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On the Propagation of Gravity Waves in Randomly Inhomogeneous
Nonsteady—-State Currents

M. A. RAYEVSKIY
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Closed equations are obtained and analyzed for the average field and the
average intensity of gravity waves, propagating along a current whose velocity is
a random function of the coordinates and time. The scattering of gravity waves
by large-scale turbulence near the surface and random internal waves is examined.
It is shown, in particular, that the average energy of the gravity waves increases

monotonically during scattering.

The effect of currents on the propagation of
surface waves has been considered in great detail
(see, for example, [1]) for those cases when the
current velocity is some determinate (usually
smooth) function of the coordinates and time.
However, it is clearly of interest to investigate
surface waves propagating along a current with a
random velocity profile. Let us note that such
currents are very typical of the ocean and they
can include currents caused by a random field of
internal waves, by turbulence near the surface,
by a random configuration of vortices, etc.

In this paper we ‘obtain closed equations for
the average field and intensity of gravity waves,
propagating along a current, whose velocity is a
random function of time and the horizontal coor-
dinates. These equations are used to examine the
variation of the average field, the average dis-
tribution and the energy of the gravity waves
in those cases when the current is caused by a
large-scale turbulence near the surface and by
random internal waves. Estimates for the charac-
teristic time of these effects under typical
ocean conditions show that the scattering pro-
cesses can have a significant effect on the pro-
pagation of gravity waves.

BASIC EQUATIONS

Let us consider gravity waves, propagating
along a given randomly inhomogeneous nonsteady-
state current. We write the equations for the
gravity waves in canonical form with the Hamil-
tonian function [2]:

1 ¢ g
H"Tjdrij (V0+u)’dz+—5—j. nidr,, (1

where the generalized variables are the vertical

. displacement n of the free surface and the vel-

ocity potential ¢. Let us restrict our consider-
ation to the case when the velocity u(r,, t) of the
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given current is a random function of the hori-
zontal coordinates and the time and does not de-
pend on the vertical coordinate z. Assuming the
amplitudes of the surface waves are quite small,
we expand the Hamiltonian function (1) in powers
of ¢ and n. Retaining quadratic terms in this
expansion, we obtain:

H= —-15- jdr_L—ji (VD)2 dz +_§_I ntdr,+ j (uV,®,0) ndry,

(2)

where the first two terms describe gravity waves
in stationary water while the third term describes
the interaction of the waves with a current and

it is assumed that the interaction energy is

small compared with the self-energy of the surface
waves. Let us convert to the normal variables

ay and ak*, in which

. __1 k)‘l‘( + ‘) ikr
=% (4g aTa-v)en dk,

/ (3)
i .
O=— E; ( 4-%) (ak-—a_k') ehetike dk.

In these variables the Hamiltonian function has
the following form:

H= .f Oxardyx’ dk +

1 (4)
:_2' Z -" [U:.khuknak,ai“.‘ﬁ (k—k,+k,) + const 1dk dk, dk,,

where o,=Ygk is the frequency of the gravity
wave, Ugy are the Fourier-transformed components
of the current velocity, and the matrix coeffi-
cient of the interaction has the form

n ky* ko %
Ukiy= ('7‘:) kaat (T) k. (5)
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Below we shall limit our consideration to those
cases when the characteristic time scales of the
current variation are large compared with the
periods of the gravity waves; therefore, the non-
resonance terms, proportional to x4k, and ax‘ax’,
can be discarded in the Hamiltonian function. By
varying Eq. (4) and converting to the slow complex
amplitude a'=axexp (—iwxt) (we omit the prime be-
low), we obtain for it the stochastic equation

S = —1 Y Uhucuintnet 4705 (k — ky — k) dky ks,
(6

We will assume the velocity field u(r,, t) is
statistically homogeneous and stationary, i.e.,

(uk,. (t) uk,,.,(t,))==Bk"m(t—-t,)6(k+k,). (7)

Then in the Burr approximation the equation for
{a,> (the symbol ¢...> denotes an averaging over an
ensemble of realizations of the random field
u(ry, t)) is the following:

ad
a

1
- Z S UliekeUtenx S BR" (v) Cax (t — 1)) € (Ok-k00 T g gy
Tn 9
(8)

(it is assumed that the initial conditions are
specified at time ¢ = 0). Equation (8) has the
solution i{ax(t)>=ax(0) exp (—Yxt), in this case the
damping of the average field of the gravity wave
is determined by the decrement Rey:, the expres-
sion for which in the case Reyi<wyx is

Re 1x=n2 j Uer sVt Bron (61 2) 8 (01— 0x o — Q) dk; 49,
mn (9)

Bm (k Q)——‘.‘.Bk ( )e ! d[
n \ R, 2 T .

