of the alongshore velocity time series (from x=2 m to x=4.5 m) (left); calculated amplitudes corresponding to selected peaks in spectra (center); de-meaned and
de-trended time series (——) and the calculated time series (- - -∙) (right) for case 26 (irregular waves, 1:40 slope).
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can be obtained from:

Al =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
l + Y2

m + l

q
; θl = arctg −Yl + m

Yl

� �

The frequency number depends on the spectrum: for instance, a
single peak appears in Fig. 3(c), hence m=1. Fig. 3(d) and (e) shows
Al and θl as corresponding to the frequency 0.00977 Hz. This method
was used to calculate the oscillation amplitudes (u′, v′) corresponding
to the dominant frequency.

3.3. Propagation speeds of shear waves

As mentioned above, the spectral analysis does not imply that the
observed energy in the low-frequency bandwidths is due to the
presence of shear instabilities. Therefore quantitative analysis is
necessary to identify and investigate the characteristics of the shear
instability of longshore currents. In the following, the estimation
method of the propagation speeds of the shear instability is given.

The CCD images were used to determine shear wave propagation
speed, obtained by measuring the movement distance over time of
the crest or trough of a dye patch from the measurement beam
location. Its actual location does not affect the analysis results.

4. Results

4.1. Frequency domain

To check the shear instabilities, a spectral analysis in the frequency
domain has been done for all the time series obtained by the current
velocitymeters in the cross-shore array for longshore velocity (similar
results were obtained for the cross-shore velocity). For brevity,
attention is focused on the results for case 13 (regular waves), case 21
(irregular waves, 1:100 slope) and case 26 (irregular waves, 1:40
slope). Similar results were obtained for other tests.
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Fig. 11. Amplitudes of oscillation velocity (u′,v′). •: mean alongshore current; ×: u'; :v';—:
calculated v' using Eqs. (12) and (13) for case 26 (irregular waves, 1:40 slope).
Figs. 4 and 5 show the recorded time series of cross-shore (left)
and alongshore currents (right) velocities for case 13 (regular waves,
Fig. 4) and case 21 (irregular waves, Fig. 5). Large-amplitude, long-
period oscillations were clearly present in both the alongshore and
cross-shore velocity components; these were also observed to occur
under all test conditions, with a period of approximately 50 s for
regular waves and 100 s for irregular waves. It can be seen that the
long-period oscillations were more regular for the irregular waves
than for the regular waves. Fig. 6 gives the measured mean longshore
currents for case 13 (regular waves) and case 21(irregular waves).
The solid curves fitted to the results, shown in both figures, were used
as input data for the linear instability analysis in Section 5.

It was noted above that the approximate oscillation periods were
estimated from the recorded velocity time series. In order to
rigorously investigate the way in which the observed oscillation
periods varied with test conditions, it was necessary to determine the
dominant oscillation frequencies by spectral analysis of the frequency
domains as described below.
4.2. Dominant frequencies of shear waves for regular wave cases

Fig. 7 gives the results of the spectral analysis for the cross-shore and
alongshore velocity at x=3m and x=3.5 m for case 13; a distinct peak
can be seen at approximately 0.02 Hz in both spectra. Because the
amplitudes estimated using MEM was found to be unreliable, the
method was used only for detecting the dominant peak. Hence the
existence of distinct peaks in the spectra of the cross-shore and
alongshore velocities in Figs. 7 and 10 was explained using the
amplitude spectrum obtained by trigonometric function regression.
For example, the amplitudes at frequencies of 0.025 Hz and 0.032 Hz in
Fig. 7 are very small, possibly due to nonlinear interaction or related to
the location of the current meter; hence 0.02 Hz has been regarded as
the dominant frequency. Similarly, it can be seen that the amplitude
corresponding to 0.02 Hz in Fig. 10was very small but was considerable
at 0.01 Hz; the dominant frequency was therefore taken to be 0.01 Hz.
The dominant frequencies were considered to be those at which the
mean longshore current velocity exceeded the maximum mean long-
shore current by 20% or more for each case. The average of these was
then adopted as the dominant frequency for each case, and its standard
deviationwas then determined. Fig. 8(a) and (b) shows the average and
standard deviation of dominant frequencies in the cross-shore (Tx) and
alongshore (Ty) directions for the 1:100 slope (regularwave conditions)
and Fig. 8(c) and (d) for the 1:40 slope (regular wave conditions). In
Fig. 8 the dominant frequency is seen to be approximately 0.02 Hz for
regular waves.Wave height, period and beach slope all had a negligible
effect on the dominant frequency; the standard deviation of the
dominant frequency for all cases, for both slopes, was ±0.005 Hz.



