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The altimeter radar backscatter cross-section is known to be related to the ocean surface
wave mean square slope statistics, linked to the mean surface acceleration variance
according to the surface wave dispersion relationship. Since altimeter measurements
also provide significant wave height estimates, the precedent reasoning was used to
derive empirical altimeter wave period models by combining both significant wave height
and radar backscatter cross-section measurements. This article follows such attempts
to propose new algorithms to derive an altimeter mean wave period parameter using
neural networks method. Two versions depending on the required inputs are presented.
The first one makes use of Ku-band measurements only as done in previous studies,
and the second one exploits the dual-frequency capability of modern altimeters to better
account for local environmental conditions. Comparison with in situ measurements show
high correlations which give confidence in the derived altimeter wave period parameter.
It is further shown that improved mean wave characteristics can be obtained at global
and local scales by using an objective interpolation scheme to handle relatively coarse
altimeter sampling and that TOPEX/Poseidon and Jason-1 altimeters can be merged to
provide altimeter mean wave period fields with a better resolution. Finally, altimeter
mean wave period estimates are compared with the WaveWatch-III numerical wave
model to illustrate their usefulness for wave models tuning and validation.

Keywords altimeter, wave period, neural network, wave model

Sea state can be described in numerous ways, from a near complete spectral description
as deduced from buoys, airborne or spaceborne RAR/SAR instruments, to rough visual
estimates as provided by ships of opportunity. It is also often practical and accurate enough
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France. E-mail: yves.quilfen@ifremer.fr

535

D
ow

nl
oa

de
d 

by
 [

IF
R

E
M

E
R

- 
C

en
tr

e 
D

e 
B

re
st

] 
at

 0
9:

26
 1

9 
M

ay
 2

01
2 



536 Y. Quilfen et al.

to describe the local sea state using integrated quantities (e.g., significant wave height (Hs),
mean ocean wave period, and wave steepness). The former two parameters can be obtained
from ocean wave spectral moments of buoy. For altimeter measurements, significant wave
height estimates are easily obtained and are currently being assimilated in numerical wave
models. These Hs can be complemented by an “altimeter mean wave period” derived from
the combination between Hs and the backscatter coefficient, also referenced as the normal-
ized radar cross-section (NRCS) (Davies et al. 1997; Hwang et al. 1998; Gommenginger
2003), to give a more complete description of the sea-state. The recent algorithm proposed by
Gommenginger (2003) shows a good agreement when compared with buoy measurements
but leaves residual dependencies of the retrieved altimeter mean wave period parameter as
a function of the sea-state maturity.

Hereafter, an empirical algorithm is proposed using neural networks to fully exploit
the altimeter capability to provide regional and global characteristics of the wave field. The
approach is based upon neural network modelization and will exploit the dual-frequency
characteristics of the TOPEX/Poseidon and Jason-1 altimeters. Indeed, it is anticipated
that the C-band measurements shall better filter out the shorter sea surface scales to be
closer to buoy measurements whose shorter sampled waves are gravity waves. The use of
the information contained in the difference between C and Ku band radar cross sections,
together with the wind speed, shall better constrain the wind sea contribution in the retrieved
parameter.

The next section presents the current altimeter mean wave period models and the two
new neural models. In this section, the neural network methodology and the data used to
derive the neural models are also described. Then a section is devoted to the validation of
the neural models and to their comparison with the SOC model. Since the neural models
have been defined with the T/P data, a cross-calibration with Jason-1 measurements is
performed in this section. In the next section, a mapping of the mean altimeter wave period
is provided to illustrate the opportunity of the T/P and Jason-1 tandem mission to provide
new sea state information at global and local scales. A comparison with the numerical model
WaveWatch-III (Tolman et al. 2002) is done in the final section to illustrate the interest of
the altimeter mean wave period to validate and tune the numerical wave models.