.Let us now consider the equation for the
quantity .mw=<aax")," in terms of which it is easy
to express any quadratic quantities, integrated
over the volume of the wave packet, such as the

average energy §<E>==j oxaeax’ dk, by using the

formulas of the linear problem. In this same
approximation it is convenient to write this
equation as

on

T j. (Wit W) (ne,—nu) dk, dk,, (10)

where Wii,=n Zya.k,Uk,I:k{j. B (ki, Q) 6 (0x— @0k, —

Q)6 (k—k;~k,). Equation (8) is valid if the damping
of the average field is small in the correlation
scale Zcor of the current (this, of course, im-

poses limitations on the intensity of the fluctu-
ations of the velocity u(r,, ¢)). In addition to
the obvious condition of a small variation of the
intensity in the Zcor scale it is also necessary

that the effects of the multiple passage of a wave
through one and the same inhomogeneity of the vel-
ocity field u(r,, t) be negligibly small in order
for Eq. (10) to be valid.

The latter condition is satisfied in the
obvious case when the characteristic scale of cur-
rent variation L is much greater than the length
of the gravity wave A=2n/k, i.e., kL>»1, since in
this case backscattering is small. It can be
shown that Eq. (10) is also valid in the case
kL<1 if the characteristic time scale of the in-
tensity variation is much greater than the corre-
lation Teor of the current velocity field. Let

us note that Eqs. (8) and (10) describe arbitrary
(quite slow), rather than small, variations of
the average field and intensity. )

In the case kL>»1 we can convert from the
integral equation (10) by the standard method to
the diffusion equation .

ot ok, ok (11)
with the diffusion tensor

Dy= [ sk Wasons dks . (12)

SCATTERING OF GRAVITY WAVES BY TURBULENCE
NEAR THE SURFACE

Let us consider the variation of the gravity
wave parameters-when they are scattered by turbu-
lence near the surface, assuming that the charac-
teristic dimensions of the vortices are large
compared with the scales of the gravity waves.

It is obvious that the interaction in this case
is determined by the character of the turbulence
near the surface only (in a layer of the order of
the length of the gravity wave), where, as is
known (see, for example, [l]), the characteristic
vertical velocities of the turbulent fluctuations
are small compared with the horizontal velocities.
In addition, in this case we can ignore the de-
pendence of the horizontal components of the vel-
ocity on the vertical coordinate, i.e., it should"

~ be expected that the two-dimensional current

model considered above correctly describes the
large-scale turbulence. Assuming the velocity
field u(r,, t) is isotropic in the horizontal plane,
we write By(x, Q) as:

B; (»n,‘Q) =B'(x, Q)84+[B' (x,Q)—B'(x,Q) ] “::’

) (13)
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where B' and B' are, respectively, the transverse
and longitudinal spectral correlation functions.
Let us note that B'=0 does not follow from the
incompressibility condition since, although u.<u.,
Uy near the free surface, in the general case
#u/8z. is of the order of du./0z and du,/dy and
therefore |Qu./dx+0u,/dy+0.

The expression for the damping decrement of
the average field in the case k., <k is as follows:

Re u—da | {B‘ (k,, Q) [k‘ (kk‘) ]

+B (ky, @)K ("k )’ }5(mk—m_k.—9)dk, aQ. (14)

It follows from the frequency synchronism condi-
tion ‘wi=0k-,,+2 that only those k,, for which
(kk,)/ kk,~k,/2k+2(Qf/wx) k/k,, contribute to Reqx. The
characteristic velocities of the turbulent fluc-
tuations are usually small compared with the
phase velocities of the gravity waves; therefore
(kk,)/kk,<1 and the damping decrement is given by
the expression

kJ
Re yu=8n — [ B'(k,Q) dk, dQ. (15)
Wx

Thus, (Re yx is determined primarily by the trans-
verse correlation function B' and increases pro-
portionally to ,4”: with an increase in k.

