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a b s t r a c t 

This paper addresses a major shortcoming of the current generation of wave models, namely their in- 

ability to describe wave propagation upon ambient currents with vertical shear. The wave action con- 

servation equation (WAE) for linear waves propagating in horizontally inhomogeneous vertically-sheared 

currents is derived following Voronovich (1976). The resulting WAE specifies conservation of a certain 

depth-averaged quantity, the wave action, a product of the wave amplitude squared, eigenfunctions and 

functions of the eigenvalues of the boundary value problem for water waves upon a vertically sheared 

current. The formulation of the WAE is made explicit using known asymptotic solutions of the boundary 

value problem which exploit the smallness of the current magnitude compared to the wave phase ve- 

locity and/or its vertical shear and curvature; the adopted approximations are shown to be sufficient for 

most of the conceivable applications. In the limit of vanishing current shear, the new formulation reduces 

to that of Bretherton and Garrett (1968) without shear and the invariant is calculated with the current 

magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the 

vertical structure of the currents in wave modelling which is currently universal might lead to significant 

errors in wave amplitude. The new WAE which takes into account the vertical shear can be better cou- 

pled to modern circulation models which resolve the three-dimensional structure of the uppermost layer 

of the ocean. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In nature, wind waves and swell almost always propagate on

ertically sheared currents in a horizontally inhomogeneous envi-

onment. Due to interaction with the atmosphere, ocean currents

f any origin usually have a boundary layer in the uppermost layer

f the ocean, the layer where most of the surface wave motion is

ocalized. In recent years ocean circulation models have been sig-

ificantly improved, especially for modelling relatively small areas,

ften coastal, where most of the offshore activities and shipping

anes are concentrated, and now have the capability to describe dy-

amics of vertically-sheared currents with an increasingly fine ver-

ical and horizontal resolution, e.g. Bellafiore and Umgiesser (2010) .

owever, all wave models employed in commercial wave fore-

asting today still only take into account vertically-averaged mean

ows which, as shown below, might lead to significant errors in

ealistic conditions. Minimizing such errors is important for a va-
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iety of engineering applications, e.g., for calculating the loads and

mpact on off-shore structures, sediment transport, etc. Also, since

aves, to a large extent, control the exchange of momentum, heat

nd mass exchange between the ocean and atmosphere, capturing

ore accurately their dynamics and their coupling with currents

s also a way towards improvement of the weather prediction and

limate models ( Cavaleri et al., 2012 ). 

The primary goal of this work is to put forward an “ex-

licit” closed form of the wave action conservation equation (WAE)

uitable for operational forecasting which takes into account the

ertical shear of the ambient currents. The seminal work of

retherton and Garrett (1968) examined linear wavetrains in a

oving media and deduced that it is the adiabatic invariant, which

hey called wave action (not the wave energy) that is conserved.

hey applied their fundamental idea of the wave action conser-

ation to a large variety of waves, such as, e.g., sound waves,

lfvèn waves, internal gravity waves and inertial waves, Rossby

aves, etc ( Bretherton and Garrett, 1968 ). For the problem focused

pon here, i.e. surface gravity waves propagating on currents, the

o-existence of motions of vastly different scales in natural wa-

er basins presents a serious challenge for their direct numerical

http://dx.doi.org/10.1016/j.ocemod.2017.03.003
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modeling. On the other hand, for water waves on currents in na-

ture, the almost universal vast separation of spatial and temporal

scales provides a possibility for developing an asymptotic descrip-

tion of the coupled evolution of waves and currents. To the lead-

ing order, the wave dynamics is captured by fast and short linear

waves, while the evolution of the currents is devoid of fast and

short scales. In the present work we focus entirely on the dynam-

ics of such wave fields. Thus, we are interested in the phase aver-

aged evolution of linear wave fields on the time and space scales

shorter than those where nonlinear interactions become important.

This range of scales is quite substantial. For example, for dominant

wind waves this range is typically up to tens of minutes and kilo-

meters, for swell it is up to tens of kilometers. At these scales in-

homogeneities due to currents and topography are the dominant

factors. 

Here we assume an arbitrary current profile with non-uniform

vorticity and exploit the scale separation. To this end, the WKBJ

approach is employed following the mostly overlooked work by

Voronovich (1976) (hereafter V76), where the WAE for linear sur-

face and internal gravity waves on shear flows in a fluid of arbi-

trary depth was first derived. The significance of this work goes

beyond the mere derivation of the WAE for the generic situation;

it also demonstrated the role of the equations for low-frequency

larger scale motions and, hence, the factors which might have

negligible direct effect on waves, but are of importance for the

mean flows and through this back door, on wave action conser-

vation. Independently, White (1999) arrived at a similar derivation

of the WAE but confined to deep water waves only. Both deriva-

tions yield an equation governing slow evolution of wave ampli-

tude in space and time in an implicit form. To use it the eigen-

values (frequencies) and eigenfunctions (vertical modes) have to

be found in each point of a wavepacket trajectory in “slow” space,

which requires solving the boundary value problem for waves on a

vertically-sheared current (the Rayleigh equation and the appropri-

ate boundary conditions on the free surface and bottom). Then the

solutions of the boundary value problem have to be used to find

the packet trajectory and substituted into the WAE. Exact analytical

solutions of the boundary value problem for an arbitrary current

are not known. Probably it is this impediment which prevented

the adoption of Voronovich’s findings in practical wave modelling.

Here Voronovich’s derivation is revisited highlighting the junctions

in the derivation where taking into account some extra effects such

as the Earth’s rotation, ambient flow turbulence, wind forcing, etc.,

might also be important and result in a different WAE. A priori one

could not rule out a noticeable effect of the Earth’s rotation de-

spite the significant scale separation, since the numerical simula-

tions of turbulent Reynolds’ stresses in sheared flow beneath the

free surface show a significant effect caused by the rotation un-

der the comparable scale separation ( Zikanov et al., 2003 ). In the

present work, Earth’s rotation is taken into account, while ambient

flow turbulence and wind forcing are neglected. Still, they were

discussed in orderto outline where and how these effects might

enter the problem. 

Taking into account the presence of the vertical shear of the

currents also substantially affects the nonlinear dynamics of the

waves propagating on the currents. In particular, the wave’s ver-

tical structure differs from that for potential waves ( Simmen and

Saffman, 1985; Abrashkin and Zen’kovich, 1990 ), the timescale of

the Benjamin–Feir instability ( O ((μ2 ω) −1 ) , μ is wave steepness,

ω is wave frequency) changes (e.g. Oikawa et al., 1987 ) and triad

resonant interactions between pairs of surface harmonics and a

vorticity wave, which are absent in vertically uniform flows, be-

come possible ( Zakharov and Shrira, 1990 ) on the timescale of

O ((μω) −1 ) .It should be noted that for short wind waves of typical

wavelength ∼0.1 m, the nonlinear interactions can happen quite

quickly but in this study we focus on wavelengths in the range 10–
00 m and on linear dynamics of water waves on horizontally and

ertically varying currents; the nonlinear interactions, both triad

nd cubic only have to be considered when attempting to describe

ave evolution on longer timescales. 

Although for the boundary value problem for waves on a

urrent with an arbitrary vertical profile exact analytical solu-

ions have not been found. Fortunately, in typical oceanic condi-

ions there are always natural small parameters which can be ex-

loited to get asymptotic solutions for generic profiles. Stewart and

oy (1974) derived an approximate dispersion relation for deep

ater waves on a depth-dependent current as the leading order

erm in an asymptotic expansion, the current magnitude normal-

zed by the wave phase velocity being the small parameter. This

dvance was followed by a finite-depth extension of this approach

y Skop (1987) . The second order term in this expansion was found

y Kirby and Chen (1989) . An alternative solution of the deep wa-

er boundary value problem in terms of a converging series was

erived by Shrira (1993) by exploiting the presumed smallness of

orticity and more recent work includes analysis of the boundary

alue problem for a piecewise linear approximation ( Zhang, 2005 ) 

This paper brings together both lines of inquiry: the implicit

AE formulation of Voronovich (1976) , hereafter V76 and asymp-

otic solutions of the boundary value problem for waves on a

heared current. The V76 formulation is exact within the frame-

ork of the linearised Euler equations and the WKBJ approxima-

ion. Here we choose an approximate solution to the boundary

alue problem, most appropriate in our context, which makes the

AE explicit and balances the accuracy and simplicity. Thus, for an

rbitrary vertical profile of the current we put forward a formula-

ion of the WAE suitable for operational forecasting with an ex-

licit wave action invariant for waves on a slowly varying current

nd topography. The discrepancies between the predictions of the

ew WAE and that for the vertically averaged currents, on the one

and, and the “exact” V76, on the other, are examined. We show

hat for sample realistic situations the adopted approximation in-

eed works well. The situations, where the discrepancy with the

esults for vertically averaged currents is significant, are identified.

Without any pretence at drawing a comprehensive review it

akes sense to outline other lines of enquiry on water waves

n shear currents to provide the context for this study. Most

f the effort s concentrated on theoretical studies. As far as the

inear theory is concerned the reviews by Peregrine (1976) and

eregrine and Jonsson (1983) are still relevant today. Just a few de-

elopments having relevance to the current study have to be spe-

ially noted. Although the scale separation underpinning the uni-

ersally adopted WKBJ approach practically always holds in the

cean, the caustics do occur. In the vicinity of a caustic the field

volution does not result in a singularity predicted by the ray the-

ry but needs to be described by a special model equation. In

he absence of vertical shear in the vicinity of a turning point the

odel equation is the standard Airy equation. For waves on a ver-

ically sheared current the problem is more complicated but it has

een solved by McKee (1974) ; 1977 ). An independent derivation of

he WAE for unidirectional waves on a linearly sheared collinear

urrent was carried out by Jonsson et al. (1978) . Since for this case

t is possible to introduce a potential for the wave motion and

he boundary value problem is straightforward to solve, no further

pproximations are needed, which makes it a very attractive toy

odel. We are not aware of it being applied to the modelling of

ny real situation in the ocean. The popularity of considering the

onstant shear currents does not seem to wane even in the lin-

ar setting; a recent paper by Ellingson and Brevik (2014) provides

n update. The mild-slope equation, widely-used in nearshore and

oastal regions, very recently was extended to include the effects

f a linearly-sheared current ( Touboul et al., 2016 ). 
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However, it is in the area of theoretical studies of nonlinear

aves where the possibility of introducing a potential for waves

n linearly sheared currents was most heavily exploited: the num-

er of papers is now counted in hundreds. Here we mention just a

ew key nonlinear effects and phenomena discovered. In the pres-

nce of the vertical shear the shape of steady nonlinear waves dif-

ers from that in the absence of shear, often quite significantly (e.g.

immen and Saffman, 1985; Teles Da Silva and Peregrine, 1988 ).

his change of shape is a generic manifestation of vertical shear

e.g. Abrashkin and Zen’kovich, 1990 ), but is much more diffi-

ult to explore without constant vorticity assumption. The pres-

nce of vertical shear also makes possible the existence of soli-

ary waves on deep water, as was shown analytically ( Shrira, 1986 )

nd numerically ( Vanden-Broeck, 1994 ). Surprisingly, although the

teady solutions for periodic nonlinear waves on a horizontally

niform current with constant shear have been known for more

han thirty years, to our knowledge there has been no attempt to

erive a nonlinear conservation law and to generalise the results of

eregrine and Thomas (1979) for horizontally nonuniform currents

nd varying depth by taking into account constant vorticity. A ma-

or advance concerned with constant vorticity waves has been re-

orted in Ruban (2008) , where the method of conformal mapping

as extended to solve numerically fully nonlinear Euler equations

or two-dimensional inviscid free-surface flows with constant vor-

icity over arbitrary nonuniform bottom profile in an extremely ef-

cient and accurate way. 