The Altimeter Wave Period Models

Generality

Ideally, for a wind sea condition, the ocean surface will rapidly roughen. With time or fetch,
the sea develops and using similarity laws (e.g., Kitaigorodskii 1973), high correlation be-
tween nondimensional wind sea energy and inverse wave age are expected. Consequently,
estimating the wind and the significant wave height shall be sufficient to infer the wave
period. On the other hand, considering the possible direct inverse relationship between al-
timeter NRCS and mean surface slope variance (Barrick 1974), the dispersion relationship
can also be invoked to derive an altimeter-integrated mean wave period by using simul-
taneous altimeter significant wave height and NRCS measurements as Talt ∝ Hs2σ 1/4

(Gommenginger et al. 2003). Finally, globally distributed crossovers of altimeter and scat-
terometer observations have clearly demonstrated that ocean altimeter backscatter correlates
with both the near surface wind speed and the sea state (Gourrion et al. 2002a). Especially
considering C-band measurements, Gourrion et al. (2002b) further demonstrated excellent
correlation between buoy acceleration variance estimates and inferred C-band mean square
surface slopes.

Based on such reasoning and observations, enhanced use of altimeter observations to
infer sea state degree of development and/or mean period/wavelength is proposed. A few
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An Altimeter Wave Period Model 537

wave period models have been reported in the scientific literature (i.e., Davies et al. 1997;
Hwang et al. 1998; Gommenginger et al. 2003). The last, developed at the Southampton
Oceanographic Center (SOC), hereafter referenced as the SOC model, has been shown to be
a substantial improvement compared to the former ones. It will thus be used as a reference for
comparison with the neural models presented here. As outlined above, simple relationship
considerations enable relating the ocean waves period to the altimeter significant wave
height (Hs) and normalized radar cross-section (NRCS), as done empirically in the SOC
model by using the T/P Ku band measurements. However, weight and exponent choices to
build an empirical formulation such as the SOC model may be complicated, and so we use
a well-trained neural model to help build our algorithm without having to define a priori
values for weights and exponents. As a first step, and to be used later as a reference and
in comparison with the SOC model, we have developed a first neural model, called NN-1,
solely using as inputs the Ku-band Hs and NRCS parameters. Ku band measurements were
used in the past because the first models were developed for single frequency altimeter like
Geosat. Today’s altimeters are dual-frequency sensors (T/P, Jason-1, ENVISAT) and offer
an opportunity to exploit these capabilities. Indeed, the buoy and altimeters are sensitive
to different sea surface scales. The altimeter measurements are closely related to short
scales (down to centimetric) while the buoy measurements are sensitive to gravity waves
longer than 10 m. The additional use of the T/P C-band measurements less sensitive to
the shorter scales, combined with the Ku-band ones in the neural model to retrieve the
mean wave period, will provide significant reduction of the mismatch between the buoy
and altimeter measurements. Altimeter measurements also exhibit a variability associated
with the sea state maturity (Glazman and Pilorz 1990; Fu and Glazman 1991), leading to
a bias in the retrieved altimeter mean wave period if not accounted for. Information on sea
state maturity requires additional knowledge of the surface wind speed. Wind speed and
C-band backscatter coefficient will, therefore, be used to constrain a second neural model,
NN-2, that will depend on four altimeter parameters: Hs at Ku band, NRCS at Ku and C
bands, and the 10 m surface wind speed.

Calibration of altimeter wave period models requires reference measurements of the
mean wave period. This is usually provided by buoys but different computations of the
mean wave period can be done from the buoy wave spectrum. There is no conclusive proof
or evidence about which one is the best or the “usual” one to use. In this study we have used
the mean wave period parameter provided in the NDBC archive defined as T = √

m0/m2,
where m0 and m2 are the zero and second order moments of the measured wave spectrum.
As defined, T is a zero crossing period corresponding to the time between two successive
crossings of the mean sea level.

Data

The analyses are based upon a set of TOPEX/Poseidon (T/P) altimeter measurements col-
located with the National Data Buoy Center (NDBC) buoys. The T/P Geophysical Data
Records (GDR) are processed by the AVISO center, and the collocation with the NDBC
buoys was performed at Centre ERS d’Archivage et de Traitement (CERSAT). The NDBC
data have been collected over the period from October 1992 to March 2002 by 33 buoys.
These buoy measurements are converted to 10-meter neutral winds, using a log-profile
relation accounting for the atmospheric stability. The buoy one-hour average estimate the
closest to the time of T/P satellite overpass is collocated with the altimeter data. The sepa-
ration distance between measurements is less than 25 km. A data screening is applied with
the following criteria: the buoy mooring depth is greater than 50 m; the buoy wind speed
is in the range 0–25 m/s. For altimeter measurements, those during which rain occured are
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538 Y. Quilfen et al.

