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ABSTRACT

A generalized depth-integrated model of the oceanic mixed layer is developed by considering the heat and
energy budgets of the upper ocean. Unlike the Kraus–Turner-type bulk models, the assumptions of an a priori
well mixed layer and a positive density discontinuity at the base of the layer are not required in the present
formulation. Relaxation of these restrictions is achieved by dealing directly with time-integrated equations, thus
eliminating inaccuracies introduced by forming a differential equation prior to time discretization. The formu-
lation involves a careful accounting of the effects of stratification below the mixed layer and the change in the
density of the mixed layer produced by heat absorption and freshwater exchange. Scale analysis of the equation
governing changes in mixed layer depth is used to reveal the conditions under which the present model reduces
to a standard Kraus–Turner-type bulk model. Model results are compared with observations at OWS Papa in
order to confirm the utility of the formulation in a simple one-dimensional application. Potential use of this
model for embedding mixed layer thermodynamics into large-scale circulation models is addressed.

1. Introduction

Physical and biogeochemical processes in the surface
mixed layer of the ocean are sensitive to the seasonal
evolution of the layer depth and temperature. By reg-
ulating the transfer of mass and energy across the sea
surface, the mixed layer influences various atmospheric
processes. By acting as a buffer between the deep ocean
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and the atmosphere, it also regulates the global biogeo-
chemical cycle. Understanding of the processes respon-
sible for the formation and the evolution of the mixed
layer provides an essential background to studies of up-
per-ocean dynamics, air–sea interaction, and biogeo-
chemical cycles.

To this end, numerous attempts have been made to
model the surface layer of the ocean. In general, such
models can be classified into two groups: differential
models and depth-integrated bulk models. Many of the
commonly used, differential models share the theoret-
ical foundation introduced by Mellor and Yamada
(1974). These models have proven extremely useful in
studies of the surface and bottom boundary layers. One
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of the characteristics of these models, which restricts
their wider usage, is their substantial computational
requirement (Martin 1986). Bulk models (such as Den-
man 1973; Niiler and Kraus 1977; Garwood 1977; and
Gaspar 1988) share a common origin in Kraus and
Turner (1967). These models are developed by inte-
grating the heat and energy conservation equations
over the mixed layer and are computationally more
efficient than differential models. However, the sim-
plicity and computational advantage of bulk models
may be overshadowed by assumptions (often implicit)
used in model formulations. Two notable assumptions
are (i) a well mixed layer exists a priori and (ii) there
is a density discontinuity at the base of the mixed layer.

As a contribution to the continuing development of
efficient and more generally applicable mixed layer
models, we present here a generalized depth-integrated
model (GDIM) of the upper ocean. This model provides
a general, but conceptually simple, description of the
physical processes associated with the development of
the oceanic mixed layer, within the framework of the
bulk approach to mixed layer modeling.

To determine the evolution of the mixed layer depth,
the change in potential energy of the upper ocean due
to buoyancy inputs is balanced against the kinetic en-
ergy input. The heat budget of the upper ocean is used
to determine the mixed layer temperature. This basic
approach has been used previously in oceanography
(Turner 1969; Simpson et al. 1978), but its potential for
formulating a bulk mixed layer model has not been ex-
ploited.

The general features of the model ocean and the
basic theory are presented in section 2. Mathematical
expressions for the energetics of various physical pro-
cesses considered in the model formulation are de-
rived in section 3. An equation describing the deep-
ening of the mixed layer is derived in section 4 and
a similar expression describing the depth of a shal-
lowing mixed layer is derived in section 5. The tem-
perature of deepening and shallowing mixed layers
are considered in sections 6 and 7, respectively. A
comparison between the GDIM and Kraus–Turner-
type models is presented in section 8. The ability of
the model to simulate the observed evolution of mixed
layer depth and temperature at station Papa is ex-
amined in section 9. A general discussion of model
features is presented in section 10.

2. The model ocean

The basic features of the model ocean are shown in
Fig. 1. At the beginning of each discrete time step, the
surface layer is characterized by a uniform density rm,
temperature Tm, and depth hm. The time step Dt is chosen
to be sufficiently small that, during the interval, the rates
of the energy inputs to the ocean can be considered to
remain constant. The absorption of solar radiation with-
in the water column and the exchanges of heat and

freshwater at the sea surface alter the stratification of
the layer. This may either stabilize or destabilize the
water column. The turbulent kinetic energy (TKE) input
to the water column always works to reduce the strat-
ification. The erosion of stratification by TKE, and any
mixing due to destabilizing buoyancy fluxes, are con-
sidered to occur instantaneously at the end of each dis-
crete time step. If the buoyancy inputs destabilize the
water column or if the TKE input during the time step
exceeds that required to remove the stratification caused
by buoyancy inputs, the surface layer will deepen
through entrainment. On the other hand, if the TKE
input is not sufficient to remove any new stratification
in the surface layer, the layer will retreat to a shallower
depth within which the TKE input is exactly sufficient
for complete mixing.

During deepening of the mixed layer, water is en-
trained into the layer from below. To account for this,
we specify an entrainment layer of thickness he (of ini-
tially unknown magnitude), defined as that portion of
the thermocline through which the mixed layer will ex-
tend at the end of the time step. Then, we seek an ex-
pression for he as a function of the density distribution
in the ocean at the beginning of the time step and the
energy inputs across the sea surface during the time step.
During the shallowing of the mixed layer, there is no
entrainment; our aim in this case is to calculate the new
mixed layer depth as that of the equilibrium layer within
which the depth-integrated TKE input by the action of
wind balances the stratification tendency produced by
heat and freshwater inputs.

The total heat input H(0) across the sea surface is
divided into a penetrative component I(0) and a non-
penetrative component Q(0). The penetrative compo-
nent represents about 50% of the incoming solar radi-
ation. The nonpenetrative component represents the re-
maining portion of the solar radiation Î(0), the fluxes of
sensible heat S(0) and latent heat E(0), and the net long-
wave radiation at the sea surface L(0). Thus,

Q(0) 5 Î(0) 1 S(0) 1 E(0) 1 L(0). (1)

All surface fluxes are defined to be positive when di-
rected into the ocean.

The density is assumed to be a function of temper-
ature and salinity. The density distribution in the (gen-
erally thin) entrainment layer re(z) is assumed to be a
linear function of depth z of the form

re(z) 5 rb 1 a(z 2 hm), (2)

where rb is the density and a is the density gradient
immediately below the mixed layer. Nonlinear forms of
re(z) could easily be considered, but both clarity and
generality are achieved by the simple form given here.