For a multitude of reasons the modulational instability of

eakly nonlinear waves propagating upon horizontally uniform

hear flows was a constant focus of attention for more than forty

ears and resulted in a large corpus of works. Most of the stud-

es were aimed at deriving the nonlinear Schrödinger (NLS) type

quation for the envelope of a weakly nonlinear wave train, the

rst such study by Johnson (1976) which moulded the paradigm

or all subsequent studies: an ideal fluid, a priori given current

hich does not evolve, a weakly nonlinear wavetrain, a narrow-

and wavetrain, with the narrowness chosen to be balanced by the

onlinearity. Johnson (1976) considered strictly one-dimensional

ave propagation on an collinear current with an arbitrary shear

rofile. The cycle of influential works by Benney and co-authors

see e.g. Oikawa et al., 1987 and references therein) extended

he consideration to two spatial dimensions. It has been estab-

ished that for an arbitrary profile of the current the evolution of

 weakly nonlinear narrowband wavepacket varying in two hor-

zontal dimensions is governed by the NLS-type equation coupled

ith elliptic equations for the induced “mean” flow. The main con-

lusions of Benney’s group can be briefly summarized as follows:

he shear does affect the modulational instability and for a strong

hear the effect might be substantial; crucially, for a strong shear

he transverse instability is much stronger than the longitudinal

ne. This conclusion was somehow forgotten; the most studied

roved to be strictly longitudinal modulations for two-dimensional

otions. Again the simplicity of the constant vorticity and piece-

ise constant vorticity models proved to be irresistible, see e.g.

aumstein (1998) and Thomas et al. (2012) and references therein.

Models with a piece-wise constant vorticity profiles give rise

o qualitatively new phenomena totally absent in constant vortic-

ty models and are somewhat hidden in the models with con-

inuous smooth vorticity profiles. The jumps of vorticity support

nterfacial waves, referred to as the vorticity modes, this makes

ossible resonant triad interactions between the surface waves

nd the vorticity modes, moreover, among these triad interactions

here are explosive ones, that is, the interactions resulting in a fi-

ite time blow-up ( Voronovich and Rybak, 1978; Voronovich et al.,

980 ). With the notable exception of the last two references all the

bove works were concerned with deterministic evolution of nar-

ow band weakly nonlinear wave trains. Returning to the oceanic
aves which are always random, rarely sufficiently narrow band

o be described in terms of isolated wavetrains and never (except

or laboratory tanks) are strictly one-dimensional, oceanic waves

re necessarily described in terms of their statistical characteristics,

rimarily spectra. The only attempt we are aware of to incorporate

he account of vertical shear into description of wave kinetics was

ndertaken in Zakharov and Shrira (1990) . Nonlinear triad inter-

ctions between the surface and vorticity modes are not entirely

n artifact of piece-wise constant vorticity models. Such interac-

ions were shown to be always present for arbitrary smooth vortic-

ty profile, the corresponding interaction coefficients were derived

or typical oceanic situations exploiting the weakness of the cur-

ent with respect to the surface wave phase velocities; to describe

volution of wave spectra subjected to both the triad and standard

uartic interaction the corresponding kinetic equation has been de-

ived ( Zakharov and Shrira, 1990 ). This line of inquiry did not get a

irect continuation. The present work is complementary to it: we

ake into account the horizontal inhomogeneity of the shear cur-

ents and bottom profile concentrating on the smaller time scales.

he next step needed is to integrate the two approaches, which

epresents a conceptual challenge: the resonant interactions are

escribed in the wavevector space, while the effects due to spa-

ial inhomogeneity captured by the WAE are naturally described in

he coordinate space. 

All mentioned theoretical works are based on the idea that

here exist either an a priori given vertical profile of a current

r, as in V76, it is specified by the Euler equations for the low-

requency motions upon which either linear and nonlinear waves

volve. To what extent this split occurs in reality is not known.

he field measurement show very low vertical shear in the layer

djacent to the surface, which is attributed to the wave break-

ng ( Kudryavtsev et al., 2008 ). At the moment it is not clear at

hat time scale the current profile adjusts to changes of wave

reaking intensity controlled primarily by wave steepness. If/when

he blow-ups predicted by Voronovich et al. (1980) does occur, it

ould locally destroy the shear flow vorticity profile, is also not

lear what effect this will have on wave propagation and how long

t takes for the profile to recover. Breaking of dominant waves, al-

hough rare, certainly temporarily destroys the vertical structure of

he flow in a way poorly understood so far ( Babanin, 2011 ). Suf-

ciently accurate field observations of wave evolution on horizon-

ally and vertically varying currents with simultaneous high resolu-

ion measurements of the currents are beyond the reach of the ex-

sting techniques. Although in the laboratory the measuring capa-

ilities are much better, the laboratory tanks rarely allow for two-

imensional wave propagation desirable for the effects of we are

nterested in to be pronounced. Hence, at present neither the field

bservations nor even the best tank experiments (e.g. Swan and

ummins, 2001 ) can resolve the fundamental open questions of

ave-current interactions. Being fully aware of these open ques-

ions we adopt the following approach, we focus on linear phase

veraged dynamics of water waves on horizontally and vertically

arying currents presumed to be given; the nonlinear interactions,

oth triad and quartic are neglected. 

The layout of the paper is as follows: In Section 2 , the separate

ynamical equations are derived for the mean flow and the wave

eld. Under the standard separation of scales WKBJ assumptions,

he derivation of the Rayleigh equation together with the invari-

nt and group velocity of the WAE is revisited in Section 3 tak-

ng into account the Earth rotation. The derivation for the invariant

nd group velocity, which takes into account vertical shear is de-

ailed in Section 4 . In Section 5 the results are analysed to assess

he improvement to the usual WAE due to taking into account ver-

ical shear for a family of realistic-type vertical velocity profiles.

he dynamics of the wave action is determined to large extent by

he ray trajectories of the wave packets. The effect of the vertical
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shear on the wave ray paths and, hence, wave amplitudes is exam-

ined in Section 6 . We briefly discuss the results and implications

in Section 7 . 

2. Governing equations 

Our starting point is the Euler equations of motions for an in-

compressible fluid of constant density ρ0 on a rotating frame with

f as the varying Coriolis parameter and a free-surface under the ac-

tion of gravity. In the Cartesian frame x, y, z with zero of the verti-

cal coordinate z on the unperturbed water surface, the motions are

characterized by the horizontal velocity field ū = ( ̄u , ̄v ) , the verti-

cal velocity field w̄ and the free surface elevation η̄(x, y, t) . 

D ̄u 

Dt 
+ f ̂  z × ū + 

1 

ρ0 

∇p = 0 (2.1a)

D ̄w 

Dt 
+ g + 

1 

ρ0 

∂ p̄ 

∂z 
= 0 (2.1b)

∇ · ū + 

∂ w̄ 

∂z 
= 0 (2.1c)

where D/Dt = ∂ /∂ t + ū · ∇ + w̄ ∂ /∂ z, ∇· = (∂ /∂ x, ∂ /∂ y ) is the hor-

izontal derivatives vector, f is the Coriolis parameter. The neglect

of surface tension implies that we are interested in wavelengths

longer than a few centimeters while the neglect of bottom fric-

tion assumes that for linear theory, the turbulence generated by

the bottom friction remains local and is not transported into the

main flow. As a first approximation to reality we consider inviscid

fluid, which is a fair assumption since our main interest is in the

wave motion at relatively short timescales. These basic equations

are supplemented with the usual kinematic and dynamic bound-

ary conditions at the surface and the dynamic boundary condition

at the bottom which are respectively, 

∂ ̄η

∂t 
+ ū · ∇ ̄η − w̄ = 0 , z = η̄ (2.2a)

p̄ = 0 , z = η̄ (2.2b)

w̄ + ū · ∇h = 0 z = −h (2.2c)

at the free surface z = η̄(x, y, t) and at the bottom z =
−h ( ε 1 x, ε 1 y ) . 

In nature, the problem under consideration has a number of

small parameters. Slowness of the horizontal spatial variation of

the main flow compared to the characteristic wave scale, is charac-

terised by a small parameter ε1 , while the slowness of the ambient

current temporal variability compared to the characteristic wave

period is characterised by an independent parameter ε2 . Note that

ε 2 � ε 1 . Variation in the vertical is characterised by an indepen-

dent parameter δ0 and its scaling is left unspecified for now. 

All flow variables can be split into two components: the fast

oscillating part ( ̃ ) and the slow non-wave motion ( (0) ). Thus a

generic field variable ζ̄ can be presented as the sum 

ζ̄ = ζ (0) + 

˜ ζ . (2.3)

By inserting ansatz (2.3) into both the governing equations (2.1)

and boundary conditions in (2.2) and retaining terms to the lowest

order, the dynamics of the ambient current can be considered as

the average or the overall motion. Ordering for the mean flow part

is 

ζ (0) = ζ (0) ( ε 1 x, ε 1 y, δ0 z, ε 2 t ) (2.4)

and the resulting mean flow equations and boundary conditions

(are expanded in a Taylor series to attain the mean and oscillatory
arts on the free surface) are equivalent to those in Eq. (6) of V76

xcept here the Coriolis term enters into the horizontal momen-

um equations. 

