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a b s t r a c t

This paper evaluates the ability of time-series models to predict the energy from ocean waves. Data sets

from four Pacific Ocean sites are analyzed. The energy flux is found to exhibit nonlinear variability. The

probability distribution has heavy tails, while the fractal dimension is non-integer. This argues for using

nonlinear models. The primary technique used here is a time-varying parameter regression in logs. The

time-varying regression is estimated using both a Kalman filter and a sliding window, with various

window widths. The sliding window method is found to be preferable. A second approach is to combine

neural networks with time-varying regressions, in a hybrid model. Both of these methods are tested on

the flux itself. Time-varying regressions are also used to forecast the wave height and wave period

separately, and combine the forecasts to predict the flux. Forecasting experiments are run at an hourly

frequency over horizons of 1–4 h, and at a daily frequency over 1–3 days. All the models are found to

improve relative to a random walk. In the hourly data sets, forecasting the components separately

achieves the best results in three out of four cases. In daily data sets, the hybrid and regression models

yield similar outcomes. Because of the intrinsic variability of the data, the forecast error is fairly high,

comparable to the errors found in other forms of alternative energy, such as wind and solar.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recent technological advances have made it possible to capture
the energy of ocean waves for electricity generation at a
competitive cost. Wave farms are being developed in the United
States, Portugal, England, and Scotland, while wave-powered
devices are being tested in other locations. Examples of this
technology include the Pelamis Wave Energy Converter, which
was successfully tested at the European Marine Energy Center in
2004, and the Energen Wave Power device. Utilities need to
forecast power output for operational planning and short-term
trading. The horizons involved in short-term management of
power grids range from as little as a few hours to as long as
several days. The existing work on wave forecasting falls into two
broad categories, large-scale energy balance models and time-
series methods. This paper uses the latter approach, evaluating
the ability of several time-series models to predict the wave
energy flux.

Let Yt denote the power, in watts per meter (W/m) of crest
length, g denote the acceleration caused by gravity (9.086 m/s2),
r denote the density of seawater (1025 kg/m3), H denote the
wave height in meters, and T denote the wave period in seconds.
To distinguish between stochastic series and constants, H and T

are written with time subscripts. The wave energy flux is
ll rights reserved.
measured as

Yt ¼ ðg
2r=64pÞH2

t Tt � 0:492ðH2
t TtÞ (1)

Although the actual power derived from ocean waves is
considerably less than the flux, this measure is a straightforward
to calculate from the existing databases, and serves as a
convenient unit for analysis.

The organization of this paper is as follows. Section 2 consists
of an overview of the data and its statistical properties. Section 3
presents the forecasting models. The main emphasis is on time-
varying parameter regressions, and hybrid models combining
regressions with neural networks. Section 4 consists of a series of
forecasting experiments. Two sets of tests are run, for the hourly
and daily data. Section 5 concludes.
2. The data

The data sets, summarized in Table 1, are from four locations in
the Pacific Ocean, and are available at a basic resolution of 1 h.
Two of these, Point Loma and Half Moon Bay, CA, are coastal
sites. The other two, Kauai, HI, and Aberdeen, WA are deep
ocean sites several hundred miles from the coastlines. The time
series consist of the wave height, the wave period, and in three
cases wind speed, in m/s. The time span ranges from 20 to 36
months. The source is the National Oceanographic and Aero-
nautics Administration’s National Data Buoy Center website

www.sciencedirect.com/science/journal/oe
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Table 1
Statistical properties of the data (all data are available at a 1-h resolution).

Database and series Time span Observations Order of integration Characteristic exponent (a) Fractal codimension

Kauai, HI (170 NM west) January 1, 2005–December 31, 2007 26,280

Energy flux 0.43 1.18 (70.008) 0.059 (70.016)

Wave height 0.41 1.44 (70.022) 0.048 (70.045)

Average period 0.39 1.96 (70.034) 0.012 (70.069)

Wind speed 0.18 1.73 (70.067) 0.051 (70.141)

Point Loma, CA March 26, 2007–December 7, 2007 14,934

Energy flux 0.25 1.48 (70.035) 0.061 (70.071)

Wave height 0.22 1.75 (70.063) 0.052 (70.127)

Dominant period 0.32 1.92 (70.074) 0.008 (70.156)