If the rate of input of TKE to the layer exceeds the
rate of change of potential energy arising from strat-
ification of the layer, the excess energy will be used
to entrain water across the base of the mixed layer,
resulting in deepening of the layer. The mixed layer
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FIG. 1. The model ocean. The upper panel shows the conditions at the beginning of a time step, characterized by a
surface layer overlying an entrainment layer. The lower middle panel shows the conditions at the end of the time step,
where the density distributions in the mixed layer and the entrainment layer have been modified by the absorption of
heat. The panels on the left and the right show two possible paths [deepening, given by Eq. (25) and shallowing, given
by Eq. (27)] of mixed layer evolution depending upon the balance between the TKE input and the change in the potential
energy associated with vertical mixing.

depth at the end of the time step is calculated by equat-
ing the change in the depth-integrated potential energy
due to vertical mixing to the TKE input during the
same time interval (cf. Turner 1969; Denman 1972;
Simpson et al. 1978). Once the new mixed layer depth
is known, the corresponding layer temperature is de-
termined by considering the heat budget of the layer.

The change in the potential energy (f ) resulting from
vertical mixing of a layer of arbitrary thickness z2 2 z1

can be written as
z2

f(z , z ) 5 [r(z) 2 r ]gz dz, (3)1 2 E
z5z1

where r is the mean density of the layer, given by

z21
r 5 r(z) dz, (4)E1 2z 2 z2 1 z5z1

and r(z) is the density of water at depth z before mixing.
Let 5 hm 1 he be the depth of the mixed layer at1hm

the end of the time step, during the deepening phase of

the layer evolution. In the model that is now to be de-
veloped, the total change in the potential energy

associated with mixing at the end of the time1f (0, h )m

interval Dt is decomposed into three parts:

1) The change in the potential energy associated with
the internal mixing within the surface layer
[f (0, hm)]. This accounts for the TKE required to
remove the stratification developed in the surface
layer during the time step.

2) The change in the potential energy associated with
internal mixing of the entrainment layer, resulting in
the removal of the stratification associated with the
linear density distribution and the additional strati-
fication caused by the absorption of solar radiation
beneath the mixed layer [f (hm, )].1hm

3) The change in potential energy associated with com-
plete mixing between the surface layer and the en-
trainment layer, each of which is internally well
mixed through processes described in (1) and (2)

.1[f̃ (0, h )]m
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The total change in potential energy of a deepening
mixed layer f (0, ) can be expressed as1hm

f (0, ) 5 f (0, hm) 1 f (hm, ) 1 , (5)1 1 1h h f̃ (0, h )m m m

which follows from the identity
1hm

[r(z) 2 r ]gz dzE
0

1h hm m
m e5 [r(z) 2 r ]gz dz 1 [r(z) 2 r ]gz dzE E

0 hm

1hm

1 [r̃(z) 2 r ]gz dz. (6)E
0

In Eq. (6), and are respectively the mean densitym er r
of the initial mixed layer and the entrainment layer after
internal mixing within these layers. Also, in Eq. (6),

5 for 0 # z # hm
mr̃(z) r

and

5 for hm # z # .e 1r̃(z) r hm (7)

See Fig. 2 for a pictorial representation of the mixing
processes described above.

In the following section, analytical expressions for
each of these components are derived, which are then
used to develop the equations describing the changes in
depth and temperature of the layer during the time step
Dt.

3. Changes in potential energy associated with
mixing

a. Potential energy change due to mixing within the
surface layer

Applying Eq. (3) to the surface layer, the change in
the potential energy associated with vertical mixing in
the layer can be expressed as

hm
mf(0, h ) 5 [r(z) 2 r ]gz dz, (8)m E

0

where r(z) is the density profile in the surface layer,
before mixing at the end of the time step, given by

a 2dI(z)
r(z) 5 r 2 Dt 1 d(z)F(0)m [ ]C dzp

for 0 # z # h , (9)m

where a is the coefficient of thermal expansion, Cp is
the specific heat of seawater at constant pressure, and
d(z) is the Dirac-delta function, with properties d(z) 5
0 for z . 0 and d(z9) dz9 5 1. In Eq. (9), I(z) is thez∫0

solar radiation reaching depth z and F(0) is a measure
of the surface buoyancy flux associated with freshwater

and nonpenetrative heat input at the sea surface, given
by (see Bowden 1983)

a
F(0) 5 Q(0) 1 r bsf, (10)0Cp

where b is the coefficient of haline contraction of sea-
water, s is the salinity of the surface layer, and f is the
net freshwater flux (precipitation minus evaporation)
across the sea surface.

The depth average of Eq. (9) for 0 # z # hm is

Dt amr 5 r 2 [I(0) 2 I(h )] 1 F(0) . (11)m m[ ]h Cm p

Substituting Eqs. (9) and (11) into Eq. (8) and perform-
ing the integration gives

gh amf(0, h ) 5 Dt I(0) f 1 F(0) , (12)m hm[ ]2 Cp

where

hm2 I(0) 2 I(h ) 1mf 5 2 I(z) dz , (13)h Em [ ]I(0) 2 hm 0

is a function that accounts for the depth distribution of
heat input to the mixed layer by the penetrative com-
ponent of solar radiation. The numerical value of the
function varies between 0 and 1; 5 1 when allf fh hm m

the radiation is absorbed at the sea surface.

b. Potential energy change due to mixing within the
entrainment layer

Applying Eq. (3) to the entrainment layer gives
1hm

e1f(h , h ) 5 [r(z) 2 r ]gz dz, (14)m m E
hm

where r(z) is now the density profile in the entrainment
layer before mixing at the end of the time interval Dt:

a dI(z)
r(z) 5 r 1 a(z 2 h ) 1 Dtb m C dzp

1for h # z # h , (15)m m

and is now the depth-averaged density of the entrain-er
ment layer, which, using Eq. (15), can be written as

1hm1er 5 r(z) dzEhe hm

ah Dt ae 15 r 1 2 [I(h ) 2 I(h )]. (16)b m m2 h Ce p

Substituting Eqs. (15) and (16) into Eq. (14) and sim-
plifying gives
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FIG. 2. Changes in the potential energy of the water column associated with wind mixing considered by the GDIM. The density distribution
at the beginning of the time step is shown in panel 1. The modification to the density distribution at the end of the time step (before vertical
mixing) resulting from the absorption of heat is shown in panel 2. Changes in the density distribution in the surface layer and in the entrainment
layer resulting from internal mixing of the layers are shown in panels 3 and 4, respectively. The contributions from these processes to the
total change in the potential energy of the water column are denoted by f (0, hm) and f (hm, ), respectively. The effect of mixing between1hm

the surface layer and the entrainment layer on the density distribution is shown in panel 5. The corresponding change in the potential energy
is denoted by . The density distribution in the newly formed mixed layer is shown in panel 6. The total change in the potential1f̃ (0, h )m

energy associated with the formation of the new mixed layer is denoted by f (0, ), which is given by f (0, ) 5 f (0, hm) 1 f (hm, )1 1 1h h hm m m

1 . The straight arrows indicate the change in the density distribution, and the curved arrows indicate the vertical extent of mixing1f̃ (0, h )m

considered in each panel.