let us now consider some consequences of the
diffusion equation (11). Taking into consider-
ation that (kk,)}/kk,<1, we can write the diffusion
tensor as i

Dy=4nk? j BB (K, Q)6 (0x—0x-x—R) dk, dQ,  (16)

i.e., the variation of the intensity of the gravi-
ty waves is also determined primarily by the
transverse correlation function. Let us estimate
the characteristic time for isotropization of a
plane wave. In a coordinate system with the x
axis oriented along the direction of initial wave
propagation, it can be estimated as te=kD, . It
is easy to obtain the expression

-1

8nk

B’ (ky, Q) dk, dQ. (17)

To

for 7T».

It is interesting to consider the variation
of the average energy of the gravity waves in
the scattering process. From Eq. (11) we can ob-
tain the equation :

M'j T (D"ak)dk’ ‘ (18)

for <E>. The components of the diffusion tensor
can-be written as:

3
De 8;"‘ 5 cost (8+a) kB (ky, Q) dk, d,

X

4nk®

Wx

j sin 2 (0+a) k2B (k,, Q) dk, d, (19)

3
Dy, = Bk 5 sin?(0+a) k2B (k. Q) dk, dQ,

Wx

where a=arccos{(2Q/w0x)k/k:], ® is the angle between
the vector k and the x axis, and it is assumed
that ' k/k<(Q/ax)k’ k<1, By using Eq. (19), after
some manipulations we can reduce Eq. (18) to:

HE> £ Tk
—_— —— 2 Rt
o7 64:[_" do ;[mx‘ (3-+cos 28) n(k, 9) j' Q2B (k,, Q) dk, dQ

(20)

(the natural symmetry of the angular distribution
of the waves relative to the x axis, i.e.,
n(k, ®)=n(k, —4)), is assumed here). It is easy to
see that for any intensity distribution n(k, ©)
the right side of Eq. (20) is positive, i.e., the
average energy of the gravity waves increases
monotonically during scattering by large-scale
turbulence. Turbulence near the surface often
has an extended spectrum. In this case interac-
tion with small vortices leads to absorption of
the wave energy; therefore, the character of the
energy variation in the general case is determined
by the competition of the effects of interaction
with large and small vortices and cannot be deter-
mined without extremely detailed information about
the spatial and temporal structure of the turbu-
lence near the surface. The results obtained are
clearly directly applicable in the case of degen-
erate surface turbulence when small vortices dis-
sipate quickly and only large energy-containing
vortices "survive."

As far as we know, there are no reliable ex-
perimental data for either the form of the func-
tion .B', or for the energy spectrum e(x)=

'nuI(B“+BQdQ;this prevents a direct computation

of the integrals in Egs. (15), (17) and (20).
Assuming that the energy-containing vortices with
scales L and velocities vy make the major contri-
bution to scattering, we obtain the following
estimates for the characteristic times of the ef-
fects being considered: :ReYu~v:.’LE'oc™, Ty7'~

400" L-*kan"",  and |Tey~<E> 0 EX/0t~10° v ' L= Ky,
Hence, for example, for decimeter gravity waves
for typical values of the surface turbulence
parameters L~10* cm and v:~1 cm/sec it follows
that Re yx~10 sec—l and Te~Ts~10® sec. Let us
note that even more intense surface turbulence
with v.~10 cm/sec~! is observed in the ocean.

Thus, interaction with a surface turbulence can
significantly affect the dynamics of gravity waves.
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SCATTERING OF GRAVITY WAVES
BY RANDOM INTERNAL WAVES

Let us now consider the interaction of gravi-
ty waves with the current created by random in-
ternal waves. It is known (see, for example,
[3]) that near the surface the vertical veloci-
ties of such a current are small compared with
the horizontal velocities. In addition, the
length of the gravity waves is usually small com-
pared with the scales of the internal waves, and
we can use Egs. (9) - (11) with the matrix coef-
ficient (5) to describe the scattering process.

