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Introduction générale

Le contexte : L’hydrodynamique cétiére et de surface

Avant de parler de vagues et de circulation océanique, je souhaiterais introduire le
contexte générale de cette étude. I.’étude de la circulation océanique, et de 'océan en
général, est au carrefour de nombreux enjeux, et il semble opportun d’en dresser une

liste rapide pour avoir une idée des applications pratiques de la présente recherche.

A Téchelle du globe, la circulation océanique intéresse particuliérement pour
son impact sur le climat. A I'échelle cotiére, les intéréts sont plus divers, depuis la
connaissance et la prévision des mouvements des masses d’eau pour application a la
biologie, a la biogéochimie, I’halieuthique, & la défense sous-marine, jusqu’au suivi
des pollutions et au sauvetage en mer. Enfin a I’échelle littorale, 'hydrodynamique
de 'océan est étudiée principalement pour ses applications a I’érosion des cotes, au

transport sédimentaire.

Pour beaucoup d’applications parmi celles citées ci-dessus, un des pré-requis est
de posséder un modeéle de 1'océan qui représente correctement les transports parti-
culaires pres de la surface (suivi des pollutions, sauvetage en mer, étude des dérives
de larves en halieuthique), qui représente correctement le mélange des couches de
surface océaniques , avec les cycles diurnes et saisonniers (études climatiques, bio-
géochimie), et qui représente correctement la circulation aux abords immeédiats des
plages, dans la zone de déferlement des vagues et au-deld, sur le plateau interne
(érosion des plages, transport des sédiments, suivi des polluants rejetés de la cote).
En fait une grande partie des activités de recherche océanographiques nécessitent
une bonne connaissance de ’hydrodynamique prés de la surface et prés de la cote,
et ce n’est pas surprenant puisque l’essentiel des activités humaines et animales s’y

concentrent.

Voila ce qui constitue la motivation pour étudier I’hydrodynamique de cette

artie de 'océan, et plus précisément I'impact des vagues sur celle-ci.
)

11



12 Introduction générale

Problématique : L’impact des vagues

Les vagues jouent un role prépondérant dans la dynamique de 'océan au niveau
littoral. Par exemple, des vagues d’incidence oblique générent des courants le long des
plages, et ces courants sont généralement plus importants que les courants crées par
le vent, la marée ou les courants du large. Les modéles hydrodynamiques littoraux

intégrent donc les vagues comme un forcage essentiel.

Au contraire, dans les modeéles cotiers d’océan, a des échelles de grandeur de
I'ordre d’'une baie, d’une région ou d’un bassin océanique, ’'océan évolue uniquement
en réponse au vent, a la marée et aux différents forcages sur la température et
sur la salinité. Les vagues, et plus généralement 1’état de mer, ne sont pas pris
en compte. Hors de la zone de déferlement bathymétrique, les vagues sont ainsi

largement ignorées.

Pourtant, I’énergie cinétique turbulente (TKE) produite par le déferlement des
vagues est supérieure, au moins d’un ordre de grandeur, a la production de TKE
par le cisaillement du courant d’Ekman (Terray et al., 1996). De méme, la pseudo-
quantité de mouvement des vagues, intégrée verticalement (c.a.d. le transport de
Stokes des vagues) est de 'ordre de grandeur du transport d’Ekman correspondant
au vent qui les a créées : McWilliams and Restrepo (1999), ainsi que Polton et
al. (2005), ont donné une premiére estimation de ce transport de Stokes a 40% du
transport d’Ekman aux moyennes latitudes. Cependant, une analyse plus réaliste
tenant compte du fait que les vagues sont rarement complétement développées par
vent fort serait certainement plus proche de 10%. En surface, la dérive de Stokes
des vagues de vent a été estimée par Kenyon (1969) a plus de 3% de la vitesse du
vent & 10 m, une vitesse comparable a la dérive due au vent des particules d’eau a la
surface. Enfin, le transfert de la quantité de mouvement du vent vers I'océan passe
généralement a plus de 80% par les vagues, alors que 20% ou moins sont dus aux
frottements visqueux a la surface (Donelan, 1998; Banner and Peirson, 1998).

Ces diverses observations et analyses ont amené a reconsidérer I'importance des
vagues dans la description de 'océan, y compris loin de la cote. En particulier pour
des problématiques liées aux dérives prés de la surface ou liées au mélange prés de
la surface, les vagues doivent jouer un role important, compte tenu des ordres de
grandeurs précédents.

Egalement il apparait un fossé entre la description littorale, avec vagues, et la
description cotiére, sans vagues, de 'océan. Pourtant, la zone intermédiaire, au-dela
de la zone de déferlement des vagues et que nous nommerons pré-littorale comme
Denamiel (2006), est d’importance cruciale en terme de transports de sédiment, de

matériel biologique ou chimique, puisque c¢’est dans cette zone que se retrouvent tous
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les matériels issus de la zone littorale. Une description cohérente des courants induits
par les vagues, depuis la plage jusqu’au large, au méme titre que les courants induits
par les autres forcages tels le vent ou la marée, est ainsi nécessaire pour modéliser

cette zone pré-littorale.

Plan de ’exposé

Parce que l'impact général des vagues sur I'hydrodynamique est a cheval sur
différents champs d’investigations, depuis la cloture turbulente et le mélange vertical
jusqu’a la circulation littorale, la bibliographie n’a pas été, comme il est d’usage
habituellement, regroupée dans une partie spécifique. Au contraire, chacune des
différentes parties traite de sa bibliographie spécifique.

Notre exposé s’articule en 3 parties.

Les aspects généraux seront rappelés dans un chapitre préliminaire. J’y ferai
notamment une description simple des vagues et du transport de masse qui leur
est associé. La séparation du champ de vitesse en une partie vagues et une partie
courant moyen y sera présentée, ainsi que la force de Stokes-Coriolis. Ces deux
notions reviendront de facon récurrente tout au long de ce travail.

Ensuite une premiére partie traitera plus précisément de 'effet des vagues sur
I’hydrodynamique loin de la cote. L’étude sera alors a une dimension verticale et
s’attachera a décrire de facon cohérente les courants d’Ekman et la dérive prés de la
surface sous l'effet des vagues. On y abordera également les problémes de mélange
induit par les vagues et de cloture turbulente, et ses conséquences sur les profils de
vitesse prés de la surface.

Une deuxiéme partie reviendra sur le mélange lié aux vagues, mais cette fois sur
son impact sur la profondeur de la couche de mélange. Les modéles et les paramétres
pour prendre en compte ce mélange induit par les vagues seront discutés, ainsi que
I'impact sur la formation et ’érosion des thermoclines.

Enfin une troisiéme partie présentera une description de la circulation induite par
les vagues depuis la zone de déferlement jusqu’au plateau continental. Les aspects liés
a la non-uniformité du champ de vagues, connus par exemple sous le terme "tensions
de radiation", seront abordés. [.’analyse séparée des vagues et des courants, ainsi
que ses conséquences sur la compréhension des courants de la zone infra-littorale,

sera abordée.
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(General introduction in english

The context: The hydrodynamics near the coast and

near the surface

Before discussing the waves and their impact on the ocean circulation, I would like
to introduce the general context of this study. The study of the oceanic circulation,
and more generally the study of the ocean, might benefit to many activities and a
short review might be helpful to understand the possible applications of the present

thesis.

At global scale, the ocean circulation is under particular interest for its impact
on the climate. But at coastal scale, the motivations are more diverse, from the
understanding and forecasting of the water mass transport for applications to biol-
ogy, biochemistry, halieutic, submarine defense, to pollutants monitoring and search
and rescue. Also at nearshore scale, the ocean hydrodynamics is mainly studied for

applications to coastal erosion or sedimentary transport.

For many of the applications cited above, one necessary step is to build an ocean
model which correctly describes the transports of particles close to the surface (pol-
lutants monitoring, search and rescue, drift of larvae), which correctly describes the
mixing in the upper ocean with the resolution of the diurnal and seasonal cycle (cli-
matic studies, biochemistry), and which correctly represents the circulation in the
vicinity of the shore, in the surf-zone and beyond in the inner-shelf zone (coastal ero-
sion, sedimentary transport, monitoring of the pollutants rejected from the coast).
Actually a large part of the ocean research activities need an accurate understanding
of the near-surface and nearshore hydrodynamics, and this is not surprising since

most animal and human activities concentrate in those areas.

This sets up a motivation to study the hydrodynamics of this part of the ocean,

and more precisely to study the impact of waves on it.

15



16 General introduction in english

The issue: The impact of waves

Waves play a dominant role in the ocean dynamics close to the shore. For instance,
obliquely incident waves create alongshore currents, and those currents are generally
larger than the currents created by the wind, the tides or the off-shore currents.

Therefore nearshore hydrodynamics models use the waves as an essential forcing.

On the contrary in the coastal models, at the scale of a bay, of a region or of
an ocean, the ocean evolves only in response to the wind, the tide and the different
forcings of the temperature and the salinity. Waves, and more generally the sea

state, are then largely ignored outside of the surf-zone.

Nevertheless, the turbulent kinetic energy (TKE) produced by the wave breaking
is at least an order of magnitude larger than the TKE produced by the shear of the
Ekman currents (Terray et al., 1996). Also the vertically-integrated waves pseudo-
momentum (i.e. the Stokes transport of the waves) is of the order of the Ekman
transport corresponding to the wind which created those waves. McWilliams and
Restrepo (1999) and Polton et al. (2005) gave a first estimation of this Stokes trans-
port around 40% of the Ekman transport at mid-latitude. We note however that
a more realistic estimation would be close to 10% given that the waves are seldom
fully-developed under strong winds. At the surface, the Stokes drift was estimated
by Kenyon (1969) to be more than 3% of the wind speed at 10 m, a velocity of
the same order as the drift velocity of particles at the surface. Finally, the momen-
tum from the wind transfers to the ocean generally through the wave field at 80%,
whereas only 20% or less are due to the viscous friction at the surface (Donelan,
1998; Banner and Peirson, 1998).

All those observations have lead us to reconsider the importance of waves in
the description of the ocean, even far from the coast. In particular for studies of
near-surface drift or near-surface mixing, waves might play an important role given

the previously listed orders of magnitude.

Also there is a gap between the nearshore descriptions (with waves) and the
coastal descriptions (without waves) of the ocean. Yet the intermediate zone, the
inner-shelf zone, is of crucial importance in terms of sedimentary transport, chemical
or biological transport, since all the materials coming from the surf-zone finally end
up there. A coherent description of wave-induced currents, from the shore to the
open ocean, as well as the currents induced by the other forcings, is a necessary step

to build a model of that inner-shelf zone.
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Contents

As the general impact of waves on the hydrodynamics deals with many different
topics, ranging from the turbulent closure and vertical mixing to the nearshore
circulation, the bibliography has not been, as it is conventionally done, gathered in
a specific part. On the contrary, each part deals with its specific bibliography.

The thesis is split into three parts.

The general concepts will be recalled in a preliminary chapter. I will made a
simple description of the waves and of the associated mass transport. The separation
of the velocity field into a wave part and a mean flow part will be presented, as well
as the Stokes-Coriolis force. Those concepts will appear all along the thesis.

Then a first part will deal more precisely with the effects of waves on the dynamics
in the open ocean. The study incorporates only one (vertical) dimension and will
try to describe in a coherent manner the Ekman currents and the drift close to the
surface in the presence of waves. Also the vertical mixing due to the waves will be
parameterized with an appropriate turbulence closure. Its impact on the velocity
profiles close to the surface will be discussed.

A second part will also focus on the wave-induced mixing, but more precisely
on its impact on the mixed layer depth. Models and parameters to include the
wave-induced mixing will be discussed, as well as the impact on the thermocline
formation and erosion.

Finally, a third part be devoted to the description of the wave-induced circulation
from the surf-zone to the shelf. Aspects linked to horizontally non-uniform wave
fields, for instance known as radiation stress effects, will be discussed. The separated
analysis of waves and currents, as well as its consequence on the understanding of

the inner-shelf currents, will be discussed.
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Chapter 1
(General concepts

This chapter aims to introduce general concepts used in this study. We first recall
the typical length and time scales of the waves, and the implications for the wave
modelling. Then we introduce the Stokes drift of the waves and we discuss on a
simple example the two major difficulties which appear for the modelling of waves
and currents. The first difficulty is the motion of the free surface, for which a special
averaging is needed. The second difficulty comes from the quite different physics of
the mean flow and of the waves Stokes drift, for which a separation of waves and
mean flow is needed to obtain suitable parameterizations. Finally, emphasis is made
on the fact that the mean flow dynamics is different than the total drift dynamics,
for instance with the appearance of the Stokes-Coriolis force for an horizontally

uniform case.

1.1 Lengths and time scales

The present thesis investigates the role of the waves on the 3D dynamics of the
upper ocean, and also on the 3D dynamics of the nearshore and costal oceans.

We recall here that the waves, i.e. short gravity waves at the surface, have typical
wavelengths of 100 m, heights of 1 m and periods of 10 s. Those scales are rather
small compared to the typical length and time scales of the ocean circulation, but
it should be noted that the large scale variations of the wave field are much larger
than the scale of a single wave and are comparable to those ocean circulation scales.

The variety of oceanic phenomenons influenced by waves is large, the typical
horizontal scales spanning the range from hundreds of kilometers for large scale
variations of the wave field to a meter for the energy containing eddies of the wave-
stirred turbulent surface layer, and even less for the microscale breaking of the

smallest waves.

19



20 Chapter 1

Because of the limited numerical resources and because one also needs to analyze
the physical features, it is customary for the purpose of ocean circulation to consider
horizontal length scale smaller than a hundred of meters horizontally and one meter
vertically as subgrid phenomenons. The present study will keep in mind these
typical scales and try to find adapted descriptions and parameterizations, of small

scale wave-induced turbulence for instance.

Also, we focus in the present thesis on wave-driven currents with time variations
slower than the wave period. We therefore use a spectral approach, without resolv-
ing the phase of the waves, following the method employed in most of the wave
prediction systems which simulate the generation, the propagation and the dissipa-
tion of the waves. In this kind of description, the sea state is considered as a sum
of monochromatic waves, spread over a frequency-directional energy spectrum (e.g
Komen et al., 1994).

1.2 Waves, Stokes drift, averaging

Let us take a monochromatic wave propagating in the x direction, in deep water

and without current. The equations of motion, valid for z < 7, are (e.g. Mei, 1989)

n = acos(wt— kx)
u = awcos(wt — kx)exp(kz) (1.1)

w = awsin(wt — kx)exp(kz),

where a is the amplitude, w the radian frequency, k& the wavenumber, n the surface
elevation and u, w the horizontal and vertical components of the wave motion. Note
that the previous expressions, as well as most formulae in this chapter, are valid in
the limit of small wave slope ka < 1. For simplicity, I will not discuss further the

order of each approximations.

Now let us average in time this velocity, defining the time average u = %fOT udt

over a wave period T. Assuming u = 0 for z > 7, we get

™ a

{U ~ o, [ 22 for —a<z<a, (12)

for 2z < —a.

£l
o

In that Eulerian description, the Stokes drift, i.e. the time-averaged mass transport,
is concentrate between the crests and the troughs of the waves (fig. 1.1, upper

panel).
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However the Lagrangian mean speed of a particle moving with the wave is

at = wu(x(t), z(t),1)

ou ou
= %x(t) + &Z(t)’ (1.3)

where (x(t), z(t)) are the coordinates of the particle. The correlation between the
displacement and the non-uniform velocity field yields a residual motion of the fluid
particles. In other words, the orbits of the particles are not closed. The residual
drift is the Stokes drift and is equal to

U, = a*wk exp(2kz), (1.4)

where the vertical coordinates z represents this time the mean position of a particle

of water.

This simple example illustrates the complications which appear due to the mov-
ing surface, even for linear waves, and the necessity of a careful averaging close to
the surface. The choice of coordinates to describe both wave-induced motion and

mean current is of great importance and must be discussed here.

Most field measurements are time averages made at almost fixed locations.
Therefore the Eulerian description is traditionally used for oceanic circulation, and
has been chosen in many studies on wave-driven mean flows. In the Eulerian de-
scription, the interface is distributed between the crest 2 = a and the trough z = —a.
When considering the mean fields, it is usually assumed that they can be analyti-
cally extended between the trough and the mean surface z = 7 = 0. For example,

the vertical integral of the velocity is defined as
g
T, = / udz. (1.5)
~h

In the same time, the wave mass transport of the waves is either assumed to be a
surface mass transport (Hasselmann, 1971; Stive and Wind, 1986; Newberger and
Allen, 2007b) equal to

7
M :/ udz, (1.6)
n
or to be distributed according to the Lagrangian Stokes drift profile (McWilliams
et al., 2004). Clearly, the Eulerian averaging procedure presents some oddities in
its surface representation. The analytical extension of the fields is made whereas

the phase relations between the field and the surface is of great importance. For
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the example of the velocity, it leads to the wave Stokes drift. Although Eulerian
averaging might give correct representation of the Stokes drift with a careful analysis
(e.g. McWilliams et al., 2004), a not so detailed analysis might miss the full vertical
distribution of the Lagrangian motion (Hasselmann, 1971; Stive and Wind, 1986;
Newberger and Allen, 2007h).

For this reason, many authors have chosen to use a change of coordinates to
make a proper averaging of the waves (e.g. Jenkins, 1986). The most simple one was
recently proposed by Mellor (2003). It is simply the use of a particular o-coordinate
system, the one following the fluid vertical motion (to lowest order in the wave
slope), to bring the particles back to their fixed vertical mean location and then
to average in time the velocity (fig. 1.1, middle panel). For the case of the wave
motion discussed above, the mean velocity obtained by this method is in agreement
with the Lagrangian description of the Stokes drift. More complicated but along the
same idea, Andrews and McIntyre (1978a) introduced the Generalized Lagrangian
Mean (GLM). In that case, the particles are also horizontally displaced back to
their mean position during a wave period (fig. 1.1, lower panel). The complexity of
the mapping of Andrews and McIntyre (1978a) is compensated by the simplicity of

exact phase-averaged equations.

1.3 Wave / Mean flow separation

A key point of the present work is the separation between the wave part and the
mean flow. If we go back to the monochromatic waves of the previous section, once
a proper wave-averaging procedure is applied (Mellor (2003) or GLM), one gets a
mean Lagrangian velocity equal to the Stokes drift of the waves. Now adding a
barotropic current brings no difficulties. One gets then a mean Lagrangian velocity
equal to the Stokes drift of the waves plus the mean current. The mean current is
then similar to the Eulerian mean current below the troughs.

On that simple example of monochromatic waves over a mean barotropic current,
we can notice that the Lagrangian flow is vertically sheared because it includes
the residual Lagrangian drift due to the wave motion, i.e. the waves Stokes drift.
However, applying on the shear of that residual drift a vertical mixing term equal
to the vertical mixing we would applied on a comparably sheared mean current
would be physically meaningless. In fact the turbulence does not act similarly on
the current and on the waves residual Stokes drift. In addition, the Stokes drift
propagates with the waves group speed, whereas the mean current is advected at
the much smaller current velocity. This leads us a central idea of this thesis, the

separation of the mean flow and of the wave part. By separating them, and by
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Figure 1.1: This figure was taken from Ardhuin et al. (2007b). Averaging procedures
(left) and examples of resulting velocity profiles (right) in the case of (a) Eulerian
averages (e.g. Rivero and Arcilla, 1995; McWilliams et al., 2004), (b) the Generalized
Lagrangian Mean (Andrews and McIntyre, 1978a), and (¢) sigma transform (Mellor,
2003; Ardhuin et al., 2007¢). The thick black bars connect the fixed points x where
the average field is evaluated, to the displaced points x + & where the instantaneous
field is evaluated. For averages in moving coordinates the points x 4+ £ at a given
vertical level ¢ are along the gray lines. The drift velocity is the sum of the (quasi-
Eulerian) current and the wave-induced mass transport. In the present illustration
an Airy wave of amplitude 3 m and wavelength 100 m in 30 m depth, is superimposed
on a hypothetical current of velocity u(z) = —0.5 —0.01z m/s for all z < n(x). The
current profile is not represented in (c) since it is not directly given in Mellor’s
theory, although it can obviously be obtained by taking the difference of the other
two profiles.

parameterizing them separately because they are physically different, one can expect

significant improvement of the modelling of combined waves and current.

That waves / mean flow separation is easy with a depth-uniform mean current,
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as mentioned above. But the discussion is strongly complicated if we introduce a
vertically varying current. Both averaging of Mellor (2003) and the GLM give the
Lagrangian motion @”. That Lagrangian motion can be separated into a residual

wave motion P and a mean flow .
L ~
u =P +u. (1.7)

It should be noted that the mean flow is described in quasi-Eulerian coordinates. It
is different from the Eulerian mean (at a fixed location).

Related to this, the residual wave part

out ou!
P=—2xl(t) + —2(¢ 1.8
L al(t) + () (1.9
has been called the wave pseudo-momentum (see McIntyre, 1981, for a full discus-
sion). Here u! is the perturbation of the velocity field from the Lagrangian mean,
and 7!, 2! is the displacement. P might be different from the Stokes drift defined as

L minus the Eulerian mean .

the Lagrangian motion ©
Also, in the case of vertically varying current, the residual motion P of the waves
is different than the residual motion without current, because the vertical shear of
the mean current can add to the vertical shear of the wave motion, modifying the
correlation between the velocity and the displacement in formula 1.3. For simplicity,
the rest of the thesis will ignore this distinction except in part III.
A more detailed description of the GLM separation of waves and mean flow has

been made in Ardhuin et al. (2007b).

1.4 The Stokes-Coriolis effect

There is a mass transport associated with the wave motion. According to the linear
wave theory, the vertical integral of the Stokes drift of a monochromatic wave (equ.
1.4) is

. (1.9)

For large swells (i.e. waves not related to the local wind), this transport can be of
the order of the Ekman transport of a moderate wind at mid-latitude, as noted by
McWilliams and Restrepo (1999) and Polton et al. (2005).

However it was outlined by Ursell (1950) that in an inviscid ocean, horizontally
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uniform, in infinite depth, and in a rotation frame, irrotational waves cannot have
a steady net mass transport. This paradox was resolved by Hasselmann (1970),
introducing a force called later the Stokes-Coriolis force or Hasselmann force. Xu
and Bowen (1994) made apparent the physical meaning of this force. They made
a simple calculation of the impact of the Earth rotation on the wave dynamics and
showed that there is slight tilting of the orbits of the particles under passing waves.
As a consequence there is an associated supplementary flux of momentum to the
mean flow, equivalent to a force equal to fU, and oriented to the right of the wave
propagation. In other words, the Coriolis force acts on the wave pseudo-momentum,
but the corresponding flux of momentum is released from the wave part to the mean
flow as a the body force. This force drives a vertically integrated transport opposed
to the Stokes transport of the waves.

Now examining the vertical distribution of the wave mass transport and of the
Stokes-Coriolis force, two typical length scales appears, the Stokes scale §; = 1/2k
and the Ekman scale 0, (equal to /2K,/f if the vertical viscosity K, is supposed
uniform). As showed by Polton et al. (2005), if 05 > J,, then & = —P so that the
mean flow totally compensates the Stokes drift of the waves (fig. 1.2, upper panel).
This might be the case for a long swell, as studied in Part III. However the Stokes
drift of a spectrum of wind waves is strongly surface trapped so that, in the presence
of a strong vertical mixing, 6, < §. and the mean flow driven by the Stokes-Coriolis
force cannot compensate the Stokes drift of the waves close to the surface (fig. 1.2,
lower panel). Then the net wave-induced drift is approximately equal to the Stokes

drift, which can be significant as shown in Part I.
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Figure 1.2: Vertical profiles of the Stokes drift, of the mean flow component in the
waves direction and of the resulting Lagrangian drift. The Stokes drift is calculated
with the wind waves assumed to be fully-developed with a wind speed of 10 ms™!,
the mean flow shown is driven by the Stokes-Coriolis force only (no wind stress). The
upper panel has no vertical mixing whereas the lower panel incorporates a vertical
mixing. In the case of no vertical mixing, the mean flow compensates the Stokes
drift at each depth whereas it does not when the vertical mixing is included. The
reader is referred for further details to the chapter 2 and to the fig. 2.10.
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Impact of waves on the near-surface
dynamics of the open ocean.

One-dimensional study.
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One-Dimensional study:

Introduction

We start with the study of the impact of waves on the near surface off-shore dynam-
ics, in its most simple description : a wind sea without any horizontal variations of
the wind, waves or stratification.

First, the Stokes drift of the waves of a wind sea is evaluated. Previous evalu-
ations were made using the spectrum of Pierson and Moskowitz (1964) by Kenyon
(1969), Lewis and Belcher (2004) and Polton et al. (2005), leading to surface values
of the Stokes drift around 3% of the wind speed at 10m. However the high frequency
range of the spectrum, i.e. the small waves, makes a large contribution to the Stokes
drift at the surface (see figure 4.1). Therefore we used a more realistic spectrum,
the one of Kudryavtsev et al. (1999), were the high frequency range was carefully
designed for applications to remote sensing. It leads to values of the surface Stokes
drift much smaller, around 1.2% of the wind speed at most.

Secondly, the mean flow driven by the wind, i.e. the Ekman current, is evalu-
ated using recent observations (e.g. Agrawal et al., 1992) and models (e.g. Craig and
Banner, 1994; Noh, 1996) of the strong near surface mixing, attributed to breaking
waves, in moderate and strong winds. Essentially, these models use a TKE calcu-
lation with a surface flux of TKE and use a mixing length with a prescribed large
value at the surface. The consequent Ekman current is quite weak at the surface in
the presence of wave breaking.

The impact of the Stokes-Coriolis force on the mean current is also estimated.
This impact is quite weak given that the wind stress is always much larger than the
equivalent Stokes-Coriolis stress of the corresponding wind waves.

The surface drift, which is the sum of the Stokes drift of the waves and the
mean current, appears then mainly due to the Stokes drift of the waves, raising
the question of direct parameterization from the wind speed, a common engineering
practice (see Spaulding, 1999).

Finally, available observations of surface currents are discussed in the light of the

present physical description. Essentially, observations are separated into Lagrangian
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observations with drifters and observations of mean currents with current meters.
Most of the data are useless for a detailed investigation because of no clear separation
between mean flow and wave part (e.g. Schudlich and Price, 1998), or because of
no available informations on waves (e.g. Churchill and Csanady, 1983). Previously
used observations, namely, observations of mean current shears very close to the
surface during SMILE (Santala, 1991) and of mean Ekman spirals during LOTUS3
(Lewis and Belcher, 2004; Polton et al., 2005) are reanalyzed to find evidence of the
exposed physics.

The chapter 2 treats the case of an uniform ocean without stratification. The
basics of this physical description are outlined and briefly compared to observations.
The chapter 3 adds the stratification, comments on its effect on the net wave-induced

drift, and makes a more rigorous comparison with the observations.
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Abstract

Waves have many effects on near surface dynamics : breaking waves enhance mixing,
waves are associated with a Lagrangian mean drift (the Stokes drift), waves act on
the mean flow by creating Langmuir circulations, and also a return flow opposite
to the Stokes drift, and, last but not least, waves modify the atmospheric surface
roughness. A realistic ocean model is proposed to embrace all these aspects, focusing
on near surface mixing and surface drift associated with the wind and generated
waves. The model is based on the Generalized Lagrangian Mean that separates
the momentum into a wave pseudo-momentum and a quasi-Eulerian momentum.
A wave spectrum with a reasonable high-frequency range is used to compute the
Stokes drift. A turbulent closure scheme based on a single evolution equation for
the turbulent kinetic energy includes the mixing due to breaking wave effects and
wave-turbulence interactions. The roughness length of the closure scheme is adjusted
using observations of turbulent kinetic energy near the surface. The model is applied
to unstratified and horizontally uniform conditions, showing good agreement with
observations of strongly mixed quasi-Eulerian currents near the surface, when waves
are developed. Model results suggest that a strong surface shear persists in the
drift current, due to the Stokes drift contribution. In the present model the surface
drift only reaches 1.5% of the wind speed. It is argued that stratification and the
properties of drifting objects may lead to a supplementary drift as large as 1% of

the wind speed.

2.1 Introduction

The ocean surface is where the vast majority of marine activities take place, and
different dynamical descriptions have been invoked to describe the 100 m that strad-
dle both sides of the air-sea interface. Different solutions have been developed for
applications such as wave forecasting for safety at sea |e.g. Komen et al., 1994|,
forecasting of drift for search and rescue or pollution mitigation [e.g. Youssef and
Spaulding 1993|, or modelling of the general ocean circulation with applications to
climate studies [e.g. Semtner, 1995; Bleck, 2002].

Unfortunately, these descriptions of the upper ocean are often incoherent, not
always based on first principles, and may not give parameters compatible available
measurements that could constrain numerical forecasting models. Work for each
of the three applications listed above have often focused on one key parameter,
the significant wave height H,, the surface drift current U._y, or the mixed layer
temperature Ts. The advent of the Global Ocean Observing System (GOOS), and
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efforts towards operational modelling of the ocean on global and regional scales, are
good opportunities for finally achieving a common description of the ocean interface
that would involve all the relevant dynamic processes : geostrophic currents, ocean
waves, tides, internal waves, and known turbulent structures such as wind rolls in the
atmospheric boundary layer, and both breaking waves and Langmuir circulations in
the ocean mixed layer |[Ardhuin et al., 2005|. Many good fundamental contributions
have studied one or two of these processes, including joint effects of wave motion
and mean currents |e.g. Weber, 1981; Jenkins, 1987|, wave breaking and Langmuir
circulations effects on upper ocean mixing |Agrawal et al., 1992; Craig and Banner,
1994; Thorpe et al., 2003; Mellor and Blumberg, 2004].

A recent convergence of different approaches to the upper ocean dynamics shows
a clear inconsistency. Mellor and Blumberg (2004) demonstrated that a parameter-
ization for the strong mixing due to wave breaking, previously observed by Agrawal
et al. (1992) and others, leads to improved hindcasts of mixed layer depth and tem-
perature of the classic dataset from the Gulf of Alaska station Papa. This strong
mixing also leads to a rather uniform Eulerian current profile, which has to be small,
because the depth-integrated transport is the known Ekman transport. Mellor and
Blumberg (2004) find surface currents less than 0.6% of the wind speed. Such a
value of the Eulerian current may be larger than the quasi-Eulerian current ob-
served by Santala and Terray (1992), but it is paradoxically small for experts in the
forecasting of surface drift, for whom it is well established that the drift velocity is
often close to 2 or 3% of the wind speed at 10 meters, Uyg [Spaulding, 1999]. Both
a strong mixing and a strong velocity shear at the surface should be obtained when
surface waves are accounted for in a consistent way, including both wave breaking

and wave-induced Stokes drift.

The goal of the present paper is to evaluate how well a simple but coherent model
of the upper ocean performs in terms of drift velocities, Eulerian velocities, eddy
viscosities and turbulent dissipation. Since waves are clearly an important part of
the oceanic mixed layer, we shall also explore which wave parameters are important
and how the mixed layer is modified. In particular the effect of the Hasselmann
force |Hasselmann, 1970| that was reported to be significant by Lewis and Belcher
(2004) is re-examined with a realistic parameterization of near-surface mixing. The
present paper focuses on conditions that are statistically stationary and homogenous
in the horizontal dimensions. The wave forcing and resulting wave properties are
described in section 2. These drive a model for turbulent and mean Eulerian proper-
ties, as described in section 3. That model is based on the approximation, to second
order in the wave slope, of the Generalized Lagrangian Mean (GLM2, see Andrews
and McIntyre (1978a), and Groeneweg (1999)) applied to the Reynolds-Averaged
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Navier-Stokes (RANS) equations. This GLM2-RANS formalism can be obtained by
subtracting the wave pseudo-momentum from the total momentum equation given
by Mellor (2003), and valid for horizontally-uniform conditions. This step, as well
as a derivation from the equations of Andrews and McIntyre (1978a), is described
by Ardhuin (2005). The numerical calculations use the computer code by Craig and
Banner (1994), extended to account for wave effects specific to our GML2-RANS
equations. In section 4, the various effects of the waves on the turbulent, Eule-
rian and Lagrangian properties are compared to observations of turbulent kinetic
energy dissipation, quasi-Eulerian and Lagrangian velocities. Conclusions follow in

section 5.

2.2 Wave dynamics

2.2.1 Spectral wave evolution

Ocean surface waves, generated by the wind, have a large influence on air-sea fluxes.
In particular, waves are generally believed to absorb more than 50% the wind-to-
ocean momentum flux 7% [Donelan, 1998;Banner and Peirson, 1998]. This large
fraction of the wind stress 7% is the wave-induced stress 7. However, only a small
fraction of 7™, possibly up to 5%, is radiated in the wave field momentum flux,
the vast majority is continuously lost by waves as they dissipate, essentially due to
wave breaking [Donelan, 1998; Janssen et al., 2004; Ardhuin et al., 2004]. Another
effect of interest to coastal oceanographers is that for a given wind speed, 7% can be
increased by as much as a factor three in coastal areas, due to the different nature
of the wave field [e.g. Drennan et al. 2003; Lange et al. 2004].

Because ocean waves are generated by the wind, many authors have sought a
direct parameterization of wave effects from the wind field. However, waves are not
uniquely defined by the local wind speed and direction, in particular in coastal areas
and marginal seas (like the Mediterranean sea), where wave development is limited
by the fetch, but also in the tropics and mid-latitudes where a large part of the
wave energy is due to long period waves (swell) that have propagated from distant
storms, sometimes half-way round the Earth [Snodgrass et al. 1966]. In general,
one needs to take into account the wave dynamics that are, on these large scales,
statistically well defined by the directional wave spectrum E(k,#), that distributes
over wavenumbers k and directions € the wave energy E* = p,g [ E(k,0)dkdf. The

evolution of the spectrum is generally modelled using the energy balance equation
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[Gelci et al., 1957],

S B(k,0) = 57(k,0) + 5" (k. 0) + S(k,0) + 5™ (k. 0), 2.1)

where the Lagrangian time derivative includes propagation effects, and S, S™!, §9s,
Shot are ‘source terms’ (either positive for true sources or negative for actual sinks)
that represent the energy given to the spectral component (k, ) by the atmosphere,
the other wave components, the ocean turbulence in the water column and surface
boundary layer, and the bottom boundary layer and sediments, respectively. This
equation is easily extended to take into account varying currents [Komen et al. 1994;
White 1999]. Each energy source terms can be converted in a momentum source
term |e.g. Phillips 1977],

: Si(k, 0

7= pwg/(i)dkde, (2.2)
C

where C is the wave intrinsic phase speed. Of particular interest will be 7" and

—7%_the momentum fluxes, per unit surface of the ocean, input to waves from the

wind, and delivered to the mean flow by the waves, respectively.