3agh gh ae e1f(h , h ) 5 1 Dt I(h ) f , (17)m m m he12 2 Cp

where
1hm12 I(h ) 1 I(h )m mf 5 2 I(z) dz . (18)h Ee [ ]I(h ) 2m hm

Equation (17) represents the change in the potential
energy associated with the removal of stratification
within the entrainment layer. The first term on the right
denotes the contribution from the preexisting linear den-
sity gradient, and the second term represents that from
the additional stratification produced by the absorption
of solar radiation.

c. Potential energy change due to mixing between the
initial mixed layer and the entrainment layer

The mixing between the surface layer and the en-
trainment layer is considered next, assuming that each

of these layers is already internally well mixed. From
Eq. (3), the change in potential energy associated with
the removal of the density difference between these lay-
ers can be expressed as

1hm

f̃(0, h ) 5 [r̃(z) 2 r ]gz dz, (19)m E
0

where is the density profile after the internal mixingr̃(z)
of the surface and entrainment layers. In the surface
layer, 5 , as given by Eq. (11), and in the en-mr̃(z) r
trainment layer 5 , as given by Eq. (16).er̃(z) r

The depth-averaged density of the mixed layer and
the entrainment layer together, r , can be written as

1hm1 1 m er 5 r̃(z) dz 5 [r h 1 r h ]. (20)E m e1 1h hm m0

Substituting Eq. (20) into Eq. (19) and simplifying gives
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gh hm e e m1f̃(0, h ) 5 [r 2 r ]. (21)m 2

d. Total change in potential energy for a deepening
mixed layer

From Eqs. (5), (12), (17), and (21), the depth-inte-
grated change in potential energy of a deepening mixed
layer can be expressed as

gh am1f(0, h ) 5 Dt I(0) f 1 F(0)m hm[ ]2 Cp

3gh a aghe e1 Dt I(h ) f 1m he2 C 12p

gh hm e e m1 [r 2 r ]. (22)
2

Substituting the expressions for and from Eqs.m er r
(11) and (16) into Eq. (22), we get

3gh a agh gh am e e1f(0, h ) 5 Dt I(0) f 1 F(0) 1 1 Dt I(h ) fm h m hm e[ ]2 C 12 2 Cp p

gh h ah Dt a Dt am e e 11 r 2 r 1 1 [I(0) 2 I(h )] 1 F(0) 2 [I(h ) 2 I(h )] , (23)b m m m m5 6[ ]2 2 h C h Cm p e p

which is the total change in potential energy associated
with the buoyancy redistribution through vertical mix-
ing for a deepening mixed layer.

4. Depth of a deepening mixed layer

The change in potential energy associated with the
formation of a new mixed layer through entrainment is
determined by the equation

Dt(G 2 D) 2 f (0, ) 5 0,1hm (24)

where G and D represent, respectively, the rates of gen-
eration and dissipation of TKE in the water column
between 0 and . Substituting for f (0, ) from Eq.1 1h hm m

(23) into Eq. (24) we have an expression for he, the
increase in the depth of the mixed layer after time Dt:

gh a gh hm m eDt(G 2 D) 2 Dt I(0) f 1 F(0) 5 Dr,hm[ ]2 C 2p

(25)

where Dr is the ‘‘effective density difference’’ at the
base of the mixed layer, given by the equation

2Dt a Dt a ah Dt a ahe e1Dr 5 r 2 r 1 [I(0) 2 I(h )] 1 F(0) 2 [I(h ) 2 I(h )] 1 1 I(h ) f 1 .b m m m m m he[ ]h C h C 2 h C 6h| | m p e p m p m}}}}z
| | | | | | | | | |}}}}}}}}}}}}}} }}}}}}}}}} }} }}}}}} }}1 z z z z z

2 3 4 5 6

(26)

Equation (25) describes the energy budget of the upper
ocean associated with the evolution of the mixed layer,
under the influence of solar heating, surface heat and water
exchanges, wind (or other) forcing, and dissipation. The
left side of the equation represents the excess TKE avail-
able in the surface layer after removing the stratification
resulting from buoyancy input to the original mixed layer.
The right side of the equation identifies the energy required
to deepen the mixed layer through a distance he by working
against an ‘‘effective density difference’’ Dr at the base
of the mixed layer. Terms 1–4 of Eq. (26) give the actual
density difference at the base of the mixed layer after

internal mixing within the separate surface and entrain-
ment layers. The contributions are the density difference
at the base of the mixed layer at the beginning of the time
step (term 1), the changes in the density difference re-
sulting from heat inputs to the mixed layer (term 2) and
the entrainment layer (term 3), and the increase in the
density difference at the base of the mixed layer resulting
from the removal of the linear gradient in the density
distribution in the entrainment layer (term 4). The last two
terms of Eq. (26) are not actually contributions to the
density difference at the base of the mixed layer. They
account for the energy required to eliminate the stratifi-
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cation within the entrainment layer [see Eq. (17)], resulting
from the absorption of solar radiation (term 5) and the
linear gradient in density (term 6), respectively. It is con-
venient to express these quantities in terms of an equivalent
density difference at the base of the mixed layer, but their
distinction from terms 1–4, accounting for the actual den-
sity difference at the base of the mixed layer, should be
noted.

