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Technical note

Doppler properties of radars in circular orbits
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Abstract. Expressions are presented for Doppler trequency shift, Doppler band-
width. zero Doppler offset angle in spacecraft yaw and. in the SAR mode. the rate of
Doppler frequency modulation. azimuth time-bandwidth product. resolution.
available integration time and the location of principal azimuth ambiguities. The
equations are simply expressed with virtually no approximations based on angies
referenced to the satellite. Earth rotation is included. as is the geosynchronous case.
(These results differ from expressions to be found eisewhere in the literature. most
of which have been derived using flat-Earth approximations.)

1. Introduction

The purpose of this article is to present compact expressions for the Doppler
frequency, frequency linear modulation rate. Doppler bandwidth and the like for
radars on a circular (or near-circular) orbit. The work applies both to SARs (Synthetic
Aperture Radars) and to scatterometers and. in particular, those on ERS-1 and
RADARSAT. An effort is made to offer some insight into the relationships. In
particular, the roie of Earth rotation and the correct use of spacecraft or footprint
velocity are highlighted.

The results are expressed in a spacecraft-centred co-ordinate system, in which the
principal variables are location of the spacecraft and relative azimuth and elevation
angles from the radar to the scatterer. The notation is defined in the Appendix.

Some background. The work of this paper denves from the author’s analysis of
SAR systems found on SEASAT. RADARSAT, ERS-1. Magellan, Pioneer Venus
and other orbital radars. Such systems are based on a short but honourable history of
airborne systems, as described quantitatively by Brown (1967), Harger (1970) and
Tomiyasu (1978). Although acknowledged to be a first-order approximation, the
simple unforgettable rule about SAR systems is that they are (theoretically) capable of
achieving an azimuth resolution that is one-half of the size of the antenna aperture that
is used to illuminate the terrain; this is independent of radar waveiength, range or
system velocity.

Of course, high-resolution performance with these properties is ideal for applic-
ations requiring satellite sensors. Thus there have evolved several systems (and a great
deal of literature) centring on satellite SAR. The resolution rule of one-half the
aperture has been uniformly adopted in that context. Unfortunately. the original work
on SAR was strictly modelled using a flat-Earth approximation which is not
appropriate for a satellite radar configuration. The resolution achievable from a
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satellite is actually significantly better than one-half aperture (Raney 1984), one of the
points encompassed in this paper. Indeed. this fact and the circumstances surrounding
it seem not to be considered in contemporary literature (see, for example, Tomiyasu
1978. Ulaby er al. 1982, Barber 1985).

More motivation. The resolution issue is just one symptom of a much more serious
set of issues. Nowhere in the literature does there seem to be a treatment of the Doppler
space for a satellite radar that is both sufficiently complete to include the principal
properties needed for correct system design and analysis. while at the same time
sufficiently simple so that greater insight into the system operation is possible. This
article is one modest attempt in that direction.

The issue is focused by consideration of a very simple question, namely ‘what is the
velocity of a radar on a satellite in circular orbit?’ It happens that there are three
possible answers to this question, only one of which is correct for a given context. Each
of the three may be correct. according to the circumstances. The problem is that the
literature abounds with incorrect answers or inappropriate answers to the velocity
question. The velocity issue lies at the heart of the azimuth response of an SAR. as it is
only a glorified range-Doppler radar. Correct velocity formulation for the orbital case
is essential for a proper understanding and design of SARs and other Doppler-
dependent radars intended for satellites.

The three possible answers to the velocity question are: (i) the spacecraft velocity
V.., (ii) the footprint velocity V,. the rate at which the Earth’s surface is covered by the
sensor, and (iii) the square root of the product of V. andV,. For the flat-Earth model,
these three velocities have the same value, if not the same meaning. For the satellite
case. their specific roles need to be thought through afresh. This is the main theme of
this paper.

Examples. In an otherwise excellent text, Microwave Remote Sensing, Volume 11
(Ulaby et al. 1982, p. 470) the authors derive the Doppler structure for a flat Earth,
stating that for other cases **. .. the situation is similar, but more complicated™ and let
the matter go. Unfortunately, the examplie used in the accompanying text is a satellite
SAR.

In a recent paper on ERS—1 SAR design (Sawyer et al. 1984) both spacecraft and
footprint velocity are introduced. yet employed in a misleading manner. The Doppler
bandwidth (of the processed signal in azimuth) is derived by scaling inverse resolution
by the footprint velocity, which gives a correct numerical result, but for an incorrect
reason! Even more seductive, this approach suggests that the radar Doppler spectrum
_is dependent on footprint velocity, which is not the case.

