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Abstract. A new and general approach is presented to allow standard subgrid schemes to be suitable
both for surface layer and free-stream turbulence. Simple modifications to subgrid schemes are pro-
posed and derived for any vertical stability conditions. They are simple to implement in models and
are suitable for more complicated simulations such as large-eddy simulation with inhomogeneous
surface conditions or complex topography. They are also applicable to mesoscale and large-scale
models. These modifications are physically justified by recent measurements of spectra close to
the ground. The spectral analysis presented shows how the energy deficit of blocked turbulence
for a given dissipation (‘anomalous dissipation’) dramatically affects the coefficients to be used in
subgrid schemes. As shown for neutral and convective cases with wind shear, these changes allow
us to substantially improve the prediction of profiles for the mean quantities in the surface layer.
Agreement with similarity laws in the unstable case is found up to about 0.2zi , for simulated shear,
stability profiles and dissipation rates of turbulent kinetic energy.
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1. Introduction

The representation of the full depth of the atmospheric boundary layer with
a unique parameterization is a difficulty shared by all numerical models from
large-eddy simulations (LES) to general circulation models. This issue has been
considered in numerous works, mostly in the LES context. The purpose of the
present paper is to provide a physical explanation and a solution suitable for any
models. LES are now widely used as powerful tools to study various turbulent flows
occuring in the planetary boundary layer (PBL). Large eddy simulation models
separate the scales of turbulence into two ranges, resolved and subgrid scales.
The resolved scales (representing larger scales) are assumed to contain most of the
energy of turbulent motion whilst on subgrid scales, motions are the less energetic.
This approach works well far from regions of large gradients. In the mid-PBL, for
example, the resolved vertical fluxes are on average about 10 times larger than the
subgrid vertical fluxes. However, results from LES show that the subgrid contribu-
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tion becomes larger than the resolved part near the surface or where temperature
inversions exist. In this paper, we will only address the first of these two issues.

The horizontal characteristic size of energy-containing eddies scales with dis-
tance from the surface (for a review, see Counihan, 1975). As an immediate
consequence, LES fails to explicitly resolve these eddies. Turbulence near the sur-
face is thus mostly taken into account through the subgrid-scale parameterisation.
Consequently, LES results become more sensitive to the subgrid scheme in this re-
gion. Past studies (Mason and Thomson, 1992; Andrèn et al., 1994; Sullivan et al.,
1994) have shown that the traditional subgrid-scale eddy viscosity fails to predict
the shear profile near the surface. It is a long-standing problem in LES that the wind
profile differs from similarity laws in the surface layer. Moin and Kim (1982) had
previously shown for LES of shear-driven channel flow that the turbulence cannot
be maintained without decreasing the energy dissipation. In general the mean shear
is over-predicted near the ground in standard LES. This error can contaminate
the solution in the whole atmospheric boundary layer through buoyancy driven
vertical fluxes (Khanna and Brasseur, 1998). Using direct numerical simulations,
Juneja and Brasseur (1999) have diagnosed several shortcomings in current subgrid
turbulence schemes mainly linked to the neglected acceleration terms.

To better predict the gradients of wind and temperature in the near-surface
region, Mason and Thomson (1992) and Sullivan et al. (1994) suggested modi-
fications to subgrid turbulence schemes. Their models show improved prediction
of the main characteristics in the surface layer. Mason and Thomson (1992) argued
that the local energy transfer from subgrid to resolved scales can become import-
ant when the more energetic scales are not resolved. They included a stochastic
‘backscatter’ of energy to represent this transfer leading to an empirical increase
in the Smagorinsky constant when approaching the wall. Sullivan et al., (1994)
(hereafter SWM94) modified their subgrid scheme by forcing the subgrid stresses
to approach the mean resolved turbulent stresses near the surface. In other words,
the subgrid viscosity is adapted so that the similarity law is strictly verified at the
first model level and with a relaxation above. These modifications appear to work
in the near neutral boundary layer. LES have also been performed through the use
of dynamical models as proposed by Germano et al. (1991). In relating stresses at
different scales, the subgrid-scale coefficient is determined from the resolved scales
and is assumed scale invariant. This formulation of the dynamical models breaks
down near a rigid boundary. A generalization of the dynamical model, which
allows the coefficient to change with the mesh size in a consistent manner, was
recently suggested by Porté-Angel et al. (2000). This latter approach was found to
largely improve the results near the surface as given in LES of neutral atmospheric
boundary layers. It is worthwhile to notice that in all the approaches summarized
above, the subgrid mixing length is assumed to be the Prandtl mixing length κz
near the wall.

Khanna and Brasseur (1997) have examined in detail how well high-resolution
LES predicts means, variances, budgets of turbulent kinetic energy and temperat-
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ure variance, compared with observed Monin–Obukhov similarity laws. Horizontal
and vertical resolutions are also important issues to consider though it is impractical
to have enough resolution to solve all energetic motions in the whole surface layer.
Clearly, the better the resolution, the larger is the well simulated part of the surface
layer. Nevertheless, Khanna and Brasseur (1997) have shown that the improvement
to expect from a modified subgrid scheme is much better than the improvement
gained from an increase of resolution. In this paper, we will use horizontal and
vertical resolutions currently used in standard LES.

The present study seeks a simple approach to improve the representation of the
surface layer in standard LES. The approach is also required to be suitable for more
complicated models such as LES with inhomogeneous surface conditions, complex
topography and any vertical stability conditions. In a further paper, an application
of the same method to mesoscale and large-scale models will be presented. Sec-
tion 2 presents the general problem of applicability to surface-layer behaviour of
standard subgrid schemes designed to work in free-stream turbulence. Section 3
uses some recent results on spectra near the surface to give the physical basis of
our approach; this spectral analysis discards for the choice of the subgrid mixing
length the Prandtl mixing length κz. The resulting subgrid model is proposed in
Section 4. The idea is to have a scheme for the above specified conditions including
applications to mesoscale and large-scale models. Results from LES using this
approach are shown in Section 5, together with comparisons with observations and
previous LES studies. Mean wind and temperature profiles as well as other statist-
ical moments are compared to observed Monin–Obukhov similarity laws fitted on
observations.