5. The depth of a shallowing mixed layer

When the TKE input to the mixed layer is not sufficient
to counter the stratification produced by the input of heat
and/or freshwater, the surface layer will retreat to a shal-
lower level within which the TKE balances the buoyancy
input. In such instances, entrainment cannot occur and
the depth of the newly formed layer ( ) is less than or1hm

equal to hm. None of the terms in Eq. (25) that are func-
tions of he contribute to the change in depth of the surface
layer. Also, in Eq. (25), hm can be replaced by since1hm

the layer depth is determined by the energy balance with-
in the newly formed layer of depth , which is inde-1hm

pendent of the surface-layer depth hm at the beginning
of the time step. The resulting equation is

1gh am I(0) f 1 F(0) 2 (G 2 D) 5 0, (27)1hm[ ]2 Cp

where
1hm12 I(0) 1 I(h )mf 5 2 I(z) dz . (28)1h Em [ ]I(0) 2 0

Equation (27) is identical to the equation used in Kraus–
Turner-type mixed layer models to describe the shal-
lowing of a mixed layer.

6. The temperature of a deepening mixed layer

Once the new layer depth ( ) is known, the temperature1hm

of the layer ( ) can be calculated from the surface-layer1Tm

temperature at the beginning of the time step, the effects
of the absorption of solar radiation, exchange of heat across
the sea surface, and the entrainment of water across the
base of the mixed layer. That is,

h Dt h bhm e e1 1T 5 T 1 [I(0) 2 I(h ) 1 Q(0)] 1 T 2 , (29)m m m b1 1 11 2h r C h h 2m 0 p m m

where the first term on the right accounts for the heat
content of the mixed layer at the beginning of the time
step, the second term accounts for the heat input from
the nonpenetrative heat flux and the absorption of solar
radiation, and the last term gives the change in the layer

temperature associated with the water entrained across
the base of the surface layer. In Eq. (29), and b denotes
the linear gradient in temperature within the entrainment
layer.

For convenience, we rewrite (29) as

Dt h bhe e1 1T 5 T 1 [I(0) 2 I(h ) 1 Q(0)] 2 T 2 T 1 .m m m m b1 11 2r C h h 20 p m m

7. The temperature of a shallowing mixed layer

Given the depth of a shallowing mixed layer, the layer
temperature is calculated as the sum of the surface-1T m

layer temperature at the beginning of the time step and
the increase in temperature produced by the heat ab-
sorption in the new mixed layer:

Dt
1 1T 5 T 1 [I(0) 2 I(h ) 1 Q(0)]. (30)m m m1r C h0 p m

8. Comparisons with Kraus–Turner–type models

Figure 3 shows the vertical mixing scheme employed
by the Kraus–Turner model (hereafter referred to as the

KT formulation). This can be compared against the mix-
ing scheme shown in Fig. 2 to explain how the GDIM
differs from the KT formulation:

1) In the first panels, any initial stratification within the
entrainment layer is accounted for in the GDIM but
neglected in the KT formulation. It should be noted
that a buoyancy jump at the base of the mixed layer
is essential for the KT formulation as if there were
no buoyancy jump then the entrainment layer would
already be part of the mixed layer. We shall see later
that the assumption of a buoyancy jump at the base
of the mixed layer can cause problems under excep-
tional (but realizable) circumstances.
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FIG. 3. A schematic representation of the vertical mixing scheme employed by the Kraus–Turner formulation. See section 8 of the text
for a detailed description of the mixing process and a comparison with the GDIM mixing scheme illustrated in Fig. 2.

2) In the second panels we see that the absorption of
solar radiation in the entrainment layer is accounted
for in the GDIM but neglected in the KT formulation.
This difference could become particularly important
if the entrainment layer were to become more ab-
sorptive than the overlying mixed layer. In the ex-
treme case, this could lead to static instability of the
water column.

3) Another difference is associated with the treatment
of buoyancy mixing within the surface layer (panel
3). In the KT formulation, the energy required to
counter the stratification tendency in the surface lay-
er is determined and subtracted from the energy
available to drive entrainment, but the associated
buoyancy change is not accounted for until the end
of the mixing process (see panels 5 and 6). In the
GDIM formulation, the change in buoyancy is ac-
counted for at the time when the energy required for
mixing is determined.

4) The fourth panel show that the energy required for
vertical mixing within the entrainment layer is not
taken into account in the KT formulation. This fol-
lows from the fact that the entrainment layer is taken
to be initially well mixed, and the heat absorption
in the layer is neglected. The energy required for
mixing within the entrainment layer is specifically
accounted for in the GDIM formulation.

5) As already mentioned in reference to the third panel,
the KT formulation accounts for the energy required
for vertical mixing within the surface layer, but the
change in buoyancy of the surface layer is not ac-
counted for until the end of the mixing process. Con-
sequently, the energy required for mixing between
the surface layer and the entrainment layer is deter-
mined based on the initial density distribution in the
surface layer (dotted line), rather than the distribu-
tion after accounting for the buoyancy inputs during
the current time step (dashed line). We anticipate that
the effect of this approximation will only be signif-
icant when the preexisting density difference is very
small.

6) The last panel show the density profile at the end of
the time step, when the vertical mixing process is
complete. Note that although the buoyancy change
in the entrainment layer during the time step is not
accounted by the KT formalism for estimating the
energy required for entrainment, it is accounted for
in determining the energy available to drive entrain-
ment during the subsequent time step as modification
to the density profile below the mixed layer.

It should be evident from the above comparison that
the essential differences between the GDIM and the KT
formulation are associated with estimating the density



APRIL 1999 799R A V I N D R A N E T A L .

jump at the base of the mixed layer and the stratification
within the entrainment layer. These differences are fur-
ther analyzed below.

If we assume that he } Dt and consider the limiting
case of Eq. (25) as Dt → 0, we get

]h hm e5 lim
]t DtDt→0

2(G 2 D) 2 gh [(a/C )I(0) f 1 F(0)]m p hm5 . (31)
gh (r 2 r )m b m

Equation (31) includes contributions only from the first
term in (26) and is of the same form as the equation
for ]hm/]t used in KT-type models. Thus, the equation
used to describe the deepening of a mixed layer by KT-
type models represents a limiting case of Eq. (25). Fur-
ther, it is clear that the differences are entirely due to
the approximations used in the representation of the
‘‘effective density difference’’ at the base of the mixed
layer.

Equation (31) is singular in the limits hm → 0 and
(rb 2 rm) → 0, and hence this equation cannot be used
to determine changes in mixed layer depth in these lim-
its. The flaw in the derivation of (31) is that the as-
sumption he } Dt is not valid in these limits. The more
general equations (25) and (26) are valid in these limits.