2.2.2 The Stokes drift

It is also well known that waves possess a pseudo-momentum that is equal to the
mass transport velocity or Stokes drift Uy |e.g. McIntyre 1981]. This drift arises as
the wave-induced orbits of particles are not exactly closed. From an Eulerian point
of view this drift is zero everywhere below the wave troughs, and the wave-induced
mass transport occurs between the deepest troughs and the highest crests. However,
such an Eulerian view ‘diffuses’ the air-sea interface over a vertical distance of the
order of the significant wave height Hg, which is not practical for investigating the
surface gradient of any quantity. We shall thus prefer the Lagrangian point of view
le.g. Andrews and McIntyre, 1976|, that yields, correct to second order in the wave

slope, the following expression [Kenyon, 1969| for deep-water waves,

U, (2) =2 2" [ ugkoe?* E(k,0)dkdd
= 2 [77 [5° ugo®e* B (k, 0)dkdo, (2.3)

That expression uses the intrinsic wave radian frequency, as given by the deep water
dispersion relation for linear gravity waves, o = y/gk, g is the acceleration of gravity,
and uy = (cos @, sin ) is the unit vector in the direction of propagation. The origin

of the vertical coordinate z is at the mean water level.
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U, is clearly much smaller than the orbital wave velocity, by a factor € that is the
wave slope, typically less than 0.1. Uy is also strongly sheared at the surface because
the contribution of each wave component decays exponentially over its Stokes depth
1/(2k), and the high-wavenumber components give a significant contribution to Uj,
but near the surface only (figure 1). Using a spectral shape proposed by Kudryavtsev
et al. (1999), a wind of Uy = 10 m s™! yields a surface drift of Uy(z = 0) =
0.11 m s~!, when only wave components with 27/k > 5 m are included , whereas

all components up to 27/k = 0.1 m yield up to 0.13 m s~1.

The comparison
with a monochromatic component shows the differences between wind sea and swell
contributions : the swell-induced Stokes drift at the surface is typically less than
30% of the drift associated with a wind sea of same peak period and significant wave
height. A large swell and a wind sea due to a weak wind can then produce surface

Stokes drifts of the same order.

The Stokes transport
0 2 oo
MY — / U,dz = / / woo E(k, 8)dkdd (2.4)
—-H o Jo

is slightly less influenced by the short (and slower) waves. Nevertheless the short
waves contribute relatively more to M™ than to the wave energy, as the contribution
of each spectral component to M" is its surface elevation variance divided by the

intrinsic phase speed.

2.2.3 Practical calculation of wave parameters

Because short waves are important, with Ug(z = 0) and M" proportional to the
third and first moments of the frequency spectrum, respectively, a numerical esti-
mation of U, based on (2.3) should use a wave spectrum that is well defined in
that range. For general applications using numerical wave models such as WAM
| WAMDI Group, 1988|, the explicitly resolved spectrum can be carefully extended
by a high-frequency tail. In the present study, we use the family of spectra proposed
for remote-sensing applications by Kudryavtsev et al. (1999), and governed by the
two main parameters that are the wind speed and the stage of wave development.
These spectra have been carefully designed to reproduce both the long wave spec-
trum, with a spectral shape similar to that of Donelan et al. (1985), and the short
wave spectrum with, in particular, a second moment of the wavenumber spectrum
(or fourth moment of the frequency spectrum) that is well constrained by the op-
tical measurements of the mean sea surface slope by Cox and Munk (1954). One

can thus assume that the intermediate third moment that is the Stokes drift is well
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Figure 2.1: Stokes drift profile for a wind speed Ujg = 10 m s~! and a fetch larger
than 1000 km (fully developed sea), based on the KMC spectrum |Kudryavtsev et
al. (1999)] , and the integral (2.3). Different profiles are shown that only include
wavelengths longer than a minimum value \,,;,. For comparison, the drift due to
a single wave component is also indicated. That single component has same peak
wavelength and surface elevation variance (period Tp = 8s, H; = 2.8m) as the wave
spectrum.
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represented by this model.

These spectra yield values of Ug(z = 0) that can be larger than typical mean Eu-
lerian currents, with a transport M" of the order of the Ekman (1905) transport at
mid-latitudes, except for short fetches or weak winds (figure 2). For fully developed
waves, Ug(z = 0) = 0.0125Uy is consistent with recent observations of the drift of
near-surface clouds of bubbles by Smith (manuscript submitted to JPO, 2005). In
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Figure 2.2: (a). Significant wave height at full development given by several param-
eterizations of the wave spectrum FE(k,6): PM is Pierson and Moskowitz (1964),
AB is Alves and Banner (2003), DHH is Donelan et al. (1985), JONSWAP is Has-
selmann et al. (1973), ETCV is Elfouhaily et al. (1997), and KMC is Kudryavtsev
et al. (1999). For DHH and JONSWAP, full development is obtained by setting the
peak frequency f, to 0.123g/Uso. (b) Surface Stokes drift as a function of fetch and
wind speed Uy for the KMC spectrum, expressed as a percentage of Uyg. (¢) Mag-
nitude of the vertically-integrated Stokes mass transport M" as a function of fetch
and U, expressed as a percentage of the corresponding Ekman (1905) transport
u?/f at mid-latitudes, with f = 1074

the following calculations, the wind speed at 10 m height Uy, is taken to be in the
direction ¢ = 0. The friction velocity u, is determined from U;y using Charnock’s

expression [1955],
Ui = wlog <i> ) (2.5)
K

Za0
with
Za0 = 0.018 w2, /g, (2.6)
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where z = 10 m, 7 = p,u? = p,u?, is the wind stress, p,, and p, are the densities of
water and air. However it is well established that the sea-state and the wind speed
are coupled, because of the dependance of the wind profile on the roughness of the
sea [e.g. Janssen, 2004]. Donelan (1998) gives a parameterization of z,, that uses
the wave age ¢,/Uyo (where ¢, is the phase speed at the peak of the wave frequency

spectrum) and the significant wave height H,,
2a0/Hy = 1.67 % 1074 (Uy /c,)*° . (2.7)

This effect will be evaluated in section 2.4.3.

2.3 Wave-averaged mixed layer equations

Oceanic motions are separated in three components, mean flow, waves and tur-
bulence. Turbulence is separated from other motions by a an average over flow
realizations for given wave phases. The mean flow and wave motions are then av-
eraged with a Lagrangian mean so that the mean momentum is separated into a
mean flow and a wave part. The vertical mean wave momentum is zero while the
horizontal total mean momentum p,, U is split in a quasi-Eulerian mean p,u and a
Stokes drift,

U=u+ U, (2.8)

This separation comes naturally with the definition of the Generalized Lagrangian
Mean |Andrews and McIntyre, 1978|. Please note that U and U, are T" and p in
their notations and are evaluated at a slightly displaced vertical position |McIntyre,
1988]. In measurements, this separation may be difficult to achieve [e.g. Santala
and Terray, 1992; Hristov et al., 1998|. Although the Stokes drift U, corresponds
to the wave-induced drift that arises from the correlations of wave-induced dis-
placements and wave-induced velocity gradients, as defined by Phillips (1977), the
quasi-Eulerian velocity u is more difficult to interpret. u is the mean velocity of
a water particle U, minus Uy, but it is not easily related to Eulerian mean veloc-
ities. Another interesting velocity, in particular in remote-sensing applications, is
the mean of the velocity at a point that is fixed horizontally but moves up and down
with the surface elevation ¢. That mean surface velocity is u/(Z) = u(¢) + UL(()/2,
at second order in the wave slope.

If waves do not interact with the mean flow, u is the mean flow velocity in the
limit of vanishingly small wave amplitudes. However, waves do generally interact

with the mean flow.
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2.3.1 The influence of waves on the mean flow

We will use now the equations established in Ardhuin et al. (2004b), which are
an extension of Mellor’s [2003| equations, valid for horizontally-uniform conditions.
These are essentially a generalization in three dimensions of the equations of Garrett
(1976), also discussed in Ardhuin et al. (2004a). These equations are also equivalent
to the Generalized Lagrangian Mean equations as given by Groeneweg and Klopman
(1998), neglecting the modulations of turbulent properties on the scale of the wave
phase [Ardhuin, 2005|. Following Ekman (1905) we assume that the wave, veloc-
ity, and turbulent properties are uniform horizontally. In this case, the horizontal
momentum conservation simplifies as
ou 0

= = e x (B4 Uy + 5 Wa — T(2), (2.9)

with the following boundary conditions, defining our vertical coordinate so that the

o~

mean sea level is at z = ( = 0,

v =——-— (2.10)

and
ul.__, =0 (2.11)

Here T% is a vertical distribution of 74, so that 74, = py, [ T%dz.

The influence of the wave motion on the quasi-Eulerian flow appears with the
Hasselmann force —fe, x U, |Hasselmann, 1970|, that combines the Coriolis pa-
rameter and the Stokes drift [e.g. Xu and Bowen, 1994], and in the momentum
transfer from wind to the mean flow. One part of the momentum from the wind
. It is the direct

.
mean viscous drag of air on water. The other part 7" goes to the wave field, it is

goes directly to the mean flow via the surface shear stress p,, W/’

the form drag of wind over water plus the wave-induced modulations of the viscous
stresses |Longuet-Higgins, 1969]. Then the wave field is also dissipated, releasing
its momentum to the mean flow. This is the force —T%(z). This latter force is
constituted by viscous dissipation (the virtual wave stress is part of it), interactions
of waves with the turbulence |e.g. Teizeira and Belcher, 2002|, and wave breaking
[Melville et al., 2002|.

Observations of wave growth with fetch shows that the momentum retained by

the wave field is around 5% of the momentum input (see section 2.2.1). This leads to

ds ~_ in

the good approximation 7% ~ —7"". Furthermore, supposing that the momentum

is released by the wave field at the surface (i.e. T% = 7%6(2)/p,), equations for
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the mean flow appear now with their usual form (7% = 0 and 7™ = 0 in eq.2.9 and

2.10), except for the Hasselmann force.

2.3.2 Turbulent closure

Eq.2.9 involves the divergence of the Reynolds stresses W@’ that should now be
computed or parameterized. We will use the turbulent closure model of Craig and
Banner (1994). It is a "level 2.5" turbulent closure scheme adapted from Mellor
and Yamada (1982), with the dissipation of surface waves taken into account by

introducing a near-surface injection of turbulent kinetic energy (TKE).

The Reynolds stress is assumed to be linearly related to the shear : uw/'w’ =
K.0u/0z, with the eddy viscosity K, = 1¢S,,, where b = ¢*/2 is the TKE per unit

mass, and [ the mixing length. The later is parameterized as
l = k(20— 2), (2.12)

where K = 0.4 is the von Karman’s constant and z; is a roughness length.

The bottom has almost no effect on the near surface dynamics, provided that
the depth is substantially greater than the Stokes depth (see section 2.2.2) and the
Ekman scale, which is u,/4f because the turbulent viscosity varies nearly linearly
with depth |Craig and Banner, 1994|. Therefore, the bottom boundary layer of
Craig and Banner (1994) is not described here.

The equation for the evolution of TKE is :

ob ) ob ou\> [ov\*
—_—

a

q3

b

ds
— = —p¥(2), (2.13)

C
where S,,, S, and B are model constants for which the appropriate values are 0.39,
0.2 and 16.6.  and v are the components of the quasi-Eulerian velocity u.

The TKE evolution comes from a transport term(a), a production term by the
shear of the mean flow (b), a dissipation term (c) and a wave-induced source term

(d). The transport term is parameterized by the eddy diffusivity (¢S,.

The conversion of wave kinetic and potential energy into TKE is the non-viscous
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wave "dissipation" ®,. (per unit mass and unit surface) of the wave field,
g / S (k. 0)dkdo. (2.14)

59 is distributed over depth as

/_OH 0¥ (2)dz = . (2.15)

Alternatively |Craig and Banner, 1994, ®,. may be prescribed as a surface flux
of TKE and parameterized by ®,. = au? with o ~ 100, consistent with the known
loss of energy from the waves. How the prescription as a surface flux modifies the
TKE profiles will be studied in section 2.4.1. The consequences of neglecting the
variations of a with the wave age (from 50 for young waves and fully-developed
waves to 150 otherwise) will be dealt with in section 2.4.3. The boundary condition

for the TKE is then :

lqS, % = au?

2.16
q@z - % ( )

which closes the model.

We will now focus our attention on the steady state solutions, when wind- and
wave-induced inertial oscillations are damped. The sea state is again modelled by
Kudryavtsev et al’s [1999] spectrum. It is assumed that the wave field is locally
uniform even if the sea is not fully developed. In other words, the gradients of
the radiation stresses are supposed much smaller than the leading terms in the
momentum balance that are the Coriolis force, the Hasselmann force and the vertical
mixing (see Ardhuin et al. (2004a) for a discussion of the impact of the radiation

stress tensor in fetch limited conditions).

2.4 Model results and validation

2.4.1 Calibration of the model with observed profiles of TKE
dissipation

Two parameters remain unknown in this model : the roughness length z; and the
scale « of the surface flux of TKE. a may practically come from a wave model, and
is therefore supposed to be known [e.g. Janssen et al., 2004]. z, is determined from
measurements of TKE dissipation near the surface.

In terms of TKE, the surface layer can be divided in a "production layer" and a
"diffusion layer" [Craig and Banner, 1994]. In the deeper layer, the TKE equation

is dominated by shear production and dissipation. Closer to the surface, the TKE
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balance is between diffusion from the surface flux and dissipation. One important
modification brought by the present model to the one of Craig and Banner is the
addition of the Stokes-Coriolis effect (the Hasselmann force). This effect modifies
the Eulerian velocities over the whole water column (see section 2.4.2). But in
the diffusion layer, the TKE production due to the shear of the mean flow has no
importance. Therefore, the TKE is expected to remain unchanged near the surface
by the addition of the Stokes-Coriolis term. The Numerical model results confirm
this expectation, with relative changes in the magnitude of ¢ less than 2% near the

surface.

As a result, we can rely on previous works without the Stokes-Coriolis effect,
providing a parameterization of z; based on measurements of TKE dissipation € in
the diffusion layer. Terray et al. (1996) proposed a scaling of the roughness length
with the significant wave height H,. It comes from the physical hypothesis that the
surface mixing is proportional to the height of the breaking waves, which can be
evaluated by H. Other scalings of zy, linked to the wind speed or to the friction
velocity are reported to fail |e.g. Soloviev and Lukas, 2003| because of no explicit de-
pendance on the wave development. Terray et al. (2000) used the model of Craig and
Banner (1994) to fit 2o using dissipation data from several field experiments, with
various stages of wave development |Drennan et al., 1996|. They found zy = 1.6 H,.
As was pointed out by the authors, the model does not fit very well the data at
depths of the order of H,. Therefore they proposed a modified length scale which
seems to fit better the observations. However, if we attempt a Lagrangian inter-
pretation of their Eulerian measurements, there is water between their uppermost
data points and the surface where TKE dissipation also occurs. Even if we suppose
that e decays linearly from 2®,./H at z = —H, to ®,./H, at z = 0, the vertically
integrated dissipation rate in the figure 1 in Terray et al. (2000), between the surface
and —H,, is greater than the wave input flux ®,. of TKE. This cannot be explained
by the production of TKE by the shear of the mean flow, which is negligible near the
surface. Besides, a decrease of € between z = —H, and the surface is not supported
by the Lagrangian averaged data of Soloviev and Lukas (2003). The data and the
modified mixing length of Terray et al. (2000) are not compatible, unless evidence
is shown of very small dissipation rate between z = —H, and the surface. Therefore
we do not take the modified form of the mixing length, as did Mellor and Blumberg
(2004), and stick to (2.12). Soloviev and Lukas (2003) also used measurements of
dissipation to estimate zy, and found zo = 0.6 H,. However the contribution of swell
to the significant wave height was not evaluated, which may have lead to an under-

estimation of the ratio zy/H;.



44 Chapter 2

As the TKE equilibrium near the surface is between injection, dissipation and
diffusion, one may wonder if a better representation of injection may not improve
the model. The external source of TKE is the dissipation S of the wave field, which
is, in the case of a wind-sea, due to breaking S’¢®* and wave-turbulence interac-
tions S™. The viscous dissipation, which is negligible, does not constitute a source
of TKE. The separation between breaking and turbulence effects is not simple, but
these two effects probably yield different depths of TKE injection, which can modify
the profiles of TKE and of TKE dissipation.

Teixeira and Belcher (2002) used rapid distorsion theory to derive an expres-
sion for the production of TKE due to interactions between turbulence and high

frequency waves,

e (2) = W' OUg/0z. (2.17)

Using Lagrangian average of the Reynolds-average Navier-Stokes equations, Ardhuin
and Jenkins (2006) extended this expression to low frequency waves with the assump-
tion that the turbulent fluxes are not correlated with the wave phases. The same
expression was used in different studies of Langmuir circulations [e.g. McWilliams et
al., 1997|, this time derived from the equations of Craik and Leibovich (1976). The
resulting profile of TKE injection follows the profile of U, /0z since the momentum
flux is often more uniform than U, over the Stokes depth, which is typically smaller
than the Ekman depth. The use of a spectral distribution of waves leads to a profile
of OU;/0z much more sheared at the surface than the profile of Uy, whereas the
use of a monochromatic wave would strongly over-estimate the depth of injection of
TKE (see fig.2.3). It follows from this calculation that

It ~ G Uy(z = 0) ~ 10 x u?, (2.18)

which is around 10% of ®,. = au?. That means that the dissipation of the waves
by interactions with turbulence is only 10% of the total waves dissipation. However
the correlations between wave groups and enhanced breaking [Banner et al., 2000]

may lead to a greater fraction of the total dissipation.

In the case of dissipation by breaking, an injection over a certain depth linked
to the wavelength of the breaking wave may be more realistic. Sullivan et al. (2004)
proposed a profile for the injection of momentum by a breaking wave, based on the

laboratory data of Melville et al. (2002). That profile can be approximated, after
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integration over time and horizontal dimensions of their breaker, by

f(z) =4.227 (1 + 5{)2 exp <—5 <5§)2> : (2.19)

With this expression, most of momentum of breaking waves is released between the
surface and a depth of A\/5, where X is the wavelength of the breaking wave. We will
suppose that, for a given wavelength, the injection of TKE and momentum follow
the same depth profiles. To determine which waves are breaking, we will determine
the spectral distribution of dissipation as in Donelan (1998), by supposing that the

predominant terms in eq.2.1 are the input and the dissipation,
Sin g% =0, (2.20)

which is formally valid only at the peak of the wave spectrum. Then the spectral
distribution of dissipation can be obtained from S. The formulation of Makin and
Kudryavtsev (1999) is, neglecting the sheltering effect |Hara and Belcher, 2002],

gin — /ﬂ(k,e)E(k,e)dkde, (2.21)
with . ,
8= 325—2 (1 —-1.3 <Ui10) ) <%) cos(0)|cos(8)]. (2.22)

Using (2.19)-(2.22) provides an estimation of ¢’ (2).

The appropriate surface boundary condition is now a zero flux of TKE, 1¢.S,0b/0z =
0. Figure 2.3 shows the profiles of ¢% assuming that the dissipation of wave field

break)

comes entirely from breaking (¢% = ¢ or entirely from wave-turbulence inter-

turb) " Both profiles are concentrated near the surface, much more

actions (% =
so than the Stokes drift. A realistic case would be that wave dissipation comes from
both phenomena with a ratio of the order of 20% for the wave-turbulence inter-
actions (% = 0.8 + 0.2, Resulting profiles of dissipation are shown in
fig.2.4, as well as profiles of dissipation with surface flux of TKE and different values

of the roughness length.

As expected, in the extreme case of total dissipation due to wave-turbulence
interactions, the TKE penetrates deeper which leads to more uniform dissipation
profiles. The effect of depth injection is comparable to an increase of the roughness
length. This is also true for the momentum, when the surface source is distributed
over depth (not shown). The roughness length, which is fitted to measurements of

dissipation, is supposed to take this effect into account. It can be seen from fig.2.4
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that a surface roughness at least of the order of H, is needed, even if all the TKE is
deeply injected with the profile of dU;/0z.
TKE injection TKE injection
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Figure 2.3:  Profiles of normalized injection of TKE by wave breaking
pireak(2) /ptreak (2 = 0), and by interactions with turbulence ©™™(z2) /@™ (z = 0),
in the case of fully developed waves with a wind of Ujg = 10 m s~!. Also shown is

the profile of the Stokes drift Us(z)/Ug(z = 0).

2.4.2 Eulerian hodographs and shears

The most obvious effect of waves on the mean flow is the enhancement of mixing.
This effect gets stronger as waves become developed, because the roughness length
is proportional to the wave height. Fig.2.5 shows the expected difference between a
young sea (wave age C,/U;g = 0.46) and a fully-developed sea (C,/U;o = 1.25).
Another effect, in appearance less important, comes from the Stokes-Coriolis
term. We can compute this effect by subtracting the results of the quasi-Eulerian
current U’ from model without the Hasselmann force to the results of the full model
u. This net contribution du = u—u’ of the Hasselmann force for the quasi-Eulerian
velocity is shown on figure 2.6. Polton et al. (2005) made detailed analysis of the
impact of this Stokes-Coriolis term on the profile of 1, with constant and linearly
varying eddy viscosities. They showed that the detailed profile of the Stokes drift

does not matter as soon as the Ekman depth is much larger than the Stokes depth.
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Figure 2.4: Normalized dissipation as a function of normalized depth, using the scal-
ing of Terray et al. (2000), ®,. = au? is the surface flux of TKE. Curves correspond
to different values of the roughness length z,. The effect of injection of TKE over
depth is also shown, with p(2) = % (2), following the profile of Sullivan et al.
(2004), and with o(2) = " (2), following the profile of 9U,/0z. Also shown is the
result of Terray et al. (1996).
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Figure 2.5: Evolution of profiles with an increasing fetch (wave heights from 0.6 m
at 10 km offshore to the fully-developed value 2.5 m). (a) Quasi-Eulerian velocity
profiles become more uniform. (b) Turbulent viscosity increases. The wind is set to
Uip = 10ms™ 1, and the water depth is 300m.

In this case, they showed that the contribution of the Hasselmann force is similar to
the addition of a surface stress to the right of the wind, with a magnitude related to
the Stokes transport M™. This is also true in our model since we are considering an
unstratified water column (large Ekman depth) and a wind sea (small Stokes depth).
Using a full spectrum to compute the Stokes drift is not important when looking at
the Stokes-Coriolis effect on the quasi-Eulerian velocity u. FEulerian velocities spiral
in an Ekman fashion, and vanish at a depth given by the Ekman depth w*/4f. The
Hasselmann force has thus an influence much deeper than the Stokes drift | Xu and
Bowen, 1994]. Because the transport induced by this Stokes-Coriolis term is equal
to the Stokes transport [Hasselmann, 1970], an estimation of the importance of this
effect is the ratio of the Stokes transport to the Ekman transport (fig.2.2), which

can be more than 30% for mid-latitudes.

Substantial modifications at the surface (20%) and over the whole water column
(30% at 100m) are found in the case of a developed sea (fig.2.6).

Lewis and Belcher (2004), and also Polton et al. (2005), studied the impact of
the Stokes-Coriolis term on the Eulerian Ekman spiral, with an unstratified water

column and with an eddy viscosity that varies linearly with depth. They reported
that this Stokes-Coriolis term could explain the tendency of the spiral to be shifted
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and sea is developed
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in the direction opposite to the wind, as observed in some field experiments, such as
LOTUS3 | Price and Sundermeyer, 1999]. We must notice that they took small values
of zg, of the order of 1cm. Such values are commonly used in order to fit surface drift
observations (see section 2.4.3) with the Eulerian surface current (around 3% of the
wind speed Uy, e.g. ¢ = 0.03 in table 3 of Lewis and Belcher (2004)). The present
model was used to simulate conditions observed during the LOTUS3 experiment.
The model mixing K, is enhanced by breaking (zp ~ 2.5m), which leads to quasi-
Eulerian currents near the surface much reduced compared to Polton et al. (2005)
(less than 1% of the wind speed Uy, fig.2.7). Polton et al. (2005) reported minors
changes of velocity in the bulk Ekman layer to the values of zy. But they used
2o =~ lem, which is two orders of magnitude below the values of the present model.
Also it is the near-surface dynamics, within the first 10m, that is of interest here
and it is quite sensitive to values of zy larger than 1m, as pointed out by Craig and
Banner [1994, section 5|, due to a very large increase in K,. Therefore the good
agreement found by Lewis and Belcher (2004) and by Polton et al. (2005) for the two
uppermost current-meters (z = —5 and z = —10 m, figure 7) is not obtained with
the present model. The value of the crosswind component of the model’s velocity
is only 50% of the observed value at z = —5 m. If the sub-surface deflection of
the quasi-Eulerian velocity due to the Stokes-Coriolis effect is still significant, the
vertical profiles and velocity spiral are more different from the observations than
with the models of Lewis and Belcher (2004) and Polton et al. (2005). This misfit
may be explained by the stratification : the mixed layer was only 10 to 25m thick
during LOTUS3 |Price and Sundermeyer, 1999], with a strong diurnal cycling.

Terray et al. (2000) compared results of the Craig and Banner model (without the
Stokes-Coriolis term) to quasi-Eulerian velocity profiles and shears, obtained with a
wave-follower much closer the surface [Santala and Terray, 1992|. The addition of
the Stokes-Coriolis term does not substantially modify the shear, but the magnitude
of the currents is modified. However the field data used in Terray et al. (2000) was
obtained with relatively young waves (C,/Uy =~ 0.74), so that currents driven by
the Hasselmann force are one order of magnitude smaller than currents driven by the
wind. Therefore this dataset is not ideal for highlighting the Stokes-Coriolis effect
(fig.2.8). A dataset with fully-developed waves would have been more useful for that
purpose. Moreover, the water column was stratified below 20m depth. Therefore
the present comparison of their data and the model remains qualitative. However
roughness length one order of magnitude smaller than Hj is clearly not compatible
with this dataset.

McWilliams et al. (1997) used Large Eddy Simulations (LES) to study the im-

pacts of Langmuir circulations (LCs) on the mixed layer in a weakly stratified
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Figure 2.7: Hodographs of quasi-Eulerian and Lagrangian velocity. Curves are for
u, = 8.3 x 1073ms™! and a fully developed sea (H, = 1.6 m). Also shown is the
mean profile from LOTUS3 [Price and Sundermeyer, 1999| at 5, 10, 15 and 25m
and, for comparison with Polton et al. (2005), the Eulerian current from the model
with a small surface mixing (small roughness length zp=1.6 x 107m). Solid lines
are model results with the Hasselmann force, dashed lines without.

case.They did not take surface wave breaking into account but they used an in-
put of TKE, given by the shear of the Stokes drift (2.17). Some comparison can be
made between our present model with a simple turbulent closure scheme and their
LES results : in particular they computed the impact of the Hasselmann force on
the Eulerian current (their fig. 2). We must notice that their Stokes transport (a
monochromatic wave of H = 2.3m and A = 60m) is 4 times larger than expected
at full development (they use Ujg = 5ms™!). In their case, the Ekman transport
and the Stokes transport are of the same order. Fig.2.9 shows the present model
results using the same Stokes drift as in McWilliams et al. (1997) and a Stokes drift
from developed waves with U;g = 5ms~!. These results are similar to the LES ex-
periment, except for the u component in the near surface region that is much more
uniform in their case. In spite of a close agreement between their bulk eddy viscosity
and our eddy viscosity, the mixing due to L.Cs is significantly different to the one
of our simple model. Kantha and Clayson (2004) used an intermediatly complex
turbulence closure model based on two equations for ¢? and ¢?{, and simulated the
same LES experiment. As they noticed, their model also underestimate the near

surface mixing of the Langmuir cells.
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Figure 2.8: Downwind and crosswind quasi-Eulerian currents. Curves correspond
to Ujp = 13.6 m s~! and a fetch of 100 km (H, = 2.3 m). Solid and dashed lines
show model results with and without the Hasselmann force, respectively. The data
from the buoy (SASS) and the mooring (VMCM) of Terray et al. (2000) (their fig.3)
are plotted with markers. As the water column was stratified during these measure-
ments (thermocline at 20m depth), we also show for qualitative comparison for the
downwind component the model results with a water depth of 20 m. Dashed-dotted
lines are model results without the Hasselmann force and with a small roughness
length zy = 0.05 x H,.
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2.4.3 Lagrangian drift

The mean drift velocity U is the sum of the quasi-Eulerian flow u, computed with
the model described above, and the Stokes drift Ug. Now considering the net wave-
induced mass transport, the Stokes-Coriolis term is of prime importance. In terms of
mass transport in the downwind direction, that term creates an Eulerian return flow
which compensates the Stokes transport, leading to a zero wave-induced transport
in steady conditions given by eq.2.9 [see also Hasselmann, 1970|. Because turbulence
diffuses vertically the momentum source that is the Hasselmann force, the return
flow is less sheared than the Stokes drift. Therefore the return flow does not com-
pensate the Stokes drift near the surface, and overcompensates it below. Instead of
quasi-Eulerian and Lagrangian , fig.2.10 shows a decomposition into quasi-Eulerian
current driven by the wind u’ and Stokes drift plus quasi-Eulerian current driven by

the Hasselmann force Uy + du = U, +u —1u’.
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Figure 2.10: Details of the velocity profiles in the downwind direction. Left: La-
grangian drift induced by wave mass transport U,, equal to Stokes drift U, plus
quasi-Eulerian current driven by the Hasselmann force ou = u — @’. Right: Wind-
driven quasi-Eulerian current (ie the model result without the Stokes-Coriolis term)
u’. Left plus right, i.e. U, +10" = Ug+ du+ 1’ gives the total Lagrangian velocity U.
Curves are for Ujg = 10ms™! and fully developed waves (fetch superior to 1000km).
Bottom panels are shown on a logarithmic scale.

It can be seen that near the surface the downwind drift in the present model is
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essentially due to the Stokes drift (at least 80%), for fully-developed waves. The
practical simplification that takes the surface drift to be the sum of the usual Ekman
Eulerian current, from an ocean circulation model without the Stokes-Coriolis term,
plus the Stokes drift [e.g. Annika et al., 2001], leads to slight over-estimations (less
than 5%), for fully-developed waves. For very young waves, the Eulerian current is
of same order as the Stokes drift but the Hasselmann force is reduced so that its

effect can also be neglected in terms of surface drift.

In the crosswind direction, the wave-induced drift is the quasi-Eulerian current
due to the Stokes-Coriolis stress. Although the total transport is zero in this direc-
tion, the velocity is not zero at each depth, leading to a small wave-induced drift to
the right of the wind near the surface and to the left below (see fig.2.6 and section
2.4.2).

The mean wind-induced drift of a water particle at the surface is not well known.
Huang (1979) reviewed field and laboratory experiments about surface drift of water,
ice, oil and objects, but laboratory experiments or floating objects observations are
not supposed to give the same drift than water particles in presence of developed
waves. The different results are scattered roughly around 3% of the wind speed Uy.
Churchill and Csanady (1983) studied Lagrangian motions of drogues and drifters
and found surface drifts between 2 and 2.5% of the wind speed Ujy. The present

model yields smaller velocities, around 1.5%.

This ratio of 1.5% does not vary much with fetch (fig.2.11 and 2.12). For shorter
fetches, the Stokes drift is small and the Eulerian velocity is larger, thanks to a small
mixing (figure 2.12, dotted lines). Note that we computed the Stokes drift for very
short fetches with Kudryavtsev et al.’s [1999| spectrum, whereas this spectrum is not
expected to behave correctly for such young seas (B. Chapron, personal communi-
cation). The effect of the dependence of the atmospheric roughness length with the
sea state is also shown : a wind-waves coupling represented by (2.7) is used instead
of the Charnock relation (2.6). This coupling leads to an increase of the surface
stress for young seas, and thus to a increase of the Eulerian current (dashed-dotted
lines). Furthermore, the TKE flux is ®,. = au?, where «a is also known to depend on
the wave age. We use here an analytical fit to the distribution of o as a function of
Cp/Usq Of fig.8 in Terray et al. (1996). a can be taken around 60 for very young waves
(age C'p/usq = 5). Tt increases to 180 for developing waves (10 < C'p/u., < 20), and
then decreases to 80 for fully-developed waves (Cp/u., =~ 30). As this effect slightly
reduces the mixing for very young waves and for fully-developed waves, the quasi-
Eulerian current at the surface slightly increases. It is the contrary for developing

waves, for which the mixing is slightly enhanced (figure 2.12, solid lines). However,
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Figure 2.11: (a) quasi-Eulerian current downwind 1, (b) crosswind v and (c¢) total
Lagrangian drift |[u 4+ U,| at the surface, as function of wind speed and fetch. The
results are shown as percentages of the wind speed U;y. The wind-wave coupling
(equ. 2.7) and an estimation of « as a function of the wave age are used.
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it is the increase of the roughness length z; that dominates the evolution of the near

surface mixing with wave development, as expected from Craig and Banner (1994) :
K, o< u, /220820 — 2)02. (2.23)

The Lagrangian surface drift appears to be almost independent of the fetch
(figure 2.11). This drift strongly depends on the depth, due to the vertical shear
of the Stokes drift (and also, for short fetches, to the shear of the quasi-Eulerian

current).
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Figure 2.12: Quasi-Eulerian drift |4|, Stokes drift U, and total drift U = |u + U]
at the surface, as function of fetch. Dashed lines : using Charnock’s formula and
a TKE flux ®,, = au? with o = 100. Dashed-dotted lines : using the coupling of
Donelan (1998) and « = 100. Solid line : using the coupling of Donelan (1998) and
a variable o from Terray et al. (1996). The wind is set to Uy = 10ms™.

2.5 General discussion

Clearly, the surface drift is more sensitive to the surface mixing of the model than
to the Stokes-Coriolis term. Near surface profiles are, as pointed out by Craig and
Banner (1994), strongly dependent on the roughness length. However, if the scaling
of Terray et al. (1996) is valid, i.e. zy and Hy are of the same order, which is

confirmed by observations, then the uncertainty on the quasi-Eulerian velocity is
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not that large. A much smaller roughness length like zy = 0.6H, as prescribed by
Soloviev and Lukas (2003), leads to Eulerian surface currents 1,5 times larger than
with the present value zyp = 1.6H,. In terms of Lagrangian surface drift, the under-
estimation would be smaller, from 10% for long fetches to 20% for short fetches.
Thus a hopefully more physically sound definition for zy, such as an average size of

breaking waves, is not expected to give significant differences in drift.

Although there is a reasonable agreement, between the present model and quasi-
Eulerian velocity shears measured by Santala and Terray (1992), there is a large
difference between predictions of Lagrangian drift and drifter observations. It is
possible that a second order approximation may not be accurate enough for steep
waves, and wave-wave interactions (modulations) may enhance the Stokes drift in a
random wave field. Melsom and Szatra (2004) have included fourth-order terms in
their estimation of the Stokes drift for monochromatic waves but the effect of these
terms is typically less that 10% of the second order terms, even for the steepest
waves. [t is more likely that turbulent structures associated with breaking fronts

may contribute to the drift at the surface, and need to be parameterized.

Breaking wave fronts may cover an area of the order of a few percent of the sea
surface. One may use empirically derived distributions A(C)dC for the length of
breaking crest with a phase speed between C and C' + dC' per unit area |Melville
and Matusov, 2002 |, one finds that objects randomly distributed at the surface of

the ocean will have an extra drift of
7= / LOA(C)dC, (2.24)

with L the displacement at the passage of a breaker. Since breakers propagate at a
speed of about 0.8 C' and the breaker lifetime is about the wave period T'= 27C'/g,
one finds that @ is of the order of 6 x 1072 m s~ for U;y = 10 m s~ !, and this
velocity increases with the cube of the wind speed. Therefore this effect may become
significant for large wind speeds, but it only affects depths down to a small fraction
of the wavelength, typically a few percent [Melville et al., 2002|. This calculation
only includes transient large-scale breakers. Micro-scale breakers, with a relatively

longer lifetime, may yield a larger contribution.