Case26

Fig. 12. Measurements of the displacements of dye patch crests for case 26.
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4.3. Dominant frequencies of shear waves for irregular wave cases

Similarly for irregular waves, frequency domain analysis was
performed by the maximum entropy method to determine the
dominant frequencies of the recorded time series of the longshore
current. The time series of alongshore velocities was sampled at
intervals of 0.05 s over 480 s for irregular wave conditions.

Fig. 9(a) and (b) shows the average and standard deviation of the
dominant frequencies in the cross-shore (Tx) and alongshore (Ty)
directions for the 1:100 slope (irregular wave conditions) and Fig. 9(c)
and (d) for the 1:40 slope (irregular wave conditions). In Fig. 9 the
dominant frequency is seen to be approximately 0.01 Hz for irregular
waves.Waveheight, period andbeach slope all had anegligible effect on
the dominant frequency. The standard deviation of the dominant
frequency for irregular waves was significantly smaller than for regular
waves, which suggests that shear instability in longshore currents was
producedmuchmore readily for irregularwaves than for regularwaves.
This conclusion agrees with that of Renier (1997). In particular, the
standard deviation of the dominant frequency for all cases for the 1:100
slope was larger than for the 1:40 slope in both the cross-shore and
longshore directions for irregular waves. This may have been due to
shoaling and the much stronger nonlinear influence of the 1:100 slope.

4.4. Oscillation amplitudes of shear waves for irregular waves

Variations in the oscillation strength in the cross-shore direction
were analyzed as follows. Analysis of this aspect, either in field or
Fig. 13. Displacement of dye patch crest vs time (▿○×▴•) and its best fit line (—) for ca
laboratory experiments on longshore current instability, has not
previously been reported; however, it is significant for gaining an
understanding of how shear instability of longshore currents modifies
sediment transport and accretional erosion on beaches.

Fig. 10 shows the spectra of the alongshore velocity time series at
x=4m and x=4.5 m for calculated amplitudes corresponding to
selected peaks in the maximum entropy spectra for case 26. The figure
shows the de-meaned and de-trended (solid line) and calculated time
series (dashed line) using calculated amplitudes and phases (not shown).

Fig. 11 shows the oscillation amplitudes of u′ and v′ for case 26.
Similar results were obtained for the other cases. The measured mean
alongshore current is also given in the two figures. It is seen that the
amplitude variations u′ and v′ in the cross-shore direction are similar
to the variations in the mean alongshore currents in the cross-shore
direction, and themaximum values of u′ and v′ are located close to the
locations of themean alongshore current maxima. The amplitude of v′
is generally greater than the amplitude of u′, implying that the
perturbation energy due to u' is less marked than that due tov′, having
a maximum of about one-sixth of the maximum mean alongshore
current. The calculated results for v′ using the linear instability model
are given in the figure to be discussed in Section 5.

As discussed above, shear instability was found to develop much
more fully for irregular waves than for regular waves, oscillation
amplitudes were larger, and longer time series were recorded.
Therefore, the irregular wave oscillation amplitudes were able to be
calculated much more accurately. Since the analysis of irregular wave
systems is a potentially useful source of information for engineers,
ses 16–19, 21 (irregular waves, 1:100 slope). y0 and t0 are position and time at start.



Fig. 14. Displacements of dye patch crests vs time (▿○×▴•) and its best fit line (—) for cases 22–30 (irregular waves, 1:40 slope). y0 and t0 are position and time at start.
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these observations stimulated further investigation of cross-shore
oscillation amplitude characteristics.

4.5. Propagation speeds of shear waves

The dye patch was observed to move alongshore with the
longshore currents, presenting as a wavy pattern in the alongshore
direction. Analysis of the movement pattern was necessary in order to
show that the meandering movements of the alongshore current
shown in Fig. 12 are indeed due to the presence of shear waves and
not to any other type of low-frequency flow. If the observed
propagation speeds agree with the calculated results from linear
instability theory it is reasonable to conclude that the pattern was
induced by the shear instability of the alongshore currents.

The images showed that the shear instability was fully developed
after 14 s for the 1:100 slope, and 28 s for the 1:40 slope. Fig. 12
presents the measurements for case 26. The dye patch was tracked at
0.00

0.20

0.40

0.60

0.80

T=1.0 T=1.5 T=2.0

wave period(s)

c/
V

m
ax

16 17 18 19 21

a) b
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intervals of 1 s (1:100 slope) and 2 s (1:40 slope). To estimate the
propagation speed of the shear waves, the measurement results were
fitted linearly; the propagation speed was then estimated from the
slopes and intercepts of the linear fit.

The results of the propagation speeds obtained in this way are
shown in Fig. 13 (irregular waves, 1:100 slope) and Fig. 14 (irregular
waves, 1:40 slope). The ratios of the propagation speed to the
maximum mean alongshore current velocity, c/Vmax, are plotted in
Fig. 15. These show that the propagation speed of the shear waveswas
approximately 50%–75% of the maximum mean alongshore current.