In the absence of a surface mixed layer (hm 5 0), the
entrainment layer will extend from the sea surface, and

therefore I(hm) 5 I(0). With this modification, Eq. (25)
becomes

3gh a aghe eDt(G 2 D) 2 Dt I(0) f 1 F(0) 5 . (32)he[ ]2 C 12p

This equation describes the development of a mixed
layer in a linearly stratified water column in the presence
of TKE input, absorption of solar radiation, and the
exchange of heat across the sea surface. Note that the
expression for he does tend to zero as Dt → 0, but only
as (Dt)1/3, so the assumption he } Dt, leading to Eq. (31),
is invalid. That is, when hm 5 0, the last term in Eq.
(26) is O(Dt) and must be retained even as Dt → 0.

As (rb 2 rm) decreases, each of the terms 2 through
6 in Eq. (26) increases in importance relative to term
1. In the limit (rb 2 rm) → 0, at least one of these terms
must be retained, reflecting the dependence on condi-
tions below the mixed layer in this limit. Again he }
Dt is not valid for this limiting case.

The mixed layer depth predicted by Eqs. (25) and
(31) will tend to the same value as the integration time
step decreases, provided the condition hm(rb 2 rm) ±
0 is satisfied. However, with increasing time step, the
mixed layer depth predicted by Eq. (31) will deviate
from its true value. The discrepancy for any finite time
step can be quantified by considering the nondimen-
sional form of Eq. (26) obtained by dividing through
by term 1:

Dr Dt a Dt a
21 1 212 1 5 [I(0) 2 I(h )] 1 F(0) (r 2 r ) 2 [I(h ) 2 I(h )](r 2 r )m b m m m b m[ ]r 2 r h C h Cb m m p e p

| | | | | |}}}}}} }}}}}}}}}}}}}}}}}}}} }}}}}}}}}}}}}}}}z z z

i ii iii

2ah Dt a ahe e21 21 211 (r 2 r ) 1 I(h ) f (r 2 r ) 1 (r 2 r ) . (33)b m m h b m b me2 h C 6hm p m
| | | | | |}}}}}}} }}}}}}}}}}}} }}}}}}}}z z z

iy y y i

If we assume that terms (ii)–(vi) of Eq. (33) are neg-
ligible, then Eq. (25) reduces to Eq. (31), which is the
general equation employed in KT formulation to de-
scribe the deepening of the mixed layer. However, ne-
glecting terms (ii)–(vi) implies stringent conditions on
the maximum time step that can be used in the model
simulation. The conditions to be satisfied are

h (r 2 r )m b mDt K
a

[I(0) 2 I(h )] 1 F(0)m) )[ ]Cp

from term (ii) (34)

h (r 2 r )e b mDt K from term (iii) (35)
a

1[I(h ) 2 I(h )]m mCp

h (r 2 r )m b mDt K from term (y) (36)
a

I(h ) fm heCp

r 2 rb mh K 2 from term (iy) (37)e 1 2a
and

r 2 rb mh K 6h from term (y i). (38)e m1 2! a
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FIG. 4. The evolution of mixed layer depth under the influence of
time-independent forcing during a 5-day period, simulated using Eq.
(25), is shown in (a). The layer depth calculated using time steps of
1 day and 5 days are represented by ‘‘3’’ and circle, respectively.
The results of model simulation using Eq. (31) are shown in (b). To
ensure numerical stability of the integration routine, the maximum
time step was limited to 2.6 h.

Note that, if hm(rb 2 rm) ± 0, then the last two
conditions on he are equivalent to conditions on Dt be-
cause the increase in the layer depth during a time step
is a function of the time step itself. Inequalities (34)–
(38) limit the accuracy of KT formulation when the time
step is chosen to be too large. If they are not satisfied,
either the time step must be reduced, or the complete
Eq. (25) must be used. We emphasize that the differ-
ential equation (31), obtained by taking the limit Dt →
0, is an accurate representation of the physics of a deep-
ening mixed layer if hm(rb 2 rm) ± 0. However, even
in this case, the subsequent discretization using standard
finite differences is less accurate than (25). Information
regarding conditions beneath the mixed layer is lost in
taking the limit Dt → 0 and then returning to finite Dt
based solely on the resulting differential equation.

One aspect of the computational efficiency afforded
by Eq. (25) is illustrated in Fig. 4a, which shows several
time series of mixed layer depth during a 5-day simu-
lation of the model. The initial depth and temperature
of the layer were 5 m and 248C. The thermocline was
characterized by a temperature gradient of 0.058C m21

starting from a temperature of 23.58C at the base of the
mixed layer. The model ocean was forced with a wind
stress of 0.4 Pa, a nonpenetrative heat flux of 2400 W
m22 and a penetrative solar radiation flux of 200 W m22.
The net TKE input to the water column was specified as

(G 2 D) 5 ,3r mu0 * (39)

where u* is the friction velocity and m 5 0.65 is the
proportionality constant. From numerous parameteri-
zation schemes available for specifying the TKE input
(see, e.g., Niiler and Kraus 1977), this particular form
was selected for the sake of simplicity. Note that all
forcing terms are constant in time.

The solid curve in Fig. 4a denotes the mixed layer
depth calculated by Eq. (25) with a time step of 1 h.
The corresponding values calculated using time steps of
1 day and 5 days are represented in the figure by ‘‘3’’
and circle, respectively. Mixed layer depths calculated
using Eq. (31) with three different values of the time
step are shown in Fig. 4b. To ensure numerical stability
of the integration routine, the maximum time step was
limited to 2.6 h. Figure 4a shows that the mixed layer
depth predicted using Eq. (25) is not sensitive to the
choice of time step, whereas Fig. 4b shows that the
corresponding evolution based on Eq. (31) depends
strongly on the time step, even for the case of constant
forcing. The accuracy of the results presented in Fig.
4b is determined by the validity of the inequalities (34)–
(38).

9. Comparisons with observations

To test mixed layer models reliably in the simplest
possible context, data are required from a site for which
a one-dimensional model in the vertical is applicable.
Observations from OWS Papa (508N, 1508W) provide
an appropriate combination of weak advection, weak
horizontal property gradients, and well-defined mixed
layer variations. Oceanographic and meteorological ob-
servations from this site have been used in the past for
testing and comparing the performances of mixed layer
models (see, e.g., Martin 1985; Gaspar 1988, Large et
al. 1994; Kantha and Clayson 1994).