The time scales of the oscillatory dynamics are much shorter

han that of the mean flow even in the case of a long swell. A

ypical wave celerity for dominant wind waves and swell is of

 (10 ms −1 ) . The Coriolis frequency is small and we characterise

his smallness by an independent small parameter ε3 . To see what

ight be affected by rotation, we, for the time being , assume ε3 

ε1 , then the linearized equations to first order take the form: 

d ̃  u 

dt 
+ ε 1 ̃  u i 

∂u 

(0) 

∂x i 
+ δ0 ˜ w 

∂u 

(0) 

∂z 
+ ε 3 f ̂  z × ˜ u + 

1 

ρ0 

∇ ̃

 p = 0 (2.5a)

d ̃  w 

dt 
+ ε 1 δ0 ˜ w 

∂w 

(0) 

∂z 
+ 

1 

ρ0 

∂ ̃  p 

∂z 
= 0 (2.5b)

 · ˜ u + 

∂ ˜ w 

∂z 
= 0 (2.5c)

with corresponding boundary conditions 

d ̃  η

dt 
+ 

˜ u · ∇η(0) − ˜ w − ∂w 

(0) 

∂z 
˜ η = 0 , z = η(0) (2.6a)

˜ p = −∂ p (0) 

∂z 
˜ η , z = η(0) (2.6b)

˜ 
 + ε 1 ̃  u · ∇h = 0 , z = −h . (2.6c)

The bottom boundary condition (2.6c) follows by assuming the

iscosity to be negligible for the wave dynamics and so becomes

he free-slip condition in which mild-slope changes of the bottom

ave been incorporated. 

. Wave action equation (WAE) with account of vertical shear 

Exploiting the naturally occurring separation of scales – “short”

nd “fast” waves vs “slowly” varying environment – the WKBJ

symptotic approach is employed, e.g. Bender and Orszag (1978) .

eeking solutions as an asymptotic series 

˜ = � e 

{ [
ζ (1) + ε 1 ζ

(2) + . . . 
]
e i S ( x,y,t ) + . . . 

} 

, (3.1)

here 

∂S 

∂t 
= −	 = f (k , x , t) , ∇S = k (3.2)

he local wavevector k = 

(
k x , k y 

)T 
, k = | k | is related to the local

avelength λ, by the standard relation λ = 

2 π
k 

, S is the wave phase

nd 	 is the local angular frequency. 

Substituting Eq. (3.1) into Eqs. (2.5) and (2.6) and retaining low-

st order terms yields (with superscript 1 omitted): 

i σu + δ0 w 

∂u 

(0) 

∂z 
+ 

i k 

ρ0 

p = 0 (3.3a)

i σw + 

1 

ρ0 

∂ p 

∂z 
= 0 (3.3b)

 k · u + 

∂w 

∂z 
= 0 (3.3c)

where σ is the Doppler-shifted, depth-dependent frequency, de-

ned as 

(z) = 	 − k · u 

(0) . (3.4)
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he quantity U is introduced to characterise the projection of the

elocity onto the wavevector direction and C for the wave celerity,

efined as, 

(k, z) = 

k · u 

(0) 

k 
, C = 

	

k 
. (3.5) 

tandard manipulations of Eqs. (3.3) yield the Rayleigh equation

or the vertical component of velocity (see e.g. Schmid and Hen-

ingson, 2001 ) 

∂ 2 w 

∂z 2 
−

(
k 2 − δ2 

0 

C − U 

∂ 2 U 

∂z 2 

)
w = 0 . (3.6) 

rom Eqs. (3.3) and (3.6) all other components of velocity, u and

ressure p can be easily expressed in terms of w as in Eq. (10) of

76. The corresponding boundary conditions are 

i ση − w = 0 , z = η(0) (3.7a) 

p = ρgη, z = η(0) (3.7b) 

 = 0 , z = −h (3.7c) 

hich allow the boundary condition at the free surface, z = η(0) to

e expressed in terms of w as 

∂w 

∂z 
+ 

(
δ0 

( C − U ) 

∂U 

∂z 
− g 

( C − U ) 
2 

)
w = 0 . (3.8) 

he local boundary value problem comprised of the Rayleigh

q. (3.6) and the boundary condition (3.8) specifies the eigenvalues

 as functions of k and the local vertical mode structure w ( k , z ).

he pressure and the horizontal velocities can then be expressed

n terms of w according to Eq. (10) of V76. 

The phase of the wave S by the Hamilton–Jacobi equation is 

∂S 

∂t 
+ f (∇S, x , t) = 0 (3.9) 

hose characteristics are the ray equations specifying positions of

 wavepacket x and its wavevector k 

 t x = ∇k , ∂ t k = −∇	. 

ence, solutions of these equations prescribe ray trajectories, that

s evolution in time of the position of a wavepacket and its central

avevector for given initial conditions, x (0), k (0). We recall that at

ach point of the trajectory the vertical distributions of w and local

ispersion relation 	( k ) are given by the boundary value problem

 Eqs. (3.6) and (3.8) ). 

To determine the evolution of wave amplitudes one must pro-

eed to the next order. It is straightforward to derive similar equa-

ions for the next order (for details see Appendix B ). To eliminate

ecular growth of the solutions of this second-order linear inhomo-

eneous boundary value problem it is necessary to impose a solv-

bility condition, supplemented with the lowest-order mean flow

quations, which yields the wave action conservation equation we

re looking for 

∂ I v s 

∂t 
+ ∇ · ( C g I v s ) = 0 , (3.10) 

here 

 v s = −
∫ η(0) 

−h 

1 

2 σ 2 k 2 
∂ 2 σ

∂z 2 
w 

2 dz + 

[(
g 

σ 3 
+ 

1 

2 σ 2 k 2 
∂σ

∂z 

)
w 

2 

]
z= η(0) 

(3.11) 
d  
 g I v s = −
∫ η(0) 

−h 

(
1 

2 σ 2 k 2 
∂ 2 σ

∂z 2 
u 

(0) (3.12) 

− 1 

2 σ k 2 
∂ 2 u 

(0) 

∂z 2 
+ 

k 

k 2 

)
w 

2 dz 

+ 

[((
g 

σ 3 
+ 

1 

2 σ 2 k 2 
∂σ

∂z 

)
u 

(0) 

− 1 

2 σ k 2 
∂u 

(0) 

∂z 
+ 

gk 

σ 2 k 2 

)
w 

2 

]
z= η(0) 

(3.13) 

nd the subscript “vs” is for vertical shear, denoting the exact in-

ariant and group velocity. Dividing Eq. (3.13) by Eq. (3.11) gives

n expression for the group velocity C gvs . Note that under adopted

caling of the Earth’s rotation f , i.e. the inverse Rossby number

 3 ε 1 � 1, the taking into account of rotation in the Euler equa-

ions did not change the wave action equation of V76, although

t has to be stressed that it enters the problem implicitly through

quations for the mean flow Eq. (2) . 

Thus, the problem of describing linear water waves on a slowly

arying current with vertical shear has been reduced to finding the

rst-order variables p , u , C and w , the wave phase S and the wave

mplitudes from the WAE. 

. Explicit formulation of the WAE 

In its current form, the WAE (3.10) is difficult to apply to op-

rational wave models as it is too computationally intensive: it is

equired to solve the Rayleigh equation for every node, frequency,

irection, etc. at every timestep. A simplification is required for it

o be of practical use. To this end an asymptotic approximation

o the WAE (3.10) will be detailed here and its accuracy subse-

uently compared with the exact adiabatic invariant and group ve-

ocity specified by Eqs. (3.11) and (3.13) . This approximation takes

nto account vertically-varying currents and assumes a current to

e weak compared to the wave phase velocity, which is a realis-

ic assumption since dominant wind waves and swell have phase

elocities which far exceed the speed of the current. The weak cur-

ent approximation also implicitly assumes the smallness of the

urrent gradient and curvature; in generic situations when the cur-

ent profile is smooth, the smallness of the current magnitude also

nsures sufficiently small gradient and curvature. It is convenient

o characterize weakness of the current by a new nondimensional

mall parameter ξ = U/C. The nondimensional parameter κ = U ′ / 	
enotes the smallness of gradient and ε5 = O (U ′′ / 	k ) denotes the

mallness of curvature. For generic smooth profiles all these small

arameters are small and comparable and therefore could be de-

oted by ε5 . For the situations with very sharp gradients and large

urvatures where U ′′ / 	k � 1 the expansion in ξ is no longer valid,

lthough as a rule it works well beyond the range of its asymptotic

alidity often even when U ′′ / 	k � 1 . The reasons why are not

lear and require a special consideration, which goes beyond the

cope of this work. For a more detailed discussion of the nondi-

ensional scaling, refer to Shrira (1993) . 

An approximate dispersion relation for water waves on

 generic depth-dependent current was first put forward by

tewart and Joy (1974) , which exploited presumed weakness of the

urrent. Its extension to water of finite depth by Skop (1987) was

hen continued to higher orders by Kirby and Chen (1989) . Note

hat while these authors applied the multiscale expansion to the

ayleigh equation, which is just an element of the WAE, here it is

pplied to the WAE as a whole. An alternative solution to the deep

ater boundary value problem in terms of a converging series was

erived by Shrira (1993) by exploiting the presumed smallness of
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Fig. 1. (a) Countercurrent flow profile derived by Wu and Tsanis (1995) defined 

in Eq. (5.1) . (b) Comparison of the vertical velocity structure for the countercurrent 

profile for parameters u ∗ = −1 . 0 × 10 −3 , z s = 3 . 3 × 10 −4 h, z b = 1 . 0 × 10 −3 h, γ = 1 . 0 , 

kh = 1 which gives a surface velocity of u (0) = 1 . 0 ms −1 . The thickness of the upper 

layer is δs and the mean velocity in this upper layer is U m = 0 . 143 ms −1 . 
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vorticity. In each case the choice of the best specific approximation

is dictated by the context. 