Aberdeen, WA (315 NM west) April 7, 2006–December 31, 2007 15,149

Energy flux 0.39 1.16 (70.008) 0.055 (70.016)

Wave height 0.42 1.31 (70.017) 0.049 (70.054)

Dominant period 0.26 1.92 (70.037) 0.000 (70.074)

Wind speed 0.17 1.39 (70.012) 0.089 (70.025)

Half Moon Bay, CA January 1, 2006–December 31, 2007 17,520

Energy flux 0.29 1.44 (70.028) 0.121 (70.056)

Wave height 0.28 1.76 (70.027) 0.078 (70.054)

Dominant period 0.27 1.97 (70.052) 0.000 (70.141)

Wind speed 0.17 1.35 (70.010) 0.081 (70.021)

Source: National Data Buoy Center, National Oceanographic and Aeronautics Administration. Website: http://seaboard.ndbc.noaa.gov

Kilowatts, June 1, 2006 to May 31, 2007
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Fig. 1. The flux, Kauai.
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(http://seaboard.ndbc.noaa.gov). In all the databases, there were
missing dates and values. In some instances, dates were available
with no values; in other cases, the dates themselves were missing.
The missing values were interpolated in two stages. First, the date
fields were used to create a continuous calendar. Second, the
hourly wave height and period values were interpolated using the
same regressions as in the forecasting models. Other interpolation
methods yielded similar results (see on this issue Londhe, 2008).
Once the continuous hourly data sets were created, the values
were averaged to a one-day frequency in order to be able to run
forecasting tests for daily values.

Figs. 1–4 show the flux, in kilowatts, at the hourly resolution,
for selected periods. Table 1 presents three measures of its
statistical properties, the order of integration, the characteristic
exponent, and fractal codimension. These were estimated using
multiple scaling, a method derived from fractal theory (Schertzer
et al., 1997). All the tests were run on logs. The order of
integration, denoted I(x), is a measure of the dependence between
time points at distant intervals. The flux is fractionally integrated,
with coefficients lying in the range 0.25–0.43. Fractionally
integrated series in the range 0oxo0.5 do not trend over long
horizons, but are characterized by long memory: the dependence
between time points persists over long separation intervals
(Beran, 1994; Baillie, 1996). The flux shows greater persistence
in deep water locations; there is less serial dependence at the
coastal sites. The wave height and period both also exhibit
considerable persistence. Wind speed, however, shows signifi-
cantly lower coefficients of integration.

The characteristic exponent, denoted a, measures the degree of
tail thickness in the probability distribution. The special cases of
a ¼ 2 and 1 correspond to the Gaussian and Cauchy distributions.
When 1oao2, the distribution has heavier tails than in the

http://seaboard.ndbc.noaa.gov
http://seaboard.ndbc.noaa.gov
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Kilowatts, November 1, 2006 to October 31, 2007
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Fig. 2. The flux, Point Loma.

Kilowatts, January 1, 2007 to December 31, 2007
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Fig. 3. The flux, Aberdeen.

Kilowatts, January 1 to December 31, 2007
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Fig. 4. The flux, Half Moon Bay.
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standard normal. The flux exhibits heavy tails, with a estimated at
1.16–1.18 for the deep water sites, and 1.44–1.48 for the coastal
sites. This is consistent with the results for wave height in Song
(2006). The wind speed also exhibits heavy tails, with a estimated
in the range 1.35–1.74.

The fractal codimension is a measure of the probability of
events outside of a given threshold. Let Yt be a time series, and let
Ut denote the absolute log-difference of Yt, i.e., Ut ¼ |ln Yt�ln Yt�1|.
Let L be a characteristic length, such as a rate of change and let N

be the number of observations. A probabilistic measure of
dimensionality can be written as a power-law relationship:

�D � ln½NðUt4LÞ=NðUtÞ�= ln L; ½NðUt4LÞ=NðUtÞ� � L
�D (2)