5. Numerical analysis

Bowen and Holman (1989) illustrated the mechanism for shear
instability due to background vorticity. This model showed good
agreement with the field observations of Oltman-Shay et al. (1989).
Subsequently, most of the theoretical analysis on the shear waves has
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Fig. 16. Variations of growth rate, ωi, and propagation speed, cr, vs wave number, k. Regular waves, case 13; 1:40 slope.
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essentially been based on the Bowen and Holman model, including a
number of nonlinear shear wave studies (e.g. Allen et al., 1996; Slinn et
al., 1998; Özkan-Haller and Kirby, 1999; Noyes et al., 2004).

In the present study, mathematical analysis of linear shear
instabilities of measured mean longshore currents was compared to
the theoretical results (periods of shear waves) of the spectral analysis
results given above. It was assumed that the flow field can be
represented by a steady longshore current V(x) with small super-
imposed perturbations u′(x, y)=[u′(x, y), v′(x, y)]; that is:

u x; yð Þ = u′ x; yð Þ;V xð Þ + v′ x; yð Þ� � ð10Þ

Bowen and Holman's (1989) theoretical model is in the form:

V−cð Þ φxx−k2φ−φxhx
h

� �
−hφ

Vx

h

� �
x
= 0 ð11Þ

where the perturbation velocities take the forms:

u′ = −
ψy

h
= − iφk

h
exp ωitð Þ exp i ky−ωrtð Þð Þ ð12Þ

v′ =
ψx

h
=

φx

h
expðωitÞexpði ky−ωrtð ÞÞ: ð13Þ

This model was applied to analyze the instability in the present
experiment.

It is well known that the necessary condition for the occurrence of
instability is the presence of an inflection point in the velocity profile.
If the inflection point occurs at the back side (seaward side) of the
velocity profile, the instability is termed the ‘backshear’ mode; the
‘frontshear’ mode then occurs at the front side (shoreward side) of
the velocity profile (Baquerizo et al. 2001). In the present study, the
theoretical and experimental results show that the observed
oscillations for the different beach slopes were related to different
instability models: backshear instability for the 1:40 slope and
frontshear for the 1:100 slope.
Fig. 17. Variations of growth rate, ωi, and propagation speed, c
5.1. Theoretical calculation results for 1:40 slope

The velocity profiles of the mean longshore currents (fitted
results) for the 1:40 slope (such as case 13 shown in Fig. 6) were
adopted as the background shear flows in the linear instability
analysis, with the fitted lines in place of the discrete test data. Figs. 16
and 17 show the growth rate, ωi, and the propagation speed, cr, of the
shear waves vs wave number k for cases 13 and 26 for the 1:40 slope.
It is seen in both figures that there are two peaks: the first
corresponding to the backshear mode, and the second to the
frontshear mode; however, there is only one peak growth rate for
different values of k, and this corresponds to the backshear mode for
other cases. For cases 13 and 26, the wave number, k0, corresponding
to the maximum growth rates, the corresponding propagation speed,
cr, and period (T=2π(k0cr)−1) of the shearwaves are given in Table 3.
The experimental results for Tx and Ty, the dominant periods of the
shear waves obtained from the cross-shore and alongshore velocity
time series, are also given in the table. The calculated periods
corresponding to the backshear mode agree with the experimental
results — that is, around 50 s for regular waves (cases 7–15) and
around 100 s for irregular waves (cases 22–30), implying a backshear
mode for the observed shear waves for the 1:40 slope. The reason for
the smaller oscillating period for regular wave casesmay be due to the
narrow mean velocity profiles for the regular wave cases leading to
slow variation of shear, Vx, in the mean longshore current. Vx is the
dominant characteristic of the unstable longshore current in terms of
the linear instability theory. That is to say that the shear, Vx, acts in the
same way as the Coriolis effect, f.

5.2. Theoretical calculation results for 1:100 slope

From similar analyses for the 1:100 slope, Figs. 18 and 19 show ωi

and crvs k shear waves for cases 3 and 19 for the 1:100 slope. Both
figures show two modal peaks for the two cases (similar results were
obtained for other cases), the first corresponding to backshear, and
the second to frontshear. Table 4 lists wave number, k0, corresponding
to the maximum growth rates, the corresponding propagation speed,
cr, and period (T=2π(k0cr)−1) of the shear waves. As in Table 4, the
experimental results of the dominant period of shear waves obtained
r, vs wave number, k. Irregular waves, case 26; 1:40 slope.



Table 3
Numerical results for shear waves for 1:40 slope (cases 7–15: regular waves; cases 22–30: irregular waves).