Without loss of generality we assume a weak smooth cur-

rent and solve approximately the Rayleigh boundary value prob-

lem Eqs. (3.6) , (3.7b) and (3.7c) by expanding the wave celerity C ,

vertical velocity w and the dispersion σ in Eq. (D.12) , the relation

between the amplitude of the surface elevation a and the ampli-

tude of the vertical velocity A as follows 

σ

k 
= C 0 + ε 5 ( C 1 − U ) + ε 2 5 c 2 + . . . (4.1a)

w = A 

(
w 0 + ε 5 w 1 + ε 2 5 w 2 + . . . 

)
. (4.1b)

A 

2 = k 2 ( C 0 + ε 5 ( C 1 − U ) + . . . ) 
2 a 2 . (4.1c)

The expressions for C 0 and C 1 , w 0 , w 1 and σ 0 are equivalent to

those found by Kirby and Chen (1989) and are given in Appendix C .

On applying these formulae to Eqs. (3.11) –(3.13) , retaining terms to

the lowest order and after some algebra, we find the approximated

wave action and its flux, 

I = 

{
a 2 g 

σ
( 1 + ε 5 R 1 ) 

}
z= η(0) 

(4.2)

C g I = 

{
a 2 g 

σ

[
C g nvs 

k 

k 
+ ε 5 (u 

(0) + R 2 ) 

]}
z= η(0) 

(4.3)

where C g nvs is the usual group velocity under the no-shear ap-

proximation specified in Eq. (D.10) , while the O ( ε5 ) corrections

are 

R 1 = −2 I 2 sinh k ̄h − 1 

C 0 

(
2 I 3 csch 2 k ̄h + C 1 

)
R 2 = 

C 1 − U 

C 0 
C g nvs 

k 

k 
+ I 3 k ̄h sech 

2 
k ̄h 

+ 

k 

k 
C 0 

(
2 I 1 cosh k ̄h − I 2 sinh k ̄h (2 − sinh k ̄h ) 

)
+ tanh k ̄h 

(
I 4 + I 5 − k 

k 
I 3 − k ̄h C 0 I 2 

−k 

k 
C 0 I 1 sinh 

2 
k ̄h − 1 

2 k 
u 

(0) 

)
, 

which contain the terms, 

C 0 = 

√ 

g 

k 
tanh k ̄h , h̄ = h + η(0) 

I 1 (z) = 

∫ z 

−h 

U(ζ ) ′′ 
kC 0 

sinh 

2 
k (ζ + h ) dζ

I 2 (z) = 

∫ z 

−h 

U(ζ ) ′′ 
2 kC 0 

sinh 2 k (ζ + h ) dζ

I 3 (z) = 

∫ z 

−h 

k U(ζ ) cosh 2 k (ζ + h ) dζ

I 4 (z) = 

∫ z 

−h 

2 k U(ζ ) sinh 

2 
k (ζ + h ) dζ

I 5 (z) = 

∫ z 

−h 

u 

(0) ′′ 

2 k 
sinh 

2 
k (ζ + h ) dζ . (4.4)

Note that the leading terms in the expressions for the wave ac-

tion and its flux coincide with those for the case of no vertical

shear (see Appendix D ). This shows that the commonly-used WAE

models based on Bretherton and Garrett (1968) are actually the

leading order approximations for currents with a vertical structure,

and may be improved when the above approximation applies with
o cost by using the value of the current at the surface rather than

he depth-averaged velocity. 

The main outcome of this paper can be summarised as follows:

he WAE 

∂ I 

∂t 
+ ∇ · ( C g I ) = 0 (4.5)

here its main terms are: 

 = 

{
a 2 g 

σ
( 1 + ε 5 R 1 ) 

}
z= η(0) 

(4.6)

 g = 

{(
C g nvs 

k 

k 
+ u 

(0) 

)
( 1 − ε 5 R 1 ) + ε 5 R 2 

}
z= η(0) 

. (4.7)

ere, the group velocity accurate to O ( ε5 ) was easily found using

 Taylor series on the division of Eq. (4.3) by Eq. (4.2) . Eqs. (4.5) –

4.7) are the main findings of this paper; they provide an explicit

AE formulation for surface waves propagating in the presence of

ertical shear, under assumptions (the same as in Skop, 1987 ) of

 weak current, gradient and curvature of the vertical structure of

he current. We stress that even small discrepancies in the expres-

ions for group velocities accumulate in the course of wave prop-

gation, which, as we demonstrate below, might grow into signifi-

ant discrepancy in wave amplitude predictions. 

. Examples 

Here we consider an example of a characteristic current pro-

le to examine the accuracy for local values of the wave action

nd group velocity provided by the new wave action formula-

ion. A numerical code to solve exactly the problem and thus

rovide the reference has been written in Mathematica version

.0.1.0 . The Rayleigh equation has been solved with NDSolve with

he Shooting Method . The resulting eigenfunction profile is used

o calculate the exact values of the invariant and group veloc-

ty using Eqs. (3.11) and (3.13) . We examine the discrepancies be-

ween the no-shear ( Eqs. (D.7) and (D.10) ) and the new approxi-

ation ( Eqs. (4.2) and (4.7) ) to the exact vertical shear formulation

 Eqs. (3.11) and (3.13) ). 

An ambient current profile which has been shown to be typi-

al of wind-induced currents in channels Wu and Tsanis (1995) is

he wind-driven current at the surface and with an opposing cur-

ent at larger depths, as shown in Fig. 1 (a). This particular profile

iven by the was derived analytically Wu and Tsanis (1995) and

ested numerically and experimentally for a steady, shear-induced

urbulent flow typical of wind-induced currents. The analytical ex-

ression for this profile reads, 

(z) = Au ∗ ln 

[ 
1 + 

z 

z s 

] 
+ Bu ∗ ln 

[ 
1 −

(
z 

z 
+ h 

)] 
(5.1)
b 
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Fig. 2. Wu and Tsanis (1995) countercurrent flow profile with co-propagating 

waves. Contours of : (a) errors of the approximate group velocity to the exact group 

velocity, C g /C gv s − 1 in %, (b) the no-shear group velocity to the exact group veloc- 

ity C g n v s /C gv s − 1 in %, (c) the no-shear group velocity calculated with the depth- 

averaged velocity to the exact group velocity (C g n v s | Um ) /C gv s − 1 , (d) I/I v s − 1 and (e) 

I n v s /I v s − 1 , for parameters z s = 2 . 2 × 10 −4 h, z b = 1 . 4 × 10 −4 h, γ = 0 . 35 , h = 100 m 

and variation in k and u ∗ . U (0) is the velocity at the free surface. δs is the thickness 

of the upper layer ≈ 0.34 h . 
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here u ∗ is the surface friction velocity, h is the water

epth, A = 

q 2 
p 1 q 2 −q 1 p 2 

, B = − q 1 
p 1 q 2 −q 1 p 2 

, p 1 = γ z s 
h 

, p 2 = γ z s 
z b 

, q 1 =
(1 + 

z s 
h 
) ln [1 + 

h 
z s 

] − 1 , q 2 = 

z s 
h 

ln [1 + 

h 
z b 

] − 1 , z b and z s are charac-

eristic viscous sublayer thicknesses at the bottom and surface re-

pectively and γ is a constant characterising the intensity of the

urbulence. We will denote the velocity at the surface as U (0). 

Fig. 1 (a) shows the profile with the parameters z s = 3 . 3 ×
0 −4 h, z b = 1 . 0 × 10 −3 h, γ = 1 . 0 , kh = 1 ., u ∗ = −1 . 0 × 10 −3 ms −1 ,

hich gives a top layer thickness δs ≈ 0.34 h (marked with ar-

ows) and the surface velocity U(0) = 1 . 0 ms −1 . The parameters

f the current were deliberately chosen to violate the smallness of

radient and curvature assumptions to show that the adopted ap-

roximations work very well far beyond the range of their asymp-

otic validity. The plot of the vertical velocity structure in Fig. 1 (b)

ndeed shows that, for the approximation of taking into account

he vertical shear, the vertical velocity w 0 + w 1 is now in excel-

ent agreement with the exact (numerical) solution. The discrep-

ncy with the exact solution is less than 1%, whereas the typically-

sed no vertical shear approximation gives an error of 10% for the

ame current profile. 

The presented results demonstrate the substantial gain in ac-

uracy provided by the approximate solutions compared to the

idely used no-shear approximation. The no-shear group veloc-

ty C gnvs is specified by Eq. (D.10) in Appendix D . u 

(0) is taken

t the surface z = η(0) , however we will also examine numeri-

ally whether this simple formulation shows an increase in ac-

uracy over using a depth-averaged value of the current U m 

=
 /h 

∫ 0 
−h U(z) dz. Figs. 2–4 and F.8 show contours of %-errors of (a)

he approximated group velocity C g , defined in Eq. (4.7) , (b) our

erived no-shear group velocity C gnvs defined in Eq. (D.10) with the

urface value of the current u 

(0) ( η(0) ) and (c) the no-shear group

elocity but now calculated with U m 

, all compared to the exact

roup velocity C gvs , which is calculated by dividing Eq. (3.13) by

q. (3.11) . The remaining panels are %-errors of (d) the approxi-

ated invariant I , defined in Eq. (4.2) and (e) our derived no-shear

nvariant I nvs , defined in Eq. (D.7) over the exact invariant I vs de-

ned in Eq. (3.11) . The current term u 

(0) ( z ) does not appear in the

xpression for I nvs . 

The errors for the group velocity and the invariant are shown

n Fig. 2 (a)–(e) for co-propagating waves and ambient current. For

ery weak currents, U / C 0 � 0.02 for all wavelengths, the errors

or the group velocity are around 1% with this error increasing for

tronger currents. This was to be expected since the approximation

ssumes a small current. Comparing Fig. 2 (b) and (c) shows that by

alculating the no-shear approximation with the surface value of

he current velocity, rather than the depth-averaged current value,

ctually increases the errors over the exact solution for this partic-

lar vertical profile. A larger parameter space was studied than is

hown here but the errors continue to grow with increasing cur-

ent strength. 

Fig. 3 (d) and (e) show the errors for the invariant. Compari-

on of (d) and (e) clearly shows the gain accuracy provided by the

dopted approximation compared to the no-shear one, especially

or longer waves where the error of the approximation almost dis-

ppears for all current strengths. Expectedly, the errors also in-

rease for stronger currents. 