Following previous investigators, we have tested the
ability of the GDIM to simulate the seasonal progression
of mixed layer depth and temperature at station Papa
using 3-hourly observations for the year 1961. The heat
flux components were calculated following the general
procedure outlined in Martin (1985). The density of
seawater was determined as a function of salinity and
temperature, following Gill (1981). During the model
simulation the temperature and salinity profile below
the mixed layer were determined using vertical grids
with 1-m resolution. The initial conditions and the am-
bient diffusivity below the mixed layer were specified
according to Martin (1985).

The attenuation of solar radiation in the ocean was
calculated according to Paulson and Simpson’s (1977)
parameterization scheme. In the absence of field data to
model the depth distribution of solar radiation in the
water column, we have assumed that the optical char-
acteristics of the water column can be represented by
Type I of Jerlov (1976) classification scheme during the
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FIG. 5. A comparison between observed (thin curves) and the
GDIM predicted (thick curves) time series of mixed layer temperature
using 3-hourly observations of surface fluxes at station Papa during
1961.

TABLE 1. The difference between monthly mean values of the mod-
el-predicted and observed temperature. See Large et al. (1994) for a
compilation of similar results from simulations of various bulk and
differential models at OWS Papa.

Month
Temperature difference

(8C)

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

20.06
20.07

0.04
20.11

0.04
20.18

0.35
0.25

20.10
20.91
20.63
20.07

FIG. 6. A comparison between observed and model-predicted time
series of mixed layer depth: (a) the layer depth derived from observed
temperature profiles by assuming a temperature difference (DTm) of
0.18C at the base of the layer, (b) the layer depth predicted by the
model, and (c) the layer depth derived from model-predicted tem-
perature profiles following the same criterion of DTm 5 0.18C to define
the base of the mixed layer.

first 7 months of the year and by Type II during the
remainder. This assumption was made to get a best
match between the observed and model-predicted layer
temperature.

Gaspar’s (1988) parameterization was used to esti-
mate the net TKE input to the mixed layer. This is one
of the most general schemes available for describing the
TKE input within the framework of bulk mixed layer
modeling. It explicitly takes into account the rotation-
and stability-dependent changes in turbulent dissipation.
The procedure followed for incorporating this param-
eterization into Eq. (25) is summarized in the appendix.

The observed and the GDIM predicted time series of
mixed layer temperature are presented in Fig. 5, which
shows an excellent match between the two for the first
9 months of the year. The discrepancy during the last
3 months may be due to the net input of heat by hor-
izontal advection (Martin 1986). A comparison between
the time series in Fig. 5 and the corresponding results
from Martin (1985), Martin (1986), Large et al. (1994),
and Kantha and Clayson (1994) suggests that the GDIM
is very sucessful in reproducing the observed fields in
comparison with many of the existing models.

Large et al. (1994) have suggested that an annual
cycle of monthly mean difference between the model-
predicted and observed temperature (DTm) with values
less than 0.58C can be considered as a desirable model
performance. Table I shows the values of DTm corre-
sponding to Fig. 5. Except in the fall, DTm is less than
0.58C. Table 6 of Large et al. (1994) shows correspond-
ing values derived from model simulations at OWS Papa
for the year 1961 using various bulk and differential
models. A comparison between the two tables shows
that the GDIM formulation gives smaller DTm values
than many of the models presently used.

The time series of observed layer depth is given in
Fig. 6a. It is derived from the temperature profiles by
defining the base of the layer as the depth at which the
temperature is 0.18C less than the surface temperature.
The GDIM predicted time series of mixed layer depth
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FIG. 7. Time series of mixed layer temperature predicted by the
GDIM (thick curve) and the Kraus–Turner model derived from the
GDIM (thin curve) are shown in (a). The relative error in the tem-
perature predicted by the Kraus–Turner model is shown in (b) as
percentage of the layer temperature predicted by the GDIM model,
with a maximum relative error of about 4%. In (c) the relative error
when the Kraus–Turner model is modified to account for the change
in the potential energy of the entrainment layer. A comparison be-
tween (b) and (c) suggests that a significant portion of the difference
between the results of the Kraus–Turner model and the GDIM is
caused by the detailed accounting of the changes in the mean density
of the mixed layer and the entrainment layer in the GDIM.

is given in Fig. 6b. The layer depths derived from
GDIM-predicted temperature profiles by following the
same criterion used in Fig. 6a of assuming a 0.18C tem-
perature difference at the base of the mixed layer are
shown in Fig. 6c. This somewhat arbitrary choice of the
base clearly gives a deeper mixed layer in Fig. 6c than
that given in Fig. 6b and filters out significant high-
frequency oscillations in the mixed layer depth. How-
ever, this choice is required for direct comparison of
our model results with observations shown in Fig. 6a
and with previously reported model results.

A comparison between the time series of observed
and the model-predicted mixed layer depths given in
Fig. 6 shows that the GDIM is fairly successful in re-
producing the observed evolution of mixed layer depth
through summer. In the fall, the layer depth predicted
by the GDIM is deeper than the observed, which is
consistent with some of the results reported by Martin
(1985), Martin (1986), Kantha and Clayson (1994), and
Large et al. (1994). As in the case of layer temperature,
this discrepancy may be caused by the horizontal ad-
vection of heat.

As the next step, we have compared the GDIM results
against the results from a simulation using KT mixing
formulation. The forcing fields and the initial conditions
used for this simulation are identical to that used for
the GDIM simulation. The KT formulation is derived
from the GDIM by removing appropriate terms through
the following steps.

1) The contributions from heat input to the mean den-
sity of the surface layer is neglected; that is, in Eq.
(11), 5 rm.mr

2) The mean density of the entrainment layer is taken
to be the density at the base of the mixed layer; that
is, in Eq. (16) 5 rb.er

3) The entrainment layer is assumed to be well mixed.
Therefore, the energy required for vertical mixing in
the entrainment layer is taken to be zero; that is,
f (hm, ) 5 0.1hm

The temperature predicted by the model is shown in
Fig. 7a, along with the GDIM temperature distribution.
Compared with the GDIM, the KT formulation simu-
lates slightly deeper and cooler mixed layer. The dif-
ference between the layer temperature predicted by the
two models is given in Fig. 7b as a percentage of the
temperature predicted by the GDIM, which shows that
the maximum difference in the layer temperature be-
tween the two models is about 4% of the temperature
predicted by the GDIM. Most of the difference depicted
in Fig. 7b can be attributed to the detailed accounting
by the GDIM of the effect of heat input to the water
column on the mean density of the mixed layer and the
entrainment layer alone. This point is evident from the
similarity between Figs. 7b and 7c in which we have
plotted the difference in temperature predicted by GDIM
and a Kraus–Turner approximation of the GDIM ob-
tained by implementing only step 1 ( 5 rm) and stepmr