2. The Problem

In atmospheric boundary-layer modelling it is standard practice to look at the beha-
viour of turbulence closures in considering the one-dimensional, neutrally stratified
case. This simple case is enough to illustrate the general problem of reliability of
subgrid turbulence scheme derived for free sheared turbulence when applied to
turbulence blocked by a ‘wall’.

Using the equilibrium theory for an horizontally homogeneous turbulent flow
(e.g., Townsend, 1976, pp. 135–140), the turbulent kinetic energy equation reduces
to a balance of dissipation ε with shear production:

ε = −u′w′ ∂u
∂z

− v′w′ ∂v
∂z

(1)

where u, v,w are the components of wind along x, y, and z directions, respectively
(z is the vertical direction, perpendicular to the ground).

In the common subgrid-scale eddy viscosity approach, the Reynolds stresses
are modelled as:
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−u′w′ = Km
∂u

∂z
(2)

−v′w′ = Km
∂v

∂z
(3)

with

Km = LKE
1/2, (4)

where E denotes the subgrid turbulent kinetic energy and LK has the dimension
of a length.

Dimensional arguments show that the dissipation can be expressed as

ε = E3/2

Lε

, (5)

where Lε has the dimension of a length.
In mesoscale and large-scale models, the lengths are generally specified using

empirical formulations (e.g., Louis, 1979) or by using the properties of the bound-
ary layer in the considered column of the atmosphere (e.g., Troen and Mahrt, 1986;
Cuxart et al., 2000).

In LES models, for the case of free turbulence (i.e., away from the ground),
spectral arguments can be used (e.g., Schmidt and Schumann, 1989, see also
Section 3) to show that:

LK = CKL (6)

Lε = L

Cε
(7)

where L is the mesh size and

Cε = π

(
2

3α3

) 3
2

(8)

CK = 1

π

(
2

3α3

) 3
2

(9)

where α3 is the ‘three-dimensional’ Kolmogorov constant. Measurements give
α3 = 1.6 ± 0.02 (Andreas, 1987).

In some LES models (e.g., SWM94), this unique length scale L is bounded
near the surface to κz, where κ is the Von Karman constant, but there is no clear
theoretical justification for this assumption. The goal of the following is to derive
some theoretical arguments for the values of LK and Lε close to the ground.
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Using the equilibrium hypothesis (Equation (1) together with Equations (2)–
(5)), the subgrid turbulent kinetic energy and the Reynolds stress can be written
as:

E = LεLK

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]

(10)

u′w′2 + v′w′2 = LK
3Lε

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]2

(11)

On the other hand, the similarity theory for the surface layer allows in the neutral
case to relate the wind-speed gradient to the friction velocity u∗ through

u∗
κz

=
[(
∂u

∂z

)2

+
(
∂v

∂z

)2
] 1

2

(12)

E = αu∗2 (13)

where u∗2 =
(
u′w′|sfc

2 + v′w′|sfc
2
) 1

2
, κ is the Karman constant, and subscript |sfc

indicates surface value. Observational data suggest α ranges from 3.75 (Wyngaard
et al., 1974) to 5.47 (Garratt, 1992).

In order to compare these relationships to those derived from the turbulence
subgrid parameterisation, they can be rewritten as:

E = ακ2z2

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]

(14)

u′w′2 + v′w′2 = (κz)4

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]2

. (15)

So far, the equations for the subgrid scheme ((10), (11)) and for the similarity
laws ((14), (15)) have been derived separately. Now supposing that both are valid
in the surface layer, the two following equations are obtained:

LK = 1√
α
κz (16)

Lε = α
3
2 κz. (17)

Going back to the more conventional notations (6) and (7), it can be finally
written:
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L = κz (18)

Cε|sfc = 1

α
3
2

(19)

CK |sfc = 1√
α
. (20)

For α = 3.75 (5.47), we should have for the neutral surface layer

Cε|sfc = 0.137 (0.078) (21)

CK |sfc = 0.516 (0.428). (22)

In fact, the constants in the subgrid turbulence schemes are kept to their free-
stream values ((8), (9)), (9)) as discussed above. In the present model, the values
of Cε and CK are thus 0.7 and 0.066, respectively. In the following, CK and Cε are
used exclusively for these free-stream values.

For cases where the primary balance is between shear production and dissip-
ation, these free-stream values imply in the surface layer a value of the turbulent
kinetic energy that is too small and a vertical wind shear that is too large. This
shortcoming of current subgrid turbulence schemes is illustrated in Figure 1 show-
ing a comparison between LES and similarity theory predictions for a neutral case.
It is important to notice that the problem does not originate from a bad choice of
constants but from the use in the surface layer of a subgrid scheme derived for free-
stream turbulence. Two main hypotheses, used to derive the subgrid fluxes given
by Equations (10) and (11) from the full second-order moment equations, seem to
fail especially in the surface layer. First, as discussed in Sommeria (1976), Mason
and Thomson (1992), and Cuxart et al. (2000), it is assumed that turbulence is iso-
tropic. Near the surface, the anisotropic production rates clearly become important.
Second, it is hypothesised that the mesh size lays inside the inertial range of the
energy spectrum. This hypothesis is not relevant near the surface where energy-
containing eddies scale roughly with the distance from the surface (Counihan,
1975). It is therefore not surprising that the standard subgrid schemes cannot be
applied in a straightforward manner to LES models near the surface. This remark,
made for LES models, can also be applied to 1D turbulence schemes such as those
used in mesoscale and general circulation models (GCM). The simple derivation
above gives a simple explanation as to why the constant CK used in these latter
models is generally set up empirically to values larger than 0.066. For mesoscale
and large-scale models, Therry and Lacarrere (1983), for example, proposed a
value as large as CK = 0.5.