When the waves are opposing the surface current, Fig. 4 (a)

hows that the errors for the group velocity with the adopted ap-

roximation are similar to those of the co-propagating waves in

ig. 3 (a). However a comparison of Figs. 4 (b) and 3 (b) shows that

he errors for the group velocity with the no-shear approximation

re slightly larger for the waves are opposing the surface current

han following it. The likely explanation of this asymmetry is that

ince our asymptotic expansion exploits smallness of current to
ave celerity ratio, for the opposing current the effective phase ve-

ocity is a bit larger. 

Another example, an idealized two-layer current profile, is ex-

mined in Appendix F . It should be noted that in this section, the

ocus of the examination was on local characteristics of the wave

eld such as the group velocity and the local adiabatic invariant.

he examples of shear flows we analysed showed a noticeable gain

n accuracy provided by the adopted approximation as compared

o the no-shear approximation. Crucially, even small discrepan-

ies can significantly affect the nonlocal properties of the solutions

e.g. envelope amplitude, ray trajectories, etc), which would cause

he discrepancies to accumulate over distances and become much

ore significant. This is the subject of the next section where we

how that the new formulation better predicts also these nonlocal

roperties with smaller errors from the exact solution. 

. Wave rays and amplitudes 

Consider a model situation when both the current and wave

eld are steady in time and the horizontal current varies in one

irection only, then Eq. (3.10) can be significantly simplified. By

etting the y -axis as the lateral direction of no changes in the

edium, the WAE takes the form 

∂ 

∂x 
( C gx I ) + C gy 

∂ I 

∂y 
= 0 , (6.1) 
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Fig. 3. Wu and Tsanis (1995) countercurrent flow profile with co-propagating 

waves. Contours of (a) errors of the approximate group velocity to the exact group 

velocity C g /C gv s − 1 in %, (b) the no-shear group velocity to the exact group veloc- 

ity C g n v s /C gv s − 1 in %, (c) the no-shear group velocity calculated with the depth- 

averaged velocity to the exact group velocity (C g n v s | Um ) /C gv s − 1 in %, (d) I/I v s − 1 

(in %) and (e) I n v s /I v s − 1 (in %), for parameters z s = 2 . 2 × 10 −4 h, z b = 1 . 4 × 10 −4 h, 

γ = 0 . 35 , h = 20 m and variation in k and u ∗ . U (0) is the velocity at the free sur- 

face. δs is the thickness of the upper layer ≈ 0.34 h . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Wu and Tsanis (1995) countercurrent flow profile with opposing waves. Con- 

tours of (a) %-errors of the approximated group velocity to the exact group ve- 

locity C g / C gvs , (b) the no-shear group velocity to the exact group velocity C g n v s /C gv s , 

(c) the no-shear group velocity calculated with the depth-averaged velocity to the 

exact group velocity (C g n v s | Um ) /C gv s , (d) I / I vs and (e) I nvs / I vs , for parameters z s = 

2 . 2 × 10 −4 h, z b = 1 . 4 × 10 −4 h, γ = 0 . 35 , h = 20 m and variation in k and u ∗ . U (0) 

is the velocity at the free surface. δs is the thickness of the upper layer ≈ 0.34 h . 

The contours are at the same levels for each panel. 

 

r  

t  

t  

w  

t  

t  

t  

a  

u  

T  

o  

w  

w  

a

A  

w  

d  

e  

o

A  
where the x and y subscripts denote the x and y components re-

spectively of the appropriate group velocity. For no blocking cur-

rents, i.e. under condition C gx 
 = 0, Eq. (6.1) can be solved using

the method of characteristics to yield, 

I = 

F(s ) 

C gx 
(6.2)

with the characteristics given in quadratures as 

y (x ) = 

∫ x 

x 0 

C gy 

C gx 
dξ + s, (6.3)

from the initial y -position s . The so far unspecified function F(·) is
then found using the boundary condition at x = x 0 as 

F(y ) = C gx I| x = x 0 . (6.4)

When there is no lateral dependence in the boundary condition, F
becomes a constant and the regular 1D solution of the WAE is re-

tained. This applies for all three cases, the “exact”vertical shear, the

new vertical shear approximation and the no-shear approximation,

using of course the appropriate expression for the group velocity

and invariant as detailed in Sections 3, 4 and Appendix D respec-

tively. The amplitude of the vertical velocity A can be calculated

from the solution of the WAE for the exact vertical shear formu-

lation by dividing the solution by the wave action as defined in

Eq. (3.11) . From this, the wave elevation a can be determined from

Eq. (D.12) . 
Wave rays were studied in detail for a Gaussian surface cur-

ent profile with no vertical shear by Mei et al. (2005) although

he group velocity and current velocity terms u (0) 
1 

, u (0) 
2 

were omit-

ed from the integrand. Three different scenarios were detailed

here the ray either passed through the current after a deflec-

ion, it was reflected back by the current or became trapped inside

he surface current Mei et al. (2005) . Here, it was demonstrated

hat for a given set of parameters the exact and approximate shear

nd formulations allow the ray to pass through the current, while

nder the no shear formulation the hits the theoretical caustics.

hus, the no-shear formulation predicts a rough guess of the path

nly, which might dramatically differ from the true path captured

ell by the adopted vertical shear formulation. Within the frame-

ork of geometrical ray theory the amplitude of the refracted wave

long the ray is determined Brekhovskikh and Godin (1992) from 

 (x ) = 

[
J(x 0 ) 

J(x ) 

]1 / 2 

A (x 0 ) (6.5)

here J is the Jacobian of the transformation of rectangular coor-

inates to the ray coordinates. Here, it can be interpreted as being

quivalent to the refraction index. For this particular case, which

nly has changes in the x -direction, this reduces to 

 (x ) = 

[
y ′ (x 0 ) 

y ′ (x ) 

]1 / 2 

A (x 0 ) . (6.6)
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Fig. 5. (a) Plan view sketch (solid black line with arrows, not to scale) of tanh 

current profile ( U(x, z) = −0 . 9(1 + tanh [2(x + 1)]) U(z) at the surface z = 0 . U ( z ) is 

the Wu and Tsanis vertical profile (see Eq. (5.1) ) for a depth of h = 20 m with 

parameters z s = 2 . 2 × 10 −4 h, z b = 1 . 4 × 10 −4 h, γ = 0 . 35 , u ∗ = 0 . 09 ms −1 giving the 

maximum surface current U (0) ≈ 1.0 ms −1 and an depth averaged velocity, U m = 

0 . 126 ms −1 , in the upper layer. Wave rays under different approximations for the 

same initial wave prescribed at x = 4 : wavelength of ≈ 160 m uniform in y incident 

obliquely (the angle θ = 72 ◦ to the x -axis. The approximations plotted: exact shear 

formulation (solid lines), no-shear approximation (dashed lines) and the adopted 

approximation (dotted lines). (b) Variations of the components of wavevector ( k x , 

k y , | k |) across the horizontal plane. (c) the evolution of wave energy along the re- 

spective wave ray paths under different models of accounting shear (the same code 

as panel (a)). The wave is following the current. 
bviously, an incorrect ratio of the gradients will incorrectly pre-

ict the final significant wave height. 

An example of qualitative differences in behaviour of wave rays

nd amplitudes as predicted under different approximations is il-

ustrated by Fig. 5 . The figure depicts a wave of constant initial am-

litude, initial angle of 72 ° to the x -axis and period of T = 12 . 5 s

tarting from the point (4 , −4) following a current. The surface

urrent is a simple tanh -profile in the horizontal plane, it is a

unction of x only and parallel to the y -axis as shown by the ar-

ows in Fig. 5 (a). As such, k y remains constant across the domain.

n Fig. 5 (a), the solid black line depicts the surface current (it is

ot drawn to scale). The exact vertical shear formulation (solid)

nd the new approximation (dotted) predict the wave amplitude

o increase by 10% (or amplitude squared, which relates to wave

nergy by ∼20%) and have very similar wave paths. The no shear

ormulation with U = U(0) predicts that the ray reaches a caustics

dashed ray stops at x ≈ −0 . 5 because k x = (k (x ) 2 − k 2 y ) 
1 / 2 ceases

o be real) and therefore the wave amplitudes in this approxima-

ion become infinite. This is equivalent to the case reported by

ei et al. (2005) , where the ray is reflected back at a caustic when

 0 > k y > k min where k 0 is the initial wavenumber and k min is the

inimum wavenumber. In this situation, using a depth-averaged

urrent in the WAE (i.e., U = Ū ), the wave would travel along the

ay path with its amplitude unaltered as the vertical profile of the

urrent averages to zero. 

In Fig. 6 , a further example is shown for a initial y -independent

ave with initial angle of 80 ° to the x -axis and a period of T =
2 . 5 s starting from the point (4 , −4) opposing the current. The no

hear formulation predicts a ∼55% decrease in the wave energy as

he ray meets the opposing current. In contrast, the adopted ap-

roximation accounting for vertical shear, shows in this case nearly

 20% decrease in the wave energy (or ∼10% decrease in the ampli-

ude). We stress, that the ray trajectory and amplitude calculated

sing the new approximation are validated by direct comparison

ith the exact shear formulation. In such a situation, using either

 depth averaged or surface current value would fail to capture

oth the ray paths and the wave amplitudes. These two examples

learly show that the WAE with either the depth averaged current

alue or the surface current can fail dramatically in predicting ray

aths and wave amplitudes/energies, while the predictions of the

roposed manageable version of the WAE accounting for vertical

hear approximately are very close to the “exact” predictions. 

. Conclusion and discussion 

In this study we revisited the classical problem of describing

inear evolution of water waves riding on a horizontally inhomoge-

eous vertically sheared current over varying topography. Making

se of the existing wide separation of spatial and temporal scales

etween waves and currents we employ the standard WKB approx-

mation. The derivation of the WAE follows V76 with the follow-

ng new elements. We took into account the effect of Earth’s ro-

ation and examined its role, it has been found that for realistic

ssumptions on the values of rotation and wave periods, the Cori-

lis effect does not alter the WAE of Voronovich (1976) (V76), al-

hough it does enter into the problem implicitly through the mean

ow equations. In the process of derivation we also highlighted the

unctions where taking into account the eddy viscosity, wind input

nd bottom friction (if necessary) would modify expression for the

diabatic invariant – the wave action. 