The fractal codimension is the difference between the embed-
ding dimension of the space (D) and the fractal dimension (D̆):
C1 ¼ D–D̆. For all C1a0, the process is said to be fractal. When C1

tends toward zero, there are fewer extreme events. As C1

increases, there is a higher probability of fluctuations outside
the threshold. There is strong evidence of fractality in the flux. In
three cases, the codimension lies in the range of 0.055–0.061, with
the estimates for the wave height marginally lower. The Point
Loma data shows extremely high values, with the codimension
estimated as 0.081 for wind speed, 0.077 for wave height, and
0.121 for the flux. The finding of fractality does not indicate the
presence of deterministic attractors, but rather is accounted for by
the multiplicative interactions in the flux, and by wave–wave and
wind–wave interactions.
3. The forecasting models

The literature on wave forecasting by statistical methods
originates with Sverdrup and Munk (1947). Large-scale fre-
quency-domain models have been in use since the 1960s. In fully
developed sea states, the Pierson and Moskowitz (1964) wave
spectrum has often been applied; for partially developed sea
states, the JONSWAP (Joint North Sea Wave Project) spectrum has
been used (Hasselmann et al., 1976, 1980). These models relate the
propagation and change in the wave spectrum to the energy input
by wind, nonlinear energy transfer by interactions among waves,
and dissipation. The wind input term includes the resonant
interaction between waves and turbulent pressure patterns in the
atmosphere, and the feedback between waves and induced
pressure patterns (Phillips, 1957, 1958; Miles, 1957; see also
Snyder et al., 1981). Nonlinear interactions in the wave field
involve the transfer of energy from the dominant region, near the
spectral peak, to higher and lower frequencies (Hasselmann et al.,
1985). Recent advances in this field include third-generation
simulation models, such as the WAMDI Group (1988) model,
which represent state-of-the art knowledge of the physics of wave
evolution (Janssen, 1991; Komen et al., 1994).

A second branch of the literature, originating for the most part
in the 1990s, has used time domain methods. The most popular
method has been neural networks. Representative works include
Deo and Naidu (1998), Deo et al. (2001), Tsai et al. (2002), Deo and
Jagdale (2003), Makarynskyy (2004), Londhe and Panchang
(2006), Jain and Deo (2007), Tseng et al. (2007) and Zamani
et al. (2008). Other methods have also been essayed. Ho and Yim
(2006) propose transfer functions. Roulston et al. (2005) adopt a
probabilistic approach. Malmberg et al. (2005) use Kalman filters,
while Gaur and Deo (2008) adapt genetic programming for
forecasting waves. In the last few years, there have been several
important papers on forecasting time series with fractal proper-
ties, mainly in financial economics (Calvet and Fisher, 2001, 2002,
2004; Lux, 2008). These argue that fractal series can be modeled
as multiplicative combinations of states, and recommend state
transition or Markov-switching models. More recently, however,
Granger (2008) has demonstrated that any nonlinear model,
including state transition paradigms, can be approximated using
regressions with time-varying coefficients.

The basic time-varying parameter model is specified as
follows. Let Yt ¼ the wave energy flux, let ln denote natural logs,
let o denote a coefficient, let the t-subscript denote time
variation, and let et denote the residual:

ln Yt ¼ o0t þo1t ln Yt�1 þo2t ln Yt�2 þo3t ln Yt�3

þo4t ln Yt�4 þ �t ; �t�Pð0;s2
t Þ (3)

where P is the probability distribution, and st
2 is the residual

variance. Experiments were run with various lag lengths. For the
hourly data, lags 1 through 4 were statistically significant. At the
daily frequency, the number of lags is lower. A simple enhance-
ment is to include wind speed (Wt) on the right-hand side:

ln Yt ¼ o0t þo1t ln Yt�1 þo2t ln Yt�2 þo3t ln Yt�3

þo4t ln Yt�4 þo5t ln Wt þ �t (4)

Since wind can have zero values, it is transformed to logs by
adding a small positive constant. Forecasting models with
exogenous forcing factors can be specified in two ways. Either
the flux can be forecasted using lags of wind speed, so that the
term on the RHS of Eq. (4) becomes ln Wt�i. Or the regressions can
be estimated using the contemporaneous value of the forcing
factor, in which case ln Yt+i is predicted using ln Wt+i. In this case,
wind speed must also be forecasted. The latter method was used
here. The model for wind speed is from Reikard (2008):

ln Wt ¼ o0t þo1t ln Wt�1 þo2t ln Wt�2 þo3t ln Wt�3

þo24t ln Wt�24 þoKt ln Kt þ �t (5)

where ln Kt is ambient temperature, in log Kelvins.
Wave energy data can be non-stationary over particular

horizons. Because of seasonal cycles, wave height may trend
upward or downward over periods of several months. When time
series are non-stationary, a common procedure is to first-
difference, as in the well-known Autoregressive, Integrated,
Moving Average (ARIMA) class of models (Box and Jenkins,
1970). While the notation associated with this class of models is
different, they are essentially regressions on differences, with
additional terms for moving averages or causal inputs. In essence,
the issue here is whether to estimate regressions on levels or
differences. Both methods are tested.