The other turbulent structures that are likely to account for most of the discrep-
ancy between observed drift speeds and the model are the Langmuir circulations.
These structures extend down to the base of the mixed layer and have been re-
peatedly observed as soon as the wave and winds and steady enough that the cells
can develop, even in shallow water |e.g. Marmorino et al., 2005|. LCs are charac-

terized by strong variations Awu of the downwind velocity with maxima associated
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with convergence zones at the surface. Aw is reported to be of the order of 1 3%
of the wind speed by Smith (1998). As a slightly buoyant object would tend to
be trapped in the convergence zones, it can easily drift with a mean velocity larger
than the actual mean by 1% of the wind speed. This "Langmuir bias" could thus
be the principal reason why measured drift velocities are larger than given by the
present model, and also larger than the HF-radar measurements by Dobson et al.
(1989). Langmuir circulations further raise the issue of the adequacy of the tur-
bulent closure with a £ — [ model to model mixing due to such organized vortices
created by wave-current interactions. Recent studies |e.g. Noh et al., 2004| have
investigated Langmuir circulations with Large Eddy Simulations that do not use
such a simple closure scheme. However, these studies still need to be validated with
field observations such as those of Smith (1999).

Finally, the impact of a density stratification can be included in the present
model. A reduced mixed layer depth leads to an increase of the quasi-Eulerian
velocity because the Ekman transport is conserved. As shown in fig.2.8, it may
increase the quasi-Eulerian velocity by a factor 2 or 3, which would be significant

also in terms of Lagrangian surface drift.

2.6 Conclusion

We presented here a model of a uniform and homogeneous ocean driven by wind and
associated waves. Distinction is made between wave motion, including the Stokes
drift, and a quasi-Eulerian motion, driven by the momentum flux from atmosphere,
by the Coriolis force and by the Hasselmann force (also called "Stokes-Coriolis ef-
fect"). The waves are supposed to be a linear superposition of monochromatic com-
ponents which satisfy the usual dispersion relation. The sea state is thus modelled
by a directional spectrum of sea surface elevation variance. The Stokes drift and the
vertically integrated Stokes transport are respectively the third and first moments
of the frequency spectrum, and are therefore sensitive to the high frequency part of
the spectrum, i.e. the short waves. Thus a spectrum designed for remote-sensing
applications (fitted to reproduce the fourth moment of the spectrum) is supposed
to give reasonable results for the Stokes drift calculation. This Stokes drift is found
to be around 1.2% of the wind speed Ujg, and the corresponding Stokes transport
around 20 to 30% of the Ekman transport at mid-latitudes, for developed waves.
The use of a monochromatic wave cannot represent well the surface drift value, the
vertically integrated transport, and the depth involved.

The wave field influences the quasi-FEulerian motion via two different effects :

the Stokes drift, in a rotating frame, creates the Hasselmann force which drives an
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Eulerian return flow to compensate the Stokes transport. The presence of waves also
increases the near surface mixing. A simple turbulent closure scheme gives an eddy
viscosity that can be used to represent the latter effect. The roughness length for this
closure scheme is evaluated according to observations of TKE dissipation near the
surface. The model result is then examined and we can summarize it by comparison
to the near surface physics of most ocean circulation models (OCMs), which use
small mixing at the surface (represented here by a small roughness length zy < 0.1m).
(i) A surface mixing at least one order of magnitude greater than in current OCMs
(and dependant on the sea state) seems realistic. Significant consequences on the sea
surface temperature are expected |Mellor and Blumberg, 2004]. (ii) As a consequence
of this strong mixing, there is a strong reduction of the vertical shear of the quasi-
Eulerian velocity near the surface (see fig.2.13). (iii) However, Lagrangian drift
velocity is highly sheared due to the shear of the Stokes drift near the surface (see
fig.2.13), leading to near surface profiles quite close to those of the Eulerian current
in some OCMs. (iv) Although observations of surface drift and comparisons with
the wind speed are not very reliable, an important part of the surface drift of objects
may be still missing in the present formulation. The "Langmuir bias", which is the
correlation of surface convergence and increased velocity, should explain some of this
missing drift, as well as the stratification which was not taken into account. (v) The
Hasselmann force has a significant impact in terms of vertical profiles of Fulerian
velocities (this force leads to current magnitudes of 20 to 30% of the magnitude of
currents driven by the wind stress). This impact is relatively small on the surface
Lagrangian drift, which could be approximated by the sum of the Stokes drift plus
the Eulerian current driven only by the wind stress. (vi) In terms of Lagrangian
drift at different depth, stationary waves create a mass transport in the wind-waves
direction near the surface, and in the opposite direction below, until a depth of
the order of the Ekman depth. If properties are homogeneously distributed in this
surface layer then wave transport can be ignored. Otherwise it should be computed.
(vii) For really young seas, as it happens in some costal areas or lakes, the near
surface dynamics are closer to that described by traditional OCMs, with a small

Stokes drift and a relatively weak mixing.

In conclusion, the surface drift and mixing cannot be understood without the
waves. However there still are very few datasets that are complete. The reason is
that fields experiments on Ekman currents or mixed layers and studies on waves
are rarely made simultaneously. Furthermore near surface Lagrangian, Eulerian or
quasi-Eulerian averaging are often significantly different but hardly well identified.
The present study demonstrates the need for more near surface measurements to

gather all this information.
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and zp = 1.6 x Hy = 4.5m. Top panels are shown on a logarithmic scale.
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Abstract

A model of the ocean surface currents is presented. It includes the enhanced near-
surface mixing due to the waves, the Stokes drift of the waves, the Stokes-Coriolis
effect and the stratification. The near-surface current shears from this model are
compared with the shears of the quasi-Eulerian currents measured using a wave-
following platform during the Shelf Mixed Layer Experiment (SMILE). Tt is shown
that the downwind current shears observed during SMILE are well modelled. How-
ever, the observed crosswind shears are in poor agreement with the model. The
Stokes-Coriolis (SC) term could qualitatively explain this misfit but it is one order
of magnitude too weak. The Ekman-Stokes spiral of the model are compared to
the spiral observed during the long time series of measurements Long Term Upper
Ocean Study 3 (LOTUS3). The effects of stratification are carefully treated. The
mean velocity profiles of the model closely agree with observations. However, we
find no evidence of the SC effect on the shape of the observed Ekman spiral. The
observed shape is found to be a consequence of the rectification due to the stratifi-
cation. The SC effect calculated from an accurate numerical wave hindcast is weak,
but should have been observed. In fact, it is estimated that the wave-induced bias
in the current measurements is larger than the SC effect. Finally, it is shown that
the wave age effect on the surface drift, which was found to be small in unstratified

conditions, is important in the presence of shallow mixed layers.

3.1 Introduction

Waves are known to dramatically enhance the near-surface mixing. This was inferred
from turbulent kinetic energy (TKE) dissipation measurements (Agrawal et al., 1992;
Terray et al., 1996), and it was also observed in measurements of downwind current
vertical shear very close to the surface during the Shelf Mixed Layer Experiment
(SMILE) (Santala, 1991; Terray et al., 2000). Accordingly, the surface mean current
is rather weak, around 0.5% of the wind speed at 10 meters U;q when the ocean is not
stratified and when the waves are developed. This quasi-Eulerian mean current is
defined as the Lagrangian drift minus the wave Stokes drift (see for details Jenkins,
1987; Rascle et al., 2006; Ardhuin et al., 2007b). This small quasi-Eulerian drift
can be overwhelmed by large surface drift due to the wave Stokes drift, which can
be as large as 1.2% of Uy (Rascle et al., 2006, hereinafter Part 1). However, these
processes may not be well represented or, more likely, other processes are important
for the drift of surface-trapped buoyant objects to reach surface drifts of the order

of 2 or 3% of Uyp (Huang, 1979). The surface trapping of the Ekman current in the
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presence of stratification may be an important factor.

Waves are also associated with a Stokes-Coriolis current (Hasselmann, 1970; Xu
and Bowen, 1994; McWilliams and Restrepo, 1999). Namely, in a rotating frame
of reference, a wave-induced stress perpendicular to the waves propagation modifies
the profile of the Ekman current. In an inviscid ocean, this stress drives a mean
current which compensates the Stokes drift of the waves when averaged over the
inertial period. However, in the presence of a strong vertical mixing, this return
flow is made vertically uniform. Because the Stokes drift of a wind sea is strongly
surface trapped, the return flow only compensates the Stokes drift when vertically
integrated over depth, and there is a net drift at every depth. This was shown in
Part 1 without any stratification, and the question raised is to which extend this
remains valid if the Ekman current is also surface trapped, by a shallow mixed layer
for instance.

Furthermore, when considering vertically integrated transports, the Stokes-Coriolis
effect do compensate the Stokes transport in a steady state. It is also the only mech-
anism invoked to compensate it. Observations have been made by Smith (2006a), in
which the modulations of the Stokes drift by the passing wave groups was completely
compensated, presumably by the flow associated with long infra-gravity waves. We
also note that laboratory measurements fail to reproduce the Stokes drift (Moni-
smith et al., 2007). However, the steady Stokes transport and the Stokes-Coriolis
effect on it have never been clearly observed yet. Evidence of this effect has been
sought by Lewis and Belcher (2004) and Polton et al. (2005) in the observations of
the sub-surface Ekman current during Long Term Upper Ocean Study 3 (LOTUS3)
(Price et al., 1987). Unfortunately, neither the wave-enhanced surface mixing nor
the quite shallow diurnal mixed layer during LOTUS3 have been taken into account
in these previous works, although they can radically change the interpretation of
the observed Ekman spiral (Price and Sundermeyer, 1999). Also, evidence of the
Stokes-Coriolis forcing have not been sought yet in measurements much closer to
the surface, such as those of SMILE.

In this paper the effect of stratification will be added to the model presented in
Part 1 in order to make a quantitative comparison with some available observations
of near-surface current. More precisely the remaining issues are : How well this
model can reproduce the vertical shears observed close to the surface, both in the
downwind and the crosswind direction? What is the impact of the Stokes-Coriolis
effect on the Eulerian and Lagrangian currents profiles in shallow mixed layers? Is
there any observational evidence of this effect? Is the surface drift reaching realistic
values in the presence of shallow mixed layers?

The model used for this study is introduced in section 3.2. The near-surface
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shears of the quasi-Fulerian currents observed during SMILE are analyzed in section
3.3. The Ekman-Stokes spirals from the LOTUS3 data are analyzed in section 3.4.
Finally, the surface drift of the model in the presence of waves and stratification is

discussed in section 3.5.

3.2 The model

For the sake of simplicity and because we want to simulate a period of hundreds
of days, a simple one dimensional eddy viscosity model with a TKE closure scheme
will be used. This model is adapted from Craig and Banner (1994), as discussed
in Part 1. It was chosen because it is able to reproduce the wave-enhanced near
surface mixing by the addition of a TKE flux at the surface and the specification

of a large roughness length z;. According to Terray et al. (1996), the TKE flux is
3

%)

parameterized as ®,. = au?, with o = 100 and where u, is the waterside friction
velocity. The roughness length is set to zyp = 1.6 H,, as in Terray et al. (2000), with
H, the significant wave height of the wind sea, a proxy for the scale of the breaking
waves that are responsible for the mixing. The extension to a stratified ocean is
taken from Noh (1996). The parameterization of the effects of stratification on the
eddy diffusivities is made via a turbulent Richardson number, where the destruction
of turbulence by stratification is made regardless of the origin of turbulence, by
shear production or by downward diffusion from the wave layer. This model was
chosen for its ability to reproduce the diurnal thermocline. Justification for the
use of such a simple eddy viscosity model can be found by comparing the velocity
profiles of the model to the velocity profiles of more sophisticated models like the
large eddy simulations (LES) of McWilliams et al. (1997) or Noh et al. (2004). Such

comparisons have shown reasonable agreement (e.g. Kantha and Clayson, 2004).

3.3 Analysis of the near-surface shears - The SMILE
data

3.3.1 The experiment

The SMILE data of Santala (1991) are of particular interest because one buoy (the
SASS) included measurements of the velocity very close to the surface, at depths
smaller than H,. These unique measurements of the mean current used a surface
follower and were corrected for a wave bias due to correlations between the SASS

measurements and the waves motion. The most useful measurements occurred on
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27 and 28 February 1989. The wind speed was 13.6 m s~! and the wave height was
2.3 m, both approximately aligned and steady. The mixed layer depth was 20 m.
More information on this data can be found in Santala (1991) and Terray et al.
(2000).

3.3.2 The model

For comparison with these data, the model is run with a steady wind of the ob-
served wind speed. The temperature is initialized to fit the observed profile, with a
thermocline around 20 m, and a zero surface heat flux is used in order to reproduce
the neutral mixed layer and its slow deepening. To compute the Stokes-Coriolis
force, waves are calculated using a JONSWAP spectrum (Hasselmann et al., 1973),
assuming a fetch of 100 km, giving the observed significant wave height. The peak
period of the waves is slightly underestimated with this method, giving 6.4 s whereas
7.8 s was observed. The Stokes transport of the waves, important to measure the
magnitude of the Stokes-Coriolis force, might then be slightly overestimated. The
model results, averaged over an inertial period, are plotted on fig. 3.1 (upper panel).
For comparison, the model results without stratification are plotted on fig. 3.1 lower

panel.

3.3.3 Previous analysis

The measurements have already been analyzed by Santala (1991), and part of its re-
sults were used by Terray et al. (2000) and in Part 1. Here we will briefly summarize
their analysis and the different technique used in the present analysis.

Four sensors were mounted on the SASS buoy, at depths from 1 to 5m. The
vertical shear can be estimated between each pair of adjacent sensors by a finite
difference. Santala (1991) scaled the depth with u2/g, which is equivalent to scale
with the significant wave height H if one supposes a full development and if one
omits the swell in Hy. The shear was scaled with u,/z, the law of the wall scaling.
This leads to their figure 7-5, which we reproduce here for the SASS data only (fig.
3.2).

The analysis of this plot, together with deeper measurements from a conventional
mooring, leads these authors to infer a description of the downwind shear in a 3
layer structure, namely an upper layer with almost no shear, a lower layer following
a log-law and a transition layer in between. However, such a transition is hardly
perceptible with only the SASS data, because the lowest shear estimate falls in
the transition region (fig. 3.2, upper panel). In the crosswind direction, the shear

was found roughly constant with depth. This analysis leads to the figure 7-11 in
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Figure 3.1: Velocity profiles from the model. u is the downwind quasi-Eulerian
velocity, ¥ is the crosswind quasi-Eulerian velocity and U, is the Stokes drift. Ve-
locities and elevation are normalized by the waterside friction velocity u, and by
the significant wave height H, respectively. Solid lines and dashed lines are model
results with and without the Stokes-Coriolis effect, respectively. Upper panel is with
a 20 m deep mixed layer as observed during SMILE and lower panel is without the
effect of stratification.

Santala (1991), which was reproduced in Terray et al. (2000) and Part 1, showing

the current profiles inferred from this analysis. These profiles were used afterwards
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Figure 3.2: Reproduction of the Figure 7-5 of Santala (1991), for the SASS data only.
Nondimensional variation of shear with depth for the downwind (upper panel) and
for the crosswind (lower panel) directions. The + and thin lines are measurements
from the SASS, the thick solid lines are the shears inferred in the original analysis
of Santala (1991), with the 3 layers structure in the downwind direction.

in the discussion of Santala (1991).

3.3.4 A less constraining analysis

It is not obvious from fig. 3.2 that the fit to the scatter of finite difference calculated
shears should produce a reliable estimation of the mean shear. Given that large
scatter, one can wonder if a different analysis of the shears close to the surface cannot
lead to a different description of the near surface velocity profiles. For instance, since
we are focusing our analysis on the near-surface, where the mixing is enhanced by
the waves, the shear should better be scaled with u,/Hg or g/u,, according to Craig
and Banner (1994)’s eq. 30. But whatever the scaling used for the depth or for the
shear, the vertical profiles remain quite noisy (fig. 3.3).

A smoother estimation of the mean vertical shear can be obtained with a linear
regression of the current profile over the 4 sensors depths and is shown on fig. 3.4

and fig. 3.5. The observed shear in the downwind direction (fig 3.5, upper panel)



70

Chapter 3
-0.5r
TE
+
-1+ +
. + +
+ + o+ +
+ +
-1.5¢r .
1]
< .
N +
4
_27
-2.5r + — uwith SC
= = uwithout SC
— u SM with SC
= = u SM without SC
+ SASS data
_3 Il Il Il Il Il T T J
-3 -2 -1 1 3 4 5
du/dz H /u,
s
-0.5 .
Wt
AR
+
o+ * + o+ o+ o+ :*
+ il +
-1 + 'l
+ + + !
+ ot B
+ + + + o+ v,
[N
+ il +
-1.5 | : :
) ",
I o
N +! 4 + .
L L s
-2r il
i 1
1 If +
— v with SC i
= = v without SC i
-2.5H = = vwith SC FD ifrw”
— v SM with SC HL
= = v SM without SC L
+=++ v SM with SC FD
+ SASS data
—_ T T Il Il Il Il J
-3 -2.5 -2 -15 -1 -0.5 0 0.5

dv/dz H /u,

Figure 3.3: (Upper panel) Shear of the downwind component u of the current,
normalized with w,/H,, plotted as function of the depth normalized with H,. Shears
of the model are calculated by finite difference and shears of the SASS data are
calculated by finite difference between each pairs of adjacent sensors. In addition to
the default model results, we plotted the results of the model without the Stokes-
Coriolis effect (SC) or/and without the wave-induced surface mixing (SM— Small
Mixing), obtained with a roughness length of 2z, = 0.05 m and no TKE surface
flux. (Lower panel) Same as upper panel but for the crosswind component v of the
current. As an upper bound of the Stokes-Coriolis effect, the model results when
supposing the wave field fully developed (FD) is also shown.

is in relatively good agreement with the shear of the model, this way validating

the enhanced near surface mixing as was noted in Terray et al. (2000) and Part 1.
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However the observed shear in the crosswind direction (fig. 3.5, lower panel) is one

order of magnitude larger than the model prediction.
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Figure 3.4: Shears observed with the SASS buoy. The shears are calculated with
a linear regression over the 4 currents meters and are plotted as thin line segments
over the curves of fig. 3.1, upper panel, and with an arbitrary off-set.

The Stokes-Coriolis force, oriented in the crosswind direction, is a possible ex-
planation for that large crosswind shear. Qualitatively, the Stokes-Coriolis force is a
good candidate, because it is oriented to the right of the waves propagation, as is the
observed bias. Therefore we made a quantitative evaluation of the Stokes-Coriolis
impact on the crosswind current. The wave field was not fully developed. The
Stokes transport is around 10% of the Ekman transport, which means, according to
Polton et al. (2005), that the Stokes-Coriolis effect is equivalent to a surface stress
of 10% of the wind stress. The consequent crosswind shear (fig 3.5, lower panel) is
quite small, given the strong wave-induced mixing of the model. An upper bound of
the Stokes-Coriolis stress can be found by supposing the wave field fully developed.
The equivalent stress is then of 35% of the wind stress. But even in this case (fig
3.5, lower panel), the Stokes-Coriolis force is too weak to explain the large crosswind
shears observed.

Another possible explanation for those observations is a smaller mixing in the

crosswind direction than in the downwind direction. From looking at the vertical
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Figure 3.5: (Upper panel) Linear regression of the downwind current u between
1.1 m and 5.8 m deep, the measurement depths of the SASS buoy. The current is
normalized with u, and the depth with H,. The SASS data are plotted, as well
as different model results. In addition to the default model results, we plotted the
results of the model without the Stokes-Coriolis effect (SC) or/and without the wave-
induced surface mixing (SM— Small Mixing), obtained with a roughness length of
2o = 0.05 m and no TKE surface flux. (Lower panel) Same as upper panel but for
the crosswind component v. The SASS data are plotted, as well as different model
results. (As in fig 3.3, lower panel, SC is Stokes-Coriolis, SM is Small Mixing and
FD is Fully Developed waves.)

profiles of the different LES simulations of the Langmuir turbulence (McWilliams et
al. (1997), Noh et al. (2004), ...), it is clear that the mixing due to Langmuir cells
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is not isotropic. However none of these simulations are focused enough on the near-
surface dynamics to provide any reliable picture of what the mean surface currents
and mixing should be.

Also, if Langmuir circulations were present, the SASS buoy could have been
trapped into surface convergence zones. Santala (1991) investigated the vertical
velocity records and did find a non-zero downward velocity, interpreted as evidence of
a non-uniform sampling of the Langmuir cells. The consequent bias of the horizontal
velocity measurement cannot be excluded to explain the observed large crosswind

shear.

3.4 Analysis of the current magnitude - The LO-
TUS data

The impact of the Stokes-Coriolis effect and of the stratification is small on the
current shear, but is more apparent on the magnitude of the current : the Ekman
transport is trapped in the mixed layer, leading to large values of the crosswind
current, while the Stokes-Coriolis effect gives small values, if not negative, of the
downwind current (see e.g. fig. 3.1, upper panel). Are the observed current in
agreement with that expected shape?

Field measurements of the Ekman currents always include a lot of noise, which
finds its origins in inertial oscillations and in the diverse transient phenomenons,
some of them being surface-trapped. It is thus difficult to separate other processes
from the mean wind-driven current. During SMILE (previous section), the currents
were averaged over 40 mn. This allows an analysis of the vertical shears but it is
insufficient to investigate the magnitude of the current. One solution to get rid of
this noise is to average the current over a long time period. This method has been
employed by Price et al. (1987) with the LOTUS3 data set. The measurement took
place in the summer of 1982, under light to moderate winds and a strong diurnal
heating. The current measurement came from a conventional mooring, with the
upper measurement at 5 m depth. In the typical light wind encountered, the waves
were not really large so that the wave bias, i.e. the correlation between the motion of
the mooring and the orbital motion of the waves, was first estimated to be small at
the measurement depths using Vector Measuring Current Meters (VMCM) instru-
ments (Schudlich and Price, 1998). We will further discuss this point below. Finally
Price et al. (1987) used a coherent averaging method to follow the low frequency
changes in wind direction. The resulting current profile can then be quantitatively

compared to theoretical models of the Ekman current. These observed current have
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the expected profile of an Ekman spiral, with a depth integrated transport in agree-
ment with the Ekman transport. However some features of these currents were
unexpected. First, the sub-surface deflection is quite large, around 75° at a depth
of 5 m. Second, the decay with depth is stronger than the clockwise rotation (the
spiral is 'flat’).

To explain this flatness of the spiral, Price and Sundermeyer (1999) invoked the
temporal variation of stratification. The mixed layer depth varied typically from
10 m during the day to 25 m at night. The mean current, time-averaged over the
diurnal cycle, should then show a different vertical profile than the current inferred
from the mean vertical stratification. This difference is a problem of rectification of
the Ekman layer (see e.g. McWilliams and Huckle, 2006).

However, Lewis and Belcher (2004) reported potential problems in this inter-
pretation. Mainly, the approach of Price and Sundermeyer (1999) is not able to
reconcile the observed large sub-surface deflection of 75° and a small surface de-
flection of 10 to 45° typically observed (Huang, 1979). Lewis and Belcher (2004),
followed by Polton et al. (2005), argued that the Stokes-Coriolis force can explain the
large sub-surface deflection, together with a small surface deflection. The agreement
between their models and the LOTUS3 observations is then quite good.

Other problems appear in turn in these models. First, the small surface de-
flections reviewed in Huang (1979) partly comes from observations of Lagrangian
surface drift. As noted in Part 1, the Lagrangian surface drift is the sum of the
Stokes drift and the quasi-Eulerian current. A large surface deflection of the quasi-
Eulerian current is not contrary to a small surface deflection of the Lagrangian drift,
because of the Stokes drift. In relation to this, the surface mixing in the models
of Lewis and Belcher (2004) and Polton et al. (2005) is likely to be several orders
of magnitude too small. But, as noted in Part 1 without stratification, a realistic
surface mixing gives a quasi-Eulerian current much more uniform than modelled
by the previous authors, ruining the agreement with the data (see Part 1, fig. 7).
Stratification is therefore needed to reexamine the LOTUS 3 data. Here we also
reexamine whether or not the LOTUS 3 data offer an observational evidence of the

Stokes-Coriolis effect on the Ekman current.

3.4.1 A simple model of the diurnal cycle

Following the idealized model of Price and Sundermeyer (1999), the present model is
run with the mean wind stress observed during the period, u, = 0.0083 m s~!. The
waves are expected to be fully developed with that wind stress, which gives a signif-
icant wave height of Hy, = 1.6 m, based on the JONSWAP spectrum (Hasselmann
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et al., 1973).

The temperature is initialized with the temperature observed at the beginning
of the field experiment. The surface heat flux is not calculated using a bulk formula
because no measurement of the relative humidity was available (see Stramma et
al., 1986). Instead, we use an analytical fit of the solar insolation measured during

clear sky days and we suppose that a steady heat loss equilibrates the surface heat

budget,
27t 1000
(Q = max <0,1000cos< T )) - (3.1)
Tday m

where ¢ is the time and Tg,, is a period of one day. With these surface fluxes,
the mixed layer depth varies between 8 m and 35 m. Those values agree with the
observations of the stratification during LOTUS3. However the vertical profile of
the current do not look like the observed current profile. The current of the model
is too large and too much homogeneous within the mixed layer (fig. 3.6).

The velocity profile is not well reproduced when we use the observed solar flux
but the mean wind stress, and it is not surprising. The rectification over sub-periods
with weak wind should not leave a mean velocity profile homogeneous in the upper
8 m. Similarly, if a strong wind event occurred during the period, its effect must be

apparent on the mean velocity profile below 30 m deep.

3.4.2 A more elaborate model : constraining the stratifica-

tion

The previous results are encouraging but the profile of the mean current exhibits
a large sensitivity to the mixed layer depth history. The temperature variability is
not well reproduced with such a simple model of the diurnal cycle. We will therefore
attempt a more realistic simulation of the LOTUS3 data.

Since there is no clear indication of what the damping of the inertial oscillations
should be in a one dimensional model (e.g. Mellor, 2001), the wind is supposed
to blow in a constant direction, in agrement with the coherent averaging of Price
et al. (1987). The bulk formulation of COAMPS (Patrick Marchesiello, personal
communication) for the atmospheric boundary layer is used to calculate the wind
stress. The relative humidity is set to 75%, as in Stramma et al. (1986). The wind
stress is set to the 6 hours low-pass filtered calculated wind stress, updated every
15 mn. Using the averaged wind stress and not the averaged wind speed conserves
the stress. This minimizes the rectification errors. Finally, the current of the model,
averaged over one hour, is stored and used to calculate the mean over the whole

time period (170 days).
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Figure 3.6: Results of an idealized simulation of the diurnal cycle during LOTUS 3:
the wind stress is set to the observed mean wind stress over the period and the heat
flux is set to a simple diurnal cycle in agrement with the observed solar insolation
(equ. 3.1). (Upper panel) Vertical profiles of the mean current @, © and of the Stokes
drift U,. (Lower panel) Spirals of the mean current. Velocities are normalized with
the waterside friction velocity u, and depth is normalized with the significant wave
height H,.
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When one wants to reproduce the stratification, both the heat budget and the
large scale advection of heat come into play (see e.g. Gaspar et al., 1990). We will
avoid those problems by constraining the temperature to the observed temperature.
A first simulation sets the temperature to the mean observed temperature every
6 hours. The analytical fit (3.1) for the heat flux is still used to reproduce the
high-frequency diurnal cycle. The temperature of the simulation is therefore in
close agrement with the observed temperature, including the diurnal stratification
(shown for a few depths in fig. 3.7), except during a few episodes of exceptionally
weak solar insolation. As a consistency check, a second simulation uses a nudging
of the temperature to the 6 hours low-pass filtered observed temperature. The time
scale of the nudging is 1000 s. The temperature of this second simulation is also in
good agreement with the observed temperature, except that the diurnal warming is
somewhat weakened by the nudging. The results in terms of mean Ekman current are
quite similar between the different methods to reproduce the temperature, validating

the reproduction of the impact of the stratification on the current.
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Figure 3.7: Time series of the temperatures observed during LOTUS 3, at depths of
0.6, 15 and 35 m. Also shown is the temperature of the model, constrained to the
low-pass filtered observed temperature and with a typical solar insolation. Except
during rare events, the temperature is reproduced in a satisfactory manner.

The comparison between the modelled current averaged over the entire period

and the coherent averaging of Price and Sundermeyer (1999) is very good (fig. 3.8
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and 3.9). The crosswind current agrees very well with the observation. The cross-
wind transport of the model is equal to the Ekman transport, corresponding to the
mean stress, while the crosswind transport calculated with a trapezoidal extension
of the data is slightly (8%) inferior (see also Price et al., 1987). The downwind
current, if we omit the Stokes-Coriolis effect, is also very close to the observations.
Both the downwind transports of the model and of the extrapolation of the data are

nil.

3.4.3 Validating the wave-induced mixing parameterization.

Such agreement between the model and the observations is surprising. It provides
the opportunity to check the sensitivity to the different parameterizations of the
model. In particular, one may wonder if the mean current profiles observed during
LOTUS 3 are useful to verify the effects of the wave-induced mixing on the current.

We tested the model sensitivity to the roughness length. As shown in fig. 3.8,
the mean velocity profile is mainly determined by the stratification and the conse-
quent rectification effect. The wave-induced mixing is not discernable on velocity

measurements below 5 m deep.

3.4.4 The Stokes-Coriolis effect

The Stokes drift has been calculated by supposing the wave field fully developed
with the corresponding wind averaged over 6 hours. This gives an upper bound of
the Stokes-Coriolis effect.

A more realistic estimation of that effect is also needed. The complete historic
of the waves during the period is preferable, because it includes possible correlations
between large wave events, strong wind events and particular stratification events
like deep mixed layers. Therefore, a global wave model of 1° resolution is used
to produce the sea state at the LOTUS3 station (34.0N, 70.0W). The wave model
is based on the WAVEWATCH III (WW3) code (Tolman et al., 2002), in which
the wind-wave evolution parameterizations have been replaced by those of Bidlot
et al. (2005). Although these parameterizations still have some problems in costal
and swell-dominated areas (Ardhuin et al., 2007a), they provide good results for
the mean parameters H, and 7,02 when compared to the North Atlantic buoys
measurements (Ardhuin and Le Boyer, 2006, Jean Bidlot personal communication).
The comparison with the nearby buoy 41001 (34.7N, 72.7W) of the National Data
Buoy Center (NDBC) shows an rms error of 0.43 m on H, (25% of the rms H)
and of 0.57 s on the mean period T,02 (9.8% of the rms T,,02), for the period from
14 May to 30 November 1982. Note that no wave data were available at that buoy
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Figure 3.8: Results of the LOTUS 3 simulation, without the Stokes-Coriolis force,
with the observed wind stress and with the temperature constrained to the data.
(Upper panel) Vertical profiles of the mean current @, 0. (Lower panel) Spirals of
the mean current. Solid lines are the default model (z9 = 1.6 H'?), dashed line are
the model with a large surface mixing (zp = 5 m), and dotted lines, without the
wave-induced mixing (zo = 0.005 m).

from 6 June to 6 August. Our calculation might underestimate the Stokes transport

since there is a significant negative bias on the wave height Hy (—0.25 m), and a
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Figure 3.9: Results of the LOTUS 3 simulation, with the observed wind stress and
with the temperature constrained to the data. (Upper panel) Vertical profiles of the
mean current u, v. (Lower panel) Spirals of the mean current. Dashed lines are the
model results without the Stokes-Coriolis effect. Dotted lines are the model results
when supposing the waves fully developed (with the 6 hours low-pass filtered wind),
giving an upper bound of the Stokes-Coriolis effect. Solid lines are the models results
with the Stokes-Coriolis effect calculated with WW3.

negligible bias on the mean period 7,02 (—0.07 s).
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The wave spectra at the LOTUS3 station were used to compute the Stokes drift.
Since the Stokes drift is a high moment of the spectrum, it is often aligned with
the wind. Consistently with the average of Price et al. (1987) which follows the
wind direction, we used the norm of the Stokes drift and prescribed it aligned with
the wind. This avoids any discussions between the observed wind direction and the

reanalyzed wind direction.

The numerical results with that lower bound of the Stokes-Coriolis term show
that its effect, although small, should be observed from the current measurements.
According to the model, the downwind transport should be negative in the obser-

vations.

However the observed downwind transport is almost zero. Consistently, the
downwind current profile of the model is closer to the data when omitting the Stokes-
Coriolis term. In this regard, the present work is consistent with the work of Price
and Sundermeyer (1999), showing that the 'flatness’ of the spiral results from the
stratification, contrary to Polton et al. (2005) which claimed it results from the
Stokes-Coriolis effect.

3.4.5 The wave bias

One explanation emerges for that apparent misfit of the model when including the
Stokes-Coriolis effect : the nearly zero observed downwind transport was supposed
to be Eulerian but could have been contaminated by the wave-induced buoy motion.
Schudlich and Price (1998) used the method of Santala (1991) to discuss the wave
bias. In particular, one can suppose that the buoy moves vertically with the surface
and that the mooring line was taut, a reasonable assumption given the large length
of the chain compared to the depths of the current meters considered. Then, for
each monochromatic wave train, one gets in addition to the quasi-Eulerian current
a bias equal to
min Ly

Upion(2) = ¢ wk exp(—kz), (3.2)
where z is the elevation measured downward, a is the wave amplitude, w is the
radian frequency and k the wavenumber. This gives a lower bound of the wave-bias.
If one supposes that the buoy moves both vertically and horizontally, then one gets

an upper-bound of the wave-bias

ult™(2) = a*wk exp(—kz). (3.3)
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For comparison, the Stokes drift of a monochromatic wave is
Us(2) = a’wk exp(—2kz). (3.4)

As the wave-induced motions of the current meters are larger than the wave-induced
motions of the particles, the maximum bias is larger than the Stokes drift (the

equality arises at the surface only).

The vertical integral of the bias is bounded by

a’w 0

— < Upiasdz < a’w, (3.5)
2 -H

while the vertically integrated Stokes transport is

0 a’w

MY = /_H Usdz = 5. (3.6)

Therefore, if the unbiased theoretical downwind transport is equal to minus the
Stokes transport, we then expect to find a biased transport comprised between
0 and +M"™. The observed downwind transport in LOTUS 3 is approximately
zero. It was interpreted by Price et al. (1987) as an evidence that the Ekman
transport is crosswind. Furthermore, in the winter measurements of LOTUS 4, a
positive downwind transport was found and was interpreted by Schudlich and Price
(1998) as a wave bias, coming from the large winter waves. The present description
supports the more nuanced conclusion that both the LOTUS3 and the LOTUS4

measurements are likely biased by the waves in the downwind direction.