For LES models, two types of solutions to this problem have been proposed.
Firstly, larger values of the constants Cε|sfc and CK |sfc can be empirically specified
as in some mesoscale and large-scale models. The drawback is that these values
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(a)

(b)

Figure 1. Profiles for neutral flow of (a) normalized wind speed and (b) vertical shear as computed
from standard LES (dashed line) and deduced from similarity theory (solid line).
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are no longer adapted to free-stream turbulence where they should be determ-
ined as described above. Secondly, we can make the subgrid turbulence scheme
more complex by introducing an anisotropic term that becomes larger near the
surface (e.g., Schumann, 1975; Moin and Kim, 1982; Mason and Thomson, 1992;
SWM94). This last method has shown to be efficient in improving the simulation
of the surface layer in LES. The present study seeks a method simple to implement
and suitable for LES models as well as mesoscale models and GCMs. In particular,
we want the method to be applicable for any stability conditions and any type of
surface (e.g., over complex topography or heterogeneous roughness).

3. Spectral Analysis of the Problem

3.1. INTRODUCTION

Away from the ground, one usually considers the three-dimensional spectrum
E(k), which represents the turbulent kinetic energy, within the range of wave
numbers [k, k + dk]. Close to the ground, one cannot consider the turbulence
to be nearly isotropic, and therefore one must be more careful with the defin-
itions. Writing ui for the fluctuating velocity field, one can define Rij (r, z) =
〈ui(x, y, z)uj (x + r, y, z)〉 where 〈 . 〉 is the ensemble average. Then, we de-
note by Eij (k1, z) the Fourier transform of Rij with respect to r and E(k1, z) =
1
2(E11(k1, z)+ E22(k1, z)+ E33(k1, z)). Obviously, the turbulent kinetic energy at
the height z is given by

∫ +∞
−∞ E(k1, z) dk1.

Some recent measurements have shown that these velocity spectra change dra-
matically close to the ground (cf. Hoxey and Richards, 1992; Kim and Adrian,
1999; Fuehrer and Friehe, 1999) in the following way: for k1 > 2π/z, E11,
E22 and E33 behave in the same ways as in homogeneous turbulence, but for
2π/� < k1 < 2π/z, where � is a very large length scale (up to 12 times the
boundary-layer height or the pipe radius in pipe experiments), E11 and E22 have a
self similar behaviour in k−1

1 whileE33 is roughly flat (see Figure 2). This behaviour
is analysed from a theoretical point of view in Hunt and Morrison (2000) and Hunt
and Carlotti (2000).

This gives the following approximate behaviour for E(k1):

E(k1) =
{

3
10α3ε

2/3k
−5/3
1 if k1 > 2π/z

6
55α3ε

2/3 z2/3

(2π)2/3 [ 21
12

1
k1

+ z
2π ] if 2π/z > k1 > 2π/�

(23)

with ε(z) = u3∗/(κz). In homogeneous isotropic turbulence, one simply hasEhom =
3

10α3ε
2/3k

−5/3
1 for all k.
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-1

-5/3

1/z1/Λ k1

E11, E 22

1/z’

k1

33

33E  (z’)

1/z’1/z

E  (z)
-1

-5/3

Figure 2. Sketch of the measured one-dimensional spectra in atmosphere and pipe very close to the
boundary (cf. Hunt and Carlotti (2000) for most details about these spectra).

3.2. DISSIPATION LENGTH SCALE

This form of the spectra produces a deficit of turbulent kinetic energy for a given
dissipation, as indicated by the shaded area in Figure 3.

More precisely, first we recall the method described in Schmidt and Schumman
(1989) for homogeneous turbulence. Knowing that Ehom(k) = α3ε

2/3k−5/3, one
can calculate Ehom the subgrid kinetic energy by

Ehom =
∫ ∞

kH

Ehom(k) dk = 3α3

2
ε2/3k

−2/3
H . (24)
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1

k1

-1

1/z

-5/3

E(k  )

Figure 3. Illustration of the anomalous dissipation close to a surface: solid line (——):
one-dimensional kinetic energy spectrum for isotropic turbulence for a given dissipation; dashed
line (– – –): one-dimensional kinetic energy for wall blocked turbulence and the same dissipation.

Now, if � is the mesh size, one finds kH = π/�, where kH is the cut-off wave-
number of the filter. Therefore one gets

Lε = �

π [2/(3α3)]3/2
(25)

or

Lε = L

Cε
with Cε = π

( 2

3α3

)3/2
. (26)

In the case of turbulence blocked by the ground, having a behaviour as shown
in Figure 2, a completely rigourous argument is not possible any more, because
there is no clear definition of what the large eddies are. However, as it can be seen
in Figure 3, for a given dissipation, there is a deficit of turbulent kinetic energy in
the case of wall-bounded turbulence. Define

 ε =
∫∞
kH
Ehom(k1) dk1∫∞

kH
Ebl(k1) dk1

, (27)

where Ebl is given by Equation (23). We claim that  ε, which is defined with
respect to the streamwise direction, is a good measure of the global deficit of
turbulent kinetic energy; the turbulent kinetic energy of the actual flow is equal
to Ehom (given by Equation (24)) divided by  ε,

E = Ehom

 ε
⇒ ε = Cε

E3/2

�/ 
3/2
ε

. (28)
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Using Equation (23) and its equivalent for homogeneous turbulence, it is straight-
forward to calculate

 ε = (2�/z)2/3

7/22 ln(2�/z)+ 2/11(1 − z/(2�))+ 1
. (29)

Taking Equations (28) and (29), one therefore gets

ε = Cε
E3/2

Aεz
where Aε = 1

2

( 7

22
ln

2�

z
+ 2

11

(
1 − z

2�

)
+ 1

)3/2
. (30)

3.3. EDDY VISCOSITY LENGTH SCALE

Evaluating LK is even less easy to do rigourously. For simplicity, we will therefore
first show the case of free-stream turbulence, using the same arguments as Schmidt
and Schumman (1989) but a different mathematical formulation, and only after that
deal with wall-bounded turbulence.