Case Backshear mode Frontshear mode Exp.

k01 cr1 T1 L1 k02 cr2 T2 L2 ce Tx Ty

7 0.70 0.176 51.00 8.97 1.39 0.155 29.21 4.52 0.1313 49.23 47.53
8 0.45 0.242 57.66 13.96 0.90 0.219 32.01 6.98 0.194 49.32 51.47
9 0.58 0.202 53.56 10.83 0.2861 47.84 54.77
10 0.55 0.187 61.06 11.42 0.1714 51.65 56.89
11 0.45 0.213 65.41 13.96 0.3089 54.31 54.09
12 0.51 0.201 61.32 12.31 0.2786 56.70 57.92
13 0.62 0.195 51.89 10.13 0.99 0.171 37.10 6.34 0.1273 50.43 52.26
14 0.63 0.220 45.31 9.97 0.1419 54.03 60.85
15 0.34 0.291 63.47 18.47 0.70 0.264 33.98 8.97 0.1917 57.31 57.75
22 0.520 0.120 100.64 12.08 0.1046 98.17 101.54
23 0.360 0.167 104.46 17.44 0.1191 97.24 100.91
24 0.370 0.174 97.55 16.97 0.1323 100.68 100.74
25 0.570 0.115 95.81 11.02 0.1271 98.60 102.32
26 0.420 0.154 97.09 14.95 0.1650 101.20 99.94
27 0.340 0.212 87.13 18.47 0.90 0.221 31.57 6.98 0.1722 103.04 101.92
28 0.660 0.103 92.38 9.52 0.1188 102.34 101.47
29 0.370 0.181 93.77 16.97 0.1255 99.94 100.21
30 0.300 0.183 114.56 20.93 0.1527 102.72 99.26

Note: k0 is the wave number corresponding to the maximum growth rate; cr is the propagation speed corresponding tok0; T1=2π(k0cr)−1; Exp. denotes experimental results.
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from the cross-shore and alongshore velocity time series, Tx and Ty, are
also given. The calculated periods corresponding to the frontshear
mode agree with the experimental results, which, as in Table 4, are
around 50 s and 100 s for regular and irregular waves respectively.
This implies that the shear waves observed for the 1:100 slope were
frontshear mode, unlike the 1:40 slope where the experimental
results correspond to backshear modes, as discussed above. This may
be due to the greater width of the surf zone in the case of the 1:100
slope.

5.3. Comparison of shear wave propagation speeds

The observed propagation speeds of the shear waves for irregular
wave cases presented in Figs. 13 and 14 were further examined by
comparing the calculated and measured values set out in Tables 3 and
4. The comparison shows that the calculated results, including the
period (Ty, the dominant frequency in the alongshore direction, which
is taken as the dominant shear wave frequency, and which the results
show to be similar in value to Tx) and the propagation speed both
agree with measured results, and also confirm the results of the
theoretical analysis — that is, that the observed shear waves were
indeed the backshear modes for the 1:40 slope and the frontshear
modes for the 1:100 slope.

6. Discussion

As mentioned above, the calculated periods for the backshear
instability mode are in agreement with the observed data. It is
suggested that the backshear of the mean longshore currents velocity
profile plays an important role in producing the observed shear
Fig. 18. Variations of growth rate, ωi, and propagation speed, cr, v
instability of the longshore currents for the 1:40 slope. However, it
was shown that muchmore attention should be paid to the frontshear
modewhen comparing the calculated periods and propagation speeds
of shear waves with the experimental results for the 1:100 slope, since
the calculated periods for the backshear are approximately double
those for the frontshear.

In attempting to analyze these observations, firstly it was noticed
that the results varied with beach slope; therefore we examined
theoretically the sensitivity of the calculated period of the shear
waves to variation in slope. The effect of the different velocity profiles
on the results of the linear instability analysis were then investigated,
taking into account the fact that it was known from other research
that the instability mode is sensitive to the mean longshore current
profile. This work is significant for the understanding and analysis of
the observations in the present experiments. It is acknowledged that
the measurements of longshore currents near the shoreline and at the
tail of the seaward velocity profile were not sufficiently accurate due
to their nonlinearity, the limited deployment of velocity meters, and
the assumption of uniform depth. In essence, therefore, the fitted
curves of the mean longshore current velocities may be not unique;
thus the influences of experimental limitation and the assumption of
uniform depth on the theoretical analysis need to be investigated by
examining what the effect would be if the velocity profiles were
changed. Finally, the effects of regular and irregular waves on the
shear wave periods are discussed.

6.1. Effects of the plane slope on shear instability

It has been shown that all the velocity profiles have an inflection
point at the back side of the velocity profile (the extremum of
s wave number, k for cases 1–6 (regular waves, 1:100 slope).