The key difference with the V76 results is as follows: the V76

xpression for the wave action is implicit, it requires solving the

ayleigh boundary value problem for water waves at each point

f the wave trajectory and calculating their cumulative effect over

he depth. Here, we use explicit solutions to the boundary value

roblem provided by the leading order of an asymptotic expansion
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Fig. 6. (a) Plan view sketch (solid black line with arrows, not to scale) of tanh 

current profile ( U(x, z) = 0 . 9(1 + tanh [2(x + 1)]) U(z) ) at the surface z = 0 . U ( z ) is 

the Wu and Tsanis vertical profile (see Eq. (5.1) ) for a depth of h = 20 m with 

parameters z s = 2 . 2 × 10 −4 h, z b = 1 . 4 × 10 −4 h, γ = 0 . 35 , u ∗ = 0 . 09 ms −1 giving the 

maximum surface current U(0) ≈ −1 . 0 ms −1 and an depth averaged velocity, U m = 

−0 . 126 ms −1 , in the upper layer. Wave rays under different approximations for the 

same initial wave prescribed at x = 4 : wavelength of ≈ 160 m uniform in y incident 

obliquely (the angle θ = 80 ◦ to the x -axis. The approximations plotted: exact shear 

formulation (solid lines), no-shear approximation (dashed lines) and the adopted 

approximation (dotted lines). (b) Variations of the components of wavevector ( k x , 

k y , | k |) across the horizontal plane. (c) the evolution of wave energy along the re- 

spective wave ray paths under different models of accounting shear (the same code 

as panel (a)). The wave is opposing the current. 
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tilising smallness of the oceanic currents compared to wave phase

elocity. The main conclusions of the work can be summarised

s follows: (i) For dominant wind waves and swell and all con-

eivable currents the approximate formulae we put forward are

roviding good accuracy, which has been verified by direct com-

arison with the “exact” (under the WKBJ approximation) V76 re-

ults. (ii) The account of the vertical shear might lead to a signif-

cant departure in wave trajectories, wave lengths and amplitudes

ompared to the predictions of the currently employed “no shear”

ave action model. Even for the situations where the underlying

ssumptions for the adopted approximation are violated, the for-

ulae proved to be robust: there is a little loss of accuracy and

 significant improvement for the group velocity and the invariant

ompared to the standard no-shear formulation of Bretherton and

arrett (1968) . 

Implementation of this sheared-current approximation to ex-

sting wave models should be as simple as adjusting the expres-

ions for the group velocity and the invariant. This should not lead

o much higher computational costs since the weighted integrals

f the vertical profile can be calculated at each point, while each

ode is independent and does not depend on neighboring nodes

nd therefore can be parallelized. Usually the starting point for

he simulation are the data on incoming wave spectra at the outer

oundary of the computational domain provided by either a buoy

r a large scale wave forecasting model. The spectrum has to be

iscretized in the wavevector space and then for each Fourier har-

onics the formulae, which we put forward, enable us to find the

rajectory and evolution of wave parameters. 

Here we very briefly discuss the range of the applicability of

he results, then their implications and, finally, the perspectives of

urther studies. The main limitation on the WAE range of validity

s due to the restrictive assumption of wave linear dynamics: the

AE describes phase averaged evolution of wave field until nonlin-

ar interactions become essential, this interval is primarily deter-

ined by wave characteristic nonlinearity μ - the integral steep-

ess of the wave spectrum. The waves propagating on a vertically

heared current are participating in two types of nonlinear reso-

ant interactions: quartet interactions between the surface waves

nd triad interactions between a pair of surface waves and a vor-

icity wave supported by the inhomogeneity in the vertical distri-

ution of vorticity (e.g., Shrira and Sazonov, 2001 ). The character-

stic timescale T nl of wave evolution due to quartet interactions is

 

−1 
0 

μ−4 , where ω 0 is the frequency of the wave of interest. The

cale of validity of the WAE is restricted from above T_nl; it should

e much smaller than T nl , the time scale of the Hasselmann kinetic

quation. It is the kinetic (rather than dynamic ω 

−1 
0 

μ−2 ) timescale

hich is relevant here since both the WAE and the Hasselmann

quation describe a phase-averaged evolution of wave field. Al-

hough the time scale of triad interactions is scaled as μ−2 , the in-

eraction coefficient has additional smallness due to the smallness

f the current compared to wave celerity; this yields the time scale

f triad interactions comparable or exceeding that of the standard

our wave interactions (for details see Zakharov and Shrira, 1990 ).

or dominant wind waves the typical angular frequencies of the

pectral peak, ω peak , are ∼1 rad / s , while the characteristic steep-

ess is ≈ 0.1, this gives the estimate of the nonlinear time scale

s ∼10 4 s. Hence, for wind waves 10 3 s is a conservative estimate

f the time scale of the WAE validity. For swell, the typical steep-

ess is ∼ 5 · 10 −2 and characteristic periods are ∼10 s, which gives

he time scale of validity ∼10 3 s. A conversion of the time scales

nto the spatial scales depends on the specific bathymetry of the

rea under consideration, a rough estimate would be ∼10 km, that

s the scale of great interest in the context of coastal studies ap-

lications. Hence, there is a room for a nested small scale linear

odel based on the explicit WAE integrated with a local circula-

ion model and, when possible, assimilating data on the shear cur-



B.E. Quinn et al. / Ocean Modelling 112 (2017) 33–47 43 

r  

T  

e  

t  

s  

p  

f  

a  

s  

f

 

W  

a  

f  

m  

b  

s  

i  

n  

t  

t  

t  

p  

o  

w  

c  

t  

d  

n  

f  

i  

t  

s  

w  

i  

t  

o  

d  

e  

g  

fi  

w  

d

A

 

s  

t

i

i

i

r

r

 

w

Q

 

t  

E

T  

t

i

w

Q

r  

 

s

o

Q

B  

v

r

A

 

b  

l  

b  

d  

a  

r  

e

w

w

w

ents provided by operational HF radars (e.g., Waters et al., 2013 ).

here are numerous potential applications and implications of the

xplicit WAE coupled with the circulation model, here we men-

ion just a few. As we already discussed the account of vertical

hear might result in order one effect in predicting the wave am-

litude and wavelength. Employing the explicit WAE it is straight-

orward to find also the set-up and set-down of wave field which

re quadratic in amplitude, hence, the discrepancies with the no

hear formulation will be even more pronounced. This is important

or sediment transport, ship routing, various off shore activities. 

There is a potential for further development of the proposed

AE. First, although the employed explicit solution of the bound-

ry value problem by Skop (1987) provides sufficient accuracy

or the foreseeable applications, the experience of practical usage

ight require an improvement of the WAE accuracy, which can

e achieved by taking the next order in the asymptotic expan-

ion using Kirby and Chen (1989) . The error caused by adopt-

ng the WKBJ approximation is negligible everywhere except the

arrow vicinities of the caustics, even near the caustics integra-

ion over the spectrum in wavevector space will make the caus-

ics contribution insignificant since for each Fourier components

he caustics is in a different location. It might be possible to im-

rove the accuracy of the WAE by taking into account simultane-

usly the quadratic nonlinearity responsible for triad interactions

ith the vorticity modes and the eddy viscosity: if the eddy vis-

osity is strong enough to treat the vorticity waves as forced rather

han free modes, then it is in principle straightforward to intro-

uce a change of field variables which would eliminate quadratic

onlinearity similar to the procedure employed for potential sur-

ace waves Krasitskii (1994) . However, at present the eddy viscos-

ty (or more sophisticated description of the effect of subsurface

urbulence) is not reliably known yet, while the procedure being

traightforward in principle, is technically quite involved. Hence it

ould be prudent to wait until the needed advance in understand-

ng the effect of subsurface turbulence happens. The final destina-

ion of the activity centered on the WAE is to combine the account

f vertical shear in the linear part of the equation (as it has been

one in the present work) with the nonlinear part of the kinetic

quation (the collision integral). At present it is not clear how this

oal can be achieved, since there are irreconcilable conceptual dif-

culties: the collision integral operates in the wavevector space,

hile the linear WAE acts in the x -space. This challenge requires

eep thinking. 

ppendix A. Second-order equations 

On substituting Eq. (3.1) into Eqs. (2.5) and (2.6) and retaining

econd-order terms in a ε in the WKB expansion we obtain equa-

ions for the next order velocity terms, 

 σu 

(2) − w 

(2) ∂u 

(0) 

∂z 
− i k 

ρ0 

p (2) = r 1 (A.1a) 

 σw 

(2) − 1 

ρ0 

∂ p (2) 

∂z 
= r 2 (A.1b) 

 k · u 

(2) + 

∂w 

(2) 

∂z 
= −∇ · u 

(1) (A.1c) 

 1 ≡ ∂u 

(1) 

∂t 
+ u 

(0) 
i 

∂u 

(1) 

∂x i 
+ w 

(0) ∂ u 

(1 ) 

∂z 
+ u 

(1) 
i 

∂u 

(0) 

∂x i 

+ f ̂  z × u 

(1) + 

1 

ρ0 

∇p (1) (A.1d) 

 2 ≡ dw 

(1) 

dt 
+ w 

(1) ∂w 

(0) 

∂z 
. (A.1e) 
Taking the vertical derivatives of Eqs. (A.1a) and (A.1c) together

ith Eq. (A.1b) yields a forced Rayleigh equation 

∂ 2 w 

(2) 

∂z 2 
−

(
k 2 − δ2 

0 

C − U 

∂ 2 U 

∂z 2 

)
w 

(2) = Q 1 (A.2a) 

 1 ≡ − k 

σ
· ∂r 1 

∂z 
+ 

i k 2 

σ
r 2 (A.2b) 

In a manner similar to the analysis of first order equa-

ions, we express the pressure p (2) in terms of w 

(2) from

qs. (A.1b) and (A.2) 

p (2) = 

i ρ0 

k 2 
(k · r 1 ) + 

i ρ0 σ

k 2 
∇ · u 

(1) + 

i ρ0 σ
2 

k 2 
∂ 

∂z 

(
w 

(2) 

σ

)
. (A.3) 

he corresponding boundary conditions for the second-order equa-

ions are 

 ση(2) + w 

(2) = r 3 z = η(0) (A.4a) 

p (2) = ρ0 gη
(2) z = η(0) (A.4b) 

 

(2) = Q 2 z = −h. (A.4c) 

where 

 2 ≡ −u 

(1) · ∇h (A.5a) 

 3 ≡ dη(1) 

dt 
+ u 

(1) · ∇η(0) + 

(
∂u 

(0) 

∂z 
· ∇η(0) − ∂w 

(0) 

∂z 

)
η(1) . (A.5b)

Using Eqs. (A .3) , (A .4a) and (A .4b) we derive the following free

urface boundary condition for w 2 

∂w 

(2) 

∂z 
+ 

(
δ0 

( C − U ) 

∂U 

∂z 
− g 

( C − U ) 
2 

)
w 

(2) = Q 3 (A.6) 

n z = η(0) , where 

 3 ≡ − k 

σ
· r 1 − gk 2 

σ 2 
r 3 − ∇ · u 

(1) . (A.7) 

y virtue of (3.7a) r 3 can be written in terms of the first-order

ertical velocity 

 3 = i 
d 

dt 

(
w 

(1) 

σ

)
+ u · ∇η(0) + 

iw 

(1) 

σ

(
∂u 

(0) 

∂z 
· ∇η(0) − ∂w 

(0) 

∂z 

)
. 