First, we recall Equation (1) ((.) denotes the filtering operation)

ε = −u′w′ ∂u
∂z

− v′w′ ∂v
∂z
.

Used together with Equations (2) and (3), this gives

ε = Km[(∂zu)2 + (∂zv)2]. (31)

Now, using a three-dimensional Fourier transform, we know that

u(x) =
∫ ∫ ∫

û(k)eik.x dk

and therefore, writing Ĥ for the filter in the spectral space,

u(x) =
∫ ∫ ∫

Ĥ (k)û(k)eik.x dk and ∂zui =
∫ ∫ ∫

ikzĤ (k)ûi(k)e
ik.x dk.

Therefore, using the dagger (†) to denote the complex conjugate,

〈∂zui∂zuj 〉 =
〈 ∫ ∫ ∫ ∫ ∫ ∫

kzk
′
zĤ (k)Ĥ (k

′)†ûi (k)ûi(k′)†ei(k−k
′).x dk dk′

〉

=
∫ ∫ ∫

k2
z Ĥ (k)%ij (kx, ky, kz) dkx dky dkz,

where 〈 . 〉 denotes an ensemble average, %ij is the three-dimensional spectral
correlation tensor and use has been made of the Wiener–Khintchine Theorem (H
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is assumed to be a top-hat filter, so that Ĥ 2 = Ĥ ). Now, the ensemble-averaged
velocity is independent of x and y, and its vertical component is 0. Therefore

〈(∂zu)2 + (∂zv)2〉 =
∑
i,j

〈(∂xiuj )2〉

=
∫ ∫ ∫

(k<kH )

k2(%11 +%22 +%33)dkxdkydkz

= 2
∫ kH

0
k2E(k)dk.

Going back to Equation (31), we get

〈ε〉 = 2Km

∫ kH

0
k2E(k)dk. (32)

Now, due to the k2 term in the integral, the very large eddies contribute very little
to it. The main contribution comes from the inertial range if kH is larger than that
at the beginning of the inertial range. In the case of free-stream turbulence, it is
then straightforward to obtain

〈ε〉 = 2Km
3α3

4
〈ε〉2/3(π/�)4/3

and therefore, using Equation (5),

Km = 2

3α3

E1/2

ε1/3
(�/π)4/3. (33)

Then using the free-stream value for Lε = �/Cε and writing Km = CK�E
1/2,

one can get the value of CK given in Equation (9) for the case of free-stream
turbulence.

In the case of turbulence blocked by a surface, as noticed already for the evalu-
ation of the dissipation scale, it is not possible to use three-dimensional Fourier
transforms. We will therefore use the same level of approximation as for the
dissipation scale, writing

〈(∂zu)2 + (∂zv)2〉 = 2

 K

∫ kH

0
k2Ehom(k) dk, (34)

where

 K =
∫ kH

0 k2
1Ehom(k1) dk1∫ kH

0 k2
1Ebl(k1) dk1

(35)
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and therefore

Km = 2

3α3 K

E1/2

L
1/3
ε

(�/π)4/3. (36)

Using the form of the spectrum shown in Figure 2, one gets, using kH = π/�,

 K = 33/16

(z/2�)2/3[(7/8)+ (1/3)(z/2�)] . (37)

Noticing that CK = (2/3α3)C
1/3
ε /π4/3, we can use the notation

LK = CKAKz where AK =  1/2
ε

 K

�

z
(38)

and therefore

AK = 7 + (8/3)(z/2�)
33

√
(7/22) ln 2�/z + (2/11)(1 − z/(2�))+ 1

(2�

z

)2/3
. (39)

3.4. DISCUSSION OF THESE RESULTS

The values of AK and Aε are plotted on Figure 4. It can be seen that, for
z = 2�, LK/CK ≈ CεLε ≈ �, and that both AK and Aε tend to large values
when z/� → 0. Note that the models (e.g., SWM94), where it is assumed that
LK/CK = CεLε = Min(�, κz), are discarded by our analysis. This corresponds
to assuming that Aε = AK = 0.4 close to the ground, which is far too small. Our
new values do not violate any physical consideration, since the Karman constant
arises from consideration of a single length scale close to the ground, which is not
correct in choosing the subgrid model of LES, where the filter characteristic length
is relevant in all the domain of computation.

The calculations shown in this section have been made using many approxima-
tions, especially for the blocked case, where  K and  ε are assumed to represent
the blocking, and where the top-hat property of the filter is used for the eddy-
viscosity length. These assumptions mean that we can be confident in the predicted
values of Aε and AK , up to a multiplicative coefficient of order one.

On a more theoretical point of view, the main result of this spectral analysis is
to show how the energy deficit of blocked turbulence for a given dissipation (this
can be called ‘anomalous dissipation’) has a dramatic effect on the coefficients to
be used in large eddy simulation close to the ground, causing Aε and AK to become
large (AK ∝ z−2/3, Aε ∝ (ln 1/z)3/2). It must be kept in mind that the k−1

1 range in
the spectrum appears only at relatively large Reynolds numbers, when the thickness
of the viscous sublayer and the roughness sublayer are small compared with all the
other lengths. It is always the case in the atmospheric boundary layer, where the
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Figure 4. Solid line (——): AK ; dot-dashed line (– . – . –): Aε .

viscous scale is z∗ = ν/u∗ ≈ 0.2 mm and the roughness length z0 ranges from 0.01
to 1 m. However, a generalisation of the calculation made here to the simulation of
flows at the scale of the laboratory is likely to be erroneous.

4. Solution

The previous spectral analysis based on the existence of a k−1
1 range in the energy

spectrum indicates that the dissipation and diffusion processes should be modi-
fied in the subgrid models. The subgrid-scale lengths should be thus taken larger
than the commonly used Prandtl length κz. In the present section, an approach is
proposed to match the usual subgrid turbulence scheme and the similarity laws
through the use of adequate expressions of subgrid-scale lengths near the surface.
This approach is in agreement with the physical analysis given above and contrasts
with the empirical modification of Smagorinsky constant as suggested by other
authors.