Fig. 19. Variations of the growth rate, ωi, and propagation speed, cr, vs wave number, k, for cases 16–21 (irregular waves, 1:100 slope).
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background vorticity) and all the corresponding velocity profiles
have a maximum (dominant) growth rate which corresponds to the
backshear mode of shear instability (see Fig. 16–19). It was also noted
that while the periods obtained from the backshear modes for the
1:40 slope agree with the observed periods of shear waves it is not
true of the 1:100 slope, suggesting that beach slope has a considerable
effect on the backshear modes.

In order to analyze the effects of mean longshore current profiles
on backshear modes for constant frontshear mode, only those fitted
velocity profiles displaying an inflection point at the back side of the
velocity profile were chosen for this purpose: cases 17, 19 and 21 for
the 1:100 slope, and cases 22, 25 and 28 for the 1:40 slope. These were
nondimensionalized by the following relations:

h′ = h= hb; x′ = x= xb; V ′ = V = V0; c′ = c = V0;
k′ = kxb; φ′ = φ= V0xbð Þ; ð14Þ

where the prime denotes a dimensionless variable; xb is the distance
from thewave breaking point to the shoreline; hb is the water depth at
xb; and V0 is the maximum mean longshore current. The nondimen-
sional method of analysis was adopted for the reason that the beach
slope vanishes from the equation after nondimensionalization. Table 5
lists xb and hb for all six cases. Since the wave heights and periods of
cases 17 vs 22, 19 vs 25 and 21 vs 28 are similar, the nondimensional
velocity profiles for each pair of experimental cases are also similar, as
shown in Fig. 20. Therefore, for each pair of nondimensional velocity
profiles, the test conditions differ only in the slope of the beach. Then,
by comparing the calculated curves of linear instability, the effects of
slope on the backshear mode were investigated. To nondimensiona-
lize Eq. (11) using the transformation (14), the relations (14) are
substituted into Eq. (11), thus expressing the equation in nondimen-
sional variables in the same form as Eq. (11) for the plane beach
(h=αx, where α is the beach slope, and x is the distance from the
shoreline).
Table 4
Numerical results of shear waves for 1:100 slope (cases 1–6: regular waves; cases 16–21: i

Case First mode Second mode

k01 cr1 T1 L1 k02

1 0.41 0.112 136.30 15.32 0.90
2 0.45 0.126 111.17 13.96 0.91
3 0.49 0.105 122.41 12.82 1.03
4 0.24 0.135 194.11 26.17 0.76
5 0.39 0.099 163.30 16.10 1.05
6 0.58 0.100 109.02 10.83 0.98
16 0.460 0.062 218.92 13.65 0.990
17 0.280 0.080 279.48 22.43 0.620
18 0.480 0.075 174.35 13.08 1.10
19 0.280 0.121 185.48 22.43 0.560
20 0.340 0.076 243.83 18.47 0.790
21 0.270 0.097 239.94 23.26 0.590
Since, as discussed above, the beach slope vanishes from the
nondimensional governing equation, which has the same form as the
dimensional equation, the shear wave solutions for both the 1:100 and
1:40 slopes then depend only on the nondimensional mean longshore
current velocity profiles. By examining the difference between the
resultant corresponding shear wave periods, the effect of the different
slopes can be seen for the three pairs of velocity profiles under
corresponding test conditions of wave period and height. From the
solutions to the nondimensional counterpart of Eq. (11) using these
nondimensional velocity profiles as background shear, the nondimen-
sional wave number k′0 corresponding to the maximum growth rate,
the nondimensional propagation speed c′r corresponding tok′0 and the
correspondingnondimensional period T′=2π/(k′0c′r)were obtained, as
shown in Table 6. Using the transformation (14), the corresponding
dimensional period T=2π[(k′0/xb)c′rV0]−1=(T′xb)/V0 was obtained, as
also shown in the table.

Table 5 shows that the differences of the nondimensional period T′
are small when comparing cases 17 and 22, 19 and 25, and 21 and 28.
Considering that the slopes are different for the two cases in each pair
of velocity profiles, this small difference confirms that the beach slope
has no effect on the nondimensional results of linear instability: that
is, similarity in the nondimensional velocity profiles leads to similar
nondimensional numerical values. However, the last column of
Table 5 contains differing values for corresponding dimensional
periods. For example, the dimensional period for the 1:100 slope is
approximately twice that for the 1:40 slope. This is due to the different
surf zonewidth xb andwater depth hb for the two slopes. The former is
approximately twice the latter (V0 is similar due to the similar wave
height and period for the two cases). This demonstrates that the
different beach slopes led to different periods of shear wave if one
instability mode only (the backshear mode) occurred for the present
cases. As given in Section 3, the observed periods of shear waves for
the 1:100 and 1:40 slopes are almost the same: around 50 s for regular
waves and around 100 s for irregular waves. The results in Table 5,
however, show that, for the 1:100 slope, the oscillating periods of
rregular waves).