A further possibility is to forecast the components of wave
energy separately and combine the forecasts to predict the flux.
The wave height can depend on the period, so this term is
included in the equation:

ln H2
t ¼ o0t þo1t ln H2

t�1 þo2t ln H2
t�2 þo3t ln H2

t�3

þo4t ln H2
t�4 þo5t ln Tt þo6t ln Wt þ �t (6)

The period itself is predicted by a regression on lags:

ln Tt ¼ o0t þo1t ln Tt�1 þo2t ln Tt�2 þo3t ln Tt�3 þo4t ln Tt�4 þ �t

(7)

There is as yet little evidence as to how well fractal series can be
approximated by non-parametric models, such as neural net-
works. However, neural nets have been widely used to model
nonlinear data sets. Consequently, while the main emphasis here
is on the time-varying coefficient models, neural nets are tested as
a possible alternative. The system architecture used here consists
of a multilayer perceptron, trained using a backpropagation
algorithm. The net can be trained by epoch (a forward and
backward pass over all the observations in the sample) or by
example (a pass over individual observations). In iterative
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forecasting exercises, the input and bias weights can be retained
from the previous period or can be restarted at each time point.

A final idea is to combine the neural network and time-varying
regressions, in a hybrid model. Hybrid models have recently
attracted some interest because they can combine the best
features of different techniques. References include Nelson et al.
(1999), Hibbert et al. (2000), Zhang (2003), Zhang and Qi (2005),
Hibon and Evgeniou (2005) and Aburto and Weber (2007).
Typically, in these hybrid models, an initial regression is
estimated, and the residuals are then processed using a neural
net. The procedure here is actually the opposite. First, the net was
trained, then the memory vector from the net was used as an
input in a time-varying regression, and this equation was
forecasted. In effect, the output of the neural net is used as a
causal factor. The regression then adjusts the time-varying
weights associated with the memory vector and other causal
factors at each observation.
4. Forecasting tests

Two sets of forecasting tests were run, for the hourly data, over
horizons from 1–4 h, and for the daily data, at horizons of 1–3
days. The forecasts were iterative. In other words, the models
were initially estimated over an initial set of starting values or
training sample, then models were forecasted, and then at the
next step, the models were re-estimated, continuing through
the entire data set. All the predicted values are true out-of-sample
forecasts, in that they use only data prior to the start of
the forecast horizon. The reported error for horizons beyond one
period is the forecast for that horizon only; intervening values are
omitted. In other words, the error at t+2 omits the error at t+1.
The criterion used to evaluate the forecasts is the mean absolute
percent error, defined as the average value of [Abs (log of
forecast�log of actual)]. As recommended in Theil (1971), the
forecast errors are evaluated relative to a random walk, i.e., setting
the forecast equal to the most recently observed value. The tables
report both the actual error and the ratio of the error to the error
from the random walk.

The first specification issue is estimating the time-varying
coefficients. When an unrestricted Kalman filter (Kalman, 1960)
was used, the coefficients were observed to fluctuate excessively,
causing forecast accuracy to deteriorate. The forecast errors from
the Kalman filter were only slightly lower than in the random
walk. Given this, the regressions were estimated using a sliding
window. Experiments were run with different window widths,
and the span that yielded the smallest forecast errors was used. At
short window widths, the results were similar to the Kalman filter.
In the hourly tests, as the window width extended to more than
960 h, the forecasts became too inertial. The smallest errors were
found in a range of 400–800 h. The tests are reported for a window
width of 600 h for the Kauai and Aberdeen data, and 480 h for the
other two data sets. In the daily tests, the optimal window width
was in the range of 60 days. When shorter window widths were
used, the coefficients again became too volatile.