4.1. NEUTRAL CASE

As discussed above, the subgrid-scale lengths are generally assumed to be equal to
an effective grid mesh size. We propose here to determine these lengths to obtain
a matching between the subgrid turbulence scheme and the similarity laws. Since
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the basic hypothesis of subgrid turbulence schemes concerning isotropy is violated
near the surface, we argue that the length L does not correspond to real scales
of dissipation and mixing near the surface any more. The spectral calculations of
Section 3 showed the following behaviour of the length scales

Lε = Aεz, (40)

LK = AKz, (41)

where LK = CKLK and Lε = Lε
Cε

, CK and Cε being kept equal to their free-stream
values given by Equations (8) and (9).

Using the results of Section 2, the similarity laws (Equations (14) and (15)), are
exactly derived from the subgrid scheme by using the same value of constants Cε
and CK both in the surface layer and the free-stress layer. The constants Aε and AK
are then given by:

Aε = α3/2κCε (42)

AK = 1

α1/2

κ

CK
. (43)

With α = 3.75 (Wyngaard et al., 1974), Aε and AK are equal to 2.03 and 3.13
respectively. For α = 4.63, we have Aε = AK = 2.79 (which is of the same
order as the estimates given from the spectral considerations in Section 3). This
value of α is close to the evaluation of various observational estimates and is in
particular close to the value of 4.75 given in Stull (1988). Thus it seems reasonable
to use this value as the proposed solution leading to a single value of subgrid-scale
length L = AKz = Aεz near the surface (this greatly simplifies the adaptation of
pre-existing models to our new formulation).

This solution is very simple to implement for the neutral case in a model, as
opposed to other solutions previously proposed in the literature. In the next section,
due to this simplicity it is easily extended to any stability conditions.

4.2. GENERAL CASE

Assuming the stationary equilibrium for the turbulent kinetic energy and neglecting
the turbulent transport, the turbulent kinetic energy in 1D reads:

−u′w′ ∂u
∂z

− v′w′ ∂v
∂z

+ g

θr
w′θ ′ − ε = 0. (44)

This equation simply expresses the equilibrium between shear production,
buoyancy production and dissipation ε.

4.2.1. Subgrid Scheme in Free-Stream Turbulence
Expressions of various turbulent quantities shown here are those used in the
Meso-NH model and presented in Cuxart et al. (2000). These expressions can be
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considered as a generalisation of those previously given for the neutral case. They
are also representative of subgrid schemes existing in most current models. The
Reynolds stresses are modelled as previously by Equations (2), (3), and (4), though
the turbulent kinetic energy E and the final expression of diffusion coefficient will
be different.

The buoyancy flux reads as

−w′θ ′ = Kh
∂θ

∂z
. (45)

In this expression, Kh is the eddy coefficient for the potential temperature and
is given (Cuxart et al., 2000) as

Kh = CHLKE
1/2φ3(Rθ), (46)

φ3 = 1

1 + CH
Cθ

g

θr

LεLK
E

∂θ
∂z

. (47)

As for CK and Cε, the constants CH and Cθ originate from the closure terms
used to determine the turbulent fluxes from the second-order moment equations
(Sommeria, 1976; Schmidt and Schumann, 1989). Thus it is possible to show
(Schmidt and Schumann, 1989) that

2Cθ = π
4

3β3

(
2

3α3

) 1
2

, (48)

CH = 1

π

4

3β3

(
2

3α3

) 1
2

, (49)

where β3 is the ‘three-dimensional’ Corrsin constant. Measurements give β3 =
1.34 ± 0.02 (Andreas, 1987).

In the present model, the values of Cθ and CH are 1.2 and 1.66, respectively.
Using Equations (2), (3), (5), (44), (45) and (46) after some algebra, the

turbulent kinetic energy E, the momentum and heat fluxes read as:

E = LεLK

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]
f (Ri), (50)

u′w′2 + v′w′2 = LK
3Lε

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]2

f (Ri), (51)

−w′θ ′ = C3LK
3/2Lε

1/2

(
∂θ

∂z

)[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]1/2

φ3(Ri)f (Ri)1/2, (52)
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where

Ri = g

θr

∂θ

∂z(
∂u

∂z

)2

+
(
∂v

∂z

)2 , (53)

f (Ri) = 0.5

(
1 − (C3 + C4)Ri +

√(
(1 − (C3 + C4)Ri)2 + 4C4Ri

))
, (54)

φ3(Ri) = 1

1 + C4Ri

f (Ri)

, (55)

with C3 = CH
CK

and C4 = CH
CK

Cε
Cθ

.

It is worth noticing that the derivations above are general. In particular no
assumption has been made about the surface layer, and no relationships such as
similarity laws have been used. In the neutral case (Ri = 0 and f (Ri) = 1), Equa-
tions (50) and (51) are identical to those derived in Section 2 (Equations (10) and
(11)).

4.2.2. Similarity Laws
The Monin–Obukhov similarity theory for the surface layer allows us to relate the
wind speed and temperature gradients to the friction velocity u∗ and temperature
scale T∗, respectively. In the general case, they depend on stability functions φm
and φh, which represent non-dimensional gradients of wind shear and temperature,
respectively:

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
] 1

2

= u∗
κz
φm(

z

L
), (56)

∂θ

∂z
= T∗
κz
φh(

z

L
), (57)

L = − u∗3

κ
g

θr
Qs

, (58)

w∗ =
(
g

θr
Qszi

)1/3

, (59)

Qs = −u∗T∗, (60)

where L is the Obukhov length scale, w∗ the free convection velocity (Deardorff,
1970), zi the height of inversion and Qs the surface temperature flux.
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The non-dimensional wind shear and temperature gradients are chosen as
(Businger et al., 1971; Wyngaard and Coté, 1974):{