In a recent extensive review article on this subject, Barber (1985) seems not to
recognize the role of these various velocities. As a result, azimuth time scaling of the
point-spread function (p. 1014) is in error, as is the derived resolution. Likewise,
scaling in the azimuth parameters of interpulse spacing, aperture time and number of
samples in the Doppler replica (pp. 1044-1046) are not correct. Although that article is
helpful at several levels. it does not maintain the standards set in the signal-theory
sections when it comes to interpretation of that work for the azimuth dimension of an
orbital SAR.

Digital processing has been with us for several years. A key parameter in design of
the azimuth matched filter is the rate of Doppler frequency linear modulation. the so-
called FM rate. This term is derived (Bennett er al. 1980) by analysis of the relative
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velocity between the SAR and an observed scatterer on the Earth. The FM rate is
proportional to V. Vg, although one frequently finds V2 in the literature (Harger 1965.
Liand Johnson 1983), even in the context of orbital systems. Of course, these may have
been intended as approximations, but if the "approximation’ is only good to 15 per cent
or worse, and if there is available a simple expression correct to better than 1 per cent,
then the more accurate expression should be employed.

Many more examples could be cited. The literature is voluminous, confusing and

rarely correct on the matter.

The bottom line. Unfortunately, with so many choices available, it is possible for
satellite radar analysis and design to go astray. For satellite systems. and for
parameters that may be urged against sensitive margins. variations of 5 or 10 per cent
can be very expensive in cost or in performance. For example, if one (incorrectly) uses
either 1 or \/( V,V..) for Doppler scaling, then an error of 7-17 per cent can occur in the
selection of radar pulse repetition frequency for low Earth-orbit SARs, which in turn
implies up to 10dB worse azimuth ambiguity levels than might be intended. using
numbers typical of ERS-1 or RADARSAT baseline design (Raney 1984).

In terms of azimuth resolution, a difference of 17 per cent (RADARSAT) in
predicted azimuth resolution can mean an increase of 17 per cent in allowed antenna
length, implying a decrease of 1-5dB in required transmitter power, or a savings of
more than 100 W. This, in turn, implies an implementation decision involving tens of
millions of dollars.

The intent of these two examples is to show that clarification of the fundamental
description of SAR and allied radar systems can have an impact that s significant. even
if the magnitude is seemingly small of the corrections on the parameters involved.

With the above as an explanation of the problem motivation. we turn to the matter
at hand.

1.1. Vector solution
For an arbitrary (vector) geometry, it is well known that the relative Doppler
frequency between a radar and a scattering object being observed is

2Fr
Son= 3% ()
where r is the range vector, ¥ is the first time derivative of r and R=|r| is the range
distance. For the problem at hand, there are two sources of motion: spacecraft orbital
velocity H and Earth rotation R,. We have range r=H—R, and the range rate i =H
—R, which express the range and range rate in terms of the spacecraft vector H and the
scatterer location vector R,.

For a circular orbit, H-H = 0 (since these vectors are orthogonal), and R.R,=0for

Earth rotation. Thus,
2(HR, R.H
e e BT )
Joop /:<R+R> 2

This may be simplified further by using the dot product to advantage. Consequently,
the Doppler frequency is

w HR, cos!

2/V.R
fD0p=T<%°cos &\t c.osa”1> 3
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where &, is the angle between the spacecratt velocity vector and the scatterer location
vector and &, is the angle between the spacecraft location vector and the scatterer
motion vector produced by Earth rotation. The Earth’s rotation is at uniform rate w..
which at latitude / leads to a tangential scatterer velocity magnitude of w R, cos /.

The results so far, aithough perhaps obvious. are instructive. We see that the etfects
of Earth rotation and spacecraft velocity are separated and additive, independent of
the specific co-ordinate system. It is also clear that the relative position of scatterer to
spacecratt is of importance rather than the absolute scatterer position.

1.2. Geometry
To find solutions. it is necessary to employ specific co-ordinate systems.

1.2.1. Spacecraft

The spacecraft is confined to an orbital plane at an inclination . (For Sun-
synchronous remote-sensing Earth satellites. W is near 100°.) The position of the
spacecraft in this plane is variously described in remote-sensing references. A very
convenient variable is argument of latitude f. which is a standard spacecraft
parameter. (Note that this is not the projected latitude onto the Earth’s surface. a
‘latitude’ that is sometimes used for spacecraft position. but can be misleading.) The
orbital spacecraft vector is H. with magnitude H measured from the Earth’s centre.
The angular rate of the spacecraft is w. and the magnitude of the spacecraft velocity
along the orbital path is V..