(A.8) 

ppendix B. The solvability condition for the system 

The solvability condition of the inhomogeneous linear

oundary-value problem given by Eqs. (A .2) , (A .4c) and (A .6) al-

ows for the construction of the wave action conservation equation

y following the general derivation for second order ordinary

ifferential equations (see Nayfeh, 1993 , Section 15.4) (albeit with

 different family of boundary conditions where here, �12 
 = 0

ather than �13 
 = 0, in their notation). For brevity w 

(2) ≡ w 2 the

quation system is written as 

 

′′ 
2 + �w 2 = Q 1 , −h < z < η0 , (B.1a) 

 2 = Q 2 , z = −h, (B.1b) 

 

′ 
2 + �w 2 = Q 3 , z = η(0) , (B.1c) 
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where 

� = −k 2 + 

δ2 
0 

C − U 

∂ 2 U 

∂z 2 
, (B.2a)

� = 

δ0 

( C − U ) 

∂U 

∂z 
− g 

( C − U ) 
2 

. (B.2b)

The adjoint system and the solvability equation can be found by

multiplying Eq. (B.1a) by the adjoint function w 

∗ and integrating

from z = −h to z = η(0) , ∫ η(0) 

−h 

(
w 

′′ 
2 + �w 2 

)
w 

∗dz = 

∫ η(0) 

−h 

Q 1 w 

∗dz . (B.3)

Integrating by parts this equation is given by (see Nayfeh, 1993 , Eq.

15.73) 

∫ η(0) 

−h 

(
w 

∗′′ + �w 

∗)w 2 dz + 

[
w 

∗w 

′ 
2 − w 

∗′ w 2 

]η0 

−h 
= 

∫ η(0) 

−h 

Q 1 w 

∗dz . 

(B.4)

The homogeneous equation of the adjoint system is written by set-

ting the integrand of the left hand side of equation (B.4) to zero.

This shows that it coincides with the homogeneous part of Eqs.

(A.2) 

w 

∗′′ + �w 

∗ = 0 , −h < z < η(0) . (B.5)

By setting Q 1 , 2 , 3 = 0 , the boundary conditions of the adjoint sys-

tem are be defined from (B.4) , [
w 

∗w 

′ 
2 − w 

∗′ w 2 

]
η0 

−
[
w 

∗w 

′ 
2 − w 

∗′ w 2 

]
−h 

= 0 (B.6)

and by substituting Eqs. (B.1b) and (B.1c) into Eq. (B.6) results in 

w 

∗ = 0 , z = −h, (B.7a)

w 

∗′ + �w 

∗ = 0 , z = η(0) . (B.7b)

By inspecting the homogeneous boundary value problem given

in Eqs. (3.6) , (3.7c) and (3.8) , it is apparent that these two sys-

tems are self-adjoint systems, and w 

(1) is the adjoint solution of

the inhomogeneous boundary-value problem. Hence, w 

(1) can be

substituted for w 

∗, i.e. 

w 

∗ = w 

(1) . (B.8)

The solvability condition is formulated upon substitution of Eqs.

(B.1) , (B.5) , (B.7) and (B.8) into Eq. (B.4) , which yields ∫ η(0) 

−h 

Q 1 w 

(1) dz − w 

(1) Q 3 

∣∣
z= η(0) 

− Q 2 
∂w 

(1) 

∂z 

∣∣∣∣
z= −h 

= 0 . (B.9)

This condition can be reduced to a conservation law under the

following steps. Substitute back in the expressions for Q 1 , Q 2 and

Q 3 from Eqs. (A.2b) , (A.5a) and (A.7) respectively, multiply by i/ k 2 

and then collect all the terms that contain a time derivative which

will duly define the adiabatic invariant, 

T 1 = 

∫ η(0) 

−h 

i 

k 2 

(
− k 

σ
· ∂ 2 u 

(1) 

∂ z∂ t 
+ 

ik 2 

σ

∂w 

(1) 

∂t 

)
w 

(1) dz 

+ 

[
ig 

σ 2 
w 

(1) ∂η(1) 

∂t 
+ 

iw 

(1) 

σ k 2 
k · ∂ u 

(1 ) 

∂t 

]
z= η(0) 

(B.10)

From the continuity equation, i k · u 

(1) = −∂ w 

(1) /∂ z and by using

the horizontal and vertical momentum fluxes of the mean flow T 1 
reduces to the adiabatic invariant I and the solvability condition,

Eq. (B.9) reduces to 

∂ I 

∂t 
+ ∇ · ( C g I ) = 0 (B.11)
here 

 = −
∫ η(0) 

−h 

1 

2 σ 2 k 2 
∂ 2 σ

∂z 2 
w 

2 dz + 

[(
g 

σ 3 
+ 

1 

2 σ 2 k 2 
∂σ

∂z 

)
w 

2 

]
z= η(0) 

(B.12)

 g I = −
∫ η(0) 

−h 

{
1 

2 σ 2 k 2 
∂ 2 σ

∂z 2 
u 

(0) − 1 

2 σ k 2 
∂ 2 u 

(0) 

∂z 2 
+ 

k 

k 2 

}
w 

2 dz 

+ 

[((
g 

σ 3 
+ 

1 

2 σ 2 k 2 
∂σ

∂z 

)
u 

(0) 

− 1 

2 σ k 2 
∂u 

(0) 

∂z 
+ 

gk 

σ 2 k 2 

)
w 

2 

]
z= η(0) 

(B.13)

nd the superscript 1 has now been dropped from the w for clarity

f notation. Dividing Eq. (3.13) by Eq. (3.11) gives an expression for

he group velocity. In the absence of the vertical derivatives, it is

lear that Eqs. (3.11) and (3.13) reduce to the usual expressions for

he wave action invariant and its product with the wave group ve-

ocity. These are the expressions which are used in the spatial and

ime discretization of wave models. To improve the wave models

o take into account the vertical variability of the flow, these extra

ertical derivative terms must be added to the models. In addition,

t can be seen that the inclusion of Earth’s rotation f , to the flow

id not change the wave action equation of Voronovich (1976) . 

ppendix C. The solution of the homogeneous Rayleigh 

quation 

Since the current U(z) is now a function of the vertical coordi-

ate, the group velocity cannot be defined a priori which is obvi-

usly problematic for the WAE which is solved for wave models.

onsequently, the perturbation method of Stewart and Joy (1974) ,

kop (1987) and Kirby and Chen (1989) can be employed, in a sim-

lar manner to previous literature Shrira (1993) to determine var-

ous approximations to the dispersion relation σ and the vertical

elocity w so that analytical perturbation solutions can be used in

he WAE. 

By assumption of small currents, U(z) = ε 4 U(z) , small current

radients U ′ (z) = ε 4 U ′ (z) , and small current vertical curvature,

 

′′ (z) = ε 4 U ′′ (z) , δ2 
0 

≤ O (1) , Eq. (3.6) can be ordered with the

mall parameter ε4 as 

 

(
δ2 

0 

C − U 

∂ 2 U 

∂z 2 

)
= O 

(
δ2 

0 

∂ 2 

∂z 2 

(U 

C 

))
= O 

(
δ0 

C − U 

∂U 

∂z 

)
∼ ε 4 � 1 . 

y inserting the perturbation series in Eqs. (4.1) into the Rayleigh

q. (3.6) and boundary conditions (3.7c) and (3.8) , equations to

arious orders in ε4 are obtained, which can subsequently be

olved for the corresponding C and w . 

1. Solution of the zeroth-order 

To O ( ε0 ) the zeroth-order equations and boundary conditions

re: 

 0 

(
∂ 2 w 0 

∂z 2 
− k 2 w 0 

)
= 0 , −h ≤ z ≤ η(0) (C.1a)

 

2 
0 

∂w 0 

∂z 
− gw 0 = 0 , z = η(0) (C.1b)

 0 = 0 , z = −h. (C.1c)
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Solving the zeroth-order Rayleigh Eq. (C.1a) with the bottom

oundary condition (C.1c) yields 

 0 = A ( ε 1 x ) sinh k ( z + h ) . (C.2) 

ubstituting (C.2) to the surface boundary condition results in 

 0 = 

√ 

g 

k 
tanh k ̄h (C.3) 

ith h̄ = h + η(0) , U(η(0) ) and U ′ (η(0) ) defined as U(ε 1 x , η
(0) ) and

∂ U(ε 1 x , z) /∂ z | z= η(0) respectively. Using definitions (3.4) and (3.5) ,

q. (C.3) enables us also to find the zeroth-order Doppler shifted

requency as 

0 = k ( C 0 − U ) = 

√ 

gk tanh k ̄h − k · u 

(0) (C.4) 

hich is equivalent to the known linear solution for waves on a

epth-independent current. 