The second specification issue is the neural net. Experiments
were run with different numbers of hidden layers, and learning
gradients. In the daily data, one direct connection and one hidden
layer produced the best forecasts. In the hourly data the
preferred configuration was one direct connection and three
hidden layers. The inputs were lags of the flux, and wind speed.
The bias and input weights were allowed to change at each point
in the iterative forecasts. When the weights were allowed to
change at each interval, training by example caused the output to
be excessively variable. Consequently, the nets were trained by
epoch. The optimal training sample used for the neural nets was
significantly shorter than for the regressions. When the training
samples were set to the same lengths as the window widths, the
net forecasts were too inertial. Training samples, on the order of
144 h and 2 weeks were used in the hourly and daily tests. The
initial neural net forecasts generally yielded somewhat smaller
errors than in the Kalman filter tests, but larger errors than in the
sliding window regressions. By comparison, in the hybrid models,
the errors were always lower than in the initial pass with the
neural net. Consequently, the results from the hybrid rather than
the net are reported.

The code for all the models was written using the Regression
Analysis of Time Series program owned by Estima, Inc., a software
company in Illinois (www.estima.com). Additional experiments
with neural nets were run using Neural Solutions software
(www.nd.com).

In the hourly tests, Model 1 is the time-varying regression
(Eq. (3)). Model 2 includes wind speed (Eq. (4)). This is omitted in
Point Loma data, where wind speed is unavailable. Model 3 is the
regression in differences. Model 4 is the hybrid. Model 5 combines
the forecasts for the components (Eqs. (6) and (7)). For reference,
the errors from the best forecasts for the components are also
reported. Table 2 reports the results from the hourly tests. In the
Kauai data set, all the models reduce the error by about 5 percent,
at all horizons. Forecasting the two components separately and
the regression in differences are marginally better than the
alternatives. In Point Loma, forecasting the two components
separately does slightly better than the other models, with an
improvement of about 8 percent relative to the random walk. The
hybrid is slightly better than the regressions. In Aberdeen, the
models on average do about 6 percent better than the random
walk at the 1-h horizon, although as the horizon extends, the
improvement diminishes. Forecasting the components separately
achieves the best results, with an improvement of 7 percent. The
hybrid and the regression with wind speed are very close. In Half
Moon Bay, the regression in differences does better than the other
models, probably because this model is better able to deal with
localized trending in the data.

Figs. 5–8 present the absolute percent error from the best
model at the 1-h horizon. In each case, the average error is raised
by the presence of frequent outliers. In some data sets these occur
intermittently. In other instances, they are pervasive.

Table 3 presents the results for the tests at a daily resolution. In
the Kauai data set, forecasting the components separately does
better than fitting models to the flux, but only at the 1-day
horizon. However, at the 2–3-day horizons, the hybrid achieves
the best results. In Point Loma, the hybrid does better at 1- and
3-day horizons, while at the 2-day horizon three models do about
equally well. In Aberdeen, the hybrid achieves the consistently
best results, although at the 1-day horizon the regression with
wind speed is similar. Forecasting the components separately also
does better at the 1-day horizons, but there is no improvement
thereafter. In the Half Moon Bay data set, three models achieve
comparable results, the regression, the separate forecast of the
components and the hybrid. The regression in differences did not
predict well with any of the daily data sets.
5. Conclusions

Because the flux is the product of two stochastic series, the
forecast error at high frequencies is necessarily high. At the hourly
frequency, it is often preferable to forecast the wave height and
period separately. This procedure yielded the best results in three-
fourths of the data sets. Among the paradigms that were
estimated for the flux directly, the experiments at the hourly
frequency favored the time-varying parameter regression and

http://www.estima.com
http://www.nd.com
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Components forecasted separately, 1-hour horizon, June 1, 2006 to May 31, 2007 
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Fig. 5. The absolute forecast error, Kauai.

Table 2
Comparison of the mean absolute percent forecast error, hourly data.