1.2.2. Earth

The Earth is taken to be an oblate spheroid (corrected by higher-order terms) and
represented by a local radius vector R, from the Earth’s centre. (The error resulting
from this locally spherical model compared with the perfect case is less than 50m in
elevation (Curlander 1982), which is of no consequence in the work presented here.)

1.2.3. Radar

The radar looks down from the spacecraft to a scatterer, as in figure 1. The range
elevation plane is the one in which a radar is customarily described, in which the
elevation angle 7 and the range R are the principal definitive variables. Trigonometric
identities of use are listed in the figure.

The angle between the range elevation plane and the spacecraft orbital plane is
defined as azimuth a in this work, measured from the forward spacecraft direction as in
figure 2. Thus, a=90° corresponds to the side-looking case. An indicator variable ¢ is
helpful to describe radars looking to the right (+1) or left (— 1) of the orbital velocity
vector.

Note that for people used to working with spacecraft, the variable a is more
correctly known as yaw. Furthermore, a is not azimuth as used in describing radar
antenna patterns. Antenna azimuth ¢ is customarily defined with respect to the
boresight directed in the elevation direction 7. This issue is readdressed as required
below.

2. Resuits

It may be shown that solution of the Doppler equation in the desired angles leads to

c .
Ecosé”2 =sinycosa

4

R.cos!
R

cos &, = —siny(g cos fsin ¥ sina+ cos Y cosa)
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Thus, the total Doppler shift is
foop=(2V./2)sinycosa [l —(w.w)ecos fsiny tana+cosy)] (5

The first term represents Doppler arising from the spacecraft motion, and the
remaining two terms come from Earth rotation.
This equation yields several results of specific interest. These are outlined here.

2.1. Yaw steering
Ifit is desired to steer the spacecraft (or antenna) to stabilize the offset angle to zero
Doppler. what angle a, is required? We need to solve fp,,(a,) =0. leading to

an a0:8<%’ﬂ> )

cos fsiny

which. for a given radar and orbit. is simply a function of spacecraft argument of
latitude. Clearly. the yaw angle «, is dependent on which side of the orbit the radar
looks (¢). and on the relative spacecraft-to-Earth rotation rate, w/w,. As w/w—0, ay
—90°, as it should be. Finally. for y—0° or 180°. a,—90° since at these inclinations no
component of Earth rotation causes a Doppler shift.

2.2 FM rate (SAR mode)

Let the radar be side looking, so that a= 90" relative to the spacecraft orbital plane,
the customary geometry for an SAR. Then the azimuth FM rate is found by taking the
time derivative of the Doppler shift. In the SAR mode. for a constant range contour.
dyjdt=0. It may be shown that da/dt = V,/R sin+ and df/dt = w by definition. Then we
find by direct calculation that the FM rate is

vdl{m _ 2 V;c VQ
dt /R
Thisis an interesting result. The leading term is the known approximate FM rate for an
orbital SAR. The parameter V, is the effective rate of transport of the antenna footprint
over the Earth's surface. (Recall that the interplay between V, and V., is of major
interest in this work, as they are so prone to misuse.)

The terms modulating w, arise from Earth rotation. The first of those. —cosy, is
the component of Earth rotation that is parallel to the spacecraft velocity vector; for
inclination angles larger than 90°. —cosy is positive, so that this term effectively
increases the FM rate, since the Earth rotation and orbital velocity are in opposing
directions. This amounts to an increase of FM rate by about 1 per cent for iy =98-5°.
and typical altitudes. For the shuttle radars. the inclination is much less, such as yy = 57°
for SIR-B for example. This leads to a decrease of the FM rate by about 3 per cent.

The final term is dependent on spacecraft position, as it represents the component
of Earth rotation orthogonal to the slant range vector. For Earth remote-sensing
satellites in near polar orbit, generally 90° +a <. so that an upper bound on the third
term is sin S cos . Since ¢= =+ 1, this term can be nearly as forceful as the cosy term,
with the sign dependent on which side the radar is looking, and whether operating in
the Northern or Southern Hemisphere. The largest values of this term occur near the
poles, and it goes to zero at the equator. Thus. the total Earth rotation correction
required ranges from near zero to approximately 2 per cent for low Earth-orbit radars.