filtered using both the rain flag in the GDRs and the Tournadre and Morland algorithm
(1997). An upper threshold of 16 dB and 20 dB has been applied for the Ku and the C band
backscatter coefficient, respectively. Measurements beyond these thresholds are considered
as outliers, since they are likely to correspond to surface slicks for which there are no surface
waves. The thresholds have been determined after a careful data screening. With the above
data editing, 6679 collocated data pairs have been compiled. This dataset corresponds to a
broad range of wind and sea situation thanks to a fairly wide spread buoy network, covering
the North American coasts, the gulfs of Alaska and Mexico, and the Hawai Islands area.

Neural Network Architecture and Training Process

The main advantage of using neural networks to define an altimeter mean wave period model
is that it does not require an a priori knowledge of the mathematical relation linking the
different variables. The neural model definition requires the identification of the pertinent
variables and the determination of the network architecture adapted to the input variables
set. We use a neural network modelization in the form of a multilayer perceptron network
(Hornik et al. 1989; White 1990). The selected network architecture has been designed
to enable the reproduction of a family of functions already used in previous parametric
models definition. In particular, the first layer transfer function is an exponential to account
for the multiplicative relationships between the significant wave height and the normalized
backscatter cross-section inputs. The other layers are composed of linear transfer functions
to avoid saturation effects near the low and high ends of the wave period range where
training dataset density is low. The training process, based on feedforward gradient back
propagation technique, is looking for an optimal set of network parameters in an iterative
scheme that minimizes the mean square difference between the predicted and observed mean
wave period. We make use of the Levenberg-Marquardt gradient descending technique
to search for this minimum, starting from a random set of network parameters. A data
normalization process is performed by scaling and centering the data before entering the
neural training process. The training dataset is selected within the global dataset by randomly
extracting no more than a maximum number of data per interval of the output parameter. This
maximum number was set at 40 samples in each data bin of 0.5 seconds. With these criteria,
775 measurements are randomly selected for the training data set. The training process is
performed using this subsample of the buoy wave period dataset and the corresponding
altimeter measurements. The training process is repeated 100 times with different training
datasets randomly selected in order to find the neural network for which we obtain the better
fit between the buoy wave period distribution and the altimeter wave period distribution
over the global dataset. Since the obtained neural model has been derived using a subset of
the data, the network performance evaluation is performed using the remaining part of the
dataset.

After the training process we obtain the following formulation for the two neural models
NN-1 and NN-2:

tnn1 = e−17.1642×a+13.5844, (1)

where

a = 1

1 + e0.6573×Hs0.1084×σ 0.2962
Ku −2.2377

, and tnn2 = e5.7474−1.4688×a+1.7943×b,

(2)
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An Altimeter Wave Period Model 539

where

a = σ 0.3082
Ku

σ 0.2352
C × Hs0.0981

× e1.5068×b, and b = 2

1 + e−1.8612−0.08×U10
− 1.

In these equations σKu and σC are the altimeter normalized radar cross-sections in dB at
Ku-band and C-band, respectively; Hs is the significant wave height; and U10 is the 10 m
surface wind speed computed with the Gourrion et al. algorithm (2002a).

Results

Wave Period Models Validation

Comparisons of the SOC and the neural models with the mean buoy wave period are
illustrated in Figures 1 and 2 and Tables 1 to 3. An overall improvement is obtained with
the neural models, as portrayed on Figure 1. The comparison between the buoy and the T/P
altimeter wave period measurements is color-coded as a function of the inverse wave age
computed as U/Cp ∝ U/T p, where U is the buoy wind speed and T p is the buoy peak wave
period. The orthogonal regression parameters (Table 1) illustrate the improvement, and we
can verify that the NN-2 model enables significant reduction of the scatter between the
altimeter and buoy measurements (see the distance parameter). The correlation coefficients
between the buoy and altimeter wave period measurements for the global dataset are 0.78,
0.88, and 0.91 for the SOC, the NN-1, and the NN-2 models, respectively (Table 2). The
associated standard deviations are 1.05, 0.81, and 0.7, respectively. Results in Table 2 are

FIGURE 1 Comparisons of altimeter wave period models with the NDBC buoy wave
period, color-coded as a function of the inverse wave age.
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540 Y. Quilfen et al.