Model Forecast horizon

1 h 2 h 3 h 4 h

Error Ratio Error Ratio Error Ratio Error Ratio

Kauai

Random walk 0.2679 0.3211 0.3622 0.3963

Regression: logs, stochastic coefficients 0.2556 0.9541 0.3060 0.9530 0.3420 0.9442 0.3755 0.9475

Regression with wind speed 0.2574 0.9608 0.3064 0.9542 0.3453 0.9533 0.3767 0.9505

Regression in differences 0.2552 0.9526 0.3058 0.9524 0.3412 0.9420 0.3749 0.9460

Hybrid (regression, neural network) 0.2563 0.9567 0.3059 0.9527 0.3442 0.9503 0.3766 0.9503

Components forecasted separately 0.2548 0.9511 0.3049 0.9495 0.3429 0.9467 0.3743 0.9445

Error for the wave height squared 0.2269 0.2796 0.3193 0.3519

Error for the wave period 0.0889 0.0938 0.0991 0.1046

Point Loma

Random walk 0.1739 0.1896 0.2039 0.2185

Regression: logs, stochastic coefficients 0.1609 0.9252 0.1758 0.9272 0.1903 0.9333 0.2049 0.9378

Regression in differences 0.1604 0.9224 0.1751 0.9235 0.1891 0.9274 0.2040 0.9336

Hybrid (regression, neural network) 0.1605 0.9229 0.1752 0.9241 0.1884 0.9240 0.2024 0.9263

Components forecasted separately 0.1590 0.9143 0.1741 0.9182 0.1887 0.9255 0.2039 0.9332

Error for the wave height squared 0.1063 0.1262 0.1461 0.1646

Error for the wave period 0.1045 0.1098 0.1211 0.1211

Aberdeen

Random walk 0.1819 0.2071 0.2345 0.2631

Regression: logs, stochastic coefficients 0.1722 0.9467 0.1995 0.9633 0.2273 0.9693 0.2566 0.9753

Regression with wind speed 0.1709 0.9395 0.1965 0.9488 0.2235 0.9531 0.2509 0.9536

Regression in differences 0.1722 0.9467 0.1998 0.9648 0.2282 0.9731 0.2573 0.9780

Hybrid (regression, neural network) 0.1716 0.9434 0.1976 0.9541 0.2247 0.9582 0.2513 0.9552

Components forecasted separately 0.1689 0.9285 0.1938 0.9358 0.2198 0.9373 0.2482 0.9434

Error for the wave height squared 0.1149 0.1413 0.1696 0.1993

Error for the wave period 0.1025 0.1114 0.1198 0.1291

Half Moon Bay

Random walk 0.1989 0.2256 0.2517 0.2776

Regression: logs, stochastic coefficients 0.1955 0.9829 0.2224 0.9858 0.2491 0.9897 0.2754 0.9921

Regression with wind speed 0.1958 0.9844 0.2221 0.9845 0.2490 0.9893 0.2755 0.9924

Regression in differences 0.1894 0.9522 0.2158 0.9566 0.2419 0.9611 0.2681 0.9658

Hybrid (regression, neural network) 0.1947 0.9789 0.2197 0.9738 0.2475 0.9833 0.2743 0.9881

Components forecasted separately 0.1911 0.9608 0.2182 0.9672 0.2449 0.9730 0.2719 0.9795

Error for the wave height squared 0.1551 0.1841 0.2121 0.2408

Error for the wave period 0.0889 0.0877 0.1058 0.1135

G. Reikard / Ocean Engineering 36 (2009) 348–356 353
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Components forecasted separately, 1-hour horizon,
September 1, 2006 to August 31, 2007
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Fig. 6. The absolute percent error, Point Loma.

Components forecasted separately, 1-hour horizon,
January 1 to December 31, 2007 
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Fig. 7. The absolute percent error, Aberdeen.
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hybrid models. Including the wind speed generally did not
improve predictive accuracy. This outcome is at first sight difficult
to reconcile with the finding that wind speed is statistically
significant in the regressions. However, much of the information
in wind speed that is relevant to prediction is already captured by
the lags of the flux. Further, there is no improvement from
including wind speed at the longer horizons, in part because the
accuracy of the wind speed forecasts degrades. Whether to run
the regressions in levels or differences depends largely on
whether the data exhibits localized trending. In data sets where
the data trends over short-term horizons, due to seasonal
variations, differencing can do slightly better than regression on
levels.

The tests generally support the time-varying parameter
methodology. In this respect, the most important specification
issue in the time-varying regressions was the width of the
window. There is no hard-and-fast rule for the optimal window
width. Instead, this must be determined empirically.