2 ( 5 rb), but accounting for the change in the po-er
tential energy of the entrainment layer [f (hm, ) ± 0].1hm

10. Discussion

Bulk models of the oceanic mixed layer are concep-
tually simple and computationally efficient. They have
also been successful in reproducing the observed fields
of mixed layer depth and temperature (Martin 1985;
Gaspar 1988). However, their wider applicability is lim-
ited by the requirements of the a priori existence of a
well mixed layer and a positive density discontinuity at
the base of the layer. The GDIM developed in this paper
is free from these limitations. It yields improved ac-
curacy and stability properties when finite time steps
are used, as in all numerical implementations. Finally,
the dynamical basis of the present model formulation
has been made as transparent as possible in order to
facilitate both understanding and future modifications.

An important difference between the GDIM and pre-
vious mixed layer models is the use of a time-integrated
budget approach rather than a differential approach for
the time dimension. Thus, in the GDIM, the bulk mod-
eling approach has effectively been extended to include
the time dimension as well as the vertical dimension.
In this sense, the present formulation is further distin-
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guished from the popular differential models (e.g., Mel-
lor and Yamada 1974) and shifts further toward the en-
ergy budget model of Simpson et al. (1978).

As a consequence of using a time-integrated ap-
proach, several terms appear in Eq. (26) that do not
appear in the standard KT formulation. If hm(rb 2 rm)
± 0, then each of these terms are O(Dt) (i.e., they tend
to zero at least as fast as Dt), so that they are correctly
eliminated in the limit Dt → 0, which is used in the
differential approach. However, once eliminated, these
terms are obviously not restored when the equations are
expressed in discrete form, with finite Dt, as used in
numerical integrations. If hm(rb 2 rm) 5 0, then Eq.
(31) is not a valid limit of Eq. (25) even as Dt → 0.
The principal difference between the GDIM approach
and those used in the past is that the validity of the new
model is not restricted to the limit Dt → 0.

Related to the improved accuracy for a given Dt is
the numerical stability of the finite-difference formu-
lation. As evident from Fig. 4b, the numerical procedure
used to determine the evolution of mixed layer depth
in the standard KT formulation is unstable if the time
step is not chosen sufficiently small. As a consequence,
during model simulations using observed data, the time
step of integration is generally determined by the re-
quirement for numerical stability rather than the fre-
quency of observations or the timescales on which the
forcing varies. On the other hand, the depth of the mixed
layer predicted by the GDIM formulation is not sensitive
to the size of the time step used, provided temporal
variations in the forcing functions are resolved. There-
fore, model simulations using the GDIM formulation
can be optimized for computational efficiency by choos-
ing the time interval between observations (or between
significant changes in the observations) as the time step
for model simulation.

It should be emphasized that the results in Fig. 4
depend critically on the specification of constant forc-
ing. Accurate estimation of mixed layer evolution re-
quires that temporal variations in the forcing fields be
resolved. For example, a period of intense cooling or
strong wind mixing followed by a mild condition will
modify the thermal structure at greater depths than if
the mean condition persisted throughout the same time
interval. Nevertheless, large-scale models of oceanic
circulation and air–sea interactions are often used in
climatic research studies with time steps ranging from
a few hours to a month. Incorporation of mixed layer
dynamics in such models is clearly of interest. Unfor-
tunately, the computational burden of such model is
very large and it is highly desirable to minimize the
additional requirements of any new model components.
The effect of nonlinearity in the forcing fields on mixed
layer evolution is an important factor to be considered
while incorporating mixed layer models into such large-
scale models. This is because a larger time step can lead
to poor sampling of the forcing fields, which in turn,
will lead to poor performance of the mixed layer model.

In such instances, the nonlinearity should be either re-
solved or parameterized. The choice depends on the
balance between the desire for computational efficiency
and accuracy. Better parameterization of the effects of
nonlinearity will lead to improved efficiency. Attempts
have been made in the past to achieve this goal (see,
e.g., Woods and Barkman 1986). However, the numer-
ical stability imposes a constraint on the size of the time
step that can be used for integration of the KT formu-
lation. This limits the applicability of the model to study
the effect of nonlinear forcing, with timescales more
than a few hours, on mixed layer evolution. This is
because, when the KT formulation is integrated with
larger time steps, it will be difficult to distinguish be-
tween the error caused by nonlinear forcing and the error
caused by numerical instability. As evident from Fig.
4, the GDIM formulation is numerically more stable
than the KT formulation and therefore better suited for
such studies.

In general, the performance of the GDIM is on a par
with any of the commonly used bulk or differential mod-
els. The primary advantages of the GDIM over previous
bulk models lies in its increased computational effi-
ciency associated with numerical stability and in the
elimination of singularities associated with the condi-
tions hm → 0 and (rb 2 rm) → 0.

There have been several attempts to incorporate ther-
modynamic processes into models of the upper-ocean
dynamics (Schopf and Cane 1983; McCreary and Kundu
1989; McCreary et al. 1993). A major difficulty in in-
corporating KT-type mixed layer models into dynamic
models of the upper ocean is the requirement of a positive
density discontinuity at the base of the mixed layer. In
the presence of surface cooling or advective effects, the
density discontinuity at the base of the layer may dis-
appear (rb 5 rm), and this introduces a mathematical
singularity in the equation used to describe the evolution
of the mixed layer depth [Eq. (31)]. Attempts to over-
come this difficulty have involved estimation of the ef-
fective temperature difference based on the temperature
distribution in the thermocline (Schopf and Cane 1983).
The GDIM provides a better solution to this problem as
the information from beneath the mixed layer is naturally,
and appropriately, used in the new model [see Eq. (26)].

Further improvements in our model performance are
expected to come from improved representations of the
TKE budget. Allowing for the effects of processes such
as internal wave breaking and biologically driven optical
variability are potentially important, even in one-dimen-
sional models. In addition, the effects of horizontal and
vertical advection by both Langmuir circulation and
large-scale current fields must be included to handle more
general cases (Large et al. 1994; Li and Garrett 1997).