For a plane internal wave the vector of the
horizontal velocity is parallel to the wave vec~
tor; therefore, the correlation tensor of the
current velocities is

By;(x, Q)—'i(x;_g)”f%h 2

where -2 (%, Q) is the one-dimensional energy spec—
trum of the internal waves near the surface.
For waves of sufficiently small amplitude

e(u,Q)=Ze"(n)6(Q—Q,") 22)

(here £.(x) is the spectral density of the energy
of the mode with index n, Q.," is its natural
frequency). In this case the damping decrement
is defined by the expression

Re 7u=4 Z j (kk

Taking into consideration that the phase veloci-
ties of the internal waves are usually small
compared with the phase velocities of surface
waves, it is easy to obtain

Ren—-——z.f"’"(’f)( 2%%)2%,. @

The dispersion relations Q." and the energy
spectra e.(x), observable in the ocean, are ex-
tremely diverse; therefore, it seems more inter-
esting to us to arrive at general estimates for
them without computing the obtained integral
expressions in any particular case. We assume
that internal waves, whose horizontal scales do
not exceed the ocean depth and the variation
scale of the Vdisdld frequency N(z) along the 3
axis, take part in the scattering. Then Q," is
of the order of the characteristic value of N(z)
(denoted by N* below) and Re yx is of the order
of the largest of the terms v.*xikon™!,

v N R, and vlng~(N°)2k*er~, where %o are
the wave numbers, making the primary contribu-
tion to Eq. (24), and V. are the corresponding
amplitudes of the internal waves. It is obvious
that Re 1x is determined by the scattering by
internal waves with the maximum horizontal scales

en (k) 8 (0x—@x-x,—Q) dk, dQ. (23)

if en(ﬁ) decreases faster than %% as % increases.

Let us now estimate the characteristic time
for isotropization of a plane wave. Taking into
consideration that the diffusion tensor in this
case is

2k
Dii(k) =4Z J‘ kﬁklj ¢ ](f ,’) (kkt)'G(mx—w.-k.—-Qh")dk,,
1
(25)

analogously to Eq. (17), we can obtain the ex-

pression

L _ 8k ) (E R k
W= 3 [ etk (22 - k‘) k. (26)

for 7,~". Thus, 1,™' is of the order of the largest
of the terms

vitnl kaox, v liuNE o, vt (N Y vio)’.

The expression

HE)
a
642 j o j —(4+cos 20) n (k, 0) dk j (9“' e,.(k ydk,
n -n (27)

can be obtained for the average energy of the
gravity waves (it is also assumed here that the
condition A/ k< (" wy)k/k,; <1 1is satisfied and

the angular distribution with respect to the di-
rection of initial wave propagation is n(k, &)=
n(k, —9)). Thus, the average energy of the gravity
waves increases monotonically in the process of
scattering by internal waves. For the character-
istic variation time of the energy it is easy to

obtain Tk ~ 10%02 (V) /v 0’ from Eq. (25). Let
us estimate the damping time of the average field,
the isotropization time and the energy variation
time for meter-length gravity waves, assuming that
scattering occurs at internal waves with wave
numbers %.~10~° cm~l and amplitudes v.~10 cm/sec.
Considering the case of stratification with a
well-defined thermocline, where N'~10-? gec-1,
we obtain Re yu~10~' sec~l, 1,~10° sec and tg~10°
sec. Estimates for other situations also show
that the damping of the average field is the
fastest effect while the increase of (E) is the
slowest. Let us note that the energy variation
of meter waves due to other factors also occurs
quite slowly. Thus, for example, their damping
time due to viscosity is of the order of 107 sec,
the "acceleration" time by a moderate wind is of
the order of 104 - 105 sec, etc,.; this indicates
the importance of the considered effect when
studying the energy balance of gravity waves.
Since large-scale turbulence and the internal
waves change slowly with time, a sufficient con-
dition for the applicability of the obtained



ON THE PROPAGATION OF GRAVITY WAVES IN RANDOMLY INHOMOGENEOUS NONSTEADY-STATE CURRENTS 479

expressions is the smallness of the correlation The author is grateful to L. A. Ostrovskiy
scale Zcor of the velocity field wu(r,t) compared for his interest in this work and for discussing

with the spatial scales of the effects being con- the results.

sidered vgr/Re Yk, UgrTe, and Vgr Ty, where Vgr - is
the group velocity of the gravity wave. 1In the
turbulence case Zcor is of the order of the vor-

tex size (1 ~L). 1If we also assume [ ~L
cor co

r

for the internal waves, then this condition is

satisfied for the parameter values considered in Received March 23, 1981;

this paper. } revised July 19, 1982
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