TABLE 1 Parameters of the Orthogonal Regression
between the Buoy Wave Period and the Southampton
Oceanographic Center Model (SOC), and the Two Neural
Models NN-1 and NN-2 (Computations are Done for the
Global Data-Set—(5904 Points.)

Model SOC NN-1 NN-2

Slope 1.17 0.99 1.03
Intercept (sec) −0.48 0.01 −0.18
Distance (sec) 0.71 0.57 0.49

also given for data subsets corresponding to the buoys moored in the Hawai and Gulf of
Mexico areas, because different swell conditions are usually encountered. It appears that
the SOC model performance is very sensitive to regional sea surface degree of development
and residual sea conditions, as already shown in Figure 1. This is further highlighted in
Table 3 which reports the correlation coefficient of the models residuals (altimeter minus
buoy wave period data) with the wind speed and the inverse wave age. These coefficients are
computed for the global dataset and again for subsets corresponding to the buoys moored in
the Hawai and Gulf of Mexico regions. These results provide further insight that the SOC
and NN-1 models are more dependent on the wave age than on the wind speed solely, and
that the SOC model residuals can be largely explained by its dependency on the wave age.
This is still better observed in the Hawai area where the SOC correlation coefficient is above
0.8. Gommenginger et al. (2003) already reported that their model was less accurate in that
region due to the presence of swell. We can also note in Table 3 that the NN-1 residuals are
also significantly correlated, at 95% confidence level, with the wave age parameter, while
this correlation vanishes nearly completely with the NN-2 model.

Figures 2a and 2b present the models biases as a function of the buoy wind speed and
difference in C and Ku band backscatter coefficients, respectively. Indeed, the wind speed
and the C band backscatter coefficient are the additional parameters used to define the NN-2
model. The results clearly indicate a large improvement with the NN-2 model compared
to the others models. Figure 2c displays the models biases as a function of the buoy mean
wave period. The SOC model produces large biases in the high wave period range, and the
NN-1 model performs a little better than NN-2 in that range.

On Figure 3 are displayed histograms of the buoy and T/P altimeter NN-2 wave period
measurements for the global dataset and for the specific areas covered by the NDBC buoy

TABLE 2 Statistical Comparisons between the Buoy Wave Period and the Southampton
Oceanographic Center model (SOC), and the Two Neural Models NN-1 and NN-2 (for
Each Model, Computations are Done for the Global Data-Set—Left, 5904 Points, the
Hawai Area—Midde, 693 Points, and the Gulf of Mexico Area—Right, 1370 Points.)

Model SOC NN-1 NN-2

Correlation 0.78 0.59 0.78 0.88 0.83 0.82 0.91 0.87 0.82
Bias (model– −0.5 −0.28 −0.2 0.03 0.23 0.08 −0.02 0.16 0.06

buoy, sec)
Std deviation 1.05 0.9 0.64 0.81 0.63 0.53 0.7 0.54 0.51

(sec)
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An Altimeter Wave Period Model 541

TABLE 3 Correlation Coefficient of the Models Residuals (Model Minus Buoy Wave
Period) with the Buoy Wind Speed and Inverse Wave Age (The Considered Models are
the Southampton Oceanographic Center Model (SOC), and the Two Neural Models NN-1
and NN-2. For Each Model, Computations are Done for the Global Data-Set—left, 5904
Points, the Hawai Area—Middle, 693 Points, and the Gulf of Mexico Area—Right, 1370
Points.)

Model SOC NN-1 NN-2

Wind Speed 0.6 0.71 0.67 0.06 0.2 0.15 0.02 0.03 0.11
Wave Age 0.71 0.82 0.7 0.17 0.32 0.22 0.09 0.11 0.04

network. The histogram features (maximum, shape and tail) are nicely reproduced with the
NN-2 model. The histograms are relatively spread in the West Coast and Alaska Gulf regions,
featuring variable local conditions and frequent mean wave periods greater than 10 s. These
large mean wave periods correspond to high wind seas and long swells propagating across
the Pacific ocean. At the opposite, the Mexico Gulf histogram is sharper with a lower peak
value, and very few mean wave periods greater than 8 s are encountered, because long swells
are unable to develop. In the Hawai region, the histogram is also sharp because of the steady
trade winds and the peak value of 6 s corresponds to mixed wind seas and swell trains. As
already shown in Table 2, there is a small bias of the altimeter wave period towards positive
values in the Hawai region, but the correlation coefficient remains large (0.87) despite the
small dynamic range.