3.5 Surface drift

One aim of the present model is a better understanding of the surface Lagrangian
drift, for applications to search and rescue, fish larvae recruitment or any other
studies following floating materials. The present model, following Garrett (1976)
and Jenkins (1989), separates the flow into a wave Stokes drift and an Eulerian
current. In particular, the introduction of the wave age should bring new insight
in the near-surface dynamics. Omne remarkable result obtained in Part 1 is that
the surface drift is almost independent of the wave age : as the waves gets more
mature, the Stokes drift increases. But the mixing is also more efficient and leaves an
Ekman current more homogeneous, thus reducing the surface quasi-Eulerian current

and compensating the increase of the Stokes drift. This result is recalled in fig. 3.10.
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Figure 3.10: Effect of the wave age on the surface values of the Stokes drift, of
the quasi-Eulerian current and of the Lagrangian drift, in unstratified conditions.
Velocities are expressed as a percentage of the wind speed U;g. The density is
supposed uniform, as in Part 1. Calculations are made for U;y = 10 ms™!, and
for different stages of wave development (fetches varying from 1 km to 6000 km,
corresponding to significant wave height from 0.2 to 2.8 m). As the Stokes drift Ug
increases with more mature waves, the quasi-Eulerian current u decreases due to
the more intense mixing, leading to a Lagrangian surface drift U = Ug + u almost
independent of the wave age, both in magnitude and in direction.

Whereas the wave age is a key parameter for the near-surface mixing, it has
little influence on the surface drift. A simple parameterization of the surface drift
directly from the wind might then be possible. Does this result extends to stratified
conditions?

The surface drift depends on the stratification. As the mixed layer gets more
shallow, the quasi-Eulerian current increases in magnitude and rotates further from
the wind direction. As a consequence, the Lagrangian drift does not vary much in
magnitude, but the deviation angle increases (fig. 3.11) with an increasing stabilizing

buoyancy flux.
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Figure 3.11: Effect of the stratification on the vertical profiles (upper panel) and
on the surface values (lower panel) of the Stokes drift, of the quasi-Eulerian cur-
rent and of the Lagrangian drift, expressed as a percentage of the wind speed Uyy.
Calculations are made for Ujp = 10 ms™!, for fully developed waves (H, = 2.80 m)
and for different mixed layer depths obtained with different stabilizing surface heat
fluxes (from 0 to 1000 Wm™2). As the mixed layer gets more shallow, the quasi-
Eulerian current increases in magnitude and rotates further from the wind direction.
As a consequence, the Lagrangian drift does not vary much in magnitude but the
deviation angle increases.

The dependance of the surface drift on the wave age in the presence of strong

stabilizing buoyancy fluxes is shown in fig. 3.12. For shallow mixed layers, the
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quasi-Fulerian current is almost crosswind. Consequently, the reduction of the quasi-
Eulerian current, when waves get more developed and mixing more efficient, is not
compensated by the increase of the Stokes drift of the waves, contrary to what
happens in unstratified conditions. In addition, the mixed layer of the model gets
thicker with a larger wave-induced mixing, which increases furthermore the wave age
dependance of the surface drift during strong heating events. That latter behavior
is physically sound but requires further verifications. This requires a full coupling of
the mixed layer with the wave forcing, a task that is beyond the scope of the present

study and is left for future work.

3.6 Conclusion

A model of the surface layer of the ocean was presented in Part 1. Essentially, the
current was separated into a wave Stokes drift and a quasi-Eulerian current. That
physical description leaded to a different analysis of the observations of currents
profiles close to the surface, whether the measurements are Eulerian or Lagrangian.
That analysis agreed qualitatively with a few available data of Lagrangian drift
profiles, of Eulerian velocity profiles and of TKE dissipation rates. Motivated by
these results, we added the stratification to the model of Part 1 and tried a more
quantitative validation of the current profiles.

We performed a reanalysis of the near-surface quasi-Eulerian velocity measure-
ments during SMILE. The near-surface shears were previously investigated by com-
parison to shears at greater depths obtained with an additional buoy (Santala, 1991).
Here we made no hypothesis on the structure of that shear. The near-surface shears
obtained in this more general analysis are found to be in good agreement with the
downwind shears expected in the presence of a strong wave-induced mixing. How-
ever, crosswind shears found are an order of magnitude larger than expected. The
Stokes-Coriolis force (or Hasselmann force) appeared as a good candidate but is too
weak in magnitude to produce such shears. Consequently, the physics of the present
model is still not sufficient to explain the observed shears. Models and comple-
mentary observations of Langmuir cells appear therefore to be necessary for further
investigations of these currents measurements.

The long term observations of Ekman spirals during LOTUS 3 provide an oppor-
tunity to investigate the Stokes-Coriolis effect. The use of a long time series reduces
the noise in the measurement, enabling an analysis of the magnitude of the wind-
driven current. However, it introduces rectification effects because of the temporal
variations of the wind and of the stratification. The wind variability was taken into

account by using the coherent averaging of Price et al. (1987), which follows the
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Figure 3.12: Effect of the wave age on the vertical profiles (upper panel) and on the
surface values (lower panel) of the Stokes drift, of the quasi-Eulerian current and
of the Lagrangian drift. Velocities are expressed as a percentage of the wind speed
Uro. Here the surface heat flux is set to 1000 Wm~2, leading to very shallow mixed
layer, around 8 to 12 m thick, depending on the wave age. Calculations are made for
Uip = 10 ms™ !, and for different stages of wave development (fetches varying from 1
km to 6000 km, corresponding to significant wave height from 0.2 to 2.8 m). As the
Stokes drift increases with more mature waves, the quasi-Eulerian current decreases
due to the more intense mixing. For such shallow mixed layer, the quasi-Eulerian
current reduction dominates the increase of the Stokes drift, leading to a Lagrangian
surface drift dependent of the wave age, both in magnitude and in direction.
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wind direction, and changes in the stratification were represented by constraining
the temperature to the observed temperature. The Ekman spiral of the model then
showed very good agreement with the observations. However, we did not found any
evidence of the Stokes-Coriolis effect, whereas accurate wave hindcasts suggest that
it should be significant. The nature of the measurement is then in question, be-
cause the bias induced by the waves on near surface measurements from a buoy can
be larger than the Stokes transport. Seeking evidence of the Stokes-Coriolis effect
such long time averaging, as attempted by Lewis and Belcher (2004) and Polton et
al. (2005), still appears to be feasible but preference should be accorded to mea-
surements from fixed towers or bottom mounted Acoustic Doppler Current Profilers
(ADCPs) to get rid of that wave bias.

Finally, we investigated the surface drift predictions of the model in the presence
of stratification. It is shown that the wave age effect on the surface drift, which was
found to be small in unstratified conditions, is important in the presence of shallow
diurnal mixed layers. In such case, considering separately the wave field and the

mean current should give significant differences on surface drift predictions.
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Chapter 4

One-Dimensional study: Epilogue

and Perspectives

4.1 1Is the surface drift due to the wind or due to

the waves 7

It was shown in chapter 2 that the surface drift, when the wind-waves are developed,
is rather due to the Stokes drift of the waves than to the wind-driven mean current. A
fast interpretation could be that the surface drift in the present description is related
to the waves and is not related to the local wind anymore. This interpretation must
clearly be nuanced.

Firstly, it is true that the Stokes drift not only depends on the wind speed but
also depends on the wave age. Developed wind-waves have a larger energy and a
larger surface Stokes drift than young wind-waves. But what is the impact of the
wave age on the surface drift 7 This question has been treated in the previous
chapters, showing in particular that, at least in an unstratified ocean, the surface
drift is not much modified by the wave development (see fig. 2.12).

Secondly, if the surface drift mainly comes from the waves Stokes drift, is it
possible that the swell, i.e. waves not related to the local wind and propagating far
from their generation areas, has an important contribution to the surface drift 7 We
want here to discuss that issue, the impact of the swell on the surface drift.

The contribution of the short waves to the surface Stokes drift is important,
because the latter is a third moment of the frequency spectrum (fig. 4.1). Those
short waves are less important for the Stokes transport as it is a first moment of the
spectrum (fig. 4.1). We note however that the directional spreading of the short
waves reduces their contribution to the surface Stokes drift.

Consequently, the Stokes drift of a low frequency swell with a sharp spectral
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distribution is much smaller than the Stokes drift of a wind sea of the same energy,
especially if the swell period is large. For illustration purpose, we plotted in fig.
4.2 the spectra corresponding to the variance of the surface elevation (the energy,
upper panel) and to the surface Stokes drift (lower panel), for young wind-waves,
old wind-waves, long period and small period swells. The swell were supposed to
be narrow-banded, with a Gaussian distribution of the energy around the peak
frequency, with a spreading of 0.02 Hz. The surface Stokes drift of the young wind-
waves (fetch of 100 km, Hy = 1.6 m, T, = 5.5 s) is 10.2 cm s™!, that of the developed
wind-waves (fetch larger than 1000 km, H, = 2.8 m, Tp = 8 s) is 12.9 ¢cm s~!, that
of the short period swell (H; = 2.8 m, T, = 8 s) is 5.2 cm s ! and that of the long
period swell (H; =2.8 m, T, =12 s) is 1.6 cm s~ .

The surface drift, even if it was found mainly due to the Stokes drift of the
waves, remains then correlated to the local wind, with only a small contribution of

the swell, typically of the order of a few centimeters per second in deep water.

4.2 Further verifications of the present description

4.2.1 The drifters observations and the model of Kudryavtsev
et al. (2007)

The major weakness of the model presented in this part is its high dependency on the
roughness length, whereas that latter is poorly physically defined. Such additional
tuning parameters might denote that the physics of the model fails to described the
near-surface zone. One of the interpretation of this roughness length is that it is
a substitute for the depth injection of TKE and momentum due to wave breaking.
In chapter 2, we used the model of Sullivan et al. (2004) and the observations of
Melville et al. (2002) to inject the momentum and the TKE over a certain depth.
Our conclusion was that this cannot substitute to the use of a large roughness length,
of the order of Hy. Kudryavtsev et al. (2007) injected the TKE and the momentum
to a depth proportional to the wavenumber of the wave that dissipates and they
found that their model is consistent with previous observations of TKE dissipation
rates close to the surface, and also with new observations of near-surface drifters.
Interestingly, they do not need a large roughness length to obtain this agreement
(they set zp to a few centimeters). The differences with our similar experiment made
in chapter 2 are not clear. The depth injection of TKE and momentum is around
A/5 in our work and is around 1/k = A/27 in their model.

More interestingly, Kudryavtsev et al. (2007) argued that the quasi-Lagrangian

motion expected for a drogue in the presence of waves, almost similar to the Stokes
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Figure 4.1: Frequency spectrum integrated over the direction [ E(f,6)d0, for a wind
sea with a wind speed of Ujyp = 10 m s™! and a fetch larger than 1000 km (fully
developed sea, period Tp = 8s, significant wave height H, = 2.8m), based on the
KMC spectrum [Kudryavtsev et al. (1999)]. Also shown is the first moment of the
spectrum f [ E(f,6)df (corresponding to the the Stokes transport), the third mo-
ment f3 [ E(f,0)df and the effect of the directional spreading on the third moment
2 [ E(f,0)cos(0)df (corresponding to the Stokes drift). Each spectrum is normal-
ized with its integral over frequency. One can see that the Stokes drift depends on
the most energetic waves near the spectral peak but with non negligible importance
of the small waves, although the directional spreading of the small waves reduces

this importance.
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Figure 4.2: (Upper panel) Frequency spectrum integrated over the direction
[ E(f,0)df. The integrals over frequency gives the "energy" FE, i.e. the variance of
the surface elevation, related to H, by H, = 4 % \/E.(Lower panel) [ E(f,0)2kwdo,
which integrates over frequency to give the surface Stokes drift U;. The wind speed is
set to Ujp = 10 m s~!. Four different spectra are shown: in red, the waves are young
(fetch of 100 km, Hy = 1.6 m, 7, = 5.5s), in black the waves are fully-developed
(fetch larger than 1000 km, H, = 2.8 m, Tp = 8 s), based on the KMC spectrum
(Kudryavtsev et al., 1999). In blue, we show the case of swells with a gaussian
spectral distribution with the same energy than developed waves (Hg = 2.8 m) and
for two different peak periods, 7}, = 8 s in solid line and 7}, = 12 s in dashed line.
By comparing the areas below each curves, one can see the increase of both the
wave height and the surface Stokes drift as the wind sea gets more developed. One
can also see that a narrow-banded swell, although of same energy than developed
wind-waves, creates a small surface Stokes drift, and even smaller as the swell period

gets larger.
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drift that would experience a perfect Lagrangian drifter, is much smaller than the
observed displacements. Consequently, they analyzed the drifters motions in terms
of mean current only, without any considerations of the Stokes drift of the waves.
This approach would appear to completely contradict the results obtained in chapter
2 for fully developed waves. However, the quite small waves encountered during their
field measurement (Hg < 0.5 m) suggest that either the wind was quite low or the
fetch quite short. As noted in chapter 2, for short fetches, the Stokes drift is small
and the Eulerian current may dominate the surface drift. Further work is clearly

needed to reconcile the two models.

4.2.2 Other determinations of the roughness length

We essentially used the works of Terray et al. (1996, 2000) which relates the rough-
ness length to the significant wave height : 2y = 1.6 H;. These results were inferred
from observations of TKE dissipation close to the surface.

The same kind of calculation was conducted by Soloviev and Lukas (2003) and
they found smaller value of the proportionality constant zy = 0.6 H,. However, if a
swell was present in this Central Pacific experiment, this constant might be slightly
underestimated.

Also, Gemmrich and Farmer (1999) used measurements of temperature gradients
close to the surface and found smaller values of the roughness length, z; ~ 0.2m.
Although this different measurement technique could be argued to produce naturally
different results, Gemmrich and Farmer (2004) also estimated dissipation rates from
near-surface wavenumber spectra of velocity. These latter measurements are found
to be generally consistent with smaller 2z, values than expected from Terray et al.
(1996). In this case, their measurement device was following the up and down motion
of the waves, and would thus be a more adequate measurement than those made
at fixed depth by Terray et al. (1996). We may only conclude that measurements
of turbulence in the upper ocean are clearly consistent with values of 2z, that are a
significant fraction of a meter, but with an elusive scaling, logically related to the

height of breaking waves, but only tentatively related to the wind sea wave height.
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Impact of waves on the ocean mixed

layer
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Chapter 5

Impact of waves on the ocean mixed

layer

Part T of the present thesis analyzed the velocity profiles in the surface layer. It
was made clear that the vertical shear of the velocity close to the surface is mainly
due to the Stokes drift of the waves, rather than due to a sheared surface current.
This is a consequence of the observed strong near-surface mixing, likely due to wave

breaking, at moderate and high wind speeds.

In parallel, since this expected strong wave-induced surface mixing has been ac-
tually measured, several authors have discussed its influence on the temperature of
the surface layers of the oceans. Namely, the whole description of the turbulence in
the near-surface layer was modified. The classical view on the ocean mixed layer is
a transposition of the atmospheric boundary layer over land, which is well described
by Monin-Obukhov theory, as verified in the Kansas experiments. Turbulent ki-
netic energy (TKE) is produced by velocity shears and unstable stratification, and
may be destroyed by stable stratification. In stably stratified cases, this leads to
a description of the mixed layer depth through a competition between the shear
production by the mean current and the buoyancy damping, leading to definitions

of Richardson numbers based on their ratio.

A significant difference in the ocean mixed layer is given by the surface flux of
TKE, associated with wave breaking, which dominates by far the production by the
mean shear (e.g. Terray et al., 1996). Noh (1996) showed that this surface flux of
turbulence is a necessary ingredient to obtain a thermocline in the presence of both
wind and stabilizing buoyancy flux. This explain why the diurnal ocean surface layer
exhibits a thermocline while the nocturnal atmospheric bottom boundary layer does

not.

Li et al. (1995) studied the impact of Langmuir cells on the mixed layer depth.
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This impact was inferred from an investigation of the downward velocity due to
Langmuir cells at the base of the mixed layer. This cause of thermocline erosion was
then compared to erosion due to the shear current of inertial oscillations. However,
the shear of the mean flow was considered as the dominant source of turbulence,
whereas for shallow mixed layers, the downward diffusion from the surface might

certainly dominate.

5.1 A methodology to study the impact of waves on
the mixed layer depth

Large Eddy Simulations (LES) are the most realistic models of the mixed layer.
They are able to resolve the full 3D turbulence, including wave-induced turbulence,
with a resolution of about 1 m. They are used to understand special aspects of
the near-surface dynamics, to interpret small scales observations, and even to sub-
stitute to missing (because difficult to achieve) measurements. But due to their
high computational costs, they are not suited for seasonal or annual simulations
of mixed layers, and they also cannot be implemented in a Ocean General Circu-
lation Model (OGCM) to produce simulations and analysis of mixed layers where
horizontal advection is important.

Therefore the traditional approach of mixed layers studies uses LES, in idealized
situations, to analyze the impact of the different important physical processes :
Langmuir circulations (McWilliams et al., 1997), horizontal Coriolis force, wave
breaking (Noh et al., 2004), surface heating (Min and Noh, 2004),...

Results of these LES studies are used to construct simpler and computationally
less expensive parameterizations (e.g. Kantha and Clayson, 2004; McWilliams and
Sullivan, 2001; Smyth et al., 2002), and to implement them either in 1D vertical
models or in full 3D OGCM to include horizontal advection. Long term, seasonal
or annual, mixed layers predictions of such models are then considered as indirect
checks of the role of the different physical processes included (Gaspar et al., 1990;
Large et al., 1994; Noh et al., 2005; Mellor and Blumberg, 2004).

We note, however, that LES models of the ocean mixed layer have failed so far
to actually include wave motions, and only phase-averaged parameterizations have
been used with, in some cases, the addition of momentum and TKE pulses meant
to represent breaking waves. Recent model results on breaking waves (Lubin et
al.2006) could likely be applied to this problem.

Here we will not attempt another LES simulation to evaluate the impact of

waves on the mixed layer depth. Instead, we will focus on the following step of the
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approach described above : we will use previous theoretical works to identify which
parameters are useful to represent the wave-induced mixing. Then we will turn
our interest on an estimation of these parameters, using a global wave model. We
finally will evaluate the impact of such parameters on mixed layer depths calculated
with an OGCM. In particular, we want to examine whether waves are a plausible
candidate to explain mixed layer depths misfits of OGCMs compared to unresolved
inertial oscillations, uncertainty on the surface fluxes, unresolved internal waves or

others.

5.2  Which parameters for wave-induced mixing ?

5.2.1 Wave-induced mixing in the near-surface zone

Whitecaps of surface waves provide an intense source of TKE compared to the shear
of the mean current. Also, waves are believed to be at the origin of the Langmuir
cells (Langmuir, 1938), which generally dominate the vertical mixing produced by
the breaking waves (Noh et al., 2004), except probably in the near-surface zone.
Regardless of it physical origin, that near-surface mixing, enhanced in the pres-
ence of waves compared to the mixing close to a rigid wall, has been successfully
modeled with simple Mellor-Yamada type TKE models, by adding a TKE surface
flux ®,. and by setting the mixing length at the surface 2z, proportional to the wave

height (see Part I). The surface flux of TKE comes from the dissipation of waves.

5.2.2 Wave-induced mixing through the whole mixed layer

Observations of Langmuir turbulence have revealed that the turbulent velocity w,
associated with the Langmuir cells scales with the surface Stokes drift (Smith, 1998).
Also, Langmuir turbulence is supposed to occur for small values of the Langmuir
parameter La = (/u*/Us(z = 0). Nevertheless, we note that the vertical shear of
the Stokes drift is absent from these dimensional analysis, whereas the tilting of the
vorticity of the mean flow by the Stokes drift shear is a dominant mechanism for
the generation of Langmuir cells. Recently, Harcourt and D’Asaro (2006) proposed
a revised Langmuir parameter Lag;, in which the mean Stokes drift between the
surface and one fifth of the mixed layer depth is used instead of its surface value.
That number was chosen to include in the dimensional analysis the ratio of the mixed
layer depth to the Stokes depth, which characterizes the vertical shear of the Stokes
drift through the mixed layer. Based on LES simulations, the turbulent velocity

of the Langmuir cells was found to depend on that modified Langmuir number by
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/3. These authors further argued that the observations

the formula w,,,s = u*ch;f
hardly exhibit such trend because of inverse correlations between winds speeds and

wave ages in the field measurements.

5.3 Estimations of the wave-related parameters

Wave-related parameters may be obtained from numerical models. One should be
carelful that such models are mostly verified in terms of significant wave height and
peak or mean period only, so that other parameters, in particular those related to
the high-frequency end of the spectrum may not be well estimated. Here we have
chosen to use the spectral phase-averaged model WAVEWATCH III (Tolman, 2002),
as modified by Ardhuin et al. (2007a) to include the generation and dissipation pa-
rameterizations of Bidlot et al. (2005). Although these parameterizations still result
in large biases (about 30%) in the swell-dominated Eastern tropical Pacific, due to
a lack of swell attenuation by the wind, they also provided the smallest random
errors of all other parameterizations in use in operational wave models for mid and
high latitudes (Jean Bidlot, personnal communication). Our model configuration is
global (80°S to 80°N) with 1° resolution, and has been extensively validated against
all in situ buoys reporting to the WMO Global Transmission System and all satellite
altimeters (Fabrice Ardhuin and Pierre Queffeulou, personnal communication). This
model is forced here with 10-m winds and sea ice concentrations from the European
Center for Medium-Range Forecasts (ECMWF') 40-year reanalysis (ERA40).

5.3.1 The Stokes drift U,

The Stokes drift at the surface was estimated by Kenyon (1969). He supposed that
the waves are fully-developed and computed the Stokes drift with the spectrum of
Pierson and Moskowitz (1964). He obtained values around 3% of the wind speed at
10 m. These results were reevaluated in Part I, using the more realistic spectrum
of Kudryavtsev et al. (1999), and we obtained that the Stokes drift can reach a
maximum value of 1.2% of the wind speed. This ratio was found to be maximum
for high wind speeds. However, for strong winds, the waves are seldom fully devel-
oped. Therefore we estimated the Stokes drift using the waves hindcasts. Here the
Stokes drift is only computed over the frequency range of the spectrum, i.e. with
a maximum frequency of 0.4 Hz. The mean ratio over January 2004 is shown in
fig. 5.2. This ratio is around 0.3% at low latitudes and about 0.6% at mid-latitude.

Maximum values are only around 1.0%, in areas of large wind speeds.
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Figure 5.1: Wind speed Uy (m s7!) at 10m. Values shown are mean values over
January 2004.
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Figure 5.2: Ratio of the surface Stokes drift Us(z = 0) to the wind speed Uy, at 10
m, in percentage. Values shown are mean values of the ratio, < Uy(z = 0)/Uyo >,
over January 2004.
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5.3.2 The Stokes transport T

The Stokes transport (i.e. the vertically integrated Stokes drift) of a wind sea was
estimated by McWilliams and Restrepo (1999) and Polton et al. (2005), using the
spectrum of Pierson and Moskowitz (1964). Tt was shown to reach maximum values
around 40% of the corresponding Ekman transport, depending on the latitude. In
part I, we reevaluated this ratio using the spectrum of (Kudryavtsev et al., 1999)
and found smaller values, around 30% at best at 45° of latitude. The ratio was
shown to reach maximum values for high wind speeds. However, once again, waves
are seldom fully developed for large wind speeds. Indeed, Pierson and Moskowitz
only found about 20 cases of fully developed waves in several years of data (see also
Alves et al. 2003). Therefore we reevaluated this ratio using a wave hindcasts. The
atmospheric boundary layer of the wave model is used to calculate the surface stress.
The fig. 5.3 shows that monthly mean values of the ratio are around 5%. Maximum

values only reach 10%, and are found in the vicinity of areas with large wind speeds.
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Figure 5.3: Ratio of the Stokes transport T, to the Ekman transport Tgj, = u*?/f,
in percentage. Values shown are mean values of the ratio, < Ty /Ty >, over January
2004. Values of the ratio as much as 200 are obtained during particular events of very
light wind and presence of swell. Such events introduce highly localized bias in the
monthly mean and were avoided by averaging only over the events with 75 /T, < 1.
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5.3.3 The roughness length z,

The roughness length z; is physically understood as the scale of the breaking waves
responsible for the high mixing levels close to the surface. It has been shown by
Craig and Banner (1994) and by Mellor and Blumberg (2004) that this length scale
is even more important in terms of mixing than the amount of TKE injected. This
means that the actual size of the mixing pattern is important, even more than the
energy of this mixing. That length scale has been related to the significant wave
height Hy of the waves (Terray et al., 1996, 2000) with

20 = 1.6H,. (5.1)

Given that the swells (waves not related to the local wind) have a small surface slope
and generally do not break, the wave height of the wind sea only (H,,s) is probably
the appropriate parameter in 5.1. We performed the separation between swell and
wind-waves by imposing that wind-waves must experience a positive forcing from

the wind, namely

sts =4 / E(k dk‘, 5.2
¢ ) (52)

where E(k) is the variance of the surface elevation for a given wavenumber & and
Sin is the energy input term in the wave energy equation. For developped waves a
large fraction of the energy corresponds to waves propagating slightly faster than the
wind and for which S;;, < 0. Our definition (5.2) thus yields a smaller height than
the usual swell-sea partition based on the analysis of local minima in the spectrum.
As a consequence, for a young wind-sea without swell, H,,, = H,, whereas for a
fully-developed wind sea, Hg,s < H,. This is consistent with the Fig. 9 of Banner
et al. (2000) which showed observations that waves around the spectral peak do not
break when the waves are fully-developed. It might also be consistent with a smaller
value of zg/H, found by Soloviev and Lukas (2003) for developed waves. The fig.

5.4 shows the mean values of H,,, over January 2004.

Mellor and Blumberg (2004) have related the roughness length z to the wind
stress u*, using an approximate equation for the height of the waves as a function

of the wind stress,

H, = Lu*Q’
{ 0859 7 (5.3)
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Figure 5.4: Significant wave height of the wind sea, Hy,s (m), as estimated from the
wave model with 5.2. Values shown are mean values < H,,,, > over January 2004.

where C,/u’ is the wave age, i.e. the ratio of the phase speed of the dominant waves
to the atmospheric friction velocity.

Note that Mellor and Blumberg (2004) did use the definition of the mixing length
| = kmax(z), |z]), with the corresponding roughness length z{ ~ 0.85H; (Terray et
al., 2000), whereas, as already discussed in Part I, we stayed with [ = r(z + |z|)
and zg >~ 1.6 H,. Because of these different definitions of the roughness length, we

will rather discuss here the values of the wave height.

For a wave age of C,/u,* = 30, i.e. fully developed waves, formula 5.3 gives

5
B =

Estimations of 2y by Stacey (1999), from velocity profiles observations, gave value of

u*2

B

8 g7 5.4
E5. (54)

[ even larger, 3 = 2.E5, although the waves were quite young during their Canadian
fjord measurements. Therefore Mellor and Blumberg (2004) investigated values of
[ between 1.E5 and 2. E5.

Indeed, waves are not always fully-developed, and the comparison between the
parameterization 5.4 of the wave height and the calculation from the wave model,

using 5.2, shows a large discrepancy at mid-latitude (fig. 5.5). Note however that
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the agreement is acceptable at low latitude.

The wave age C,/u} is obviously missing in a direct parameterization of the
wind-wave height from the wind. However, seeking for such a simple parameteriza-
tion, why do the authors suppose fully developed waves 7 Waves are always fully-
developed under weak winds and are often quite young under strong winds (fig.
5.6). Although we warmly recommend using wave parameters from a wave model,
we nevertheless propose here a better approximation of the wind-wave height, for
those who do not want to use a wave model. This approximation supposes that the
wave age is a function of the wind speed,

Cp

Ure
— = 30 tanh —*, (5.5)

* *
uk u

where uy,, is a typical friction velocity above which the wave growth is duration

limited (see fig. 5.8, left panel). Here we set uy.r = 0.020. The wave height is then

*2

_ B u
Hy = 0.85 g °

g « 1.5
3 — 665 (30tanhi;—:;f) .

(5.6)

It is shown in fig. 5.7 that this parameterization 5.6 corrects the overestimation
of the wave height at mid-latitude.

We modestly propose the use of the formula 5.6 instead of 5.4 to roughly pa-
rameterize the wave-breaking effect on the mixing, for instance for application to an
OGCM.

The next step to built a more accurate simple formula could be to suppose
that the wave age is a function of both the wind speed and the space, C,/U;y =
f(Uro, z,y). This would lead us to built a climatology of wave ages, and could
roughly represent the young sea states in the west parts of the oceans, due to the
fetch limited growths of the waves.

However, as is emphasized in section 5.4, the use of a wave model in addition
to the ocean circulation model is by far preferable to such simple climatological

parameters.
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H_=1.E5/0.85 u /g
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Figure 5.5: (Upper panel) Significant wave height (m), calculated from the wind
stress with 5.4. Values shown are mean values < fu*?/(0.85g) >, with 3 = 1.E5,
over January 2004. Color scale stops at bm although values up to 10m are found
at mid-latitude. (Lower panel) Ratio of the significant wave height of the wind sea
as inferred from 5.2 to the estimation with 5.4. Values shown are ratio of the mean
values, < Hyps > / < fu*?/(0.85g) >, over January 2004. The estimation supposing
fully-developed waves is not bad at low latitudes but largely overestimates the wave
height at mid-latitudes.
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Figure 5.6: Significant wave height of the wind sea H, as a function of the waterside
friction velocity u*. One value corresponds to one wave model output, every 3 hours,
for January 2004. Three locations of the North Atlantic are shown, one from the
Tropical Atlantic, one from the North-East Atlantic and one from the North-West
Atlantic. Also shown is the significant wave height of the wind sea as inferred from
5.4, which supposes full development. At low wind speed, the waves are often close
to full development. However, for large wind speeds at mid-latitudes, waves are less
developed, especially in the west part of the ocean. Therefore, we also show the
significant wave height obtained by supposing that the wave age is a function of the
wind speed (equ. 5.5 and 5.6).
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Hs new fit

Figure 5.7: (Upper panel) Significant wave height Hgpey i+ (m) calculated from the
wind stress with 5.6. Values shown are mean values < Hye,pi¢ > over January 2004.
(Lower panel) Ratio of the significant wave height of the wind sea as inferred from
5.2 to the estimation Hgyepie With 5.6. Values shown are ratio of the mean values,
< Hgys > | < Hgpewsir >, over January 2004. The estimation supposing fully-
developed waves is still good at low latitudes but the large overestimation of the
wave heights at mid-latitudes, due to duration limited growths, has been corrected.
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5.3.4 The TKE flux au*

The TKE flux ®,. to the ocean comes from the dissipation of the waves. It has
been modelled during the past as ®,. = au*®. Terray et al. (1996) calculated the
dissipation of the waves using the energy input from the wind, S;,, from Donelan and
Pierson (1987), integrated over a large variety of observed wave energy spectrum.
They obtained values of o between 50 and 150, depending on the wave age (see the
fig. 8 of Terray et al. (1996)). Nevertheless, it should be noted that the wind-wave
growth term of Donelan and Pierson (1987) was later revised by Donelan (1990),
with the dimensionless growth constant increased from 0.19 to 0.28. We thus expect
such a proportional increase to apply to ®,.. Mellor and Blumberg (2004) fitted
the (underestimated) flux data shown in Terray et al.’s figure 8 (see fig. 5.8, right

panel), with the expression

4
a= 15% exp {— <O.O4Qf) } . (5.7)
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Figure 5.8: (Left panel) Wave age C),/u;; as function of the friction velocity u*/u;,,
from our estimation 5.5. (Right panel) Fit of the parameter a = @, /u*? of the TKE
flux from the waves to the ocean, as a function of the wave age C,/u;. Black line is
the fit made by Mellor and Blumberg (2004) over the fig. 8 of Terray et al. (1996),
which used the wind-wave growth term of Donelan and Pierson (1987). Blue line is
twice the black line, as the present wave model uses a larger growth term.

Janssen et al. (2004) evaluated with the 2003 version of the ECMWF wave model
(ECWAM) the monthly mean values of o. As shown by this author, the monthly
mean value of this parameter, namely < a >=< ®,./u*® >, was of the order of
the estimations of Terray et al. (1996), i.e. around 50 — 150 (Janssen et al., 2004,

fig. 14). Our estimations of the monthly mean values of « is of the same order
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Figure 5.9: Monthly mean parameter a = ®,./u*? of the TKE flux from the waves
to the ocean. Values shown are mean values of «, calculated as < ®,./u*® >, over
January 2004.

than the one of Janssen et al. (2004), also slightly larger, by a factor of roughly 1.5.
This might come from a different parameterization of the dissipation in the wave
model, since it was later changed by Bidlot et al. (2005). But more importantly, the
monthly mean largely hides the variability of the parameter a. Under strong winds,

a can reach values as large as 600 (fig. 5.10).

Janssen et al. (2004) further highlighted the spatial distribution of the parameter
«, which exhibits a strong latitude dependency, because the wave field is often less
developed at mid-latitudes (see their fig. 14). Once again, the wave age is often
correlated with the wind stress, leading to a correlation between the parameter «
and the wind stress (fig.5.10). Rather than supposing the parameter « constant, a
simple parameterization of « as a function of the wind stress would be more accurate.
Of course, we again insist that using a wave model to derive these parameters would
be better, since such an empirical fit cannot reproduce the full variability due to the
wave field. If, as in the previous section, one supposes that the wave-age depends
on the wind stress via 5.5, then one could use the formula 5.7 to estimate « directly
from the wind stress. It is shown in fig. 5.10 that such estimation of « exhibits
the good trend, and we propose its use in an OGCM instead of a fixed value of «.

However, as already noted, the formula 5.7 seems to underestimate the wind input
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Figure 5.10: Parameter a = ®,./u*® of the TKE flux from waves to the ocean, as
a function of the waterside friction velocity u*. One value corresponds to one wave
model output, every 3 hours, for January 2004. Three locations of the North Atlantic
are shown, one from the Tropical Atlantic, one from the North-East Atlantic and
one from the North-West Atlantic. The parameter «, over 3 hours, largely overtakes
the usual values of 50 — 150, and so does the daily mean (not shown). Also shown in
black solid line is the parameter a by supposing that the wave age is a function of
the wind speed (equ. 5.5), and with formula 5.7. As the latter formula appears to
underestimate the wind input of our wave model, we have also plotted a blue solid
line equal to twice the black line.
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of our wave model, by a factor 2 (fig. 5.10).

5.4 The spatial and temporal distribution of mix-
ing events. A direct parameterization from the

wind ?

was highlighted that most of them are strongly correlated to the wind speed, for
instance, the roughness length proportional to the height of the breaking waves, the
TKE surface flux, the Stokes drift at the surface. A rough approximation of the
wave age as a decreasing function of the wind speed was found to roughly represent
the smallest wave development at mid-latitude, due to the short durations of the
storms. The main features of the wave field at a global scale were obtained, except

the short fetches effects in the west part of the oceans in the westerlies regimes.

However, for costal studies or when details matter, a direct representation of the
mixing with the wind is clearly not precise enough. In this section, we wish to insist
on the different features of the wave-related mixing compared to a wind-related
mixing.

At a global scale, as already mentioned, the highest waves areas are shifted to
the west compared to the highest wind speeds areas (fig. 5.6) at mid-latitudes.
But such differences also occur at smaller scales. It is obvious, when considering
the wave height, that the wave field exhibits less spatial variability than the wind
field. Waves act like a spatial filter, damping the high wavenumber components of
the wind stress. For instance, the spatial extension of a storm is largely thinner if
one considers the track of the high winds areas than the track of the large waves
areas (fig. 5.11). Note however that our strict definition of the wind-waves, as
waves experiencing a positive forcing from the wind, which might be suited for the
breaking-waves, reduces the spreading of the wave-induced mixing compared to the

wind-induced mixing.