There is an interesting special case. For a side-looking radar looking directly on one

{1 —%[cosw—esinwsinﬁCO‘(gooH)]} 7
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of the poles. ““the still point of the turning world™ (Eliot 1942), the effects of Earth
rotation should nullify. Thus. for f=90° or 270°,

cos Y =[esin f]siny cot(90° +2) (8)

which yields a solution
%o =1 —90° 9)

at the North Pole for a right-looking SAR. or at the South Pole for a left-looking SAR.
as expected.

In the event the satellite is at geosynchronous altitude. w./w = 1. and the results are
dominated by Earth rotation acting in concert with orbit inclination.

2.3. Doppler bandwidth

Doppler bandwidth is a fundamental design parameter for ail pulsed radars.
especially orbital ones. Therefore. we are interested in the Doppler bandwidth
determined by antenna beamwidth corresponding to a small angular subtense AZ,
where ¢ is the azimuth angle relative to the antenna boresight at elevation angle y, asin
figure 2. In order to determine the sensitivity to antenna azimuth beamwidth for a
given range, we need to hold ;' constant. let @ vary and calculate the azimuthal
dependence between Aa and A¢. For arbitrary azimuth a and elevation y we find A¢
= Aasiny. Then, taking the derivative d/da of the Doppler frequency expression to
determine change of Doppler frequency with angle. we have directly that the Doppler

bandwidth Afp,, for antenna beamwidth Al is given by Qo

~

2, |
AfDopz-/.—"Aﬁsina[l+%(ecosﬁsin¢cota—cosw)} (10)

Itis interesting to note that the Doppler bandwidthis nota function of incidence angle,
even for the case of arbitrary azimuth @ considered here.

2.4. Doppler bandwidth (SAR mode)
For the SAR (side-looking) case, a~90° and .

AfDop=%s—°Aé<l—%cosw> a1

The dominant approximation in this result is
AE~sin A¢ 12)

which for the antenna patterns anticipated in space radars Is accurate to one part in
10%. It is satisfying that there is no dependence on latitude for the side-looking case.

The Doppler bandwidth of a radar signal arises from the corresponding definition
of antenna beamwidth, AZ. If A¢ is the — 3 dB one-way (power) beamwidth, the Afp,,
corresponds to the width in frequency of the (instantaneous) Doppler spectrum to the
—6dB level. The Doppler angular response is frequently approximated by

AfDopfz(2 V;c/’l)Aé (13)

neglecting Earth-rotation effects. For remote-sensing satellite configurations, the
(w,/w)cos P term increases the Doppler bandwidth by about 1 per cent over that found
from the spacecraft velocity alone, and for SIR-B it decreases the Doppler bandwidth

4
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by about 3 per cent. For comparison between two radars (e.g2. RADARSAT and
SIR-B) of sensitive parameters such as PRF/Afp,, for which a difference of a few
percent can be significant, these Earth-rotation effects should be included.

2.5. Location of azimuth ambiquities

The radar pulse repetition frequency (PRF) samples the ensemble of reflecting
terrainilluminated by the antenna. From sampling theory, itis known that ambiguities
arise from signals whose Doppler frequencies are integer multiples of the PRF. It is of
interest to know the angle ¢, giving rise to ambiguous azimuth information.

For the principal SAR azimuth ambiguities we have (as a special case of the
Doppler/angle relationship derived above)

p3%
PRF=j;.“<l—EEamw>Q (14)
w

A

The relative azimuth displacement Ay of an ambiguous image element from its
proper position is Ay~ R¢&; therefore

Ri W, -1
A,(=i7V (PRF)(I—;COSI]/) (1)

“~7sc

Again we find that for accurate work it is necessary to account for Earth rotation,
which in this case shrinks the spatial scaling by about | per cent compared with that
resulting from spacecraft velocity alone for Sun-synchronous sensors and expands the
spatial scaling by about 3 per cent or more, for the shuttle imaging radars. Note that
the correct velocity scaling parameter is that of the spacecraft.