The favorable results from the regressions should not be read
as rejecting neural nets as a forecasting methodology. The findings
for the net are subject to the caveat that only one type of system
architecture was used. It is possible that with other architectures
such as genetic optimization, the results in the preliminary
experiments would have been preferable. The ability of neural
nets to predict fractal series is as yet a largely unexplored area,
and should be investigated. In this respect, an interesting finding
is that the length of the training sample had a significant impact
on the accuracy of the neural net forecasts. Again, the optimal
length of the training sample needs to be determined by empirical
testing. The hybrid models, however, generally did well, particu-
larly at the daily resolution. In essence, the memory vector from
the neural net can contribute additional information that
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Table 3
Comparison of the mean absolute percent forecast error, daily data.

Model Forecast horizon

1 day 2 days 3 days

Error Ratio Error Ratio Error Ratio

Kauai

Random walk 0.3251 0.4602 0.5134

Regression: logs, stochastic coefficients 0.3097 0.9526 0.4218 0.9166 0.4586 0.8933

Regression with wind speed 0.3091 0.9508 0.4221 0.9172 0.4589 0.8938

Regression in differences 0.3132 0.9634 0.4325 0.9398 0.4703 0.9160

Hybrid (regression, neural network) 0.3112 0.9572 0.4215 0.9159 0.4551 0.8864

Components forecasted separately 0.3054 0.9394 0.4234 0.9200 0.4654 0.9065

Error for the wave height squared 0.2583 0.3688 0.4018

Error for the wave period 0.1153 0.1516 0.1636

Point Loma

Random walk 0.3164 0.4752 0.5278

Regression: logs, stochastic coefficients 0.2857 0.9030 0.4104 0.8636 0.4349 0.8240

Regression in differences 0.2955 0.9339 0.4311 0.9072 0.4743 0.8986

Hybrid (regression, neural network) 0.2815 0.8897 0.4101 0.8630 0.4289 0.8126

Components forecasted separately 0.2887 0.9125 0.4108 0.8645 0.4351 0.8244

Error for the wave height squared 0.2638 0.3615 0.3911

Error for the wave period 0.1105 0.1481 0.1571

Aberdeen

Random walk 0.4436 0.6134 0.6553

Regression: logs, stochastic coefficients 0.4192 0.9450 0.5612 0.9149 0.5974 0.9116

Regression with wind speed 0.4052 0.9134 0.5758 0.9387 0.6013 0.9176

Regression in differences 0.4097 0.9236 0.5730 0.9341 0.6057 0.9243

Hybrid (regression, neural network) 0.4041 0.9110 0.5592 0.9116 0.5925 0.9042

Components forecasted separately 0.4192 0.9450 0.5643 0.9200 0.6025 0.9194

Error for the wave height squared 0.3839 0.5066 0.5539

Error for the wave period 0.1347 0.1661 0.1697

Half Moon Bay

Random walk 0.4408 0.6241 0.6801

Regression: logs, stochastic coefficients 0.4198 0.9524 0.5968 0.9563 0.5972 0.8781

Regression with wind speed 0.4231 0.9598 0.5972 0.9569 0.6259 0.9203

ARIMA: logs, stochastic coefficients 0.4282 0.9714 0.6012 0.9633 0.6502 0.9560

Hybrid (regression, neural network) 0.4124 0.9356 0.5916 0.9479 0.5971 0.8780

Components forecasted separately 0.4163 0.9444 0.5918 0.9482 0.6038 0.8878

Error for the wave height squared 0.4076 0.5435 0.5753

Error for the wave period 0.1221 0.1534 0.1595

Regression in differences, 1-hour horizon, January 1 to December 31, 2007
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2007
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Fig. 8. The absolute percent error, Half Moon Bay.
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enhances the predictive ability of the time-varying parameter
regressions.

The major caveat associated with these findings is that the
errors from the various forecasting models all lie within a fairly
narrow range. Evidently, there are limits to the predictability of
the flux, even with the most advanced models currently available.
The range of error in these data sets is 17–25 percent at an hourly
horizon, 28–41 percent at a daily resolution. This is similar to the
range of errors found in other forms of renewable energy, such as
solar and wind. The high error implies that utilities will need
backup sources of power in order to compensate for the inherent
variability of waves.
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