We also note finally that the waves, in addition to the spatial filtering, constitute
a temporal integrator of the wind. This has already been discussed by Janssen et
al. (2004), with the analysis of the case of a passing front. Both the momentum
and the TKE fluxes to the ocean were shown to slowly relax after the sudden wind

change.
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Figure 5.11: (Upper panel) Mean friction velocity < u* >, averaged over the period
8th-10th January 2004. The track of a west propagation storm in the North Pacific
is apparent. (Lower panel) Section along the longitude 200E, showing the mean
wind stress < u*? >, significant wave height of the wind sea < H,,, >, and the
total significant wave height H, averaged over the period 8th-10th January 2004.
A similar storm in the early spring might constitute an important mixing event and
thus largely impact on the mixed layer depth.
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5.5 The different kinds of vertical mixing models for

applications in OGCMs

There are different kinds of vertical mixing models for the mixed layer of the ocean.

The bulk models consider that the mixed layer is approximately uniform in terms
of temperature and velocity. The mixed layer depth evolves then using considera-
tions on buoyancy content, depending on the surface fluxes and the buoyancy just
below the mixed layer, and considerations on the TKE, with strong importance of
the TKE at the base of the mixed layer to deepen the mixed layer.

On the other hand, there are models which solve a full vertical distribution of the
mixed layer. These models generally parameterize the vertical turbulent transports
with eddy diffusivities. These diffusivities are determined using the TKE and an
additional parameter, such as a mixing length or a dissipation rate.

One of the major drawbacks of these models is their use of eddy viscosity. The
turbulent transport is then locally parameterized as a down-gradient flux. This
remains true as long as the typical length scale of the important eddies is less than the
vertical discretisation of the model. Otherwise, larger but unresolved eddies (because
of hydrostatic assumption for example) can carry fluxes which are not necessary
down-gradient. For that reason, models have appear which use bulk parameters of
the mixed layer in addition to local parametrization. The most widely used model
in that class is the K-profile parameterization (KPP) of Large et al. (1994).

5.6 A model to estimate the impact of waves on the

mixed layer depth

If, for any physical reason, waves are important in terms of the mixed layer depth,
then all the different models presented above might already include, to some extend,
an implicit parameterization of the effect of waves on the mixing, because these
models are calibrated to give realistic values of the mixed layer depths compared to
the observations.

However, we wish here to isolate the wave effects on these models, in order to
investigate the mixed layer structure under different wave conditions. We leave
aside the bulk models (e.g. Li et al., 1995), because vertical profiles are her under
interest, but we also leave aside the KPP model, because the mixed layer depth of
the model is calculated using a bulk formulation with the near-surface velocity and
density. For instance, any modification of the diffusivity profile close to the surface to

better parameterize the wave-breaking, such as the one proposed by McWilliams and
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Huckle (2006), modifies the surface velocity and consequently the bulk Richardson
number used to calculate the depth of the mixed layer. This modification is not
physically sounded, because in this case the TKE flux from the surface dominates
the TKE production by the shear of the current.

In contrast, the models with a TKE calculation, including TKE diffusion, appear
particularly well designed for our purpose. Also, the wave breaking effects have
already been added to such models, with a surface flux of TKE and with a surface

roughness length (see part I).

5.7 Preliminary results on the impact of waves on

the mixed layer depth

The model used in this section is the model of Noh (1996). This model is quite
similar to the model of Gaspar et al. (1990). The main common feature is that
the roughness length is equal to the buoyant length scale when the stratification is
strong.

However, strange features of the model of Gaspar et al. (1990) were observed.
The model was used with a vertical grid of 1 m. Depending on the time step
dt, the mixed layer depth obtained under wind mixing (v* = 0.001 m s™') and
stabilizing buoyancy flux (500 W m~2) was either proportional to the Ekman depth
(for dt ~ 300 s) or proportional to the Monin-Obukov length (for dt ~ 10 s), this
time without any dependency on the Coriolis parameter f. With the low temporal
resolution, the thermocline appears only after 1 day, whereas it appears immediately
with the high temporal resolution. The reason for this is unclear, but clarification
of this might be of importance for a high temporal resolution aiming to include the
diurnal cycle with this kind of model.

The model of Noh (1996) was run, as in part I, with a time step dt = 10 s. Tt
is shown in fig. 5.12 that the mixed layer depth obtained with this model in the
presence of both wind- and wave-induced mixing and a stabilizing buoyancy flux
strongly depends on the sea state. Also, in a case without buoyancy flux, the rate
of thermocline erosion by the wind- and wave-induced mixing depends on the sea
state.

This sensitivity study confirms that, as the near surface mixing depends on the
sea state, the mixed layer depth also depends on the wave age. This result is relevant
for shallow mixed layers. An estimation of the depths reached by the downward flux
of the TKE is around a few times zy (see Craig and Banner, 1994, their equ. 27).

That downward flux of TKE due to surface waves might then be important for
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depths of the order of a few tens of meters.

However at greater depths, other processes might dominate the mixing. Among
them one can cite the Langmuir circulations and the current shear due to inertial
oscillations (Li et al., 1995). Clearly, more sophisticated models are needed to
compare the intensity and the depths those different sources of mixing can reach.

Similarly, the TKE dissipation measurements used to build simple TKE models
of the near-surface wave-induced mixing where made at quite shallow depths (e.g.
Terray et al., 2000). Extension of these results to greater depths must be checked

with other measurements.
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Figure 5.12: Impact of the wave development on the diurnal mixed layer depth, as
inferred from a simple TKE model (Noh, 1996; Noh and Kim, 1999). The temper-
ature profile is calculated from an initially uniform temperature of 7' = 20°C, after
6 hours of stabilizing buoyancy flux of 500Wm~2 and of mixing due to a wind of
10ms~! and its associated wind sea. Solid line is for fully developed waves (H, = 2.8
m) while dashed line is for a limiting fetch of 100km (Hg = 1.5 m). Those are typi-
cal on a continental shelf during onshore and offshore wind events. More developed
waves provide more intense near-surface mixing, which creates a deeper diurnal
mixed layer. Also shown is the impact of variations of the TKE flux : dotted line is
with a parameter o twice as large.
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Figure 5.13: Impact of the wave development on the deepening of the mixed layer.
The initial temperature is calculated from an initial profile T = 1 + 0.005z, where
z < 0, after 120 hours of erosion of the stratification without any buoyancy flux but
of with mixing due to a wind of 10ms~! and its associated wind sea. Solid line is for
fully developed waves (H, = 2.8 m) while dashed line is for a limiting fetch of 100km
(Hs = 1.5 m). Also shown is the impact of variations of the TKE flux : dotted line
is with a parameter « twice as large. It is shown that the different stages of wave
development may have an impact on the thermocline erosion : more intense mixing
provides faster erosion.
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Chapter 6

Nearshore and Shelf circulation

Introduction

6.1 Introduction

In the previous parts of this thesis, the wave field was supposed horizontally homoge-
neous. More precisely the gradients of the radiation stresses due to inhomogeneous
wave field were supposed much smaller than the leading terms in the steady off-
shore momentum balance that are the Coriolis force, the Stokes-Coriolis force and
the vertical mixing. However, close to the shore, variations of the wave field are
much more important, mainly because of shoaling, refraction and intense breaking
in the surf zone. Waves are then a dominant forcing of the circulation.

I will attempt here a short review of the theories of wave-forced currents. 1
will not focus on the feedback of currents on waves, although it is to some extend
included in the wave momentum equation (see section 6.4), which is a necessary step
to proceed to the analysis of the mean flow.

To fix the ideas, I will take the following example : we suppose that the flow is
uniform in the y direction along shore, and we can consider a swell normally incident
in the x direction, supposing that a steady state is reached. 1 will shortly discuss
the vertically integrated equations, following Smith (2006b). Here I will only show
a sketch of the wave-driven momentum equations, with emphasis on the origin of

the important terms. The complete GLM equations can be found in chapter 7.

6.2 Total low equations

The radiation stress tensor is similar to the Reynolds tensor for the turbulent motion

: the wave fluctuations induce a flux of momentum. Gradients in the wave field leads

121



122 Chapter 6

to gradients in that momentum flux, which is equivalent to a force. That force acts
on the total momentum M = [”, w"dz, which is the sum of the wave Pseudo-

momentum M® = [7, Pdz and the mean current momentum M™ = [7, Tdz.

For our example, the total momentum balance is (e.g Smith, 2006b; Ardhuin,
2005)

OM, OU M. _ W\ onf 0 Qrad
ot — My = _(9D+p7)8_2 ~ 5z (6.1)
oy iy, s

where p* is the mean Eulerian pressure, D = h+7 is the water depth and U = M,./D
is the barotropic cross-shore velocity associated with the mass transport. As the

waves are normally incident, the 2D form of the radiation stress is

J Mw
grat _ [ Colly ") (6.2)
0 S

The isotropic part of the radiation stress is called S7,

kE

I =gD———.
5 = 9D S @kD)

(6.3)

When the waves shoal on the inner-shelf and break in the surf zone, a supple-

mentary forcing arises from the divergence of the radiation stress S,

Longuet-Higgins and Stewart (1962) first introduced the concept of the radia-
tion stress, for the vertically integrated equations. This 2D radiation stress concept
has been widely used in nearshore modelling (see Battjes (1988) for a review). In
these descriptions, the total momentum is obtained, including the wave Pseudo-
momentum. The latter is then either ignored or subtracted from a separate compu-
tation. Several studies have used vertical extensions of this theory (e.g. Stive and
Wind, 1986) or discussed it (Rivero and Arcilla, 1995), most of them in an Eule-
rian frame. Recently, Mellor (2003) used a vertical coordinate transformation to
derive a more rigorous vertical extension of the equations and found supplementary
terms for the 3D radiation stress, compared to the previous extensions. Also, the
GLM of Andrews and McIntyre (1978a) was used by Groeneweg (1999) to obtain

3D equations for the total momentum.
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6.3 Mean flow equations

The radiation stress determines the evolution of the total momentum. But part
of the radiation stress divergence is in fact a divergence of the wave momentum
flux. For various reasons (see section 1.3), it is be advantageous to consider the
evolution of the mean flow only, and to parameterize the evolution of the wave

pseudo-momentum separately.

The wave momentum equation is

oMYy 0 1 S9 9D Ju
T T @rC Mw:_ds____Mw—, 6.4
ot + ox (@+Cy) M; pTw D Ox T Ox (64)
where —7% is the momentum released by the waves to the current when they dissi-

pate, and @ is the advection velocity of waves by the mean flow, equal here to the

barotropic velocity @w = M"/D.

The divergence of the radiation stress can then be written as a gradient of a

Bernoulli head plus the wave dissipation,
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The two remaining terms on the right in 6.5 are an advective term, which combines
with the total momentum advection to give a vortex force, and the time variation of
the wave field, contained in the time variation of total momentum. One thus obtain

from 6.1 and 6.4 an equation for the cross-shore mean flow

e 0 ([, wm mo— 9 S s
g (i) k= (D) DEY
5 T (ffthZ) +f M = —(f +Q) M

This kind of equations for the mean flow have been discussed after the intro-
duction of the radiation stress. Hasselmann (1971) introduced the concept of the
interaction stress to denote the part of the radiation stress that acts on the mean
flow. Also, the impact of waves on the mean flow, written with a vortex force formu-
lation, have been used for a long time to explain the Langmuir circulation (Craik and
Leibovich, 1976; Garrett, 1976). Smith (2006b) extended the initial 2D equations
of Garrett (1976) to deep water. A 3D extension was made by McWilliams et al.

(2004), with a rigorous asymptotic expansion assuming small parameters (essentially
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wave slope and current-waves ratio) and using an Eulerian frame (see also Newberger
and Allen, 2007b). Recently, Ardhuin (2005) tried to derive similar equations for
the mean flow while avoiding the ambiguous Eulerian averaging close to the surface.
The vertical coordinate change of Mellor (2003) was investigated but left aside for
practical reasons (Ardhuin et al., 2007¢), as well as the GLM equations for the total
flow (Ardhuin, 2005). Finally the GLM equations for the mean flow were chosen
(Ardhuin et al., 2007b), leading to equations similar to those of McWilliams et al.
(2004). This similarity between the two different sets of equations can be considered
as a verification of the different derivations from the Navier-Stokes equations. It also
provides a physical interpretation to the not-quite-Eulerian average of McWilliams
et al. (2004).

6.4 On the coupling of waves and current

It must be noted that the equations for the mean flow involve a vortex force and a
Bernoulli head. These equations are obtained in the different theory by using the
wave momentum equation. In particular, the vortex force comes from the advection
of current by the waves. In other words, the equations for the mean flow have
included a coupling between the waves and the current. FEven if the waves are
prescribed as a forcing without any coupling with the current, this coupling is to
some extend included via the use of the equations for the mean momentum (see also
the discussion in McWilliams et al. (2004) section 14). Lane et al. (2007) showed
that the use of the decomposition into a Bernoulli head and a vortex force, although
equivalent with the interaction stress representation, incorporates more information
on the wave-current coupling, and therefore leads to approximations more consistent

than the interaction stress formulations.

6.5 Models and observations

For historical reasons, there has been a gap between the large scale ocean circu-
lation research community and the nearshore community. This gap applies both
to the model and to the observations : large scale models usually end at the off-
shore boundary of the surf zone, where begin the nearshore models. Recently, with
the apparition of 3D primitive equations for the wave-driven currents, models have
appeared which begin to fill this gap : Delft 3D (Walstra et al., 2001), POM (New-
berger and Allen, 2007a), Symphonie (Denamiel, 2006), ROMS (Warner et al., 2006,
and the present thesis). Also in the field measurements, very few studies have fo-

cused on the inner-shelf zone (i.e. between the surf zone, around 10 or 15m deep,
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and the mid-shelf, around 50 to 100m). Among them, one can cite the work of
Lentz et al. (1999), which showed that the radiation stress is important for the mo-
mentum balance even outside the surf zone. However a clear separation of the wave
momentum and of the mean momentum is still missing in their discussion, especially
when they examine current measurements from fixed towers and interpret them as
total flows, whereas the wave part is obviously absent from the measurement. For
instance, Lentz et al. (1999) discussed the uncorrelation between the alongshore
Coriolis force fu and the forcings, fu being identified to f(u+ P). If only the mean
flow was measured at the 4m and 8m depth locations, then analysis in term of mean
flow momentum balance includes different terms, such as the Stokes-Coriolis term
fP which is, as noted by Xu and Bowen (1994), of the order of the measured fu
and might partly cancel it. The figure 6.1 illustrates this inconsistency. In passing,
the figure 6.2 shows the importance of the Stokes-Coriolis force on the wave-driven

velocity profiles.
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Figure 6.1: Results from a numerical simulation of the alongshore-uniform circula-
tion induced by a normally incident swell (narrow-banded, with an off-shore signif-
icant wave height H; = 3m and a period of T = 12s) over a narrow shelf (linear
beach profile, with a slope of 0.1%). The reader is referred to the next chapter
for more details, with a similar simulation but with a different bottom slope, with
obliquely incident swell and more focused on the nearshore zone. Here we show
the sea surface elevation. The set-down and set-up in the surf zone are visible on
the right. Solid line is the surface elevation if the Coriolis and Stokes-Coriolis term
are included, dashed line is the one if the Stokes-Coriolis term is omitted but the
Coriolis term included. The mean flow is seaward, as it compensates the shoreward
mass transport of the waves. If the Stokes-Coriolis term is omitted, as in Lentz et al.
(1999), the Coriolis force acts on the mean flow to create an alongshore jet, which
increases in time. This jet is in geostrophic equilibrium with a surface elevation.
This surface elevation do not appear if the Stokes-Coriolis force is included.
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Figure 6.2: Results from the same numerical simulation as described in fig. 6.1.
Here we show the vertical profiles of the mean current (u,v), of the wave pseudo-
momentum P, and of the Lagrangian drift @ + P,. In solid lines, the Coriolis and
the Stokes-Coriolis terms are included. In dashed lines, both are omitted. It is
shown that the vertically integrated wave mass transport is compensated by the
seaward mean flow, but if the two rotation terms are included, the mean flow tends
to compensate the wave pseudo-momentum at each depth and not only in terms
of vertically integrated transport. This shows the transition between the nearshore
dynamics and the off-shore dynamics, as studied in part 1.
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Abstract

An approximate Generalized Lagrangian Mean (GLM) is used to modify a primitive
equation model, taking into account the effects of surface gravity waves. The model
is run here in a simple two-dimensional test case. To the representation of wave
effects by a vortex force and a Bernoulli head, the GLM theory adds the effect of
the current shear on the Bernoulli head. That latter effect both modifies the wave
set-up and the strength of the nearshore circulation. Also, the depth-distributed
wave pseudo-momentum modifies the momentum exchange between the waves and
the mean flow compared to a surface wave pseudo-momentum often used. Finally,
the effect of the current shear on the wave pseudo-momentum is discussed, as well
as a finite amplitude effect. The latter give rise to a large shoreward drift under

incipient breaking waves, even outside the surf zone.

7.1 Introduction

Recently, three-dimensional primitive equation models have been modified to repro-
duce the wave-averaged nearshore currents (Walstra et al., 2001; Newberger and
Allen, 2007a; Denamiel, 2006; Warner et al., 2006). Advantageously such models
could be used from the surf zone to the shelf, including the important but still poorly
understood inner-shelf zone (Lentz et al., 1999). These models include the effects of
wind, waves, Earth rotation and tides, thus filling the gap existing between models
of the nearshore circulation, mainly wave-driven, and of the shelf circulation, where
waves are often ignored. These models might therefore bring a new framework for
applications to sediment transport, pollutants dispersion or larval migrations. They
could also be embedded into larger scale costal models, for instance for application
to biochemistry of costal waters. Furthermore, by properly representing the wave-
current interactions, these models might bring better parameterizations in existing
nearshore models (e.g. Apotsos et al., 2007), and should also be relevant for the
analysis of rip currents and surf-zone macro-vortices (Biiler, 2000; Brocchini et al.,
2004).

To achieve such modelling, a number of theoretical developments have been made
to derive practical equations for the wave-induced forcing on the wave-averaged mean
flow. Among the latest developments are the equations for the Lagrangian flow of
Mellor (2003), with a proper averaging of the moving surface, the equations for the
mean flow of Newberger and Allen (2007b) and the adiabatic equations for the mean
flow of McWilliams et al. (2004), with an asymptotical derivation from an Eulerian

averaging. However, Ardhuin et al. (2007¢) reported problems in the derivation of
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the equations of Mellor (2003). In order to overcome these limitations, Ardhuin
et al. (2007h) approximated the Generalized Lagrangian Mean (GLM) equations of
Andrews and McIntyre (1978a) to derive equations for the mean flow, called GL.M27.
The latter equations are generally consistent with the equations of McWilliams et al.
(2004), derived for adiabatic small amplitude waves. Both the equations of Ardhuin
et al. (2007h) and of McWilliams et al. (2004) can be considered as extensions of the
work of Newberger and Allen (2007b), with some relaxations of hypotheses. Namely,
Newberger and Allen (2007b) represented the wave mass transport as a surface mass
flux. They further assumed that the adiabatic part of the wave forcing was depth-
uniform and also neglected effects of the vertical shear of the mean current. Yet no
attempt was made to implement the GLLM2z equations for the mean flow in a 3D
primitive equations model and to describe the physics of the different terms. It is
the goal of this paper.

Neither the equations of McWilliams et al. (2004), with an addition of the di-
abatic processes, nor those of Ardhuin et al. (2007b) or those of Newberger and
Allen (2007b), apply properly in the surf zone, mainly because they all are derived
assuming small wave slope. But it is common practice to assume that the physics
derived theoretically under simplifications (linear wave theory for instance) is robust
to a relaxation of the hypothesis, in spite of known large bias (e.g. Cokelet, 1977).
However, because the original GLM equations are exact, the GLM2z equations can

be corrected for errors made in the approximations.

Newberger and Allen (2007a) have implemented in a 3D primitive equations
model the equations of Newberger and Allen (2007b) for the wave-forced mean flow.
They compared its results to the field measurement obtained during DUCK94. The
results in terms of undertow profile and alongshore jet were especially evaluated and
a sensitivity study to various parameterizations, such as the bottom boundary layer,
the surface layer, the inclusion of a roller model and even the uncertainty on the
wave incidence angle, was conducted. Such a sensitivity study will not be repeated
here. Instead, and because the GLM2z equations are to some extend similar to those
of Newberger and Allen (2007b), we shall focus on the physics added by the GLM27
equations. In addition to the results in terms of cross-shore mean undertow and
alongshore jet, the results in terms of Lagrangian motion, essential for the practical
applications of such nearshore models, will be discussed.

The GLM27z equations are recalled in section 7.2. The simple steady test case
for our numerical experiment is described in section 7.3, as well as the wave model
and the circulation model. The basic features of the solution, namely the alongshore
jet, the set-up of the sea level, the undertow, and the associated momentum and

mass equilibrium, are described in section 7.4. The model is compared to the one
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of Newberger and Allen (2007a) in section 7.5. The effect of the current shear on
the Bernoulli head and on the wave pseudo-momentum is discussed in section 7.6.
Finally, the non-linear effect on the pseudo-momentum of nearly breaking waves is

discussed in section 7.7.

7.2 GLM description of the flow

In this section, the essential features of the work of Ardhuin et al. (2007h) are

recalled.

7.2.1 Wave / mean flow separation

The flow is averaged using the GLM theory which provides a clean averaging close
to the surface and also separates the Lagrangian velocity w” into a wave pseudo-
momentum P and a quasi-Eulerian mean momentum 4 = u” — P. Below the wave
troughs, that separation of @” into U + P is not very different from the separation

into Eulerian mean flow @ plus Stokes drift @”.

P can be approximated using linear wave theory for weak current curvature,

E
P, =~ m’;’;‘w 0k cosh(2kz + 2kh) + mk, sinh(2kz + 2kh)u, - g_j

] A

where k is the wavenumber of the wave, o the intrinsic radian frequency, a the wave

ko . u
—|—m2; sinh?(kz + kh) g—l;

amplitude, D the water depth, h the bottom elevation and m a shear correction
parameter here set to unity for the sake of simplicity. z is the vertical coordinate
oriented upward, ugy is a unit vector in the direction of wave propagation, a = 1,2 is
the index for the horizontal components. The last two terms in 7.1 are corrections
coming from the vertical shear of the mean flow and are further discussed in section
7.6.1.

The vertical component of the pseudo-momentum is

P3 ~ —Pa(—h)

Oh _/Z 3Pa(z/)dz,7 (7)

Oty ~h Oz,

where the summation is implicit over repeated indices.
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7.2.2 Equations of motion

The equations of motion are the following :

1. The mass conservation is

i, 0w
—+—=0. 7.3
0z, + 0z 0 (73)

2. The horizontal momentum equation is

O, O, Ol Ol

g+ D= 4 Py tengafip + +wy) P

ot Yo Oxp v 0z 50z €azs[Up + ca3p (f +ws) Py
——

1 9p” 0 .
_; ai + D, + D, — 37 (SJ + Sshear) _Tovlvc . Totéurb . T;)frlc’(7.4)

where the underbrace highlights the wave forcing terms and where f is the
vertical Coriolis parameter, ws is the vertical component of the vorticity,
Ouy  O0uy
W3 = —"— — — 7.5
3 81'1 ax2 ) ( )
p is the water density, p/ is the hydrostatic pressure, D, and D, represent
horizontal and vertical diffusions of momentum, respectively. S7 and Sshear

make up the isotropic Bernoulli’s head,

7 gkE

 sinh 2kD’ (7.6)
ou m? |ou - |
shear 2 i e
Sehear — E |mouy ) (¢) tanh(kD) + 5 |9, <) ]
¢
- / 0.2 . (7.7)
~n  Oxg

where g is the gravity and ( is the mean surface elevation.

3. The vertical momentum equation is reduced to the hydrostatic equilibrium

opf
. —P9g, (7-8)

because the mean flow is assumed hydrostatic and the wave-modified pressure

terms are integrated to provide the terms S7 and Sshear,
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4.

The tracer equation, written here for the temperature T, is

or or or or or

— +Up—+ Py—+0—+ Ps— =Fr+ D :

ot —Hw(?a:g * ﬁaa:g o 0z * ° 0z v (7.9)
N——

where Fp and Dy are forcing and diffusive terms for the temperature, respec-

tively.

7.2.3 Vertical boundary conditions

The vertical boundary conditions can be prescribed as follows :

1.

2.

The surface kinematic condition is

aC . JC ac -

- o— +P,— = P. t =(. 7.10

0t+u 8xa+ 0z, w+\,3/ at z=¢ ( )

———
The surface flux of momentum is
0y, -
prZL =75 — Ty — Tgs at 2z =, (7.11)

0z ~— =~

where 7% is the flux of momentum from atmosphere to waves (the form drag),
and 79 is the release of wave momentum to the ocean due to breaking, in-
teractions with turbulence or viscous effects. It must be noted that we made
no separation between the dissipation occurring at the surface, like the vis-
cous virtual wave stress, and the other processes occurring through the water
column. Here, for simplicity, all the momentum coming from the wave field,
mainly because of breaking, is injected at the surface of the ocean, although a
depth-distributed mean force or depth-distributed intermittent breakers may
be more appropriate. However, the dissipation of waves due to bottom friction

is omitted in the term 795

as, if the bottom wave boundary layer (where the
streaming occurs) is not resolved, the flux of momentum from the waves ends
up directly in the bottom (see Ardhuin, 2006, and Ardhuin et al., 2007h, for

details).

The surface flux of tracer is

or -

where @ is the heat flux at the surface.
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4. The bottom kinematic condition is

=w+ P; at z=—h (7.13)

5. The bottom flux of momentum is

g,
Ha _ b gt 2= —h, (7.14)

wKz
1% Bl o

where the bottom stress 72

bottom flux of momentum could be modified to include the streaming, without

is calculated using a quadratic drag law. The

resolving the wave bottom boundary layer, by specifying a non-zero velocity
at the bottom of the lowest grid box. However, we have neglected this effect

for simplicity and let the latter velocity to zero.

6. The bottom flux of tracer is zero,

T
KT(;—Z =0 at z=—h. (7.15)

7.3 Description of the numerical experiment

We want to estimate the different terms of the GLM2z description, in a simple but
realistic case. We consider a west coast, with the x axis to the east and y to the
north. The bathymetry is uniform in the alongshore direction. The swell is narrow-
banded, with an off-shore significant wave height H; = 3m and a period of T" = 12s.
This swell is obliquely incident from the North-West, with an off-shore angle of 20°

relative to the beach normal. The beach profile is linear, with a slope of 1%.

7.3.1 The wave model

The evolution of the wave energy and derived parameters is based on the model
of Thornton and Guza (1983), using a coefficient B = 1 (i.e. the dissipation in a
breaking wave is given by the dissipation in a hydraulic jump of the same height),
and a breaking to depth ratio v given by Battjes and Stive (1985). Recent works
suggest that this latter expression is not optimal (Ruessink et al., 2003). However,
the main source of error in such a model is probably the underlying assumption of
linear wave theory that is used to estimate the energy flux and the momentum flux.
We note in particular that in recent investigations with such a model, the set-up
is typically underestimated by about 30% at the beach face (Apotsos et al., 2007),
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which is of the order of the expected bias on the momentum flux (Cokelet, 1977,
figure 18).

7.3.2 The ocean model

The Regional Ocean Modelling System (ROMS) has been modified to resolve the
GLM2z equations. More details are given in Appendix A. The temperature and
salinity are supposed homogeneous. For the sake of simplicity, the turbulence
closure scheme is discarded and the vertical viscosity and diffusivity are set to
K. = 0.03m?s~!. The bottom stress is quadratic, with a roughness length of 10™3m.
No wave-current interactions were used in the bottom boundary layer. The Cori-
olis parameter is set to f = 107%. The horizontal resolution of the model is 10m,
extending to 4km off shore, and the model has 40 vertical o-levels. The baroclinic
time step is dt= 3s, and there are 50 barotropic time steps of the 2D submodel
within one baroclinic step. The ocean is initially at rest and the swell is added until
a steady state is reached. Close to the shore, the steady state is reached after a few

hours, whereas off-shore the Coriolis force gives a longer spin-up time.

7.4 Analysis of the solution

7.4.1 Description of the different terms of the equations

The wave forcing acts on the mean flow in different ways. As the wave pseudo-
momentum is shoreward outside the surf zone and zero at the coast, the wave mass
transport is convergent in the surf zone. As a consequence the mass conservation
drives a vertically averaged mean flow seaward.

The radiation stress adds on this effect and is composed of two parts : a
Bernoulli’s head —V (57 + S®h¢a) and the diabatic part 79, The latter comes from
the release of momentum by the waves as they break, modelled here for simplicity
as a surface stress. The cross-shore component of this stress is responsible for the
set-up of the sea level in the surf zone (fig. 7.1), and it also drives a vertical recir-
culation of the mean flow, shoreward close to the surface and seaward close to the
bottom, the undertow (fig. 7.2). The alongshore component of this stress drives an
alongshore jet southward.

The term —V.S” is depth-uniform and corresponds to the modification of the
pressure by the waves. It only modifies the sea level. As the wave shoal outside the
surf zone, this term is negative (fig. 7.3) and therefore yields a set-down (fig. 7.1).

In the surf zone, this term becomes positive and gives a slight, set-up.
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The term —V 55" will be described in the section 7.6.2.
The vortex force —e,3pwsPs has a component in the cross-shore direction, wsP,,
which tends to concentrate the jet. But this component is very small and negligible
compared to the others cross-shore forcings (fig. 7.3). On the contrary the along-
shore component —ws3 P, is a dominant alongshore forcing (fig. 7.6, upper panel). It
drives the jet closer to the shore and in its absence the jet tends to widen (fig. 7.5).
The Stokes-Coriolis term —e,35f P is the only term subsisting off-shore, where
the horizontal gradients are small (Hasselmann, 1970). The momentum balance

then writes
0 . Oy,

€a3pfUp + €a3pfPp = - K. P

o (7.16)

This Stokes-Coriolis force is oriented to the right of the wave propagation and drives
a vertically-integrated mass transport which cancels the vertically integrated waves
mass transport. In the limit of a Stokes length scale §; = 1/2k much larger than
the Ekman scale 0, = /2K, /f, this cancellation is perfect at each depth, u = —P
(see for example Polton et al., 2005, their equ. 13). For the swell considered here,
0s = 18m and 6, = 24m, so that this trend is hardly perceptible in a water depth of

40m, our off-shore maximum depth.
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Figure 7.1: Sea surface elevation with and without the term —V.S*"® The dotted
line is the surface set-down from an adiabatic equilibrium between the pressure
gradient and the wave-induced pressure gradient —9S” /dz.
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Figure 7.2: Vertical profile of the velocities at 400m off-shore (in the surf zone).
Solid lines are the full model whereas dashed lines are the model without the effect
of the current shear on the wave pseudo-momentum P.
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Figure 7.5: Vertically averaged alongshore velocity (v). Solid blue line is for the full
model, dashed blue line is without the vortex force and red with an uniform vortex
force as in NAO7. Without the vortex force, the alongshore jet is further off-shore
and wider. The time scale for the establishment of the jet is about 3-4 hours without
the vortex force, with a slow widening of the jet.
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7.4.2 Description of the alongshore and cross-shore momen-

tum balance

The alongshore momentum balance is detailed in fig. 7.6, upper panel. The main
equilibrium is between the southward surface stress, which drives the southward
alongshore jet, and the northward bottom stress. But that main equilibrium is
modified by the vortex force, which shifts the jet towards the shore, and the advec-
tion.

The cross-shore momentum balance is detailed in fig. 7.6, lower panel. The cross-
shore momentum balance is between the shoreward surface stress and the pressure
gradient. This creates the set-up of the sea level, which is slightly enhanced by the

shoreward bottom stress. The advection also slightly modifies this equilibrium.
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7.5 Comparison with the model of Newberger and
Allen (2007a)

If we omit the effects of the vertical shear of the mean flow on the wave pseudo-
momentum (see section 7.6 and if we omit S the GL.M27z equations are then
very close to the equations of NAQ7. The Earth rotation is omitted in NAQ7. Its
effect has been discussed above. The only other differences remain in the description

of the Lagrangian mass flux and in the vertical distribution of the vortex force.

7.5.1 Lagrangian mass flux in NAOQ7

Consistently with the Eulerian description of Hasselmann (1971), all the Stokes
transport occurs at the surface in the work of NA(Q7. This leads to the following

equations,
i, Ow
—+—=0 717
0% + 0z ’ (7.17)
with
. o¢  _ oC -
w:a—i—l—uaa—éjtwo at z=¢(, (7.18)
where
0 [ P.d 7.19
Wo = a—xa/_h alz. ( : )

These equations are consistent with the GLM2z equations, but the advections are
different.

In NAO7, the momentum and tracer advections are

Oy, Oty Oug

o 5, %o | 50Ua 7.20
ot “on, oz (7.20)
T

oT  oT
—_— Ug—— + W— 7.21
ot T e, TV (7.21)

respectively, while the corresponding GLM2z advections are

o, O, O Ot

Ko g 72 | p 29
ot "oz, TV T (7.22)
T oT 9T T T

b 4@ Py (7.23)

i 2 Pt p
ot oy Vo T Pan, T s
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Clearly, the last term in 7.22 and the last two terms in 7.23 are omitted in NAQ7.

The implementation of the NA(O7 equations in a 3D primitive ocean model is
much more simple than the GLM2z equations because, in the interior, the wave

pseudo-momentum is zero and there is only the mean flow.

On the contrary, in the GLM equations, the difference between the quasi-Eulerian
momentum advection and the Lagrangian tracer advection complicates the imple-
mentation in a model with a mode baroclinic / barotropic mode splitting. In fact,
the time-stepping of such model is designed to conserve both the integral and the
constancy of the tracer. For that, one needs to compute a mass conservation and an
advection in perfect agreement. This would be simple for the barotropic variables,
but as the tracer is advected once a baroclinic step, one needs it for the baroclinic
variables and this leads to a fairly complicated time-stepping (Shchepetkin and
McWilliams, 2003). The addition of different advections for the momentum and for

the tracer further complicates the time-stepping.

Instead, complications like those do not arise with a wave pseudo-momentum at
the surface, as in NAO7. It is then of practical importance to clarify whether or
not the physical simplification of the NAO7 description leads to strong differences
compared to the GLM formulation.

The tracer horizontal advection by the waves is obviously missing in NAQO7 (the
last but one term in 7.23). Therefore we will not discuss further the tracer but we

will focus on the quasi-Eulerian current.

In the momentum equation 7.20 of NAO7, one vertical advection term is missing
compared to 7.22. This term modifies the momentum exchange between the waves
and the mean flow. That momentum exchange, corresponding to the mass exchange
between the waves and the mean flow, can be seen when vertically integrating the

equation for the momentum advection,

i, _ Ou, _0Ou,

7.24
ot "oz, Tz (7.24)
transforms, using the mass conservation, to the flux form
Oty  Oupl, n 8@@0(7 (7.25)
ot 3xﬁ 0z
which in turns integrates to
0 ZAoljta ZAAd Ui (C (7.26)
a[hua z Tm/hUﬂua 2 4 wola(C). )
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The last term represents the exchange of momentum due to the exchange of mass.
The velocity of the water mass exchanged between the wave part and the mean flow

is the velocity of the surface current.