Exp.

cr2 T2 L2 ce Tx Ty

0.110 63.43 6.98 0.0832 54.15 54.48
0.133 52.08 6.90 0.0968 53.72 56.07
0.100 60.93 6.10 0.0975 59.30 56.85
0.131 63.08 8.26 0.1162 55.04 53.67
0.101 59.22 5.98 0.1088 58.59 56.83
0.126 50.86 6.41 0.1115 54.61 53.34
0.054 116.88 6.34 0.0737 98.47 98.97
0.076 133.28 10.13 0.1006 90.93 100.81
0.063 90.62 5.71 0.0714 102.03 98.45
0.116 96.72 11.21 0.0999 97.77 102.63
0.073 109.25 7.95 98.92 99.48
0.083 128.62 10.64 0.0889 98.36 99.84



Table 5
Values of xb, hb and V0 for some cases.

Case 17 Case 19 Case 21 Case 22 Case 25 Case 28

xb (m) 9.80 10.20 9.80 3.70 4.40 4.60
V0 (m/s) 0.127 0.175 0.145 0.154 0.159 0.145
hb (m) 0.098 0.102 0.098 0.0925 0.110 0.115
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shear waves corresponding to the backshear mode do not agree with
the observed results, although they are dominant for both the 1:100
and 1:40 slopes. This conclusion confirms that the observed periods of
shear waves are explicable in terms of the frontshear mode for the
1:100 slope cases only, as discussed in Section 4.

6.2. Effects of velocity profile on frontshear instability

Baquerizo et al. (2001) discussed the longshore current instability
caused by frontshear and backshear instabilities and proved the
existence of frontshear instabilities due to the presence of a second
extremum in the background vorticity at the front side of the longshore
current. As analyzed in Section 5.2, the frontshear instabilitywas indeed
dominant in the present experiment for the 1:100 slope when the
calculated periods and shear wave propagation speeds were compared
to the observed results. Therefore, to some extent the investigation of
the effects of velocity profile on frontshear instability is helpful to the
understanding and application of the shear instability theory.

If the velocity profile has an inflection point at its front side (an
extremum of background vorticity at the front side of the velocity
profile), a frontshear instabilitymodewill occur as statedbyBaquerizoet
al. (2001). In order to detect it, a large number of velocity meters would
be required in this region but this was not the case in the present
experiment; only a limited number were located in this region,
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Fig. 20. Dimensionless velocity profiles for cases 17, 22, 19, 25, 21, and 28.
insufficient to detect the frontshear with accuracy. Hence, even if a
frontshear extremum had been present during the experiment, it may
not have been detected. In order to compensate for this weak point, the
fitted lines for the velocity profiles of the mean longshore currents have
deliberately included a frontshear extremum for the 1:100 slope. The
linear instability results calculated using these velocity profiles are
shown in Figs. 18 and 19. These indicate that one of the instability curves
is related to the backshear mode (the first mode) since it responds to
backshear changes, and theother (the secondmode) is clearly associated
with the existence of the frontshear since the growth rates vary with
frontshear values. Using the second growth rate peak, the values of
corresponding wave number, k, and propagation velocity, cr, were
obtained. The shear wave periods and wavelengths of the frontshear
modes were then calculated from the relation T=2π(k0cr)−1 (see
Table 4). The oscillation periods and propagation speeds corresponding
to the frontshear instability modes are similar to the measured results.
The conclusion that the shear instability is related to frontshear
instability for the 1:100 slope can also be examined by theflow structure
of meandering longshore currents, as shown in Fig. 21 (case 3, regular
wave) and Fig. 22 (case 19, irregular wave). The perturbation velocities
were calculated from Eqs. (12) and (13). The shear wave velocity has
been scaled so that its peak magnitude equals one-sixth of the peak
mean longshore current, in accordancewith experiment analysis results.
The amplitude of v′ obtained in this way is also shown in Fig. 11 (solid
line), and its trend(shownas circles) agreeswith theamplitude fromthe
experiment. The corresponding patterns of dye movement recorded in
the experiment for these two cases are shown in Fig. 12, in which the
wavelengths in the dye pattern are seen to be similar to those of the
calculated frontshear mode. In Table 4, the wavelengths of all the
backshear modes are seen to be double those of the frontshear mode.
From the above discussion it is suggested that the spatial scale of the
frontshear mode for the 1:100 slope substantially agrees with the
observed meandering longshore currents, but the backshear mode does
not.

6.3. Combined effects of velocity profiles on frontshear and backshear
instability

In reality, the velocity profile simultaneously influences both back-
shear and frontshear instability. The combined effectswere evaluated by
analyzing the sensitivity of the calculated periods of the shear waves to
changes in the front- and backshears of the mean longshore currents.