Cross-Calibration of TOPEX/Poseidon and Jason-1 Measurements

The mean wave period models described above have been defined for the TOPEX altimeter
to benefit from the 12 years of collocated TOPEX/buoy data for calibration purpose. The
Jason-1 satellite was launched in late 2001 and its altimeter presents the same instrumental
characteristics as the TOPEX ones. It is thus possible to use the T/P wave period model for
the Jason-1 altimeter after verification of the consistency of its measurements of significant
wave height and radar cross-sections with the TOPEX ones. Using data from the Jason-1 and
TOPEX/Poseidon tandem mission time period, it has been shown that there is a small Hs-
dependent correction to apply to the Jason-1 Hs (P. Queffeulou, personal communication)
and mean corrections to apply to the Jason-1 NRCS measurements (J. Dorandeu, personal
communication). These mean corrections are slightly dependent on the altimeters cycle
number, but are accurate enough to the first order. In this study, we have computed the bias
corrections over January 2003, and we have verified the consistency with those referenced
above. We have corrected the Jason-1 data to fit the TOPEX/Poseidon ones, by substracting
2.30 dB and 0.52 dB from the Ku and C band Jason-1 measurements, respectively. For
information, the mean values proposed by J. Dorandeu are about 2.40 and 0.60 for the
Ku and C band, respectively. Since the Hs distributions are nearly identical, we have only
corrected the Jason-1 measurements for a small bias of 8 centimeters.

Using January 2003 T/P data and the adjusted Jason-1 data, we have computed the
altimeters wave period estimates with the same neural model NN-2. The distributions are
shown in Figure 4 and are found to be in excellent agreement. The small difference, if
significant, can be attributed to the different ground sampling between Jason-1 and T/P.
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542 Y. Quilfen et al.

FIGURE 2 Mean wave period bias (altimeter minus buoy) as a function of: (a) the buoy
wind speed; (b) the difference in the C and Ku bands normalized cross-sections; and (c)
the buoy mean wave period. The altimeter wave period models are NN-2 (solid line), NN-1
(dashed line), and SOC (crosses).

Global Mapping of the Wave Period

Mapping Methodology

Since T/P and Jason-1 orbits are shifted to cover more efficiently, the sea surface in the
tandem mission the space/time sampling is different for each altimeter. This fact, combined
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An Altimeter Wave Period Model 543

FIGURE 3 Distribution of buoy (solid line) and altimeter (dashed line) wave period mea-
surements (sec) for the different areas covered by NDBC buoys.

with the relatively poor ground sampling of a highly variable parameter, such as the wave
period by a nadir altimeter, make challenging the comparison of maps derived from the
two altimeters. To minimize impacts of such sampling, we use the powerful Bayesian
Maximum Entropy (BME) theory of modern spatiotemporal geostatistics (Christakos 2000;
Serre et al. 2004), provided through the BMElib software package, to obtain maps showing
the distribution of the physical variable across space and time. This theory provides a
mathematically rigorous framework to integrate a wide variety of knowledge that belongs to
two major bases: the general knowledge base (or soft data) that characterizes the variability
of the process over space and time (physical laws, empirical relations, statistical moments
of any order, scientific theories etc.), and the site-specific knowledge base (or hard data) that
includes all the measurements of the process at specific space time points (measurements
along the satellite path, uncertain observations, secondary information etc.) In this study, we
have used the hard data solely (the T/P and Jason-1 measurements), as done in the classical
space/time kriging approach. The advantage of using BMElib is that future works may
naturally consider soft data (such as to provide characterization of local noise or information
on the variable probability distribution function), leading to improved mapping results as
shown in several BME studies (Serre et al. 2004). A more complete description of the
method is given in the appendix.

Results

The mean wave period fields computed for T/P cycle 280 and Jason-1 cycle 37, correspond-
ing to January 2003, on a 4◦ in longitude by 2◦ in latitude grid, are displayed in Figure 5.
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544 Y. Quilfen et al.