On the contrary, the mass flux is distributed through the whole water column in

the GLM2z equations, leading to the corresponding exchange of momentum

TN _ Ou, 0, 0,
ot * uﬁaxﬁ+w82 +P302

_ Oy, Ogha 000, OPyia 0P
ot 0z 0z 0z “Oxg’

(7.27)

where we have used the mass conservation (7.3). The velocity of the water mass
exchanged between the wave part and the mean flow at the depth z is in the GLM
description the velocity of the current at the depth z. Equ. 7.27 integrates to

0 [ d — ‘ d
ot _uaz—i- xﬁ/_hUguaz
o . — _ d(—h) _ ¢ 0P3
B GO Py(C) — (=h)Py(=h / B (7.8
+ QR0 ~ G Pk ¢ [ R G de (728)
The last three terms can be rewritten as
o . — — d(—h) _ ¢ 0P3
= ,(Q)Ps(C) — (=D)Ps(=h) + [ Gazd
Dyt (€)P5(¢) dy (=h)Ps(=h) + | @ D5y
g < ¢ 0u
= — [ a,Psd —/ — Psd
al'g /—hu s - —h ﬁxﬂ h i
a (¢ Ouae [C ¢ Oty
= up-2 [ Py /Pd —/ M pd 7.29
A 81’5 /—h p “t 81’5 —h A - —h 81’5 A - ( )
where we have defined the advection velocity
¢ ¢
uAa/ Pﬁdz:/ Uo Padz. (7.30)
—h —h

Supposing that the last two terms in equ. 7.29 approximately cancel, equ. 7.28

becomes
i /ZAAd 8/EPd (7.31)
hua Z+0 7huﬁua Z+uAa0xg - BAZ, .

which we can compare to equ. 7.26. Clearly, when the current is vertically uniform,
the momentum exchange between the wave part and the mean flow is similar be-
tween the GLM and NAQ7. This is not true in the case of a vertically sheared mean

current, because of the different locations of the mass exchange.
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Figure 7.7: Vertically averaged cross-shore velocity (v). Solid blue line is for the full
GLM model, dashed blue line is with the source of mass at the surface as in NAQ7.
Without the surface source of mass, the alongshore jet is stronger.

As an illustration of this, the cross-shore vertically integrated source of momen-
tum has a different sign if the mass exchange is at the surface, where the mean
current is shoreward, compared to that if the mass exchange is distributed through
the water column, where the current is essentially seaward (fig. 7.8, middle panel).
However this term is of little impact on the cross-shore velocities because the advec-
tion is not a dominant term in the cross-shore momentum balance (fig. 7.6, lower
panel). On the contrary, the alongshore vertically integrated source of momentum is
stronger with a surface wave mass flux than with a depth-distributed one, because
the alongshore jet is stronger at the surface (fig. 7.9, middle panel). As the advec-
tion is important in the alongshore momentum balance (see fig. 7.6, upper panel),
the resulting alongshore jet is stronger with the NAO7 description of the source of

mass than with the GLM description, as shown in fig. 7.7.

In short, the numerical results do not show many differences in the cross-shore
circulation between the wave mass flux as in NA0O7 and as in GLM2z. However in
the alongshore direction, the jet is stronger with a surface mass flux. This difference
is due to the different momentum exchange between the waves and the mean flow

in the two descriptions. That momentum exchange is important compared to the
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Figure 7.8: Vertically integrated cross-shore advection as in equ. 7.26 and 7.28.

Upper panel is the horizontal advection (—a%faﬁdz), middle panel is the ver-
tically integrated source of momentum (—wyi(¢) for NAO7, —%@(Z)Pg(?) +
a(g%g)ﬁ(—h)}’ﬁ(—h) - f;h ﬁg%dz for the GLM). Lower panel is the total advection.
The cross-shore advection is modified by the different locations of the source of mass

and by the associated different momentum exchanges.

horizontal advection. But the advection is negligible in the cross-shore momentum
balance, whereas it is not in the alongshore balance, which explains why the along-
shore velocities are modified between the two descriptions, whereas the cross-shore

velocities are not.

7.5.2 Vortex force in NAO7

Another difference is that the vortex force is vertically uniform in the work of NAQ7
(€033 P300/0z, where the overline denotes a depth averaging), whereas it is depth
distributed according to the Stokes drift profile and to the vertical vorticity profile in
the GLM equations (e,33P300/0x). The figure 7.5 shows the alongshore jet change
in strength and position with a depth-uniform vortex force. As the vertical vorticity
and the pseudo-momentum are both maximum at the surface, ignoring their depth
distributions results in a slight underestimation of the depth-averaged vortex force

and neglects the torque of the vortex force. However, for the averaged circulation
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Figure 7.9: Same as fig. 7.8 but for the alongshore advection. The alongshore
advection is modified by the different locations of the source of mass and by the
associated different momentum exchanges.

studied here, these changes are quite modest.

7.6 Effect of the current shear

7.6.1 Effect of the current shear on the Stokes drift

Without mean current, the orbits of the particles during a wave period are not
exactly closed. The corresponding mean drift in the wave propagation direction is
the wave pseudo-momentum P. In the presence of a mean current shear, the orbits
are further modified, and so is the wave pseudo-momentum P. This results in the
last two terms in 7.1.

The wave pseudo-momentum is modified by the current shear with terms of
the order of 1/00u/0z. These terms become important when approaching the surf
zone, where du/0z is of the order of o (fig. 7.4). The wave pseudo-momentum
without current shear effect is almost depth-uniform for linear waves in shallow
water. On the contrary the wave pseudo-momentum is largely enhanced with the
current shear effect and exhibits a strong surface shear, related to the shear of the

cross-shore current in the surf zone (fig. 7.2). As a consequence of the enhanced
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shoreward wave mass transport, the undertow and all the vertical recirculation are

also enhanced.

7.6.2 Effect of the current shear on the radiation stress

When taking into account the current shear effect, 2 supplementary terms —V S;hear
and —V S5 add to the Bernoulli’s head —V.S7 of the radiation stress.

cls

The first term, —V .S58 where

hom

7_ds

pK.

ds 1
tanh(kD) + =

Sshear — _F X
oUy P KZ 5

hom

2] , (7.32)

is vertically uniform and thus only modifies the set-up equilibrium. This term is
negative close to the shore as both the wave amplitude and the surface stress due
to the wave dissipation are decreasing toward the shore (fig. 7.3). However in the
off-shore part of the surf zone, the surface stress is increasing toward the shore so

that —V.S§ear > (0. As a consequence of this term, the transition from set-down to

set-up is displaced further off-shore and the slope of the surface is reduced (fig. 7.1).

The second term, —V.S8r where

¢ P
S;hsear — _/ aag ﬁdz, (733)
h ooy

is vertically non uniform and so drives both a barotropic response and a vertical
Sshear

recirculation. At any depth z, S5*"(z) increases from the offshore value, reaches

a maximum inside the surf zone and then decreases approaching the beach. The
effect of the depth integral of —V S51°a on the set-up is then similar to the effect of

cis
—VSshear i 6. an off-shore displacement of the transition from set-down to set-up

and a reduction of the slope of the set-up. Also, —V.S58r = () at the surface and its
absolute value increases with depth. The resulting torque amplifies the undertow
recirculation close to the beach whereas it is opposed to this recirculation in the

offshore part of the surf zone.



Nearshore and Shelf circulation : a two dimensional study 149

7.7 Effect of the wave non-linearity

The linear wave theory have been used for simplicity in many nearshore circulation
models. This is justified because the wave energy, the wave phase speed or the
group speed are roughly well predicted with linear theory. The vertically integrated
wave pseudo-momentum is also well approximated (Rascle and Ardhuin, manuscript
in preparation). Without the current shear effects, the linear theory predicts a
wave pseudo-momentum almost depth-uniform in shallow water kD < 1. On the
contrary, the pseudo-momentum of a steep wave, with non-linear effects, exhibits
significant deviations from the linear theory, becoming strongly sheared close to the
surface. In this section, we will evaluate the impact of such phenomenon on our
steady test case.

In Rascle and Ardhuin (manuscript in preparation), it is proposed a correction of
the linear wave pseudo-momentum P, based on a numerical fully non-linear solution
of the potential flow over a flat bottom. This formula is valid for nearly breaking
wave. In order to obtain a first upper-bound of this effect, we will thus suppose that
all the waves reach this limiting steepness.

First, for comparison with the linear theory used above, the wave energies, am-
plitudes and wavenumbers are not corrected from the linear values. The vertically
integrated mass transport of the waves is then similar between the linear and the
non-linear calculations, only the vertical profile of P has been changed. It is shown
in fig. 7.10 that the strongly sheared pseudo-momentum does not modify the quasi-
Eulerian current, as long the vertically integrated transport is not modified. If, as
inferred from the non-linear analysis, the transport is enhanced by 10 or 20%, the
undertow is enhanced proportionally, but the other features of the circulation, such
a the strength of the jet and the set-up level, remain unmodified (not shown).

The main modification from the wave non-linearity is on the shoreward La-
grangian drift close to the surface. This drift is largely enhanced, by a factor 2 (fig.
7.10). This is especially important immediately seaward of the surf zone (around
1000 m offshore, fig. 7.10), were the shoreward mean current is small.

Probably even more important is the significant larger momentum flux associated
with finite amplitude waves. Cokelet (1977) reported potential errors up to 40% in
the radiation stress component S**. Such errors may be even larger in the presence
of a vertical current shear. That effect may be computed with the original GLM
equations and parameterized with a bias in the surface stress 7,4, and in the Bernoulli
head S7. Tt may then account for most of the errors in set-up predictions (Apotsos
et al., 2007).
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Figure 7.10: (Upper panel) Surface velocities. (Lower panel) Vertical profile of the
velocities at 400m off-shore (in the surf zone).. Solid lines are the full model without
the current shear effect on the wave pseudo-momentum P, i.e. with the Stokes drift
from the linear wave theory, whereas dashed lines are the model with the non-linear
effect on the wave pseudo-momentum P.
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7.8 Conclusion

In this paper, the recently derived GLM2z equations for the wave-forced mean flow
(Ardhuin et al., 2007b) have been used in a simple two-dimensional steady simu-
lation of the shelf circulation, including the surf-zone . These approximate GLM
equations represent the adiabatic wave-forcing with a vortex force and a Bernoulli
head. Such representation has already been studied and compared to measurements
in Newberger and Allen (2007a). But the GLM2z formulation further brings new
physics compared to this previous description :

Firstly, in the GLM description, the wave pseudo-momentum is distributed along
the vertical. Consequently, a diverging horizontal wave pseudo-momentum within
the water column modifies the momentum exchange between the wave part and the
mean flow, compared to a diverging surface wave pseudo-momentum as in Newberger
and Allen (2007a). This effect is equal to the addition of the vortex force due to the
vertical wave pseudo-momentum Pj, as derived in McWilliams et al. (2004).

Secondly, the GLM description includes current shear effects. The current shear
modifies the Bernoulli head via two terms. The first one is depth-uniform while the
second one creates a small torque, enhancing the vertical recirculation of the surf
zone onshore of the jet and reducing it offshore. Both terms shift the transition
from set-down to set-up slightly seaward. The current shear also enhances the wave
pseudo-momentum, and thus the undertow strength.

Thirdly, the GLM formalism, by separating the mean flow and the wave pseudo-
momentum, enables an analysis of the Lagrangian drift within and outside of the
surf-zone. In this regard, the effect of the wave non-linearity in increasing the vertical
shear of the wave pseudo-momentum, is discussed. This effect strongly alters the
description of the near-surface drift, giving rise to surface shoreward velocities as
large as 0.5m s~!. This is believed to be especially important in the proximity of the
surf-zone, because steep waves might then be able to drive buoyant objects towards
the surf zone.

The present work only gave a simple illustration of the wave-forced circulation
on the shelf inferred from the GLM2z equations. However, it is believed that this
equations might give more spectacular results in modelling more complex wave-

current interactions phenomena, such as the rip currents or the macro-vortices.
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7.9 Appendix A : modification of ROMS to solve
the GLM equations

7.9.1 Equations in o-coordinates

Equations solved in ROMS are equations for the "semi-Lagrangian" flow (@, w"),

i.e. for the quasi-Eulerian flow (4, @) plus the vertical pseudo-momentum (0, P).

= 0z

They are transformed into o-coordinates using H, = 3=.

The mass conservation writes

OH. | OH.T, OH.Q" | OH.Py _
ot 0x, 0s 0re

——

0, (7.34)

where we have defined the Lagrangian sigma-vertical velocity

T (7.35)

ar 1 <w_8z 0z P 02)

- ot o, 0.

The time derivative and advective terms in momentum equation transform to

the stretched coordinates to

~

1 |0H,u, OH.,u,u 0H. u,82 0P, 0z 0P,
l u N uquL u +ua< z )]’ (7.36)

H.| ot Oy ds “Or, Oz, Os

which writes alternatively

~ _L ~
1 |0H.G H, i, H., 1,0 H,P, OH.(Q —Q
L 0 2Uq + 0 2UaUp + 0 2Uq + aa 0 z4 o + ( ) 7 (737)
H, ot Oxp 0s 0r, Js
where we have defined
~ 1 0z 0z
VD= — |- — —1u,— )
. (“’ ot ““axa> ’ (7.38)

the "semi-Lagrangian" sigma-vertical velocity. Note that a correction arise from
the advective form to the flux form of the equations due to the diverging "semi-
Lagrangian" velocity field. This correction does not appear in the time derivative
and advection of the tracer because it is advected by the Lagrangian velocity which

is a non-divergent field :

L |0H.T | OH.usT | OH.PsT +8HZ§LT

H, | ot Dy Dz s
N——

(7.39)
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The boundary conditions are simplified :

0"=0 at s=0 and s=—1, (7.40)

7.9.2 Depth-integrated equations
The depth average of a quantity A is given by

_ 1 0
A—— / H.Ads, 41
5/, ds (7.41)

where D = n(t,z,y) + h(x,y) is the total depth of the water column.

The depth average of the mass conservation (equ. 7.34) is

on  OD@,  ODP,

- A2
ot " or. " om, (7.42)
——
where we have used
OH, On
— 7.43
ot ot ( )

and the boundary conditions 7.10 and 7.13.
The fast evolving part of the 2D equation must be separated from another part
that will remain constant during the barotropic steps. The depth average of the

momentum advection (equ. 7.37) is

0D, 3Dm N 0z R 0z
o(0)P3(0)=—— — Un(—1)Ps(—1)=——
Tt e (OO0 g ()P
_L ~
0 OH.P. OH, (Q —Q)
o~ z (e} ‘44
+ 1ua< ar. + s ds, (7.44)
where we have used
~ =L 1 0z
0O=0Q — | P,—. 7.45
+ H, ( axa> ( )

No simple expression of the 2D momentum advection in terms of the fast evolving

2D velocities @, was found. Therefore the fast part was left as in the original ROMS

formulation,
0D, oDu. T _ D opt
o D = — |\ Dy — R, ow> 7.46
8t + 8:155 + € 3ﬁf Ug <pw axa ot + Ty + l ( )
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with R, containing the baroclinic to barotropic contribution, i.e. the remaining
part of the 2D equations (terms like T, — U,y Ug) left constant during the fast
barotropic time step.

The modifications in the 2D sub-model are then restricted to the 2D free surface

evolution. All the terms added by the wave forcing are kept constant during a

baroclinic time step.
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7.10 Complements : Numerical implementation of
the GLM equations in ROMS

7.10.1 Modification of the time stepping to include the di-

verging mean flow
Hereinafter, we do not make any distinction between Stokes drift, noted ust, and
the horizontal wave pseudo-momentum P. The main routines of a time step, old

ones and new ones, are described below, following their order of appearance during

the baroclinic step (in step).

e ana stokes At the beginning of each baroclinic time step, the Stokes drift

ust at t,, is calculated.

e set HUVstokes The lateral mass flux of the grid box due to the Stokes drift

Huson = % is calculated correspondingly to Huon = % as calculated in
set HUV
—L
e omega IV = % = —div Huon — div Huson is the o-vertical velocity of the

Hz9 o1 the mean flow
mn

Lagrangian flow. Additional vertical velocity Wy =

advection is calculated using W, = W + “Ts'tg—g.
e prsgrd not modified

e rhs3d Wy, is used for the vertical advection, as well as terms for the correc-

tion to the flux form (last term in equ. 7.37)

e pre_step3d In the preliminary step, the pseud-compressible algorithm for the
calculation of Hzpq s uses the divergence of W + Huon + Huson consistently
with the modified mass conservation. The tracer is calculated at time n + %
(predictor) including the horizontal advection by the Stokes drift. The advance
of the velocity u has not been changed. In particular, the barotropic mass flux

of the velocity u at time ¢ unknown at this moment, is set as in the original

n—l—%’

version as an interpolation of the velocity at time ¢,, and time ¢,_;.
e u3dmix not modified

e step2D The barotropic submodel is modified using ustbar the vertical average
of the Stokes drift. The free surface evolves using the divergence of the lateral
mass flux of the Stokes drift Duston = W in addition to the mass flux of

the Eulerian velocity Duston = %.
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ustbar, as ust, is kept constant during the barotropic time steps, but as the
free surface evolves, Duston also evolves. Consequently, Duston is averaged
in time as Duon for the purpose of coupling with the 3D equation, leading
to DUST avgl and DUST avg2 to correct the Stokes velocity at time step

tni1 and tn+%, respectively.

e set HUV2 As well as for the velocity, the Stokes drift ust is corrected using
the result DUST avg2 from the 2D submodel and the flux Huson at time

tny i is computed.
e omega treated above
e prsgrd not modified
e rhs3d treated above
e step3d uvl not modified

o step3d uv2 ust at time ¢, is corrected using DUST _avgl from the 2D
submodel. Then wust is interpolated back to time tn+% using the values of t,,,
tne1 and the result DUST avg2 from the 2D submodel. Finally Huson at

time ¢, 1 is recomputed.
e omega treated above

e step3d t Finalize the advance of the tracer with div Huson added to div Huon+
divW. All values at time tny 1 were then corrected to give a tracer time step

both conservative and constancy preserving, as in the original ROMS code.

7.10.2 Discussion

The development of ROMS to solve the GLM equations is much complicated due
to the body source of mass when one solves only the "semi-Lagrangian" velocities
(4, + Ps) = (u,w"). The flow is then divergent, as well as the horizontal wave
part P,, and the tracer is not advected in a similar way. A sketch of the "semi-

Lagrangian" equations is

du |, ouwk P, _
2 T +35=

R 87;/\ ox R )
on ~ou L oLdu _
ot T ug, +wrg =Py,

7.47
Lt (a+P)SE +wtSE = Fr, (747)

| 7oK K _ gl —
5 Tug: +P =w" at z=¢(.

T 9z
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This approach was chosen because we originally omitted the vertical component
of the wave pseudo-momentum P;. On the contrary, the introduction of the vertical
wave pseudo-momentum Pj, consistently with the Stokes pseudo-vertical velocity of
McWilliams et al. (2004), separates the mean flow and the wave part such that both
are non-divergent. Does this lead to much simpler equations to implement ? The

equations of motion become :

)
ou | ~0u | ~0u __ __ pou
o TUg tW05 = Fu— D5, (7.48)
AT | ~dT | ~0T _ _ p T _ p aT )
8_§+u8__:t+w8_£ = FT anx PS@Z’
9¢ 4 79¢ [/ -
0 Tug: + P = w+ Py oat z2=(.

These equations can now be solved in terms of (@, @), which is a non divergent field.
The vertical advection by P; appears now on the right hand side of the momentum
equation and can be considered as the missing component of the full 3D vortex force.
Also, the boundary condition for w"
also McWilliams et al., 2004, equ. 9.12). However it seems that the difficulties to

obtain a time step both integral and constancy preserving are not much reduced

are changed to boundary condition for w (see

using this form of the equations, because the advective terms for the tracer equation
are still different than those for the momentum, involving the horizontal advection
by the wave pseudo-momentum.

Another option to simplify the numerical implementation is to suppose that the
wave mass transport occurs at the surface, as in Newberger and Allen (2007a).
Then, we only need to add a surface vertical velocity and the only routines to be
modified are omega and 2D submodel step2D. However, the simplification is only
valid if the tracer advection is not considered, as the advection by the horizontal
wave pseudo-momentum P, is important compared to the advection by the mean

flow.

7.10.3 Momentum forcing terms

The additional momentum source terms due to the waves are added through different
ways.

The dissipation of the waves is put as a surface stress.

Gradients of the Bernoulli’s head are added to the pressure gradient (routine

prsgrd). Some terms are vertically uniform (S, S%™) and are simply added to the

surface pressure, while the term S%° is added separately.
Wave forcing terms like the vortex force and the Stokes-Coriolis force are added

to the right hand side of the momentum equation ru in the routine rhs3d.
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There is no need to add those forces in the 2D submodel if they are supposed to

remain constant during the barotropic steps.

7.10.4 Volume conservation and boundary conditions

The overall volume is conserved if the mass which enters with the wave field is

compensated by an outgoing mass of the mean flow. Namely

//(ﬁ 4+ U,) =0, (7.49)

where the integral is over the boundary of the domain and n is the normal to
the surface. At a global scale, the wave field is nil at the boundary so that the
volume is conserved. However at the regional scale, we need to add additional
boundary condition to ensure that conservation. We used u = —Ug at the off-
shore boundary, whereas i = —Ujg would be sufficient and less imposing. However,
imposing the profile of the outgoing mass does not seem to impact strongly on the

interior circulation, except in the vicinity of the boundary.
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In this PhD thesis, we studied the impact of waves on the near-surface and on the
nearshore ocean circulations. This study was made with a separation of the wave
part and of the mean flow using the Generalized Lagrangian Mean (GLM) formalism
of Andrews and McIntyre (1978a). The mean flow is described in a quasi-Eulerian
average, which is close to an Eulerian average below the troughs but is also well
defined, although difficult to measure, from the trough to the mean sea surface. In
addition, a Lagrangian Stokes drift, or wave pseudo-momentum, is associated with
the waves.

The Stokes drift of wind-sea waves has been calculated with an appropriate
spectrum, and was shown to reach a significant fraction of the wind speed Uy,
around 1.2% when the waves are developed. That Stokes drift depends on the wave
development, but also depends on the wind : for a narrow-banded swell, this drift
is quite small, of the order a few centimeters per second.

Waves also induce a strong near-surface mixing. This mixing can be well rep-
resented with a Mellor-Yamada type model, by specifying a surface mixing length
of the order of the wave height and by including an additional Turbulent Kinetic
Energy (TKE) source coming from the energy dissipation of the waves.

There is also, in addition to the momentum flux from the wind to the mean flow,
a Stokes-Coriolis force associated with the waves. This force can be understood as
the action of the Coriolis force on the wave pseudo momentum, this momentum flux

being in turn released to the mean flow through the Stokes-Coriolis force.

In part one, all these ingredients were gathered to study the impact of waves on
the open ocean near-surface dynamics. Offshore, where the horizontal gradients of
the wave field and the associated forces can be neglected, the mean flow momentum
balance reduces to an Ekman-Stokes equilibrium, i.e. an equilibrium between the
Coriolis force and the diffusion of momentum from both the wind and the Stokes-
Coriolis stress. There are two important features of this equilibrium : Firstly, due to
the strong wave-induced mixing, the mean flow is rather uniform close to the surface,

reaching only to small surface values, around 0.5% of the wind speed. Secondly,

159
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the Stokes-Coriolis force, which drives a vertically integrated mean flow transport
opposed to the Stokes transport, does not drive a surface mean flow which cancels
the surface Stokes drift, because of the strong mixing.

As a consequence of those features, it was made clear that the surface Lagrangian
drift due to the wind is dominated by the Stokes drift when the waves are developed.
Thus, if the surface drift can be well represented in ocean circulation models ignoring
waves, this will be to the detriment of the near-surface mixing. On the contrary,
waves and the associate Stokes drift can reconcile a large surface mixing and a
realistic surface drift.

This first result has been confronted to observations. The mixing is comparable
to the observations of TKE dissipation rates close to the surface, as the mixing
model was designed for that purpose. The comparison with current measurements
is likely to be of the good magnitude order, but a precise validation is difficult to
achieve. In fact, useful data sets should include wave measurements, it must be
determined whether the current is Eulerian, quasi-Eulerian of Lagrangian, and the
wind- and wave-induced components must be separated from the other processes.
We attempted a reanalysis of the SMILE and LOTUS3 data-sets, since they have
already been used for this kind of studies during the past (Santala, 1991; Terray
et al., 2000; Polton et al., 2005) and they appeared to be suited for that purpose.
However, it did not lead to clear conclusions, contrary to what has been claimed in

the past.

A second part aimed to evaluate the impact of the wave mixing on the mixed
layer depth. The role of the Langmuir cells has not been investigated, as it needs
specific numerical simulations, based on LES for instance. However, it is likely that
the wave-breaking is an important source of mixing close to the surface. Related
parameters such as the surface value of the mixing length zy and the surface flux of
TKE ®@,. (= au*) have been calculated from a wave model and analyzed in terms
of global distributions. Compared to previous estimations of these parameters, it
has been shown that the wave height is largely overestimated when supposing full
development at high latitude, and more importantly, it has been shown that the
parameter o was strongly underestimated by the previous analysis of Terray et al.
(1996) or by the monthly mean analysis of Janssen et al. (2004).

The importance of these two parameters z; and « has been highlighted with
mixed layer numerical simulations, using a simple TKE mixing model. It was shown
that the diurnal mixed layer is much thinner when the waves are young than when
the waves are developed. It was also shown that the erosion of a thermocline is more

efficient when the waves get more developed.
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We note that many uncertainties remain : The dissipation term of the wave model
is still more poorly constrained than the wave energy. Also, a precise estimation of
the roughness length is still to be sought, and we believe that a comparison with
the breaking wave height, like calculated here, might be helpful.

Finally, practical parameterizations directly from the wind speed have been pro-
posed, but it is argued that the wave parameters should better be calculated with
a wave model, instead of adding errors and bias from unknown wave ages to the

previously mentioned uncertainties.

The third and last part dealt with the effects of an horizontally non-uniform
wave field. Three dimensional practical equations for the interactions of waves and
current have only recently appeared (McWilliams et al., 2004; Ardhuin et al., 2007b).
Although these equations will surely give new insights into a lot of fully three-
dimensional phenomena, such as rip currents, the macro-vortices or infra-gravity
waves, they were studied in the present thesis for their consequences on the steady
circulation over the shelf.

Until recently, the circulation over the shelf has never been done in one piece
from the surf zone to the mid-shelf. Generally, the Earth rotation was taken into
account over the mid-shelf and waves were ignored, and the opposite in the surf
zone. That left a large gap in between, and the momentum balance on the inner-
shelf zone is still poorly understood (Lentz et al., 1999). It was therefore chosen to
use the newly derived equations to attempt to fill this gap.

The approximate GLM?27z equations of Ardhuin et al. (2007b) have been imple-
mented in a regional ocean circulation model, ROMS, and the results were com-
pared to the existing simpler model of (Newberger and Allen, 2007a). One impor-
tant aspect represented by these equations is the full description of the Lagrangian
flow within and immediately outside the surf-zone. Such a model thus gathers the
quasi-Eulerian current, related to the Eulerian measurements, and the Lagrangian
motion, more important for many applications. Further, the impact of a wave finite-
amplitude effect, by modifying the wave pseudo-momentum, was discussed in terms

of its impact on the mean flow and on the surface drift.

Through the study of the impact of waves on the ocean circulation, the present
thesis helped to take a new insight into the near-surface dynamics, mainly by relating
the wave-mixing and the surface drift to the waves. Such better understanding may
benefit to many further studies, ranging from costal engineering to remote-sensing
applications, air-sea interactions, ocean-atmosphere exchange, oil drift predictions

or search and rescue. But what could be a direct application of this thesis 7
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As mentioned earlier, the presence of waves allows the presence of both a strong
mixing and a large surface drift, which is otherwise impossible. Such a description
can significantly modify the trajectory of Lagrangian particles : the vertical distri-
bution can be more homogeneous due to the strong mixing but the drift of surface
trapped materials can remain large. This was highlighted off-shore but might also
be important in the surf and inner-shelf zones, where the materials, sedimentary or
biological, are seldom uniformly distributed along the vertical. A better representa-
tion of the vertical mixing and of the vertical shear of the current may then benefit
to the modelling of the drift of materials in this key area, link between the continent

and the ocean.



Bréve conclusion générale en francais

Au cours de cette thése, nous avons abordé I'étude de I'impact des vagues sur
I’hydrodynamique littorale et de surface. Cette étude est motivée par les nom-
breuses applications pratiques auxquelles une meilleure connaissance de ces parties
de I'océan peut bénéficier.

Il est apparu en premiére partie que les vagues constituaient une part dominante
de la dérive prés de la surface liée au vent. Ainsi, si cette dérive prés de la surface
peut étre bien représentée dans les modéles de circulation océanique ignorant les
vagues, c’est alors au détriment du mélange proche de la surface. lLes vagues, ou
plus précisément la dérive de Stokes qui leur est associée, permettent au contraire
de concilier un fort mélange prés de la surface et une dérive en surface réaliste. Ce
premier résultat a été confronté aux observations. Méme si une validation précise
n’a pas pu étre effectuée, en partie parce que les données de courants "propres"
en présence de vagues sont encore rares, les ordres de grandeurs des observations
sont en accord avec cette description. Une telle description de la couche de surface
peut modifier sensiblement les trajectoires de traceurs lagrangiens : la distribution
verticale est ainsi plus homogeéne, grace au mélange plus important, alors que la
dérive des matériels piégés en surface restera importante.

La deuxiéme partie évaluait I'impact du mélange lié aux vagues sur la profondeur
de la couche de mélange. Si le role des circulations de Langmuir n’a pas été abordé,
parce que nécessitant une modélisation spécifique (4 base de LES par exemple),
I'impact du déferlement des vagues est clair sur les couches de mélange de faibles
profondeurs, les couches de mélange diurnes par exemple. Il apparait ainsi que, par
états de mer jeunes, la couche de mélange diurne est moins profonde que lorsque les
vagues sont développées.

Enfin, une troisiéme partie regardait les avancées en termes d’hydrodynamique
de la zone de déferlement et de la zone infra-littorale. La modélisation cohérente
des vagues et des courants, nécessaire dans cette zone, en est a ses premiers pas,
les équations théoriques tridimensionnelles étant encore en phase de validation. Une
premiére implémentation dans un modéle de circulation régionale, ROMS, a été effec-

tuée. Les premiers résultats ont été comparés aux modélisations issues de théories
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plus simples. Dans la zone littorale et infra-littorale, les transports lagrangiens
sont, comme au large, modifiés sous l'effet de la dérive de Stokes. Mais aussi, la
non-linéarité des vagues, importante pour les vagues sur le point de déferler, peut
sensiblement augmenter la dérive de Stokes associée aux vagues. Une telle descrip-
tion séparée des vagues et du courant de retour, peut, comme au large, concilier fort
mélange et fort cisaillement de courant. Les divers matériels, biologiques ou sédi-
mentaires, étant rarement distribués uniformément sur la verticale, une meilleure
description des cisaillements de courants et du mélange devrait permettre de mieux
modéliser les déplacements de ces matériels dans cette zone clef, interface entre la

terre et 'océan.
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Abstract

The generalized Langrangian mean theory provides exact equations for general
wave-turbulence-mean flow interactions in three dimensions. For practical applica-
tions, these equations must be closed by specifying the wave forcing terms. Here an
approximate closure is obtained under the hypotheses of small surface slope, weak
horizontal gradients of the water depth and mean current, and weak curvature of the
mean current profile. These assumptions yield analytical expressions for the mean
momentum and pressure forcing terms that can be expressed in terms of the wave
spectrum. A vertical change of coordinate is then applied to obtain glm2z-RANS
equations (55) and (57) with non-divergent mass transport in cartesian coordinates.
To lowest order, agreement is found with Eulerian-mean theories, and the present
approximation provides an explicit extension of known wave-averaged equations to
short-scale variations of the wave field, and vertically varying currents only limited
to weak or localized profile curvatures. Further, the underlying exact equations pro-
vide a natural framework for extensions to finite wave amplitudes and any realistic
situation. The accuracy of the approximations is discussed using comparisons with
exact numerical solutions for linear waves over arbitrary bottom slopes, for which
the equations are still exact when properly accounting for partial standing waves.
For finite amplitude waves it is found that the approximate solutions are proba-
bly accurate for ocean mixed layer modelling and shoaling waves, provided that an
adequate turbulent closure is designed. However, for surf zone applications the ap-
proximations are expected to give only qualitative results due to the large influence

of wave nonlinearity on the vertical profiles of wave forcing terms.

8.1 Introduction

>From wave-induced mixing and enhanced air-sea interactions in deep water, to
wave-induced currents and sea level changes on beaches, the effects of waves on
ocean currents and turbulence are well documented (e.g. Battjes 1988, Terray et
al. 1996). The refraction of waves over horizontally varying currents is also well
known, and the modifications of waves by vertical current shears have been the
topic of a number of theoretical and laboratory investigations (e.g. Biesel 1950,
Peregrine 1976, Kirby and Chen 1989, Swan et al. 2001), and field observations
(e.g. Ivonin et al. 2004). In spite of this knowledge and the importance of the
topic for engineering and scientific applications, ranging from navigation safety to

search and rescue, beach erosion, and de-biasing of remote sensing measurements,
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Theory averaging momentum variable main limitations
Phillips (1977) Eulerian total (U) 2D, du/dz =0
Garrett (1976) Eulerian ~ mean flow (U — M" /D) 2D, du/dz =0, kh > 1
Smith (2006) Eulerian ~ mean flow (U — M" /D) 2D, du/dz =0
GLM (A&M 1978a) GLM mean flow (! — P) none (exact theory)
aGLM (A&M 1978a) GLM total (uh) none (exact theory)
Leibovich (1980) Eulerian mean flow (ul — P) 2nd order, v constant
Jenkins (1987) GLM mean flow (ul — P) 2nd order, horizontal uniformity
Groeneweg (1999) GLM total (u’) 2nd order
Mellor (2003) following &3 total (uh) 2nd order, flat bottom
MRL04 Eulerian mean flow (%) below troughs, 1 < C, v =0
NAQ7 Eulerian mean flow (%) below troughs, 2nd order, kH < 1
present paper GLM mean flow (! — P) 2nd order

Table 8.1: Essential attributes of some general wave-current coupling theories. See
list of symbols for details (table 2 at the end of the paper). Although Mellor (2003)
derived his wave-averaged equations with spatially varying wave amplitudes, his use
of flat-bottom Airy wave kinematics is inconsistent with the presence of bottom
slopes (see ARB07). MRL04 stands for McWilliams et al. (2004) and NA2007
stands for Newberger and Allen (2007).

there is no well established and generally practical numerical model for wave-current

interactions in three dimensions.