Cases 21 (1:100 beach slope) and 27 (1:40 beach slope) were
randomly chosen for nondimensional analysis. Four nondimensional
velocity profiles were selected for each case and the corresponding
differences between the instability analysis results analyzed using
Eq. (14).

For case 27, four velocity profiles V1, V2, V3 and V4were chosen: see
Fig. 23(a). The profiles were obtained by changing the fitted curves for
the mean longshore current. V1 and V2 have equal backshear but
different frontshear: Fig. 23(b) shows that V1 has a frontshear peak but
V2 does not. V3 and V4 have equal backshear values (different from V1
and V2) and different frontshear: V3 has the same frontshear as V2
Table 6
Dimensionless results calculated from velocity profiles in Fig. 20.

Case Slope k′0 c′r T′=2π/(k′0c′r) T(s)

17 1:100 2.99 0.639 3.29 253.87
19 1:100 2.98 0.628 3.36 182.40
21 1:100 2.95 0.638 3.34 225.74
22 1:40 2.75 0.674 3.39 92.45
25 1:40 2.87 0.680 3.22 89.11
28 1:40 3.12 0.708 2.84 90.10

Note: k′0 is the dimensionless wave number corresponding to the maximum growth rate;
c′r is the dimensionless propagation speed corresponding to k′0, T=2π[(k′0/xb)c′rV0]−1=
(T′xb)/V0.
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Fig. 21. (a) Calculated perturbation velocity fields according to the first mode (backshear mode) for case 3; (b) according to the second mode (frontshear mode) for case 3; (c) total
velocity field superposed on mean longshore currents for case 3. The shear wave velocity has been scaled so that its peak magnitude equals one-sixth of the peak mean longshore
current.
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while V4 has the same frontshear as V1. The cross-shore gradients of
these velocity profiles and the corresponding growth rate, ωi′, and
propagation speed, cr′, are shown in Fig. 23(b), (c) and (d).

The wave number, k0′, corresponding to the maximum growth
rate, the propagation speed, cr′, corresponding to k0′, and the period of
the shear waves (T′=2π(k′0c′r)−1) for these velocity profiles are
given in Table 7, along with the corresponding dimensional period
T=2π[(k′0/xb)c′rV0]− 1=T′xb/V0. For case 27, xb=10.0 m and
V0=0.30 m/s. Comparing V1 and V2, and noting that V1 has a
frontshear extremum but V2 does not, we see that the frontshear
extremum leads to a 15.92% ((3.64−3.14)/3.14=15.92%) decrease in
a) b)

Fig. 22. (a) Calculated perturbation velocity fields according to the first mode (backshear
(c) total velocity field superposed on mean longshore currents for case 19. The shear wav
longshore current.
k0′ and a 9.5% ((2.65−2.42)/2.42=9.5%) increase in T′. The effect of
the frontshear extremum on the backshear instability is similar to that
discussed by Baquerizo et al. (2001), who analyzed data measured at
Leadbetter Beach by increasing the shear at the front side of the
longshore current and showed that the frontshear causes a 7.84%
((0.055−0.051)/0.051=7.84%) decrease in the wave number for
cd=0.007. The effect of varying the backshear can be seen in Table 7,
where V3 shows a 105.61% ((2.420−1.177)/1.177=105.61%) de-
crease in T′ compared with V2. The large difference caused by
variation in backshear and the small difference caused by variation in
frontshear suggest that shear instability is sensitive to backshear but
c)

mode) for case 19; (b) according to the second mode (frontshear mode) for case 19;
e has been scaled so that its peak magnitude equals the one-sixth of the peak mean
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Fig. 23. (a) The four dimensionless current profiles for case 27; (b) dimensionless velocity gradients; (c) dimensionless growth rate; (d) dimensionless propagation speed.

Table 7
Nondimensional results corresponding to V1–V4 for case 27.
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not to frontshear. This demonstrates that backshear instability is the
instability mode for case 27, where the inflection point is at the back
side of the velocity profile (seaward side of the current).

Comparing V2 and V4, the latter having stronger frontshear and
backshear than the former, allows the combined effect of variation in
frontshear and backshear to be investigated. It is seen that V4 has a
114.92% ((2.420−1.126)/1.126=114.92%) decrease in T′ compared
with V2.

The comparison of the dimensional periods of shear waves given
by the four velocity profiles V1, V2, V3 and V4 with the corresponding
experimental results in Table 4 shows that the periods for V1 and V2
are in agreement with experimental results, but differ considerably
for V3 and V4.