φm = (1 − 15 z
L
)−

1
4

φh = 0.74(1 − 9 z
L
)− 1

2 for unstable case,
(61)

{
φm = 1 + 4.7 z

L

φh = 0.74 + 4.7 z
L

for stable case.
(62)

The expression for turbulent kinetic energy given in the neutral case (Equa-
tion (13)) can be extended to all stability conditions (Wyngaard and Coté, 1974;
Redelsperger and Sommeria, 1981):

E =
{ (
α + (− z

L
)

2/3
)
u∗2 + βw∗2 for unstable case

αu∗2 for stable case,
(63)

where β = 0.2.
Using Equations (56) and (60), this expression can be written as

E = α k2z2

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]
φE

( z
L
,
zi

L

)
, (64)

where

φE =
{ [

1 + 1
α
(− z

L
)

2/3 + β

α κ2/3 (− zi
L
)

2/3
]

1
φm

2 for unstable case
1
φm

2 for stable case.
(65)

The energy dissipation rate can be also scaled as

κz

u∗3
ε = φε

( z
L

)
. (66)

Nevertheless, no consensus exists on the form of φε. Frenzen and Vogel (1992)
give the following expression estimated by considering the energy budget:

φε = φm − z

L
− 0.16 for the unstable case, (67)

whereas, based on more direct measurement, Wyngaard et al. (1971) proposed

φε =
{ (

1 + 0.5(− z
L
)

2/3
)3/2

for unstable case

1 + 5 z
L

for stable case.
(68)
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4.2.3. Solution
As previously for the neutral case, we stipulate that the subgrid turbulence scheme
and the similarity theory match in the surface layer. On the one hand, the subgrid
turbulent fluxes are given as functions of Richardson number, Ri. On the other
hand, the Monin–Obukhov fluxes are given as functions of the stability parameters
z
L

and zi
L

. Using Equations (53) and (58), the Richardson number, Ri, can be

related to z
L

Ri = z

L

φh

φm
2 . (69)

Using this relation, expressions for LK and Lε are obtained :

LK = CKLK = κz

α
1
2

1

φm
2 φE

1
2

, (70)

Lε = Lε

Cε
= κz α3/2φE

3
2 φm

2

f
. (71)

For the neutral case, it has been shown that to match the similarity theory and
the subgrid turbulence scheme it was necessary to use the subgrid-scale lengths
defined as Lε = LK = Az, where A = α3/2κCε = 1

α1/2
κ
CK

= 2.79 .

More generally, the subgrid-scale lengths can be defined as

LK = AzφL

( z
L
,
zi

L

)
, (72)

Lε = AzψL

( z
L
,
zi

L

)
, (73)

where φL and ψL are two stability functions defined as:

φL = 1

φm
2 φE

1
2

, (74)

ψL = φE
3
2 φm

2

f
. (75)

In the neutral case (L = ∞, Ri = 0, φm = f = 1), φL = ψL = 1. Before
implementing this method in a numerical model, these expressions can be sim-
plified. Two potential difficulties are the dependency on the inversion height zi
and the complicated function f . Figures 5a and 5b show the functions φL and ψL
for various values of zi

L
. Both functions are clearly less dependent on zi

L
than on

z
L

. This it seems acceptable to neglect the dependency on zi when applying the
relationships in the surface layer. On the other hand, it seems important to keep the
dependency on the Obukhov length. To simplify the computation of the two new
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functions, it is interesting to look at their ratio (Figure 6). As for the neutral case,
the subgrid-scale lengths Lε and LK are identical. The plotted ratio of the functions
also corresponds to the ratio of the subgrid-scale lengths. In the stable case, this
ratio varies little. In the unstable case, the ratio increases from 1 to around 3 for
z
L

= −1. As shown on the same figure, a good approximation is given by:

φL

ψL
=
{

1 − 1.9 z
L

for unstable case
1 − 0.3( z

L
)

1/2 for stable case.
(76)

Equations (74) and (76) lead to an equation system simple to implement in a
model. This scheme has been used to obtain results presented in the following
section, where it is referenced as the new subgrid scheme.

Stability functions for momentum, temperature and turbulent kinetic energy as
deduced from this new scheme can be compared with the Monin–Obukov profiles
as well as with the standard subgrid scheme with subgrid-scale lengths equal to
κz or the mesh size � as usual in LES models. Figure 7 clearly shows the im-
provements brought by the new scheme over the usual methods. The use of κz for
subgrid-scale lengths leads to an overestimate of the Values of the vertical gradients
of momentum and potential temperature and the dissipation. The use of the mesh
size leads to better results for unstable conditions, though still overestimating the
momentum gradient and the dissipation by a factor of around 2.

4.2.4. Matching with the Free-Stream Layer
The developments described above allows one to reconcile the standard subgrid
turbulence schemes and the similarity theory in the surface layer. Nevertheless, it
is desirable that the standard behaviour of subgrid turbulence scheme is recovered
in the regions away from the surface layer. As outlined above, the only difference
concerns the specification of subgrid-scale lengths. In LES of free-stream turbu-
lence, the lengths are generally assumed to be equal to the effective grid mesh size,
as explained in Section 2.

To allow an implicit choice of the right length, a simple linear combination is
proposed:

LK = (1 − γ )AzφL + γ� (77)

Lε = (1 − γ )AzψL + γ� (78)

where � is an average grid mesh spacing and γ a factor varying between 0 and 1
and controlling the transition of subgrid terms between the surface layer and the
free atmosphere.