Indeed the problem is made difficult by the difference in time scales between
gravity waves and other motions. When motions on the scale of the wave period can
be resolved, Boussinesq approximation of nearshore flows has provided remarkable
numerical solutions of wave-current interaction processes (e.g. Chen et al. 2003,
Terrile et al. 2006). However, such an approach still misses some of the important
dynamical effects as it cannot represent real vertical current shears and their mixing
effects (Putrevu and Svendsen 1999). This shortcoming has been partly corrected
in quasi-three dimensional models (e.g. Haas et al. 2003), or multi-layer Boussinesq
models (e.g. Lynnett and Liu 2005).

The alternative is of course to use fully three dimensional (3D) models, based
on the primitive equations. These models are extensively used for investigating
the global, regional or coastal ocean circulation (e.g. Bleck 2002, Shchepetkin and
McWilliams 2003). An average over the wave phase or period is most useful due
to practical constraints on the computational resources, allowing larger time steps
and avoiding non-hydrostatic mean flows. Wave-averaging also allows an easier
interpretation of the model result. A summary of wave-averaged models in 2 or 3

dimensions is provided in table 1.
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8.1.1 Air-water separation

In 3D, problems arise due to the presence of both air and water in the region between
wave crests and troughs. Various approaches to the phase or time averaging of flow
properties are illustrated in figure 8.1 (see also Ardhuin et al. 2007b, hereinafter
ARB2007). For small amplitude waves, one may simply take a Taylor expansion
of mean flow properties (e.g. McWilliams et al. 2004, hereinafter MRL04). Us-
ing a decomposition of the non-linear advection term in the equations of motion
u-Vu = Vu? + u x Vu, McWilliams et al. (2004, see also Lane et al. 2007) ob-
tained a relatively simple set of equation for conservative wave motion over sheared
currents, for a given choice of small parameters. These parameters include the sur-
face slope €1 = koag and the ratio of the wavelength and scale of evolution of the
wave amplitucde. Further, these equations were derived with a scaling correspond-
ing to a non-dimensional depth kghg of order 1, with kg, ag and hg typical values
of the wavenumber, wave amplitude and water depth, respectively. These authors
also assumed that the current velocity was of the same order as the wave orbital
velocity, both weaker than the phase speed by a factor ;. That latter assumption
may generally be relaxed since the equations of motion are invariant by a change
of reference frame, so that only the current vertical shear may need to be small
compared to the wave radian frequency, provided that the current, water depth and
wave amplitudes are slowly varying horizontally.

For waves of finite amplitude, a proper separation of air and water in the averaged
equations of motion requires a change of coordinates that maps the moving free
surface to a level that is fixed, or at least slowly varying. This is usual practice in
air-sea interaction studies, and it has provided approximate solutions to problems
such as wind-wave generation or wave-turbulence interactions (e.g. Jenkins 1986,
Teixeira and Belcher 2002) but it brings some complications. The most simple
change of coordinate was recently proposed by Mellor (2003), but it appears to be
impractical in the presence of a bottom slope because its accurate implementation
requires the wave kinematics to first order in the wave slope (Ardhuin et al., 2007b,
hereinafter ARBOT).

8.1.2 Separation of wave and current momentum fluxes

Another approach is to use one of the two sets of exact averaged equations derived
by Andrews and McIntyre (1978a). Groeneweg (1999) successfully used the second
set, the alternative Generalized Lagragian Mean equations (aGLM), approximated
to second order in wave slope, for the investigation of current profile modifications

induced by waves (see also Groeneweg and Klopman 1998, Groeneweg and Battjes
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2003). This work was also loosely adapted for engineering use in the numerical
model Delft3D (Walstra et al. 2001).

However, aGLM equations describe the evolution of the total flow momentum,
which includes the wave pseudo-momentum per unit mass P. That vector quantity
is generally close to the Lagrangian Stokes drift @ (see below), and it is not mixed
by turbulence!, unlike the mean flow momentum. Further, P is carried by the
wave field at the group velocity, which is typically one order of magnitude faster
than the drift velocity. Thus bundling P with the rest of the momentum may lead
to large errors with the turbulence closure. Other practical problems arise due to
the strong surface shear of P and @° (e.g. Rascle et al. 2006) whereas the quasi-
Eulerian current is relatively uniform in deep water (e.g. Santala and Terray 1992).
Thus solving for the total momentum (including P) requires a high resoltion near
the surface. Finally, a consistent expression of the aGLLM equations with a sloping
bottom and wave field gradients is difficult due to the divergence of vertical fluxes
of momentum (vertical radiation stresses) that must be expressed to first order in
all the small parameters that represent the slow wave field evolution (bottom slope,
wave energy gradients, current shears...). This same problem arises with Mellor’s
(2003) equations and is discussed in ARBO7.

The first set of GLM equations describes the evolution of the quasi-Eulerian
current only, and, just like the decomposition of u - Vu used by MRLO04, it does
not require the evaluation of these vertical radiation stresses. These equations were
used by Leibovich (1980) to derive the Craik-Leibovich equations that is the basis
of theories for Langmuir circulations. However, in that work he did not attempt an
explicit integration of the GLM set, and thus did not express the wave forcing terms
from wave amplitudes or spectra. The general mathematical structure of the GLM
equations and their conservatin properties are also well detailed in Holm (2002) and
references therein.

Further, the GLM flow is generally divergent as the averaging operator intro-
duces an implicit change of the vertical coordinate. This question has been largely
overlooked by previous users of GLM theory (Leibovich 1980, Groeneweg 1999).
Further, in order to be implemented in a numerical model, the wave-induced forcing
terms must be made explicit using approximate solutions for wave-induced motions
and pressure. We will assume that the slowly varying spectrum is known, typically
provided by a wave model. Given the degree of accuracy attained by modelled wave
spectra in a wide variety of conditions this is generally appropriate (e.g. Herbers
et al. 2000, Ardhuin et al. 2003, 2007, Magne et al. 2007). We note in passing

!The Stokes drift is a residual velocity over the wave cycle, its mixing is not possible without a
profound modification of the wave kinematics.
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that no explicit and theoretically satisfying theory is available for the transport of
the wave action spectrum over vertically and horizontally sheared currents. Indeed,
the exact theory of Andrews and McIntyre (1978b) is implicit and would require an
explicit approximation of the wave action from know wave kinematics, similar to
the approximation of the wave pseudo-momentum performed here.

The goal of the present paper is to provide a practical and accurate method for
wave-current coupling that is general enough for applications ranging from the ocean
mixed layer to, possibly, the surf zone. GLLM equations, for the reasons listed above,
are a good candidate for this application. Although not as simple as an Eulerian
average, the GLM operator is capable of properly separating air and water in the
crest to trough region, leading to physically understandable definitions of mean
properties on either side of the air-sea interface. The practical use of GLM requires
some approximations and transformations. We provide in section 2 a derivation
of explicit and approximate glm2z-RANS equations. Given the large literature on
the subject, we explore in section 3 the relationships between GLM, aGLM and
other forms of wave-averaged 3D and depth-integrated 2D equations. A preliminary
analysis of the expected errors due to the approximations are provided in section 4,
and conclusions follow in section 5. Full numerical solutions using the glm2z-RANS
equations will be reported elsewhere, in particular in the doctorate thesis of Nicolas

Rascle.

8.2 glm2-RANS equations

8.2.1 Generalities on GLM and linear wave kinematics

We first define the Eulerian average ¢ (x,t) of ¢ (x,t), where the average may be
an average over phase, realizations, time ¢ or space. We now take this average at
displaced positions x+¢&, with £ = (&1, &2, &3) a displacement vector, and we defining
the velocity v at which the mean position is displaced when the actual position

moves at the fluid velocity u(x + £). One obtains the corresponding GLM of ¢

L
o(x,1) = d(x+&,t) (8.1)
by choosing the displacement field & so that

e the mapping x — x + £ is invertible

e {(x,1)=0

e v(x,t) = v (x,t), which gives v = u(x, t)L.
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Such a mapping is illustrated in figure 1.c for linear waves. Lagrangian perturbations

are logically defined as the field minus its average, i.e.,

DO 1) = Bx+E1) — 0061 = d(x+E,1) = o(x +&,1). (8-2)

Here we shall take our Eulerian average to be a phase average?. Given any Eulerian

flow field u(x,¢), one may define a first displacement by
AL
€(x,t, At) = / ulx + &(x, 4t — 1), )dr’. (8.3)
t

The mean drift velocity is defined as v(x,t) = lima,_o &' (x, t, At)/(At). The GLM
displacement field is then given by ¢ = ¢ — vt — & — vt. This construction of v
and & guarantees that the required properties are obtained, provided that the limit
At — 0 commutes with the averaging operator. For periodic motions one may also
take v = (&'(t +TL) — &'(t))/(TY), with TT the Lagrangian wave period (the time

taken by a water particle to return to the same wave phase). This definition will be

used for Miche waves in section 4.2.

Clearly GLM differs from the Eulerian mean. The difference between the two
is given by the Stokes correction (Andrews et McIntyre 1978a). Below the wave
troughs, the Stokes correction for the velocity is the Stokes drift, by definition,

' =uf - u (8.4)

More generally, for a continuously differentiable field ¢ the Stokes correction is given
by (Andrews and McIntyre 1978a, equation 2.27),

=343 _ 00 1— 0% ¢
3 =0+0 —¢+5ga + fﬁka o O(%ﬁg{m}\f\?’» (8.5)

with an implicit summation over repeated indices.

The GLM average commutes with the Lagrangian derivative, thus the GLM
velocity @ is the average drift velocity of water particles. One should however be
careful that the GLM average does not commute with most differential operators,
for example the curl operator. Indeed the GLM velocity of irrotational waves is
rotational, which is clearly apparent in the vertical shear of the Stokes drift (see

also Ardhuin and Jenkins 2006 for a calculation of the lowest order mean shears
aua/azL and aug/axL).

2For uncorrelated wave components the phase average is obtained by the sum of the phase
averages of each component. In the presence of phase correlations, such as in the case of partially
standing waves or nonlinear phase couplings, the sum has to be averaged in a coherent manner.
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One of the interesting aspects of GLM theory is that it clearly separates the
wave pseudo-momentum P from the quasi-Eulerian mean momentum u = u” — P.
This is a key aspect for numerical modelling since P is transported by the wave field

Lin deep water, while 1 is transported

at the group velocity, of the order of 5 m s~
at the much slower velocity u”. P is defined by (Andrews and McIntyre 1978a, eq.

3.1),

P ==&, (Ué + ijlfkfl/z)a (8.6)

where €;;,A; By, is the i-component of the vector product A x B, and f;/2 is the
k-component of the rotation vector of the reference frame. In the applications con-
sidered here the effect of rotation can be neglected in (8.6) due to the much larger

rotation period of the Earth compared to the wave period. We will thus take
Py = —¢&;ub. (8.7)

For practical use, the GLM equations have to be closed by specifying the wave-
induced forcing terms. In order to give explicit approximations for the wave-induced
effects, we will approximate the wave motion as a sum of linear wave modes, each
with a local wave phase 1 giving the local wave number k = (ki,ky) = Vi,
and radian frequency w = —d/0t, and an intrinsic linear wave radian frequency
o = [gktanh(kD)]"* = w — k - U4, where Uy is the phase advection velocity, D
is the local mean water depth, and g the acceleration due to gravity and Earth
rotation. Defining h(z;,x2) as the local depth of the bottom and ((z1,z5,t) as
the free surface elevation, one has D = ¢ + h. We assume that the wave slope
g1 = max (|V(|) is small compared to unity (this will be our first hypothesis H1),
with V denoting the horizontal gradient operator. We also restrict our investiga-
tions to cases for which the Ursell number is small Ur = (a/D)/(kD)* < 1 (this is
hypothesis H2). We further restrict our derivations to first order in the slow spatial
scale 5. That small parameter may be defined as the maximum of the slow spa-
tial scales |(Oa/0x)/(ka)|, |(0u/0x)/(0)|, (0D /0x)|, and time scales |(Ja/0t)/(ca),
|k(0t/0t)/(0)?, and [(OD/0t)k/o| (hypothesis H3). It will also appear that the cur-
rent profile may cause some difficulties. Since we have already assumed a small wave

steepness we may use Kirby and Chen’s (1989) results, giving the dispersion relation

otk /Z _ 2k cosh [2k(z + h)]
R S N CI2)

dz + O(ey), (8.8)

where « is a dummy index representing any horizontal component 1 or 2, and the
summation is implicit over repeated indices. The index 3 will represent the vertical

components positive upwards, along the direction z = z3. In particular we shall
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assume that their correction to the lowest order stream function (their eq. 23)
is relatively small, which may be obtained by requiring that the curvature of the
current is weak or concentrated in a thin boundary layer, i.e. e3 < 1 (hypothesis

H4) with
0*u
022

sinh [2k(z + h)] dz. (8.9)

1 /C
Eaq =
° 7 wsinh(kD) J-n
For simplicity we will further require that a? [0°u,/92%/(0)] < e3 (hypothesis H5),
which may be more restrictive than H4. Finally, we will neglect the vertical velocity

w in the vertical momentum equation for the mean flow momentum (i.e. we assume

the mean flow to be hydrostatic, this is our hypothesis H6).

In the following we take ¢ = maxe;, 1 <i < 3. The wave-induced pressure and

velocity are given by

P = puwgalFeccosy + O(e)] (8.10)
Uy = (w% [Fes cost + O(e)] (8.11)
i3 = ao [Fsgsiny + O(e)], (8.12)

where a is the local wave amplitude, p, is the water density, taken constant in
the present paper. We have used the short-hand notations Foe = cosh(kz +
kD)/cosh(kD), Fog = cosh(kz+kD)/sinh(kD), and Fgg = sinh(kz+kD)/sinh(kD).

>From now on, only the lowest order approximations will be given unless ex-
plicitly stated otherwise. In order to estimate quantities at displaced positions, the

zero-mean displacement field is given by

T— u(x+§)—ﬂf

_ ou; ou; ou;
= neog (g0 -6+

(&-2) iy (8.13)

N —

Thanks to the definition of @", we also have

oot ox; ot Y0z,

(8.14)

in which the vertical velocity has been neglected. The greek indices a and [ stand

for horizontal components only.

To lowest order in the wave amplitude, the displacements & and Lagrangian

velocity perturbations u! are obtained from (8.13) and (8.14),

i

uy, = s (8.15)
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& = am [FSS cos 1| (8.16)
0%,
ul, = T, —i—fg— —i—fg— +0 (Jka )cos 20+ 0O <a3 5.3 ) (8.17)
>~ a [U@FCS +mF55%‘| cosw (818)
k 0z
ke m Oy, a® 0%*u, )\ .
(o = —am [?ch ;TFSS] siny + O < 5.2 >s1n21/)
a 01, a’® 0*u
1
+O<Uaxﬁ>cs¢)+0<a a) (5.19)

The shear correction parameter m, arising from the time-integration of (8.14), is

given by
o

w—k-uk(x,z2,t)

m(x,k, z,t) = (8.20)

Based on (8.8) m differs from 1 by a quantity of order o~ 'du/dz.

Using our assumption (H5) the last term in eq. (8.19) may be neglected. The
last two term in eq. (8.17) have been neglected because they will give negligible
O(?) terms in P, ZL or other wave-related quantities, when multiplied by other

zero-mean wave quantities.

Using the approximate wave-induced motions, one may estimate the Stokes drift

@2 o
ﬁs = _L—UNf Vu + 63 4
ma? k ou
= ——— |20k cosh(2kz + 2kh) + k h(2kz + 2kh
Lo (D) l ok cosh(2kz + 2kh) + km sinh(2kz + )k; 5
”cu .,

the horizontal wave pseudo-momentum

afﬁ 083
P, = !
0xa ﬁ axaw
ma? ko, ou
~ —————— |20kcosh(2kz + 2kh) + 2k msinh(2kz + 2kh) -~ « —
Teml? (kD) [ ok cosh(2kz + 2kh) 4 2k,msinh(2kz + )k P
2
+2m sinh?(kz + kh) <gﬁ> (8.22)
z
and the GLM position of the free surface
L = -5 = O —  ma? k mk Ou
_ _ ) - 2
¢ ¢+¢ ¢+ 3xa€a’ 2 [tanh kD Ty o 0z 5z = ¢ (8:23)
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Thus the GLM of vertical positions in the water is generally larger than the Eulerian
mean of the position of the same particles (see also McIntyre 1988). This is easily
understood, given that there are more particles under the crests than under the
troughs (figure 8.1.c). As a result, the original GLM equations are divergent (V -
ul # 0) and require a coordinate transformation to yield a non-divergent velocity
field. That transformation is small, leading to a relative correction of order &7.
That transformed set of equation is a modified primitive equation that may be
implemented in existing ocean circulation models.

The horizontal component of the wave pseudo-momentum P, differs from the

Stokes drift > due to the current vertical shear. Therefore the quasi-Eulerian mean

velocity @, = u% — P, also differs from the Eulerian mean velocity %, = u% — u’
150°u
~ 5 a
Uy = Uy + 553 5.2 + O(e3). (8.24)

The vertical wave pseudo-momentum P; = 0 is, at most, of order o&/k. Al-
though it may be neglected in the momentum equation, it plays an important role in
the mass conservation equation, and will thus be estimated from P,. In particular,
for m = 1 and in the limit of small surface slopes, it is straightforward using (8.7)

to prove that P is non-divergent, giving,

oh _/Z 0P, (%)

Bo=—ba=hg = | o

dz'. (8.25)

Although this equality is not obvious for m # 1 and nonlinear waves, corrections
to (8.25) are expected to be only of higher order. In particular, once P is transformed
to z coordinates, since, in the absence of a mean flow P = u” and it is non-divergent

(see section 2.1.1).

glm2-RANS equations

The velocity field is assumed to have a unique decomposition in mean, wave and
turbulent components u = W+ u+ u’, with (u’) = 0, the average over the flow real-
izations for prescribed wave phases. The turbulence will be assumed weak enough
so that its effect on the sea surface position is negligible. We note X the divergence
of the Reynolds stresses, i.e. X; =0 <u;u;> /Ox;, and we apply the GLM average to
the Reynolds-Average Navier-Stokes equations (RANS). We shall now seek an ap-
proximation to the GLM momentum equations by retaining all terms of order p,,ge3
and larger in the horizontal momentum equation, and all terms of order p,ge? in
the vertical momentum equation. The resulting equations, that may be called the

"glm2-RANS" equations, are thus more limited in terms of wave nonlinearity than
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the Eulerian mean equations of MRL04. At the same time, random waves are con-
sidered here and that the mean current may be larger than the wave orbital velocity.
Indeed we make no hypothesis on the current magnitude, but only on the horizontal
current gradients and on the curvature of the current profile. The present derivation
differs from that of Groeneweg (1999) by the fact that we use the GLM instead of
the aGLM equations (see table 1). The name for these equations is loosely bor-
rowed from Holm (2002) who instead derived an approximate Lagrangian to obtain

the momentum equation, and did not include turbulence.

In order to simplify our calculations we shall use the form of the GLM equations
given by Dingemans (1997, eq. 2.596) with p,, constant, which, among other things,
removes terms related to the fluid thermodynamics. The evolution equation for the

quasi-Eulerian velocity u is,

I o (»pt wlut —~ oat
DL’LLZ‘ + Gigjfgﬁjl-/ + a—x (];_ _ 32 J | _ Xz -+ géig = Pj a‘;‘ , (826)

where the Lagrangian derivative D* is a derivative following the fluid at the La-
grangian mean velocity @”, p is the full dynamic pressure, ¢ is Kronecker’s symbol,

and the viscous and/or turbulent force X is defined by

X=Xl %
81’i

(X7 - X)) (8.27)

These exact equations will now be approximated using (8.10)-(8.16). We first
evaluate the wave forcing terms in (8.26) using monochromatic waves, with a surface
elevation variance £ = a?/2. The result for random waves follows by summation

over the spectrum and replacing F with the spectral density E(k).

We first consider the vertical momentum balance, giving the pressure field. It
should be noted that the Lagrangian mean Bernoulli head term ugug/Q differs from
its Eulerian counterpart uju}/2 by a term K, which arises from the correlation of
the mean current perturbation at the displaced position x+¢&, with the wave-induced
velocity, i.e. the second term in (8.17). Eqs. (8.10)—(8.16) give

1 kE
5 (uéué) = gT [FCCFCS + FSCFSS] + KQ, (828)
with
_ou,  &lou|” o, ou El|oul®
Ko =u,65—+ 2 |—| = FE-k-—mlgF R, Fé.. 8.29
2 u§382+2 0z k 3zm0555+2 &zmss ( )
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The vertical momentum equation (8.26) for @ = U is,

o0 o0 00 oo 1 op-
v 72l L p Y L G p) 2 AP
T + w8z+ 3az+(u5+ 3) —l—p +g

0 [ — o 5

For small bottom slopes we may neglect the last term, but we rewrite it in order
to compare with other sets of equations. Now using the lowest order wave solution
(8.11)—(8.16), eq. (8.30) transforms to

10, E ., on _On
p_@[p gz =gy (Fos 4 Fs) —pulla) = =5 — 0
ow 0 0
— (g + P3) =— + Py— (g + P Py— (@ + P3) .(8.31
(4 + ﬁ)axﬁ+ b5, (Us+ Fs) + Pag-(@+Fy).(8.31)

We add to both sides the depth-uniform term —o?FE (F3, — F24) /2, and integrate
over z to obtain

——L

p(2) gkE
— —g[(z = 2)) — kEFogFog) + Ky + Ky — — 32
Puw 9(z = 2) = kEFcoFes] 2 ! 4sinh(2kD)

(8.32)

where the hydrostatic hypothesis (H6, see above) has be made for the mean flow.

The depth-integrated vertical component of the vortex-like force K is defined by

0

K ZLPa U Ps)ds ZLP Ps)ds 8.33
1——/Z ﬁ@(ufﬁ ﬁ)2+/z Sa—xﬁ(ﬁ)z> (8.33)

where eq. (8.25) has been used. The integration constant z, is given by the surface

boundary condition
—L =L =L =
p(Q)" = —pug (C" = 2 — kEFccFos — K»(C)/g) =P (8.34)

Using (8.23) we find that z, = ( +7,/(pwg) — KQ(@L)/g and (8.32) becomes

p" P .
— = — + gkEFocFes + K1+ Ky — Ky (C), (8.35)

Pw Pw

with pf the hydrostatic pressure defined equal to the mean atmospheric pressure at

the mean sea surface, p” = p,g({ — 2) + P,

Below the wave troughs the Stokes correction for the pressure (8.5) gives the
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Eulerian-mean pressure

k ou ) (.36)

p=p"— pugkmE <FCSFCC + FssFsc + P %mFSSFCC

wave troughs, between the Eulerian-mean pressure p and p”,

E

Thus equation (8.32) gives the following relationship, valid to order €2 below the
_ ~L ou
p" = pughEFssFsc + pu (K1 — K (C) + 5 |50

2
2 |0z mQFS%S)

+pwgk(1 — m)EFchCS. (837)

S
|

For a spectrum of random waves, the modified pressure term that enters the

horizontal momentum equation may be written as

i L
~ — pwu u auz shear
P=P = =5 = B =0 puST o puST, (8.38)

with the depth-uniform wave-induced kinematic pressure term

kE(k)
J = —— _Jk 8.39
S g/k sinh 2kD (8.39)

and a shear-induced pressure term, due to the integral of the vertical component of

the vortex force K, and KQ(ZL);
2
) dk

+ / [Pg NariCaLY Pﬂ(k)a[aﬁ(lepﬁ(k)qdz'dk. (8.40)

)
gehear — —/E ( m 2% )tanh(kD) + m

&Uﬁ

Now considering the horizontal momentum equations, we rewrite (8.26) for the

horizontal velocity,

Ot e 0, 1 ap
E + (uﬂ+Pﬂ)8—+w8 +€a3gf3(Ug+Pg)+—axa
= - shear) 4 p,— 0 _ p,——% L X, 8.41
g (814 5") 4 Pag= — Popt + (8.41)

Grouping all Ps terms, as in Garrett (1976 eq. 3.10 and 3.11), leads to an
expression with the ‘vortex force’ e,3gwsFP3. This force is the vector product of the

wave pseudo-momentum P and mean flow vertical vorticity ws. Equation (8.41)
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transforms to

Diig . Oy | Oy _ L op"
Iy S Za P —
ot +Uﬁaxﬁ TWo T Casp [f3tig + (f3 + ws) Ps] + P
— o shear ) _ P X . 42
o (87 + gehenr) s+ XKoo (842)

The vortex force is a momentum flux divergence that compensates for the change
in wave momentum flux due to wave refraction over varying currents, and includes
the flux of momentum resulting from 1 momentum advected by the wave motion
(Garrett 1976).

The turbulent closure is the topic of ongoing research and will not be explicitly
detailed here. We only note that it differs in principle from the closure of the aGLM
equations of Groeneweg (1999), which could be extended to include the second
term in eq. (8.27). A proper closure involves a full discussion of the distortion of
turbulence by the waves when the turbulent mixing time scale is larger than the
wave period (e.g. Walmsley and Taylor 1996, Janssen 2004, Teixeira and Belcher
2002). One should consider with caution the rather bold but practical assumptions
of Groeneweg (1999) who used a standard turbulence closure to define the viscosity
that acts upon the wave-induced velocities, or the assumption of Huang and Mei
(2003) who assumed that the eddy viscosity instantaneously adjusts to the passage of
waves. These effects may have consequences on the magnitude of wave attenuation
through its interaction with turbulence, and the resulting vertical profile of X,,. Here
we only note that any momentum lost by the wave field should be gained by either
the atmosphere, the bottom or the mean flow. Thus a possible parameterization for

the diabatic source of momentum is

—~ 8Raﬁ i 0 (Kz%

Xo =
Jrg 0z 0z

) Y T;urb _ T(L)fric7 (8.43)
with R,z the horizontal Reynolds stress, and K, a vertical eddy viscosity, while the
last three terms correspond to the dissipative momentum flux from waves to the
mean flow, through whitecapping, wave-turbulence interactions, and bottom fric-
tion. Although the momentum lost by the waves via bottom friction was shown to
eventually end up in the bottom (Longuet-Higgins 2005), the intermediate accelera-
tion of the mean flow, also known as Eulerian streaming, is important for sediment
transport, and should be included with a vertical profile of T concentrated near
the bottom, provided that the wave boundary layer is actually resolved in the 3D
model (e.g. Walstra et al. 2001).
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The GLM mass conservation writes

o(7) 0 (Jmk) N o(Ju') o, (8.44)

o T o, 9>

where the Jacobian J is the determinant of the coordinate transform matrix (6;; + 9¢;/0z;)
from Cartesian coordinates to GLM. (Andrews and McIntyre 1978a, eq. (4.2)-(4.4)
with p* = p,).

8.2.2 g¢glm2-RANS equations in z-coordinates

Equations (8.42) and (8.44) hold from z = —h to z = ", which covers the entire
‘GLM water column’. All terms in (8.42) are defined as GLM averages, except for
the hydrostatic pressure p which does correspond to the Eulerian mean position.

For practical numerical modelling, it is however preferable that the height of the
water column does not change with the local wave height. We will thus transform
eq. (8.42), except for p, by correcting for the GLM-induced vertical displacements.
This will naturally remove the divergence of the GLM flow related to J # 1. The

GLM vertical displacement §§ is a generalization of eq. (8.23)

sinh [2k(z + h)] sinh” [k(z + 1) kO,

dk.
2sinh2(kD) ' smh®(kD) o 02

€, 2, 1) = /k E)m lk
(8.45)

and the Jacobian is J = 1+ Jy + O(£?). Because the GLM does not induce hori-
zontal distortions, a vertical distance dz’ = Jdz in GLM corresponds to a Cartesian

distance dz, giving,

—L
93
Jy = ——==. 8.46
? 0z (8.46)
One may note that
' _ _
/ Jdz =C" + h— €5(0) = D. (8.47)
—h
We now implicitly define the vertical coordinate z* with
. =L
s=z"+& (8.48)
Any field ¢(xq, x5, 2, t) transforms to ¢* (a7, x5, 2*, t*) with
0 0¢* 0p*
9 _ 99" 500 (8.49)

ot or s, 02
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¢ 06" 500"

0% - oxr s, 0z (8.50)
0¢ 1 O¢*
-7 - 01
0z s, 0z* (8:51)

with s;, s, and s, the partial derivatives of s with respect to t*, z* and z},, respec-

tively. The coordinate transform was built to obtain the following identity

s =140 (}). (8.52)

Removing the % superscripts from now on, the mass conservation (8.44) multi-

plied by s, may be written as

9 () + =0, (8.53)

where the vertical velocity,

1+ 0(¢e)

W =J [WL _ ﬂgsa — st] =w 8%5/32 )

(8.54)

is the Lagrangian mass flux through horizontal planes.

Neglecting terms of order €5 and higher, the product of (8.42) and s,J is re-

written as,
iy Aaaa+Aaaa+ ity (ot )P]+3pH
—_ Ug—=—— + W—— + €, U w
ot Tors 0z LA e
) ot, —
= —— (87 ygsbear)y _p— 2L X 8.55
0% ( + ) 20z T e (8.55)
with

)
|

J [wL Sy — st] — Py =W — Py + JP,s,
= W — Py + O(osiea/k), (8.56)

the quasi-Eulerian advection velocity through horizontal planes. >From now on
we shall use exclusively these glm22z-RANS equations in z coordinate, with a non-
divergent GLM velocity field u”.

Using eq. (8.25), we may re-write (8.53) as

0u, 0w
s =0 (8.57)
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Surface boundary conditions

Taking an impermeable boundary, the kinematic boundary condition is given by
Andrews and McIntyre (1978a, section 4.2),
—L —L
0 0 —
X L qtd b a7 (8.58)

24 aE > =W=w+P at z=C( (8.59)

When the presence of air is considered, it should be noted that the GLM position
is discontinuous in the absence of viscosity, because the Stokes corrections for (
have opposite signs in the air and in the water. This discontinuity arises from the
discontinuity of the horizontal displacement £, (air and water wave-induced motions
are out of phase). A proper treatment would therefore require to resolve the viscous
boundary layer at the free surface. This question is left for further investigation.
However, we note that due to the large wind velocities and possibly large surface
currents unrelated to wave motions, a good approximation is given by neglecting
the Stokes corrections for the horizontal air momentum,

it =1u, + P,

« « a )

(8.60)

where the — and + exponents refer to the limits when approaching the boundary

from below and above, respectively.

For the mean horizontal stress, we use the results of Xu and Bowen (1994),

Ta = OpnNa + Snsn3 at z = C (861)

with S the stress tensor, with normal S,,, and shear S, stresses on the surface,

generally defined by

8xj + aI'Z

Sij = —P0ij + puwV (
with v the kinematic viscosity, and the local unit vector normal to the surface, to

first order in ey,

o 9 ) | (8.63)

n:(0,0,l)— (a—ml,a—@,o
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Taking the Lagrangian mean of (8.61), one obtains,

ou oP, —
TE =Tk =Y+ pwu# + puv—— at z =, (8.64)
z

where 77 is the total air-sea momentum flux (the wind stress), as can be measured
above the wave-perturbed layer (e.g. Drennan et al. 1999). 7% is the o component

of the wave-supported stress due to surface-slope pressure correlations,

oy 9 (8.65)

The second viscous term p,,vOP, /0z was estimated using the GLM average of
wave orbital shears (Ardhuin and Jenkins 2006), it is the well-known virtual wave
stress (e.g. Xu and Bowen 1994, eq. 18). That stress corresponds to wave mo-
mentum lost due to viscous dissipation, and it can be absorbed into the boundary
conditions because it is concentrated within a few millimeters from the surface (Ban-
ner et Peirson 1998). At the base of the viscous layer of thickness d;, (8.64) yields,
using an eddy viscosity K.,

0P, O,

a w _
To = Ta = PuwV = Pw Z@z

t = —0g. .
o at =z s (8.66)

Bottom boundary conditions

The same approach applies to the bottom boundary conditions. The kinematic
boundary condition writes
—L —L

aait + (Uq + Pa) g% =(w+P;) at z= ~n". (8.67)
If an adherence condition is specified at the bottom, which shall be used below,
the bottom boundary condition further simplifies as Y= h Tt may also simplify
under the condition that the wave amplitude is not correlated with the small scale
variations of h, which is not generally the case (e.g. Ardhuin and Magne 2007). For
the dynamic boundary conditions, pressure-slope correlations give rise to a partial
reflection of waves, that may be represented by a scattering stress (e.g. Hara and Mei
1987, Ardhuin and Magne 2007). This stress modifies the wave pseudo-momentum
without any change of wave action (see also Ardhuin 2006).

The effect of bottom friction is of considerable interest for sediment dynamics
and deserves special attention. For the sake of simplicity, we shall here use the
conduction solution of Longuet-Higgins for a constant viscosity over a flat sea bed

as given in the appendix to the proceedings of Russel and Osorio (1958). We shall
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briefly consider waves propagating along the z-axis, and we assume that the mean
current in the wave bottom boundary layer (WBBL) is at most of the order of the
wave orbital velocity outside of the WBBL. Instead of (8.11) (8.16) the orbital wave

velocity and displacements near the bottom take the form,

up = g [cost — e cos(v) — 2) (8.68)
w = “(’séf [2Zsin ¢ — sin(¥) — 2)e™ + sin1) + cos(yp — 2)e™" — cos 1] (8.69)
& = —% [sin g — sin(y) — 2)e~?] (8.70)
& = “Z]ff (22 cos 1) — cos(tp — 2)e™ + cos ¢ + sin(¥) — £)e™* — sin¢|(8.71)

where ¢ = kx — wt is the wave phase, 6; = (2v/w)"? is the depth scale for the
boundary layer, Z = (z + h)/d; is a non-dimensional vertical coordinate, uy =

ac/sinh(kD) is the orbital velocity amplitude outside the boundary layer.

Based on these velocities and displacements, the wave pseudo-momentum P, is

2 o~

P = —=&au —&aw = ;—(g [1 + e_2;cos(22) — 2cos Ee_z} ) (8.72)

This is equal to the Stokes drift W% = u; 1€, + u; 33 computed by Longuet-Higgins.
Besides, the rate of wave energy dissipation induced by bottom friction is Spgie =

pwwul /2 giving a bottom friction stress [ TPMdz = ko Sppic/ (pu0).

Generalizing this approach to a turbulent bottom boundary layer (e.g. Longuet-
Higgins 2005) one may replace the constant viscosity with a depth-varying eddy
viscosity. If the wave bottom boundary layer (WBBL) is resolved, 7° will also
include the momentum lost by waves through bottom friction, as given by the depth-
integral of TP, One may estimate P from the vertical profiles of the wave orbital
velocities @, and w, and the modified pressure (8.38) has to be corrected for the
change in wave orbital velocities in the WBBL. Many WBBL models are available

for estimating these wave-induced quantities.

If the bottom boundary layer is not resolved, on may take the lowest model level
at the top of the wave boundary layer. The bottom stress may then be computed
from a parameterization of the bottom roughness zo, (e.g. Mathisen and Madsen
1996, 1999), which relates the bottom stress

= —pul s, (8.73)
u
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to the current velocity u, at the lowest model level z,

z+h

20a’

Uy = KllyeIn l 1 , for z+h<dy. (8.74)
Then the near-bottom velocity 4, should be taken equal to the Eulerian streaming
velocity ~ 1.5P, (see e.g. Marin 2004, for turbulent cases with rippled beds).
Further, in this case the bottom stress ?gl should not include the depth integral
of TOE’friC. This latter remark also applies to depth-integrated equations. Indeed,

wa —

wh — [T Thbitieq s a flux of momentum into the bottom due to wave bottom

friction, T;”b does not participate in the momentum balance that gives rise to a sea

level set-down and set-up (Longuet-Higgins 2005).