2.6. Available integration time (SAR mode)

Whether used coherently for achieving ultimate resolution or used partially
coherently to reduce the inherent variance in imagery of distributed scenes, the
integration time employed by the azimuth processor is a fundamental SAR parameter.
The integration time AT is defined by the time over which the azimuth signal
integration occurs. Thus, for known Doppler bandwidth and azimuth linear FM rate

we have
d -1
AT=AfDo.,(— f“"") (16)
dr
Each of these two quantities have been evaluated above, We find
A _
AT=R 4 | —(w./w)ycosy a7

Ve 1—(w/w)(cosy —esiny sin fcot (90° + a))

For low Earth orbit the correction terms resulting from Earth rotation cause only

about a 1 per cent change, which for most applications of AT is negligible, so that the
approximation is useful

AT ~RAE/Y,

This simple result is noteworthy in that it shows integration time to be inversely
proportional to footprint velocity V., not spacecraft velocity as is usually invoked in
this expression. Footprint velocity is appropriate because an SAR operating in a
circular orbit slowly rotates as it progresses. thus increasing the amount of time that a
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given scatterer is illuminated. with the increase in time proportional to V,./V,. This has
a beneficial and habitually overlooked effect on resolution. as shown below.

2 7. Time bandwidth product (SAR mode)
The key parameter describing the azimuth processing complexity of an SAR is the
time-bandwidth product, TBP (Brown 1967). Using expressions for AT and Afp,,

developed above. we have
2RV 4 o
TBP~—\ — JAC® (18)

2\ V

€

which compares with the expression (2R/A)AE? normally found for linear flight over a
flat Earth. Again we seen an enlargement of the TBP over the normally invoked
expression (Barber 1985) due to the circular orbital geometry.

2.8, Resolution (SAR mode)
The resolution achieved by fully coherent processing over an angular azimuth

beamwidth A is given by
r,=RAE/TBP (19)

where RA¢ is the width of the processed azimuth antenna angle at range R. Using the
TBP evaluated above. we find

2

1
Vie AC

V,
(20)

r,=

12! >

where the Earth-rotation correction terms have been neglected. (For calculations of
resolution achieved for high orbits, such as w,/w=1 as in the geosynchronous case.
these terms are important and cannot be omitted. For low Earth orbits, the
approximation is good to 1 per cent or s0.)

The azimuth resolution is very interesting in that it compares favourably with the
commonly employed expression 4/2A&. Note that the principal effect of the orbital
geometry on resolution is to narrow the impulse response width by the ratio V;/V,..
Although this effect is normally overlooked, it leads to approximately a 15 per cent
improvement or more, a number that is quite significant compared with impulse
response broadening budgets typically employed in system design. As remarked above,
this can have a significant impact on system performance or cost for systems in which
the antenna length is constrained above by azimuth resolution.

3. Conclusions
Doppler properties of radars in circular orbit have been explored. The general

expression is derived, from which follow results of increasing specificity.

Parameters of interest in azimuth performance are obtained in the SAR case.
Several of these explicitly include the effect of orbit geometry and Earth rotation,
correct expressions for which seem unavailable elsewhere in the literature. It is shown
that Earth rotation and orbital geometry should be considered for comparison
between radars, or for conceptual design of azimuth Doppler frequency budgets. For
the calculation of integration time or azimuth resolution, non-rotating Earth appro-
ximations usually suffice. Appropriate allocations of spacecraft or footprint velocity,
subtle parameters subject to capricious appearance in the available literature, has been

addressed.
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Appendix

Nomenclature

a=angle of the azimuth plane trom the V_H plane (Note: this is not the same as the
relative azimuth angle within an antenna pattern)
B =argument of latitude: the angle measured between the ascending node and the space-
craft position in the orbit plane from the centre of the Earth
W = orbit inclination measured from Earth spin vector to orbit rate vector
- =elevation angle: included angle at spacecraft between range vector and Earth radius
vector from spacecraft
1= Earth centre angle. between spacecraft radius vector and scatterer location vector
V.. = velocity along orbit of spacecraft
o =spacecraft orbital rotation rate: V., =mH
1, =SAR footprint effective velocity on R.( Vi=wR cosa)
w, = Earth rotation rate
r=radar to scatterer range vector
R =magnitude of r
H = spacecraft radius vector. Earth centre to spacecraft
R, =(local) Earth radius vector to scatterer
fpop =Doppler frequency shift (Hertz)
Afpop =Doppler bandwidth corresponding to antenna azimuth increment
Z=antenna azimuth angle. measured in the slant range plane relative to the antenna
boresight (Note: this is not the same as azimuth a)
A& =increment of antenna azimuth angles. such as the 3dB one-way beamwidth
e=indicator variable. e=1 if radar looks to right side of spacecraft velocity vector (e.g. -
SEASAT and ERS-1), and = — I if radar looks to the left (RADARSAT)
4=radar wavelength
AT =available integration time corresponding to A
r,=azimuth resolution
TBP =(SAR) azimuth time-bandwidth product
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