The four velocity profiles chosen for case 21, V1′, V2′, V3′ and V4′,
corresponding to V1, V2, V3 and V4 above, are given in Fig. 24. The
differences between backshear and frontshear for each are the same
as those for case 27. The calculated wave number, k0′, the propagation
speed, cr′, and the period of shear waves, T′, are given in Table 8, along
with the corresponding dimensional period, T=T′xb/V0, for xb=9.8 m
and V0=0.152 m/s. The effects of the different four velocity profiles
on the results are found to be similar to those for case 27. In Table 8,
the change in T′ are: 7.53% decrease from V1′ to V2′; 53.61% increase
from V2′ to V3′; and 47.18% increase from V2′ to V4′. The trends and
magnitudes of the changes are similar to those for case 27. From these
results, it is suggested that although the frontshear extremum causes
only a 9.5% increase in T′ for the 1:40 slope and 7.53% for the 1:100
slope, the change of backshear causes decreases of about 105.61% in T′
for the 1:40 slope and 53.61% for the 1:100 slope. This demonstrates
again that the instability mode is the cause of backshear instability.
Current
profile

First mode Second mode

k′0 c′r T′=2π/
(k′0c′r)

T(s) k′0 c′r T′=2π/
(k′0c′r)

T(s)

V1 3.14 0.755 2.650 88.33 6.79 0.679 1.362 45.40
V2 3.64 0.712 2.420 80.67
V3 7.75 0.689 1.177 39.23
V4 8.14 0.685 1.126 37.53
6.4. Effects of regular and irregular waves

The present experimental results show that the periods of shear
waves are about 50 s for regularwaves and 100 s for irregularwaves, for
both the 1:100 and 1:40 slopes. The reason for this phenomenon is to do
with the different surf zonewidths for regular and irregularwaves: that
is, narrower surf zone for regularwaves andwider surf zone for irregular
waves. In the figures, this is reflected in the velocity profiles, which are
narrower for regular waves and wider for irregular waves.
7. Conclusions

A physical laboratory study of the instability of longshore currents
was conducted for two plane beaches sloping at 1:100 and 1:40. A
dye-dispersion experiment was also performed to investigate visually
and spatially the shear instability of longshore currents.

Oscillations of the alongshore currents were observed for all test
cases. Since the long-period oscillation was not indicated by dye patch
movements outside the surf zone, the instability was not identified as
being due to other kinds of motion such aswave basin seiching or other
circulation caused by the limited size of the experiment arrangement.

The observed shear waves had dominant periods of approximately
100 s for irregular waves and a maximum amplitude of about one-
sixth of the maximum mean alongshore currents. The propagation
speeds of the shearwaves were obtained bymeasuring themovement
of the dye patch crest, and were found to be between one-half and
three-quarters of the maximum mean alongshore currents.

Strong nonlinear shear instabilitywas also observed in the alongshore
currents. Their behavior was analyzed from the large deformations of dye
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Fig. 24. (a) The four dimensionless current profiles for case 21; (b) dimensionless velocity gradients; (c) dimensionless growth rate; (d) dimensionless propagation speed.

Table 8
Nondimensional results corresponding toV1′–V4′for case 21.

Current
profile

First mode Second mode

k′0 c′r T′=2π/
(k′0c′r)

T(s) k′0 c′r T′=2π/
(k′0c′r)

T(s)

V1′ 2.67 0.669 3.516 226.69 5.82 0.572 1.886 121.60
V2′ 2.95 0.638 3.337 215.15
V3′ 2.30 0.631 4.326 278.91
V4′ 2.04 0.676 4.554 293.61 3.96 0.311 5.100 328.82
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patches and the presence of large-scale vorticity, the latter evidenced by
vortex-shaped, multidirectional, complex dye movements.

Numerical analysis of the observed current profiles yielded shear
instability periods of approximately 100 s for the 1:40 slope, in
agreement with the experiment. However, disagreement occurred for
the 1:100 slope: the calculated period of the shear waves was about
200 s whereas the corresponding observed period was about 100 s. The
reason for this discrepancy was investigated from several aspects,
including a theoretical analysis of different slope effects, the effect of
changes in front- andbackshear, and theeffect of the frontshearmode. It
was found that none of these explain the discrepancy.We did, however,
confirm that different slopes will, in theory, generate a different shear
wave period, and that the calculated result is theoretically sound, but an
explanation of the discrepancy needs to be further investigated.

In the present study, linear instability analysis of the velocity
profiles with and without an extremum of background vorticity at the
front side of the mean longshore current peak showed that the
frontshear mode contributes only a 9.5% increase in the period of
dominant backshear instability, but the frontshear mode, if present,
may be dominant. Its effect was examined by assuming an artificial
extremum of background vorticity at the front side of the mean
longshore current peak. The change of backshear may cause a
decrease in the period of dominant backshear instability of the
order of 105.61%.
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