8.3 Relations between the present theory and known

equations

8.3.1 Depth-integrated GLM for a constant density p,,

Using (8.59) the mass conservation equation in z coordinates (8.53) classically gives
(e.g. Phillips 1977)

o ¢ o ¢
2 s = ——/ akd 8.75
ot /41'0 - 0%, 7hp Y2 ( )

which is exactly the classic shallow-water mass conservation for constant density,

oD oM,
— = 8.76
ot Ox, ( )
with the depth-integrated volume flux vector® M defined by
<
M:/ whdz. (8.77)
—h

In the momentum equation, the advection terms may be transformed in flux
form using mass conservation. However, because some of the original GLM advec-
tion terms are included in the vortex force, the remaining terms do not simplify
completely. Using (8.57) one has,

e OUy — _Olyg O,

w P—
Po e T, TV | T

3Phillips (1977) uses the notation M instead of M, and M instead of M.



Annexe A : Equations GLM2z 191

0 0 0 OP;
= = (pulia) + — (Pulisla) + = [puw (B + P3) Gla) — Ga—s. (8.

Using (8.59), (8.67) and (8.25), and after integration by parts, these advection terms

integrate to

oM™ OMy  Oua, ¢ Ou,
a lindipd . Mw—/P—d, 8.79
3t * o, 3xﬂ </ P u Uﬁ Z) +UA 3xﬂ + 8xg A —h ﬂ@xﬁ & ( )

where the zeroth order wave advection velocity uy is defined by,

¢
Uan MY = / 1Py, (8.80)

which is equal, at lowest order, to the second term in (8.8). The wave-induced mass

transport is the depth-integrated pseudo-momentum,

- /Eh Pdz. (8.81)

Finally, the quasi-Eulerian volume flux is defined by M™ = M — M".

For terms uniform over the depth (9pf /0z,, and 0S?/0x,) the integral is simply
the integrand times the depth.

It should be noted that the depth-integrated vortex force involves the advection

velocity uy,
=L

¢
,/7h €a3s (fg + u.)3) PﬁdZ = €a34 (fg -+ Qg) Mg}, (882)

with
Q3 = €305 (Quap/0xq — OUuan/0T3) . (8.83)

The vertical integration of (8.55) thus yields

m 19)
oM
ot c%cg (/ pwuauﬁdz> + €a3ﬂf3Mﬁ + Da (pwgC + pa)

oMY 8uA ou
S Q) MY — B Ty /Pad
€asp (fs +Q3) Mg —un 8:153 05 5 T ﬁ@xg
J Z shear
—Dai—/ 05 —/ Pgauadz—i—th (8.84)
0x, h O

The source of momentum X™ is simply the sum of the mean momentum fluxes
at the top and bottom, and the source of momentum due to diabatic wave-mean
flow interactions (i.e. breaking and wave-turbulence interactions), corresponding to
Smith’s k;DW.

These equations are very similar to those of Smith (2006, eq. 2.29), our term
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S7 is simply termed J in Smith (2006). The only differences are due to the vertical
shear in the current. The advection velocity w4, replaces Smith’s mean flow velocity.
Since w4, is the proper lowest order advection velocity for the wave action (Andrews
and McIntyre 1978b), this is a simple extension of Smith’s result to depth-varying
currents. The term involving S%"¢* is also obviously absent from Smith’s equations.
The last differences in (8.84) are the last two terms on the second line, but they also

cancel for a depth-uniform current .

8.3.2 [Equations of McWilliams et al. (2004)

The approach of MRLO04 is in the line of perturbation theories presented by Mei
(1989) for Eulerian variables and monochromatic waves. Although the result of
MRLO04 corresponds to a particular choice of the relative ordering of small param-
eters, it is given to a high enough order so that it does cover most situations at a
lower order. In particular MRL04 have pushed the expansion to order &f for some
terms because they assumed a ratio o/ f3 of order €], with £, the wave slope. This
ratio, in practice, may only be attained for relatively steep wind waves (developed
wind seas and swells generally have slopes of the order of 0.05). They also assumed
that €7 ~ &, (the wave envelope varies on a scale relatively larger than the wave-
length compared to the present theory in which £; ~ &5 is possible). These authors
also separated the motion into waves, long waves and mean flow, and considered
in detail the rotational part of the wave motion caused by the vertical shear of the
current.

MRI1.04 thus obtained Eulerian-mean equations that only correspond to measur-
able Eulerian averages under the level of the wave troughs. Because they use an
analytic continuation of the velocity profiles across the air-sea interface, the physi-
cal interpretation of their average is unclear between the crests and troughs of the
waves. We shall neglect here their terms of order £} (i.e. terms that involve the
wave amplitude to the power of four), which amounts to choosing a slightly differ-
ent scaling. Since we shall consider here random waves, this avoids cumbersome
considerations of the wave bispectrum.

The Eulerian-mean variables of MRL04 should be related to the Lagrangian
mean values by the Stokes corrections (8.5), so that their horizontal Eulerian-mean

9. Because they have subtracted the hydrostatic

velocity q corresponds to u? —
pressure with the mean water density py,o, their mean pressure (p) should be equal
to the Eulerian mean pressure p + p,09z, with p related to the GLM pressure via
eq. (8.37).

Absorbing the long waves in the mean flow (i.e. allowing the mean flow to vary
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on a the wave group scale, see also Ardhuin et al. 2004), MRL04 equations for the

‘Eulerian’ mean velocity (¢, g2, @) can be written as

9o o _ 0 1Lap)y 9
BT + (qg o5 + w&z) Qo + €a3pf3q3 + oo, om. (K1 + o) + o
(8.85)
0 0
% = (pw — Pu0)g — 9 (Ki+Ky) + K (8.86)
dq ow
a—:ci 5, =0 (8.87)
<p> =  Pwy (Z — kEFschs) - PO at z2=10 (888)
W = —w at z=0 8.89
St ( )
with
Ky = %——E[F Fog+ FogF kE 8.90
1 = 2—20005 Sssc]g ()
0qq
Ja = —€a3g (fg + W3) ﬂg — wSta—qZ (891)
K = aﬁ% (8.92)
UkﬁE z aQqﬁ(Z,) / / /
/CQ = 2 o 022 ch(z )ng(z )dZ (893)
Po = O(%s‘f) (8.94)

The original notations of MRL04 (see also Lane et al. 2007) have been translated

to the notations used above and order €] terms have been neglected.

These equations are clearly analogue to the gim22-RANS equations presented
here. In particular the vertical vortex force term K corresponds to our K; that
gets into S*1°a" the dynamically relevant kinematic pressure pressure (p) + ki + Ko
corresponds to our pressure p defined by (8.38), and the vertical Stokes velocity w™!
corresponds to our P3. There are only two differences. One is between the surface
boundary conditions for these two pressures, with a difference only due to Ko(z =
0) # —KQ(EL). Integrating by parts to estimate Ky(z = 0), this difference is found
to be of the order of gkFEe;. Such a difference is of the same order as extra terms
that would arise when using wave kinematics to first order in the current curvature
(Kirby and Chen 1989), and properly transforming @ in @. The second difference
between MRLO0O4 and the present equations is that the wave pseudo-momentum P
differs from the Stokes drift @ when the current shear is large, and both generally
differ from the expression for @° given by MRL04. Since MRL04 took the current

and wave orbital velocity to be of the same order, in that context the difference
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P — u” is of higher order and thus the two sets of equations are consistent in their
common range of validity.

A general comparison of 2D depth-integrated equations is discussed by Lane et
al. (2006). The present work therefore brings a further verification of their 3D form
of the equations, and an extension to relatively strong currents, possibly as large as
the phase velocities. As expected, the Eulerian averages of McWilliams et al. (2004)
are identical to the quasi-Eulerian fields in GLM theory, because they obey the same
equations, except for current profile curvature effects, which were partly neglected
here. The "Eulerian" mean current of MRL04 can thus be physically interpreted
as a quasi-Eulerian average, defined as the GLLM average minus the wave pseudo-
momentum. FExcept for a Jacobian that introduces relative corrections of second
order in the wave slope, this averaging is identical to the procedure used by Swan
et al. (2001). Above the trough level, this average should not be confused with
a truly Eulerian average, as obtained from in-situ measurements for example. In
such measurements the Stokes drift would be recorded in the trough-to-crest region

(figure 1.a).

8.4 Limitations of the approximations

The glm2z-RANS equations have been obtained from the exact GLM equations,
under 6 restricting hypotheses related to the wave slope and Ursell number (H1 and
H2), the horizontal scales of variation of the wave amplitude (H3), the current profile
(H4 and H5) and the vertical mean velocity (H6). These hypotheses essentially
allowed us to use the linear wave-induced quantities given by egs. (8.11) (8.19). In
practical conditions, these hypotheses may not be verified and the resulting glm2z-
RANS equations may have to be modified. Here we investigate the importance of
H3, H2 and H1, using numerical solutions from an accurate coupled mode model
for irrotational wave propagation over any bottom topography, and an accurate

analytical solution for incipient breaking waves, respectively.

8.4.1 Bottom slope and standing waves

In absence of dissipation and given proper lateral boundary conditions the flow in
wave shoaling over a bottom slope is irrotational and can thus be obtained by a
numerical exact solution of Laplace’s equation with bottom, surface, and lateral
boundary conditions. For waves of small amplitudes this can be provided by a so-
lution to this system of equations to second order in the wave slope. Belibassakis

and Athanassoulis (2002) have developed a second order version of the National



Annexe A : Equations GLM2z 195

Technical University of Athens numerical model (NTUA-nl2) to solve this problem
in two dimensions. Here we apply their model to the simple case of monochromatic,
unidirectional waves propagating along the x axis, with a topography uniform along
the y axis. The topography h(x) varies only for 0 < x < L and is constant h(x) = hy
for ¥ < 0 and h(x) = hy for x > L. In that case the Eulerian mean current Vo (x)
is irrotational, and uniform over the vertical as x approaches +oo (e.g. Belibas-
sakis and Athanassoulis 2002, table 1 and figure 5). We shall further restrict our
investigation to the case of a monochromatic wave train of known radian frequency
w and incident amplitude a, giving rise to reflected and transmitted wave trains of
amplitudes Ra and T'a. Numerical calculations are given for a bottom profile as
given by Roseau (1976) for which the reflection coefficient R is known analytically,
thus providing a check on the quality of the numerical solution.
The bottom is defined here by x and z coordinates given by the real and imagi-
nary part of the complex parametric function of the real variable a2/,
hi(x' —iag) 4 (he — hy) In(1 4 e*'~i@0)

Z(@)Y=z+iz= : (8.95)
Qo

We choose h; = 6 m and hy = 4 m and a wave frequency of 0.19 Hz (w = 1.2 rad s7').
For oy = 15m/180 the maximum bottom slope is €5 = 2.6 x 1072 (figure 1), and the
reflection coefficient for wave amplitude is R = 1.4 x 107 (Roseau 1976), so that
reflected waves may be neglected in the momentum balance. Due to the shoaling
of the incident waves, the mass transport induced by the waves increases in shallow
water, and thus the mean current must change in the z direction to compensate for
the divergence in the wave-induced mass transport. We shall further take a zero-
mean surface elevation as x — —oo. The second order mean elevation is obtained
as a result of the model. We also verified that the vertical wave pseudo-momentum
compensates for the divergence of the horizontal component so that in this case for

linear waves the wave pseudo-momentum is non-divergent (figure 3).

For mild bottom slopes, the reflection coefficient is small as predicted by Roseau
(1976). The NTUA-nl2 model used here generally gives accurate reflection coeffi-
cients, but it tends to overestimate very weak reflections. In the first case investi-
gated here, the numerical reflection is R = 1 x 1072, with no significant effect on the
wave dynamics. The NTUA-nl2 model is used to provide the Fourier amplitudes
of the mean, first and second harmonic components of the velocity potential, over
a grid of 401 (horizontal) by 101 (vertical) points. From these discretized poten-
tial fields, the mean, first and second harmonic velocity components are obtained
using second order centered finite differences. As expected, the numerical solution

gives a horizontal mean flow @ that compensates the divergence of the wave mass
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transport and is thus of order o/ke?. Further W is almost uniform over the verti-
cal and is irrotational (figure 8.2.b). The vertical mean velocity is of higher order.
The GLM momentum balance is thus dominated by the hydrostatic and dynamic
pressure terms p/ and S?. Although these two terms are individually of the order

of 0.01 m? s72, their sum is less than 2 x 10716 m? s=2

s~“ in the entire domain, at
the roundoff error level. It thus appears that this part of the momentum balance
is much more accurate than expected from the asymptotic expansion. Indeed, for
any bottom slope, in the limit of small surface slopes and for irrotational flow and
periodic waves, the Stokes correction (8.5) for the pressure and the time average
of the Bernoulli equation give the following expression for the modified kinematic

pressure (8.38)

L1 = —as ==
Ss_ P Wy P 1. 0p U
P Pw 2 Pw " pngaxj 2

7 R I I

L. op
= —gz+ p—wfja—xj —uju; = —gz —§&;

0:16]615 Gt 3333

0 —
= —gz — afju]' = —gz (8'96)

where the equalities only hold to second order in the surface slope. Thus the kine-
matic modified pressure p has no dynamical effect to second order in the wave slope,
as already discussed by McWilliams et al. (2004) and Lane et al. (2007). For ir-
rotational flow, this remains true for any bottom topography and even for rapidly

varying wave amplitudes, including variations on scales shorter than the wavelength.

Thus the only wave effect is the static change in mean water level (set-up or
set-down), and dynamic consequences in the WBBL, where S? goes to zero, leaving
the hydrostatic pressure gradient to drive a mean flow that can only be balanced by
bottom friction. For slowly varying wave amplitudes the mean sea level is given by
Longuet-Higgins (1967, eq. F1)

_ . kE ko Fo
) =~ Goh@kD) T smh(2hy)

(8.97)

where the 0 subscript correspond to quantities evaluated at any fixed horizontal

position, the choice of which being irrelevant to the estimation of horizontal gradients

of .

Equation (8.97) is well verified by the NTUA-nlI2 result for the case considered
so far (figure 8.4.a). However, this is no longueur true for rapid variations in the

wave amplitude a(z), i.e. due to partially standing waves. In that case one should
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use Longuet-Higgins’ eq. D (op. cit.)

2

== =5 == =5
— UﬁUg — U3 UﬂUﬁ — Uj
((x) = — l7] + [7] : 8.98

( ) 29 z=0 29 z=0,x=x9 ( )

with @g and @3 given by linear wave theory. Eq. (8.98) is a generalization of Miche’s
(1944a) mean sea level solution under standing waves. Contrary to propagating
wave groups, for which the mean sea level is depressed under large waves, here the
depression occurs at the nodes of the standing wave, where the horizontal velocities

are largest and amplitudes are smallest (figure 8.4.c).

Eq. (8.98) is well verified in the presence of partially standing waves. To illus-
trate this, we have modified the bottom topography, adding a sinusoidal bottom
perturbation for x > 180 m with an amplitude of 5 cm and a bottom wavelength
half of the local waves’ wavelength, which maximizes wave reflection (Kreisel 1949).
This yields a wave amplitude reflection R = 0.03, for w = 1.2 rad s~ !, of the order
of observed wave reflections over gently sloping beaches (e.g. Elgar et al. 1994).
The bottom is shown on figure 8.4.b. Although the standing wave pattern is hardly
noticeable in the surface elevation (the amplitude modulation is only 6%, figure
8.4.c), the small pressure modulation occur at much smaller scales, so that the as-
sociated gradient can overcome the large scale gradients of the hydrostatic pressure
(figure 8.4.d). As a result small partial stading waves can dominating the momen-
tum balance in the WBBL (see Longuet-Higgins 1953, Yu and Mei 2000 for solutions

obtained with constant viscosity).

In the presence of such standing waves, and in the absence of strong wave dis-
sipation, the hydrostatic pressure on the scale of the standing waves (e.g. given by
Miche 1944a) drives the flow in the WBBL towards the nodes of the standing wave
(Longuet-Higgins 1953), and is balanced by bottom friction. This WBBL flow drives
an opposite flow above, closing a secondary circulation cell. This secondary circula-
tion is important for nearshore sediment transport just outside of the surf zone (Yu
and Mei 2000). If these sub-wavelength circulations are to be modelled, the present
glm2z-RANS theory should be extended to resolve the momentum balance on the

scale of partial standing waves.

This extension is relatively simple as it only introduces additional standing wave
terms in all quadratic wave-related quantities, arising from phase-couplings of the
incident and reflected waves. This extension provides a generalization of eq. (8.98)

in the presence of other processes. For example, eq. (8.39) now becomes

- /k 1 % (1 + R?) = 2R?(K) cos(2¢ (k)) | dk (8.99)
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with R(k) the amplitude reflection coefficient and 2¢'(k) is the phase of the partial
standing waves defined by V' = k and 0¢y'/0t = —k - Ut such that it is zero
at the crest of the incident waves. Note that the integral is over the incident wave
numbers only (e.g. for wave propagation directions from 0 to 7). Similar expressions

are easily derived for the other wave forcing terms.

8.4.2 Effects of wave non-linearity

Deep or intermediate water waves do not break very often in most conditions (e.g.
Banner et al. 2000, Babanin et al. 2001), thus the particular kinematics of breaking
or very steep waves likely contributes little to the average forcing of the current.
However, most of the waves break in the surf zone and deviations from Airy wave
kinematics may introduce a systematic bias when the glm2z-RANS equations are
applied in that context. Many wave theories have been developed that are generally
more accurate than the Airy wave theory (e.g. Dean 1970). However, they may lack
some realistic features found in breaking waves, such as sharp crests. In order to
explore the magnitude of this bias, we shall use the kinematics of two-dimensional
incipient breaking waves as given by the approximate theory of Miche (1944b).
Miche’s theory is based on the asymptotic expansion of the potential flow from
the triangular crest of a steady breaking wave, extending Stokes’ 120° corner flow to
finite depth. >From this Miche obtained his criterion for the maximum steepness
of a steady breaking wave, i.e. h/\ = 0.14tanh(kh) with h the breaking wave
height and A the wavelength, which favorably compares with observations. The
Miche wave potential ¢ and streamfunction 12 are expressed implicitly as a function
G of the coordinates x — z, + i(z — z.), with origin on the wave crest (z., z.).
The coefficients in the series representing the reciprocal function G’ are obtained
from the boundary condition at the surface and bottom. Unfortunately, these are
imposed only under the wave crest and trough, so that the bottom streamline may
not be horizontal away from the crest. This is particularly true for small values
of kh. Due to the expansion of G’ in powers of ¢ + i&, the shape of the wave
is nevertheless accurate near the crest, and since the overall drift velocities are
dominated by the corner flow near the crest (see also Longuet-Higgins 1979), the
approximations of Miche have little consequence on the drift velocities. The function
G" was modified here to make the bottom actually flat, and the vertical under the
trough an equipotential. This deformation adds a weak rotational component to
the motion and the wave streamlines are weakly modified at the bottom under the

wave trough?. The resulting wave for kh = 0.58 (corresponding to b = 1 in Miche

4This correction leads to negligible differences compared to the exact solution as verified with
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1944b) is shown in figure 8.5.a. A numerical evaluation of that solution is obtained
at 201 equally spaced values of ¥ and 401 equally spaced values of ¢ (figure 8.5.b).
The GLM displacement field £ is computed as described in section 2.1. Since the
streamlines are known in the frame of reference of the wave, Lagrangian positions
of 201 particles initially placed below the crest at z;(0) = 0, were tracked over four
Eulerian wave periods. The positions (z;(t), 2;(t)) are given by the potential ¢;(t)
and streamfunction ¢;. The Lagrangian period for each particle T} is determined
by detecting the first time when the particles pass under the crest again. The
Lagrangian mean velocity of each particle is then x;(T}')/TF, and it corresponds
to a vertical position z; = fOTiL z;i(t)dt. This defines the Lagrangian mean velocity
! (z;) in GLM coordinates. Following the coordinate transformation in section 2,
we further transform the GLM velocity profile to z coordinate (figure 8.5.c). The
resulting profile of W” has a horizontal tangent at z = 0, as discussed by Miche

(1944b).

Contrary to Miche (1944b) who defined the phase speed C' of his wave by im-
posing a zero mass transport, we have defined C so that P = u” with the pseudo-
momentum P estimated from eq. (7) using finite differences applied to the displace-
ment field. The two profiles of P, estimated from eq. (7), and T, estimated by time
integration of particle positions coincide almost perfectly. Thus the estimation of P
provides a practical method for separating the mean current from the wave motion.
Starting from any value of C, the difference between u” and P is the mean current

velocity u. Here C' was corrected to have u = 0.

>From &, Bernoulli’s equation can be used to obtain the GLLM of velocities and
pressure. Compared to linear wave theory, the Stokes drift in a Miche wave is
much more sheared. It should be noted that in the cnoidal theory investigated by
Wiegel (1959) this drift velocity is depth-uniform. Thus cnoidal wave theories may
produce inaccurate results for 3D wave-current interactions when extrapolated to
breaking waves. This marked difference in the 3D mean flow forcing due to breaking
waves compared to linear waves calls for a deeper investigation of this question.
Investigating such kinematics, may provide a rationale for the parameterization of
nonlinearity in the glm2z-RANS equations proposed here. Such a parameterization
is proposed by Rascle and Ardhuin (manuscript in preparation for the Journal of

Geophysical Research).

streamfunction theory to 60th order.
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8.5 Conclusion

We have approximated the exact Generalized Lagrangian Mean (GLM) wave-averaged
momentum equations of Andrews and McIntyre (1978a), to second order in the wave
slope, allowing for strong and sheared mean currents with limited curvature in the
current profile. These approximated equations were then transformed by a change
of the vertical coordinate, giving a non-divergent GLM flow in 2z coordinates. The
resulting conservation equations for horizontal momentum (8.55) and mass (8.57),
with boundary conditions (8.59)—(8.74) may be solved using slightly modified ver-
sions of existing primitive equations models, forced with the results of spectral wave
models. Although the Stokes drift introduces a source of mass at the surface for
the quasi-Eulerian flow, this is does not pose any particular problem, and such mass
source have long been introduced for the simulation of upwellings. The HYCOM
model (Bleck 2002) was modified by R. Baraille to solve a simplified set of the
present equations, retaining only the wave-induced mass transport in both the mass
and momentum equations, and the tracer equation (in which the advection velocity
is simply u’, see also MRL04). This work was applied to the a hindcast of the trajec-
tories of sub-surface oil pellets released by the tanker Prestige-Nassau, which sank
off Northwest Spain in November 2002 (presentation at the 2004 WMO-JCOMM
‘Oceanops’ conference held in Toulouse, France). The full equations derived here
have also been implemented in the ocean circulation model ROMS (Shchepetkin
and McWilliams 2003), and results will be reported elsewhere. The equations pre-
sented here have also been applied for the modelling of the ocean mixed layer in

horizontally-uniform conditions (Rascle et al. 2006).

Although a general expression for the turbulent closure has been given, it has not
been made explicit in terms of the wave and mean flow quantities beyond a heuristic
closure that combines an eddy viscosity mixing term with the known sources of
momentum due to wave dissipation. A proper turbulent closure is left for further
work, possibly extending and combining the approaches of Groeneweg and Klopman
(1998), with those of Teixeira and Belcher (2002). Further, some wave forcing
quantities have been expressed in terms of the Eulerian mean current W instead of
the quasi-Eulerian mean current u. The conversion from one to the other, can be
done using eq. (8.24), to the order of approximation used here. However, it would be
more appropriate, in particular for large current shears, to start from quasi-Eulerian
wave kinematics, instead of Eulerian solutions of the kind given by Kirby and Chen
(1989, our eq. 10-12).

Beyond the turbulence closure, there are essentially two practical limitations to

the approximate glm2z-RANS equations derived here. First, the expansion of wave
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quantities to second order in the surface slope is only qualitative in the surf zone.
Although this was acceptable in two dimensions (see Bowen 1969 and most of the
literature on this subject), it is expected to be insufficient in three dimensions due
to a significant difference in the profile of the wave-induced drift velocity P, which
exhibits a vertical variation with surface values exceeding bottom values by a factor
of 3, even for kh < 0.2 in which case linear wave theory predicts a depth-uniform
P. This conclusion is based on both the approximate theory of Miche (1944b),
and results of the streamfunction theory of Dalrymple (1974) to 80th order. Such
numerical results can be used to provide a parameterization of these effects. Further
investigations using more realistic depictions of the kinematics of breaking waves will
be needed. Second, the vertical profile of the mean current in the surf zone may be
such that the wave kinematics are not well described by the approximations used
here. A strong nonlinearity combined with a strong current shear and curvature can
lead to markedly different wave kinematics (e.g. da Silva and Peregrine 1988).

With these caveats, the equations derived here provide a generalization of exist-
ing equations, extending Smith (2006) to three dimensions and vertically sheared
currents, or McWilliams et al. (2004) to strong currents. Of course, mean flow
equations can be obtained, at least numerically, using any solution for the wave
kinematics with the original exact GLM equations, as illustrated in section 8.4.2.
The wave-forcing on the mean flow is a vortex force plus a modified pressure, a
decomposition that allows a clearer understanding of the wave-current interactions,
compared to the more traditional radiation stress form. This is most important for
the three-dimensional momentum balance and/or in the presence of strong currents,
e.g. when a rip current is widened by opposing waves, as observed by Ismail and
Wiegel (1983) in the laboratory. Such a situation was also recently modelled by Shi
et al. (2006).
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Symbol name where defined
1 and 2 indices of the horizontal dimensions after (8.8)
3 index of the vertical dimension after (8.8)
a wave amplitude after (8.12)
D=h+( mean water depth after (8.7)
f=(f1, f2, f3) Coriolis parameter vector (twice the rotation vector)  after (8.6)
Fee, Fos, Fso and Fgg Vertical profile functions after (8.12)
g acceleration due to gravity and Earth rotation after (8.7)
h depth of the bottom (bottom elevation is z = —h) before (8.8)
J Jacobian of GLM average after (8.44)
k = (ki, ko) wavenumber vector after (8.7)
K Depth-integrated vertical vortex force (8.33)
K, Shear-induced correction to Bernoulli head (8.29)
K, vertical eddy viscosity (8.43)
(+)! Lagrangian perturbation (8.2)
@L Lagrangian mean (8.1)
m shear correction parameter (8.20)
M depth-integrated momentum vector (8.77)
MV depth-integrated wave pseudo-momentum vector (8.81)
M™ depth-integrated mean flow momentum vector after (8.81)
n unit normal vector (8.63)
Table 8.2: Table of symbols
Symbol name where defined
D full dynamic pressure after (8.26)
p wave-induced pressure (8.10)
pH hydrostatic pressure after (8.35)
P= (P, P, P) wave pseudo-momentum (8.6)
t time before (8.1)
u = (uy, ug, uz) velocity vector
u wave-induced velocity (8.11) and (8.68)
u” Lagrangian mean velocity after (8.1)
us advection velocity for the wave action (8.80)
U, = ut — P, quasi-Eulerian horizontal velocity before (8.24)
s =2+ E§ GLM to z transformation function (8.48)
US Stokes correction (8.5)
Sij stress tensor (8.62)
S wave-induced kinematic pressure (8.39)
GShear shear-induced correction to S? (8.40)
w = ug vertical velocity before (8.30)

quasi-FEulerian vertical velocity
w GLM vertical velocity in z coordinates
position vector

before (8.30)
(8.54)
before (8.1)

Table 8.2: Table of symbols, continued
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Symbol

name

where defined

Z = X3
a and
€
€1
€9
€3
€ijkAj By
A

14

6 = (61) f?a 63)
P

diabatic source of momentum
diabatic source of quasi-Eulerian mean momentum

vertical position

dummy indices for horizontal dimensions
Kronecker’s symbol, zero unless i = j
generic small parameter
maximum wave slope
maximum horizontal gradient parameter
maximum current curvature parameter
component ¢ of the vector product A x B
free surface elevation

wavelength

kinematic viscosity of water

wave-induced displacement

density of water (constant)
relative radian frequency

mean stress tensor
wave phase

absolute radian frequency
depth-weighted vertical vorticity of the mean flow
horizontal gradient operator

after (8.24)
(8.27)
after (8.8)

after (8.26)
after (8.8)
after (8.7)
after (8.7)
(8.9)
after (8.6)
before (8.8)
section 4.2
after (8.62)
before (8.1)
after (8.12)
after (8.7)
(8.61)
after (8.7)
after (8.7) and (8.8)
(8.83)
after (8.7)

Table 8.2: Table of symbols, continued
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Figure 8.1: Averaging procedures (left) and examples of resulting velocity profiles
(right) in the case of (a) Eulerian averages (e.g. Rivero and Sanchez-Arcilla 1995,
McWilliams et al. 2004), (b) the Generalized Lagrangian Mean (Andrews and McIn-
tyre 1978a), and (c) sigma transform (Mellor 2003, AJBOT7). The thick black bars
connect the fixed points x where the average field is evaluated, to the displaced
points x + & where the instantaneous field is evaluated. For averages in moving
coordinates the points x + ¢ at a given vertical level £ are along the gray lines. The
drift velocity is the sum of the (quasi-Eulerian) current and the wave-induced mass
transport. In the present illustration an Airy wave of amplitude 3 m and wave-
length 100 m in 30 m depth, is superimposed on a hypothetical current of velocity
u(z) = —0.5 — 0.01z m/s for all z < ((x). The current profile is not represented
in (c) since it is not directly given in Mellor’s theory, although it can obviously be
obtained by taking the difference of the other two profiles.
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Figure 8.2: (a) Instantaneous pressure perturbation (p — P)/(pwg) given by the
NTUA-nl2 model (Belibassakis and Athanassoulis 2002), including the second order
Stokes component in waves with amplitude a = 0.12 m, over the bottom given
by eq. (8.95). (b) Mean current —u, and (c) horizontal wave pseudo-momentum
Py estimated from eq. (8.7), and verified to be equal to the Stokes drift. Arrows
indicate the flow directions.
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Figure 8.3: Vertical wave pseudo-momentum for the same case as figure 2, estimated
from eq. (8.7), and verified to satisfy (8.25).



Annexe A : Equations GLM2z 207

T T T T T T T T T 2
= { NTUA
= = ( Longuet-Higgins (1967 eq. F1)

e — surface elevation X 10

g 2 SRR AR — bottom elevation - test2
] T EE T peee- P T CE TR
B

o)

0 20 40 60 80 100 120 140 160 180 200 0

50 100 150 200 250 300

4 6
X 10 X (m) x 10 x (m)
? ? ? ? 1 [— dTdxNTUA |
(C) . : : ’,‘-..‘5'«,;,.~"'.‘,~"a, 6 (d) "= = d{/dx Longuet-Higgins
: : : :“:‘":" | DU (1967 eq. F1)
st : ' ' ' ' N n
0 ..........................

z (m)

— C NTUA

= = C Longuet-Higgins (1967 eq. F1)
cens (a2-8) 07/g

4

0 50 100 150 200 250 300 0 50 100 150 200 250 300
X (m) X (m)

Figure 8.4: (a) Mean sea level obtained with the NTUA-nl2 model (Belibassakis
and Athanassoulis 2002) and the theory of Longuet-Higgins (1967 eq. F1: without
standing waves) using conservation of the wave energy flux along the profile. (b)
modified bottom profile resulting in a 3% amplitude reflection at w = 1.2 rad s7!,

(c) resulting mean sea level and normalized local wave amplitude a, (d) mean sea
level gradient (d).
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Figure 8.5: (a) Ilustration of the drift over 2 Eulerian periods in periodic Miche
waves. Trajectories are color-coded with their initial depth, below a wave crest. The
thin black lines are the lines of constant potential and streamfunction at t = 0. (b)
Field of displacements defining the GLM, as in figure 1.c. The dash-dotted line is
the GLM position of the free surface ZL. (c) Profiles of Eulerian and Lagrangian
mass transport velocity in a Miche wave compared to a linear wave with the same
values of k and h.
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Résumé L’objectif de cette thése est
d’analyser I'impact des vagues sur la circula-
tion océanique. La partie vagues est séparée
du courant moyen et les deux sont décrites
differemment.  Divers aspects sont abordés.
Dans la premiére partie, la dérive en surface
est analysée a I’aide un modéle & 1 dimension,
avec [l'utilisation d’une paramétrisation du
mélange lié au déferlement des vagues. 1l
apparait que la dérive de Stokes des vagues
domine la dérive d’Ekman en surface. Cette
description apparait cohérente avec les ordres
de grandeurs des observations de dissipation
d’énergie cinétique turbulente, de courants
eulériens et de dérives lagrangiennes. Cepen-
dant, plusieurs aspects de cette description,
Ieffet Stokes-Coriolis par exemple, n’ont pas
encore été validés par des observations. Une
deuxiéme partie aborde I'impact des vagues sur
le mélange et en particulier sur la profondeur
de la couche de mélange. La profondeur de la
couche de mélange diurne apparait trées sensible
a l'état de mer. Une réanalyse de vagues est
utilisée pour évaluer l'ordre de grandeur des
paramétres importants pour ce mélange, ainsi
que la distribution de ces paramétres a I’échelle
globale. Enfin, la séparation des vagues et du
courant est étudiée en zone cotiére, aux abords
de la zone de déferlement, et est comparée
aux autres descriptions de la dynamique de
la zone littorale et de ses abords immédiats.
En particulier, I'impact de la non-linéarité
des vagues sur les transports lagrangiens est
évaluée.

Mots clés : interactions vagues/courant,
dérive de Stokes, mélange et dérive en
surface
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Author: Nicolas Rascle

Abstract The purpose of this thesis is
to study the impact of waves on the ocean
circulation. The wave part is separated from
the mean current and both are described
differently. Many aspects are investigated. In
the first part, the surface drift is analyzed
with a one-dimensional model, with the use of
a parameterization of the mixing induced by
wave breaking. It appears that the Stokes drift
of the waves generally dominates the Ekman
drift at the surface. This description agrees
with the orders of magnitude of the observa-
tions of turbulent kinetic energy dissipation,
of Eulerian currents and of Lagrangian drifts.
However, many aspects of this description, the
Stokes-Coriolis effect for instance, have not
been validated yet by observations. One reason
is that one need a data set fully Eulerian or
fully Lagrangian, long enough to allow the
filtering out of other processes, with simulta-
neous observations of waves. A second part
deals with the impact of waves on the mixing,
and more particularly on the mixed layer
depth. The diurnal mixed layer shows much
sensitivity to the sea state. A waves reanalysis
is used to estimate the parameters important
for this mixing, as well as their global scale
distributions. Finally, the waves / mean flow
separation is studied close to the surf zone, and
is compared to the other descriptions of the surf
zone and inner-shelf dynamics. In particular,
the impact of the waves non-linearity on the
Lagrangian transports is evaluated.

Keywords:  waves/current interactions,
Stokes drift, surface drift and mixing