2. Solution of the first-order 

To O ( ε1 ) the first-order equations and boundary conditions are:

∂ 2 w 1 

∂z 2 
− k 2 w 1 = − ( C 1 − U ) 

C 0 

∂ 2 w 0 

∂z 2 
+ 

(
k 2 ( C 1 − U ) 

C 0 
+ 

δ2 
0 

C 0 

∂ 2 U 

∂z 2 

)
w 0 

(C.5a) 

 

2 
0 

∂w 1 

∂z 
+ C 0 

∂U 

∂z 
w 0 − gw 1 + 2 C 0 ( C 1 − U ) 

∂w 0 

∂z 
= 0 , z = η(0) 

(C.5b) 

 1 = 0 , z = −h. (C.5c) 

The homogeneous solution for Eq. (C.5a) with the bottom

oundary condition (C.5c) yields the same solution as the zeroth-

rder problem and can therefore be neglected. The particular solu-

ion can be found using the variation of parameters method, which

esults in 

 1 = A ( cosh k (h + z) I 1 (z) − sinh k (h + z) I 2 (z) ) (C.6) 

here I 1 and I 2 are defined in Eq. (4.4) . Here U and U ′′ in the

ntegrands are defined as U(ε 1 x , ζ ) and ∂ 2 U(ε 1 x , ζ ) /∂ζ 2 respec-

ively. Eq. (C.6) can be now substituted to Eq. (C.5b) to produce

he first-order correction to the wave celerity as 

 1 = 

C 0 

sinh 2 k ̄h 

I 1 (η
(0) ) + U(η(0) )) − C 2 0 

2 g 
U 

′ (η(0) )) . (C.7) 

he first-order Doppler shifted frequency is given simply as 

1 = kC 1 . (C.8) 

ppendix D. Wave action equation for currents with no 

ertical shear 

Currents with no vertical shear imply that all the vertical

erivatives in Eqs. (3.11) and (3.13) are set to zero and the con-

ervation law in the case of no vertical shear takes the form 

∂ I nvs 
∂t 

+ ∇ · ( C g I nvs ) = 0 , (D.1) 

here 

 nvs = 

[ 
g 

σ 3 
w 

2 
] 

z= η(0) 

(D.2) 
 g I nvs = −
∫ η0 

−h 

k 

k 2 
w 

2 dz + 

[(
g 

σ 3 
u 

(0) + 

gk 

σ 2 k 2 

)
w 

2 

]
z= η(0) 

. (D.3) 

he solution for the Rayleigh Eq. (3.6) with the boundary condi-

ions (3.7c) and (3.8) without vertical shear takes the form 

 nvs = A ( ε 1 x ) 
sinh k ( z + h ) 

sinh k ̄h 

(D.4) 

 nvs = 

1 

k 

√ 

gk tanh k ̄h (D.5) 

nvs = 

√ 

gk tanh k ̄h . (D.6) 

t can be easily seen that for no-vertical-shear conditions the per-

urbation solution presented in Section Appendix C degenerates to

he above accurate solution. Substituting Eqs. (D.4) and (D.5) into

qs. (D.2) and (D.3) yields 

 nvs = A 

2 
{ 

g 

σ 3 

} 

z= η(0) 

(D.7) 

 g I nvs = A 

2 

{
g 

σ 3 

[
1 

2 

C d nvs 

(
1 + 

2 k ̄h 

sinh 2 k ̄h 

)
k 

k 
+ u 

(0) 

]}
z= η(0) 

. (D.8) 

pon division by g , the conservation law takes the form 

∂ 

∂t 

[
A 

2 

σ 3 

]
z= η(0) 

+ ∇ ·
[(

C g nvs 
k 

k 
+ u 

(0) 

)
A 

2 

σ 3 

]
z= η(0) 

= 0 (D.9) 

here 

 g nvs = 

1 

2 

C d nvs 

(
1 + 

2 k ̄h 

sinh 2 k ̄h 

)
+ u 

(0) (z) . (D.10) 

urthermore, multiplying Eq. (3.7a) by its complex conjugate 

 

η| 2 σ 2 
∣∣

z= η(0) 
= w 

2 
∣∣

z= η(0) 
, (D.11) 

ields the relation between the amplitude of the surface elevation

 a ) and the amplitude of the vertical velocity ( A ): 

 

2 = a 2 σ 2 
∣∣

z= η(0) 
. (D.12) 

ubstituting Eq. (D.12) into Eq. (D.9) allows writing the conserva-

ion law using the common surface elevation amplitude wave ac-

ion formulation 

∂ 

∂t 
N nvs + ∇ ·

{ [
C g nvs 

k 

k 
+ u 

(0) 

]
z= η(0) 

N nvs 

} 

= 0 (D.13) 

ith the wave action defined as 

 nvs = 

[
a 2 

σ

]
z= η(0) 

. (D.14) 

ppendix E. Linear vertical shear current profile 

Assuming a linear vertical current profile provides an exact an-

lytical solution. Take a profile of the form U(z) = pz + q where p

nd q are constants, the gradient U 

′ (z) = p and curvature U 

′′ (z) =
 . The solution to the Rayleigh Eq. (3.6) is the same as the case for

o-shear given by Eq. (D.4) . The wave dispersion becomes, 

= kq ±
√ 

gk tanh hk − 1 

2 

p tanh hk (1 ∓ 1) . (E.1) 

ubstitution of the velocity, dispersion and their derivatives into

he WAE defined in Eqs. (3.11) and (3.13) , gives exact analytical ex-

ressions for the invariant and group velocity 

 = a 2 
[ 

g 

σs 
− p 

2 k 

] 
z= η(0) 

(E.2) 
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Fig. F7. (a) Two-layer profile U(z) = m (1 + tanh [ n (z + b)]) where b is the depth of 

the upper layer and n determines the sharpness of the transition between the layers 

and m specifies the magnitude of the velocity at the surface. (b) comparison of ver- 

tical velocity structure for the two-layer profile, kh = 2 . 5 , U = 2 . 0 ms −1 , b = 0 . 2 h, 

m = 1 , n = 20 . 
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Fig. F8. Co-propagating waves with idealised two-layer vertical profile. Contours of 

(a) %-errors of the approximated group velocity to the exact group velocity C g / C gvs , 

(b) the no-shear group velocity to the exact group velocity C g n v s /C gv s , (c) the no- 

shear group velocity calculated with the depth-averaged velocity to the exact group 

velocity (C g n v s | Um ) /C gv s , (d) I / I vs and (e) I nvs / I vs , for h = 50 m, b/h = 0 . 1 and a varia- 

tion of k and U . 
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C g = 

[ 

pη(0) + q + 

2 k σ
(
g − (h + η(0) ) σ 2 

)
− pσ 2 

k (2 gk − pσ ) 

] 

z= η(0) 

. (E.3)

where Eq. (E.3) is equivalent to that of Jonsson et al. (1978) . 

Appendix F. Two-layer current profile 

An idealized analytical velocity profile describing situations

common in the upper ocean and in estuaries when there is a den-

sity jump, is a two-layer profile in which the top layer has a con-

stant velocity and the bottom layer has zero velocity, such as that

shown in Fig. F.7 (a) where the current velocity profile is defined

as 

(z) = m (1 + tanh [ n (z + b)]) , 

where b is the depth of the upper layer and n determines the

sharpness of the transition between layers and m determines the

magnitude of the velocity at the surface. The profile is often used

for the modeling of mixing in stratified flows Turner (1973) . We

will use this model with deliberately chosen very sharp transition

to demonstrate that the adopted approximation works well even

when assumptions of smallness of gradients and curvature are vi-

olated. 

Fig. F.7 (a) is the profile with the parameters kh = 2 . 5 , U =
2 . 0 ms −1 in the top layer and zero in the lower layer, b = 0 . 2 h,

m = 1 , n = 20 . Again, even for this extremely simplified profile,

the vertical velocity structure provided by the adopted approxima-

tion is greatly improved, as is evident in Fig. F.7 (b). It can be seen

that the w 0 + w 1 approximation is much closer to the exact verti-

cal structure: the errors are reduced to within 4% whereas for the

w 0 term only, the maximum error is about 10%. Results shown in

Fig. F.8 are errors for the group velocity and the invariant for a

variation of wavelength and current velocity and a fixed b/h = 0 . 1 .

Fig. F.8 (a) shows that for increasing U / C 0 , the errors to the group

velocity from the new approximation over the exact vertical shear

approximation are typically half in comparison to the no-shear for-

mulation in Fig. F.8 (b) for small values of k b . For U / C 0 < 0.1, the er-

rors are typically below 5% for longer waves. Fig. F.8 (b) shows that

using the surface value of the current for the no shear approxima-

tion is more accurate than using the value of the depth-averaged

current velocity as shown in Fig. F.8 (c). 

For all wavelengths and a weak current, the approximation

to the invariant I is excellent, but also for shorter waves on a

relatively strong current, as evident from Fig. F.8 (d). The errors

do become large however for long waves on a thin top layer

and a strong current. This is an improvement over the no-shear

formulation in Fig. F.8 (e) which gives sizable errors at all wave
umbers for all current strengths. Fig. F.8 (f) shows the error for

he invariant for the no-shear formulation but calculated with

he mean velocity. The no-shear expression for the invariant,

q. (D.7) does not contain the velocity so the no-shear invariant

ill be the same regardless of whether the surface or mean veloc-

ty value is used. 

For a fixed value of a strong current ( U ∼1.5 ms −1 ), Fig. F.9 (a)

hows that under the new adopted approximation, for thin lay-

rs the errors for the group velocity are reduced to about 10%,

hich is noticeably better than the no-shear formulation shown

n Fig. F.9 (b). As expected, both formulations tend to the exact so-

ution as the thickness of the top layer tends to h as evident in

igs. F.9 (a) and (b). Again the no-shear formulation works better

n most of the parameter space when the surface value of the cur-

ent is used rather than the mean value as evident in Figs. F.9 (b)

nd (c). For the invariant, Figs. F.9 (d) and (e) show that in nearly

ll of the parameter space, the adopted approximation is very ac-

urate. There is a small region of the parameter space, for thin top

ayers and medium to shallow water, kh < 2, for which there are

ome errors compared to more widely-distributed errors in the tra-

itional no-shear formulation for all water depths on thin top lay-

rs kb � 0.1. 

As expected, for weaker currents, the same trends are observed

s mentioned already but the errors become smaller for weaker

urrents. 
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Fig. F9. Co-propagating waves with idealised two-layer vertical profile. Contours of 

(a) %-errors of the approximated group velocity to the exact group velocity C g / C gvs , 

(b) the no-shear group velocity to the exact group velocity C g n v s /C gv s , (c) the no- 

shear group velocity calculated with the depth-averaged velocity to the exact group 

velocity (C g n v s | Um ) /C gv s , (d) I / I vs and (e) I nvs / I vs , for U(0) = 1 . 5 ms −1 , h = 20 m and a 

variation of b and k . The contours are at the same levels for each panel. 
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