A number of schemes with different degrees of com-
plexity and different physical foundations are available
for describing the TKE budget (Zilitinkevich et al. 1979;
Garwood 1979; Gaspar 1988). Equation (25) is not re-
stricted to any particular set of parameterizations for
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representing the TKE input to the ocean, and it can be
easily adapted to any scheme one may select. The sim-
plicity and generality of Eq. (25) result in a useful
framework for testing and intercomparison of various
parameterizations of the TKE budget.

In regions such as the equatorial oceans, shear-in-
duced mixing in the thermocline can play an important
role in the deepening of the mixed layer. To account for
this effect, Chen et al. (1994) have developed a hybrid
mixing scheme in which the evolution of the mixed layer
is described using the KT formulation, and the evolution
of the thermocline is described using the vertical mixing
scheme of Price et al. (1986), which is based on the
critical Richardson number criterion. A better account-
ing of stratification below the base of the mixed layer
could be included into this hybrid scheme by replacing
the KT formulation by the GDIM formulation. The more
general applicability and improved representation of ef-
fects that enter at finite Dt, together with the additional
computational efficiency resulting from the larger time
steps that can be tolerated by the present formulation,
make it well suited for incorporating mixed layer ther-
modynamics into three-dimensional circulation models
of the upper ocean.
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APPENDIX

The TKE Formulation and Numerical
Implementation

Equation (25) can be written in the form

1 gh hm e(G 2 D) 2 r h B(h ) 5 Dr, (A1)0 m m2 2Dt

where

g a
B(h ) 5 I(0) f 1 F(0) . (A2)m hm[ ]r C0 p

Following Gaspar (1988), the net TKE input to the
mixed layer can be specified as

hm3 3/2(G 2 D) 5 r (m 1 m )u 2 E , (A3)0 2 3 m*[ ]l

where m2 5 2.6 and m3 5 1.9 are transfer coefficients
associated with the surface momentum flux and production
of TKE from vertical shear within the mixed layer re-
spectively, l is a dissipation-length scale, and Em is twice
the mean eddy kinetic energy integrated over the layer
depth. Substituting Eq. (A3) into Eq. (A1) we get

h 1 gh hm m e3 3/2(m 1 m )u 2 E 2 h B(h ) 5 Dr. (A4)2 3 m m m* l 2 2Dtr0

Noting the conversion we 5 Dh/Dt and Db 5 gDr/r0

we see that Eq. (A4) is identical to Eq. (35) of Gaspar
(1988) except for the specification of Dr. In Eq. (A4),
Dr is determined using Eq. (26), whereas in Eq. (35)
of Gaspar (1988) only the first term on the right of Eq.
(26) is used to determine Dr.

Equation (50) of Gaspar (1988) gives the solution to
Eq. (A4), which can be rearranged as

2 2 1/22(0.5A 1 c S ) 1 [(0.5A 2 c S ) 1 2c (h /l) A S ]Dtr gh hp pl p p pl p 4 m p p0 m e5 Dr. (A5)
2[ ]2 c (h /l) 2 c 24 m pl

Equation (A5) is the particular form of Eq. (25) using
the Gaspar (1988) parameterization of the TKE budget,
in which

3A 5 c u 2 c h B(h ), (A6)p p3 pl m m*

1
3S 5 (m 1 m )u 2 h B(h ), (A7)p 2 3 m m* 2

c 5 [(2 2 2m )(l /l) 1 m ]/6, (A8)pl 5 p 4

c 5 [m (m 1 m ) 2 (l /l)(m 1 m 2 m m )]/3,p3 4 2 3 p 2 3 5 3

(A9)

and

2c 5 2m /m . (A10)4 4 1

In the above equations, l and lp are dissipation length
scales defined by the equations
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h hm m h /Lm5 a 1 a max 1, e (A11)1 2 [ ]l 0.4l

and

hm h /Lm5 a 1 a e , (A12)1 2lp

where
3u*L 5 (A13)

B(h )m

is the Monin–Obukhov length. Note that in Eqs. (A5)
to (A12), m1 5 0.45, m4 5 2.3, m5 5 0.6, a1 5 0.6,
and a2 5 0.3 are parameters defined by Gaspar (1988).

During each time step, the new layer depth is initially
calculated under the assumption that the mixed layer is
in a shallowing phase by solving the equation Ap 5 0.
If the estimated layer depth is greater than the mixed
layer depth at the beginning of the time step, the mixed
layer is in a deepening phase. Therefore, the estimated
value is discarded, and the depth of the mixed layer is
estimated by solving Eq. (A5) together with Eq. (26).

Any combination of strong wind, surface cooling, and
relatively small density discontinuity at the base of the
mixed layer can cause rapid deepening of the mixed
layer. Under such conditions, a single-step solution to
Eq. (A5) can be inaccurate due to the assumption of a
linear density gradient over several meters. This poten-
tial problem is controlled by solving Eq. (A5) through
an iterative procedure as follows.

The excess TKE, z0, available within the initial mixed
layer after removing the internal stratification is esti-
mated from the right-hand side of Eq. (A5) as

z0 5 (G 2 D) 2 f (0, hm). (A14)

The TKE required for vertical mixing in an entrainment
layer of 1-m thickness [f (hm, hm 1 1)] and for mixing
between the initial mixed layer and this entrainment
layer are calculated from Eqs. (17) and[f̃ (0, h 1 1)]m

(21), respectively.
The excess energy z1 available after deepening the

mixed layer through 1 m is calculated as

z1 5 z0 2 f (hm, hm 1 1) 2 . (A15)f̃ (0, h 1 1)m

If z1 . 0, the new layer depth is estimated as

5 hm 1 1,1hm

and the layer density is updated using Eq. (20).
The excess energy available after increasing the layer

depth by another 1 m is calculated as

z2 5 z1 2 f ( , 1 1) 2 , (A16)1 1 1h h f̃ (0, h 1 1)m m m

or, in general, for the ith round of iteration
i21 i21 i21z 5 z 2 f(h , h 1 1) 2 f̃(0, h 1 1).i i21 m m m

(A17)

If z i . 0, the depth of the mixed layer is again incre-

mented by 1 m, the mixed layer density is updated, and
the procedure is repeated till a depth interval {(hm 1 n
2 1), (hm 1 n)} is determined within which z i becomes
negative. Once this interval is identified, the final layer
depth in the range , , can be estimated1 n21 1 nh h h hm m m m

by continuing the iteration with smaller values of he or
by using a standard bisection procedure.

The advantage of using this procedure is that during
the ith round of iteration the assumption of a linear
density gradient needs to be true only in the 1-m interval
{(hm 1 i 2 1), (hm 1 i)}.
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