Such a γ factor was also introduced by SWM94 to ensure the transition of their
formulations of subgrid momentum fluxes between the two layers. They choose to
define this factor as the ratio of small- and large-scale strain rates. Their factor is
only a function of z for a given simulation but presents the interesting feature that γ
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Figure 5. Normalized subgrid-scale lengths: (a) φL (Equation (74)) and (b) ψL (Equation (75)) as
function of stability parameter z/L and for different values of zi/L (−5, −2, 0).
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Figure 6. Ratio of subgrid scale-lengths as function of stability parameter z/L: exact equation (solid
line) and approximated by Equation (76) (dashed line).

depends on the grid resolution. Indeed, it is expected that this factor increases with
decreasing grid resolution as more small-scale eddies will be directly resolved by
the model. As discussed above, one would like the present method to be simple to
implement and suitable for LES models as well as mesoscale models and GCMs.
In particular, it must be valid for any stability conditions and any surface condi-
tions. Though the method of SWM94 does not seem to be easily applicable to
inhomogeneous surface conditions, their numerical results are helpful in deriving
a general expression for γ . Their results show in all cases an exponential increase
of γ from 0 at the surface to 1 at a height z

3zi
. In the present case, we have chosen

the following formulation, which roughly fits with the γ computed as the ratio
of small- and large-scale strain rates in simulations of SWM94 as well as in the
present ones:

γ = 1 − e−3
(
z1−z
z1−zc

)
(79)

where z1 is the height of the first level of subgrid fluxes computation in the model
and zc the height where γ = 0.95. The latter height depends on both horizontal and
vertical model resolutions (�x and �z, respectively). Some heuristic arguments
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can be developed to roughly estimate zc, and depend on the knowledge of the
size of energetic eddies in the surface layer, which are difficult to measure from
observations (e.g., Counihan, 1975). Assuming that the vertical length of eddies
is equal to κz and that the model is able to resolve the 2�z scales, zc should be
chosen larger than 2�z

κ
. The horizontal length of eddies can be estimated to be 1

to 3 times their vertical lengths, thus zc should be chosen larger than 2�x
3κ . Finally,

this reasoning stands for the neutral case. For the unstable case, the vertical size of
eddies is around κ z

φm
. On the basis of these simple arguments, the final expression

for zc is given by

zc = Max

(
2�zφm
κ

,
2�xφm

3κ

)
. (80)

In using results previously published as well as present simulations, these
simple arguments seem to work. For example, an estimation of zc from spectra
obtained at different heights by Khana and Brasseur (1997) for a numerical ex-
periment with horizontal and vertical mesh size of 20 and 1 m respectively, leads
to a value of 40 m, close to the one obtained from Equation (79). For present
numerical experiments, Figure 8 shows that similar variations of γ are obtained
when using the Equation (79) or considering the ratio between the resolved flux
and the total flux for u-momentum and potential temperature. The results show
that the expression (79) works for the neutral case as well as for the convective
case.

For mesoscale and large-scale models, another formulation of γ can be
necessary and will be discussed in a forthcoming paper.

5. Results

5.1. NUMERICAL MODEL

The model used in present experiments is the LES (large-eddy simulation) version
of the non-hydrostatic model, Meso-NH, presented for its dynamical part in La-
fore et al. (1998). The 3D turbulence scheme is based on the scheme proposed by
Redelsperger and Sommeria (1981, 1986) and is discussed in detail by Cuxart et
al. (2000). It is based on a prognostic equation for subgrid kinetic energy and it
incorporates the effect of thermal stratification on subgrid fluxes through variable
Prandtl and Schmidt numbers.

We start the simulations from horizontally homogeneous conditions corres-
ponding to a vertical profile. At the initial time, a random deviation of temperature
with a maximum amplitude of 0.1 K is added at the first level of model, allowing a
progressive development of eddies. No large-scale forcing is used in all simulations
presented except a geostrophic wind taken into account through the Coriolis force
(f = 10−4 s−1). A description of numerical experiments is given in Table I.
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(a)

(b) (c)

Figure 8. Factor γ (defined by Equation (78)) controlling the transition between the surface layer
and the free atmosphere as given by the Equation (79) (solid lines) and as deduced from the ratio
between the resolved flux and the total flux (dashed lines) for u-momentum (a) and (b) in the neutral
and unstable case, respectively, and for vertical flux of temperature (c). Vertical axis is height in
metres.

5.2. NEUTRAL CASE

The first case examined is a neutral case with main characteristics given on Table I.
The model is run for 15 hours and the statistics made over the last 5 hours.

As the present paper focuses on the representation of the surface layer in
LES, the numerical results are compared with the similarity theory, which is thus
considered as the reference. The profiles are plotted in terms of dimensionless
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Figure 9. Wind speed profiles for the neutral case: as predicted by the similarity theory (solid line),
as simulated with the standard (dashed line) and the new (dotted line) subgrid turbulence scheme.

coordinates z/z0 and U/u∗, where the roughness length z0 and the friction velocity
u∗ are equal to 0.1 m and 0.5 m s−1, respectively. The experiment is performed two
times, first with the standard subgrid scheme (NEUT-S) and second with the new
scheme (NEUT-N) described in the previous sections of this paper.

The computed wind and vertical shear profiles are plotted in Figures 9 and
10, respectively. As expected, the wind profile shows improvements with the new
scheme. Logarithmic velocity profile is only obtained with the standard scheme
(NEUT-S) for the first model level. The new scheme (NEUT-N) allows us to suc-
cessfully reproduce the logarithmic law up to z

z0
= 1000. A better agreement of

LES with similarity theory is also observed for the shear (Figure 10) in the lowest
levels, though overestimating the theoretical value.

Figure 11 shows the dissipation rate as normalized by u∗3. The improvement
in the surface layer with the new scheme is more spectacular than for momentum
with a perfect agreement with the similarity law up to the height 2000 z

z0
.

5.3. UNSTABLE CASE

This second case considers the effect of stability on the behaviour of profiles in
the surface layer. In order to evaluate the modifications of subgrid scheme in the
surface layer, the conditions of the experiment are chosen to be similar to the main
case studied by Khanna and Brasseur (1997) (hereafter KB97). Besides an im-
proved subgrid scheme in the surface layer, KB97 also used a high resolution in the
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Figure 10. Momentum stability function profiles for the neutral case: as predicted by the similarity
theory (solid line), as simulated with the standard (NEUT-S: dashed line) and the new (NEUT-N:
dotted line) subgrid turbulence scheme.