FIGURE 4 Distribution of the Jason-1 (solid lines) and TOPEX (dashed line) altimeter
wave period for January 2003.

The geographical area is limited for better reading of the smaller structures, but the area
is sufficiently extended to cover a large range of wave period and sea state conditions. As
shown in Figures 5a and 5b, the large scale structures for the T/P and Jason-1 fields are
in excellent agreement, and the smaller scale features are also delineated with a good con-
fidence, since they are most of time reproduced on both maps. This indicates the overall
consistency between T/P and Jason-1. Differences in the retrieved wave period maps are
displayed Figure 5c. This shows differences lower than 1 s that appear to be mainly asso-
ciated with differences in the location of the smallest scale structures. It is not surprising,
given the relatively poor altimeter sampling, even if we use a robust interpolation method.

The orbital characteristics of the T/P and Jason-1 satellites are defined to provide in the
tandem mission a better coverage and the above maps can be used to assess the interest of
merging the two altimeter measurements to improve the retrieved wave period fields. This
is illustrated in Figure 5d, which presents the mean dual-altimeter wave period field for the
same analyzed time period.

Comparison with the WaveWatch-III Numerical Model

The previous section illustrates the ability of the altimeter measurements to map the mean
wave period at local and global scales. Usefulness of these measurements is further il-
lustrated in this section by comparing the altimeter mean wave period measurements
to the values obtained with the WaveWatch-III (WW3) numerical wave model. WW3
(Tolman et al. 2002) is a third generation wave model developed at NOAA/NCEP in
the spirit of the WAM model (WAMDIG 1988). For this study, the WW3 surface waves
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An Altimeter Wave Period Model 545

FIGURE 5 Mean altimeter wave period fields computed with T/P (a), Jason-1 (b), the
mean difference (c), and the field from merged T/P and Jason-1 data (d), January 2003. All
units are in seconds.

spectrum has been computed at global scale for January 2003 over a one degree resolu-
tion grid. The model time step is 15 minutes. The input wind field is a product merg-
ing measurements of the QuikScat scatterometer and the data from the NCEP numer-
ical model (Chin et al. 1998). Its spatial and temporal resolutions are 0.5 degree and
6 hours.
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546 Y. Quilfen et al.

FIGURE 6 Mean altimeter (solid line, right and left panels), NDBC buoy (dashed line,
right panel), and WW3 (dashed line, left panel) wave period (sec) as a function of the
altimeter wind speed (m/s), for the different areas covered by NDBC buoys. Mean wave
heights (m) are displayed on left panel for the altimeter (plus) and the WW3 numerical
model (circles). The measurements cover January 2003 (left panel) and the January months
for the time period 1992–2002 (right panel).

WW3 data have been interpolated at T/P and Jason-1 altimeters locations to produce
the collocated dataset used in the following analysis. The obtained dataset has been divided
into subsets corresponding to the main NDBC buoy regions. Figure 6 (left panels) presents,
for these regions and for January 2003, the comparison between the altimeter and the WW3
mean wave periods and significant heights, as a function of the altimeter wind speed. Figure
6 (right panels) presents, for reference and for further altimeter mean wave period validation,
the comparison between the altimeter and the NDBC buoy mean wave periods as a function
of the altimeter wind speed. These latter curves have been obtained using the January
months, 1992–2002, in order to be comparable with the altimeter/WW3 analysis with a good
confidence. The obtained curves (right panels) confirm the excellent agreement between
NDBC buoy and altimeter data. The comparison with WW3 indicates underestimation of
the WW3 mean wave period over the whole wind speed range, with the exception of the
Mexico Gulf. The long swells cannot develop in this region and the wave climate is thus
dominated by the wind seas. This feature and the systematic WW3 mean wave period
underestimation at low wind speed may indicate that the numerical model underestimates
systematically the swell part of the wave spectrum. On the other hand, Figure 6 (left panels)
shows an excellent agreement between the WW3 and altimeter significant wave heights,
suggesting that the wind forcing is adequate. Underestimation of the WW3 mean wave
period may be attributed to the wave model physics or parameterizations, and the altimeter
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mean wave period can thus be used as an interesting additional parameter for numerical
model tuning and physics understanding.