Figure 11. Profiles of dissipation rate scaled by u∗3 for the neutral case in function of zz0
: as predicted

by the similarity theory (solid line), as simulated with the standard (NEUT-S: dashed line) and the
new (NEUT-C: dotted line) subgrid turbulence scheme.
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Figure 12. Vertical profile of the potential temperature flux for the unstable case as simulated with
the standard (CONV-S: dashed line) and the new (CONV-N: dotted line) subgrid turbulence scheme.
Subgrid fluxes are also representated.

surface layer, thanks to grid nesting techniques. The initial conditions correspond
to a common case in the atmosphere, namely a convective boundary layer with
shear (Table I). Though initial conditions and domain size are similar to KB97, the
isotropic resolution used in the present experiment (mesh size 50 m) is much less
than the one used by KB97 in the surface layer (mesh size 1 m) and therefore
suitable for realistic computations. The present model is run with the standard
and the new scheme (experiments CONV-S and CONV-N, respectively). It is first
important to check that proposed modifications in the subgrid scheme do not cause
the solution to deteriorate above the surface layer. Figure 12 shows that the vertical
flux of potential temperature is almost unchanged though the subgrid part and the
entrainment are slightly larger with the new scheme. The same conclusions hold
for the vertical flux of horizontal momentum along the shear (Figure 13). In both
cases, the total streamwise momentum vertical flux decreases roughly as predicted
by similarity laws. As noted by Moeng and Sullivan (1994), the entrainment at the
inversion leads to a departure from the standard similarity law, which does not take
into account the presence of an inversion layer.

Changes brought about are expected to be more spectacular in the surface layer.
To evaluate the results, profiles are compared to similarity laws (Businger et al.,
1971) and KB97 numerical results. The run with the standard subgrid scheme
(CONV-S) largely overpredicts the mean shear (Figure 14) and the vertical gradi-
ent of potential temperature (Figure 15) as estimated from the similarity laws.



404 J.L. REDELSPERGER ET AL.

Figure 13. Vertical profile of the along-wind momentum flux for the unstable case: as predicted by
the similarity theory (solid line), as simulated with the standard (CONV-S: dashed line) and the new
(CONV-N: dotted line) subgrid turbulence scheme. Subgrid fluxes are also plotted.

Moreover, spurious vertical oscillations of the shear profile are obtained in the
low levels and are probably a consequence of the overestimated shear predicted at
the first model level. The new subgrid scheme allows clear improvement for both
quantities and is in reasonable agreement with the KB97 results obtained with at
once a subgrid scheme modified in the surface layer following SWM94 and a much
higher resolution than presently. Figure 16 shows the dissipation rate of turbulent
kinetic energy, it scales rather well with kz

u∗ as given by the Monin–Obukhov theory.
A decrease with height is obtained up to z

L
= −0.3 with the new subgrid scheme as

predicted by the similarity theory. Above this height, where one can be considered
to be above the surface layer, a decrease is found in the simulation, in contrast
to the similarity laws. This region can be considered as a transition region from
surface-layer to mixed-layer scalings (e.g., Moeng and Sullivan, 1994; KB97).

6. Conclusion

To represent both the surface-layer and free-stream turbulence with a unique para-
meterization is a difficulty in all numerical atmospheric models, even in LES.
This paper has provided a physical explanation and a general solution suitable for
any atmospheric models, including inhomogeneous surface conditions, complex
topography and any vertical stability. The energy deficit of blocked turbulence
for a given dissipation has been shown to have a dramatic effect on the mixing
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Figure 14. Momentum stability function (φm) profiles for the unstable case: as predicted by the
similarity theory (solid line), as simulated with the standard (CONV-S: dashed line) and the new
(CONV-N: dotted line) subgrid turbulence scheme. Dashed-dotted line reproduces the result of KB97
for same case.

Figure 15. Potential temperature stability function (φh) profiles for the unstable case: as predicted
by the similarity theory (solid line), as simulated with the standard (CONV-S: dashed line) and the
new (CONV-N: dotted line) subgrid turbulence scheme. Dashed-dotted line reproduces the result of
KB97 for same case.
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Figure 16. Dissipation rate function profiles for the unstable case: as predicted by the similarity
theory (solid line), as simulated with the standard (CONV-S: dashed line) and the new (CONV-N:
dotted line) subgrid turbulence scheme. Dashed-dotted line reproduces the result of KB97 for same
case.

and dissipation lengths to be used in subgrid models close to the ground. To take
into account this ‘anomalous dissipation’, modifications in the standard subgrid
schemes derived for free-stream turbulence have been proposed. These modific-
ations are simple to implement in models and are physically justified by recent
measurements of spectra close to the ground. As described in a forthcoming paper,
this method is also easily applicable to mesoscale and large-scale models. This is
considered as an improvement over more empirical methods based on an increase
of the Smagorinsky coefficient (e.g., Mason, 1989; Mason and Thomson, 1992).

As shown for neutral and convective cases with wind shear, these changes in
the subgrid turbulent scheme allow one to substantially improve the prediction of
profiles of mean quantities in the surface layer. Agreement with similarity laws is
found up to about 0.2zi , for simulated shear and stability profiles and dissipation
rates of turbulent kinetic energy.

Clearly, the modifications proposed are only a first step to improve LES results
in the surface layer. They have the great advantage of being applicable to any nu-
merical models and of being very easily implemented. They provide an alternative
to the use of large coefficients used in some boundary-layer schemes implemented
in global climate models. As suggested recently by Juneja and Brasseur (1999),
the basic hypothesis used in the LES models need probably to be reconsider when
applied to study the surface layer. Moreover the physical mechanism of dissipation
is strongly modified by the presence of the ground (cf. Hunt and Carlotti, 2000).
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The present article presents the immediate and practical consequences of these
ideas on subgrid models. The next step should be a deeper modification of subgrid
models with regards to these new concepts.
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