Conclusions

Sea state conditions directly impact altimeter radar cross section measurements. The im-
portance of including sea state parameters in model inversion (altimeter wind, sea state
bias) is still open, but is undoubtedly necessary when trying to retrieve mean wave period
parameters from these combined altimeter measurements. Compared to previous attempts,
this study benefits from a larger number of high quality collocated data accumulated along
the T/P mission. While the impact of various sea state parameters (wave age, wave height,
significant slope, etc.) has been already identified and thoroughly studied from field ex-
periments, simplified parametric models do not exist and neural networks methodology
appears well suited. The high quality data-set further helps to derive robust and practical
empirical models. The altimeter mean wave period measurements, obtained from the NN-
2 neural model presented in this study, is in excellent agreement with the NDBC buoy
measurements. A large improvement is obtained by comparison with others altimeter em-
pirical models, especially because the NN-2 model does not present systematic biases as a
function of the sea state degree of development. The neural network methodology has thus
proved to be efficient to derive an empirical model without addressing uncertain physical
assumptions and parameterizations. The T/P and Jason-1 altimeter measurements have been
cross-calibrated in order to provide coherent wave period estimates from the NN-2 model.
The T/P and Jason-1 tandem mission is an opportunity to obtain enhanced space/time mean
regular fields of the altimeter parameters (sea surface height, wind speed, wave height, etc.).
A geostatistical method has been used to produce such regular mean fields to illustrate the
interest of the altimeter wave period measurement to improve knowledge of the local and
global sea state conditions. Furthermore, a comparison with the WaveWatch-III numerical
wave model has been conducted to assess the altimeter wave period usefulness for wave
model tuning and validation.

The obtained results are certainly encouraging and of interest in the pursuit of a better
understanding of both wind sea growth and dissipation in the open ocean, and possible
related sea state bias signatures. Thus they are interesting for satellite sensor physics un-
derstanding, as well as for the practical purpose to provide enhanced valuable information
from altimeter data for engineering applications related to sea state and numerical mod-
eling. Future works shall focus on better characterization of the mean wave period field
as a function of the desired space/time resolution and altimeter inputs, and shall investi-
gate the possible improvements to be obtained by adding specific constraints (altimeter
measurement noise and wave period distribution characteristics, etc.) that can be specified
in the BMElib interpolation method. Systematic comparison with the surface wave nu-
merical models will further enable better understanding and interpretation of the obtained
wave period fields and will address the topic of usefulness of altimeter wave period data
assimilation.
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Appendix

The BME framework uses the theory of Space/Time Random Fields (S/TRF) to characterize
the randomness of the process X (s,t) over space s and time t on the basis of the general
knowledge G, and it uses a Bayesian conditionalization rule to process the site-specific
knowledgeS and produce a posterior pdf of X (s,t). This posterior pdf varies across space and
time and provides a complete stochastic description of the physical variable at any mapping
point. In general the BME posterior pdf is not limited to the Gaussian form. However in
this work, we limit the general knowledge base G considered to only include the mean trend
m X (p) = E[X (p)] and space/time covariance cX (p, p′) = E[(X (p)− m X (p)) (X (p′)− m X (p′))]
of the S/TRF X (s, t), where p = (s, t) and E denotes stochastic expectation. We also limit the
site specific knowledge S to consist only of hard data (exact measurements). In this limiting
case, the BME posterior pdf is Gaussian with the same posterior mean and variance as that
of kriging. This illustrates the generalization power of BME. The well-known space/time
kriging method is obtained as a limiting case when only hard data is used.

In order to apply the BMElib space/time kriging approach to our problem, we had first
to model the space/time covariance of the Space/Time Random Fields (S/TRF) X (s, t), and
then use that covariance model together with the space/time satellite data to calculate the
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kriging estimates at the nodes of a mapping grip. The covariance function obtained using
BMElib was a nonseparable space/time model with parameters varying depending on the
spatial and temporal region considered. This covariance model provides BMElib with a
space/time metric allowing the selection of a local neighborhood of space/time satellite
data that are closest to the space/time mapping point considered. A challenging aspect of
our dataset was the massive amount of data collected along each path of the satellite. This
issue was effectively addressed in our work by using, in addition to the local neighborhood
of the data points closest to the mapping point, a second neighborhood of data points chosen
to consider points over a wider space/time region.
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