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Abstract

Satellite radar altimeter observations are key to advanced studies in ocean dynamics, particularly those focusing on mesoscale pro-
cesses. To resolve scales below about 100 km, because altimeter measurements are often characterized by a low signal-to-noise ratio
(SNR), low-pass filtering or least-squares curve fitting is generally applied to smooth the data before analysis. Here, we present an alter-
native method. It is based on Empirical Mode Decomposition (EMD) developed to analyze non-stationary and non-linear processes,
which adaptively projects a signal on a basis of empirical AM/FM functions called Intrinsic Modulation Functions (IMFs). Applied
to a Gaussian noise signal, the EMD provides a set of IMFs with a predictable distribution of noise energy that can be exploited by
wavelet-inspired threshold methods to provide an efficient approach to data denoising. The EMD method performs a local analysis
of the SNR, does not require a priori assumptions about the underlying geophysical signal, e.g., its degree of smoothness or its compli-
ance with a particular mathematical framework. The signal is simply assumed to be the sum of a piecewise-smooth deterministic part and
a stochastic part. The proposed EMD-based denoising approach is therefore well suited for mapping non-linear features, such as strong
gradients, and extreme values without significant smoothing. Using Jason-2, Cryosat-2, and Saral/AltiKa significant wave height mea-
surements, the method provides an effective means of mapping overlooked geophysical variability of sea state at scales between about
100 km and 25 km, a range largely impacted by low SNR. Below 25 km, a spectral hump caused by inhomogeneities in the altimeter
footprint essentially dominates the signal. In addition, the EMD method provides a consistent approach for long-term noise analysis
and monitoring under global and local conditions. The proposed method is a step forward that will enable better exploitation of the
unique set of altimeter observations that now covers more than 25 years.
� 2020 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

For more than 25 years, satellite altimeter measurements
have supplied sea surface height (SSH), significant wave
height (Hs), and radar cross-section (sigma0) measure-
ments, building a unique dataset on these aspects of the
ocean. Although this data offers potential for significant
progress in various research-oriented and operational
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applications, its use can be hampered by technological dif-
ferences between the sensors used and the different process-
ing and re-tracking algorithms applied to the analysis of
altimeter signals. Efforts are being made to cross-calibrate
measurements from the different satellite missions, in par-
ticular to improve their usefulness for climate studies, as
in the European Space Agency’s (ESA) Climate Change
Initiative (CCI) project.

One of the main limitations is that altimeter measure-
ments are often characterized by a low signal-to-noise ratio
(SNR), which can have a significant impact on geophysical
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analysis at spatial scales below 100 km. The main sources
of noise are the altimeter waveform re-tracking algorithms,
instrumental noise and geophysical variability in the
altimeter footprint (Sandwell and Smith, 2005; Thibault
et al., 2010, Dibarboure et al., 2014). In addition, because
the recovered parameters are obtained from the same
waveform re-tracking algorithm, they can have highly cor-
related errors, i.e., standard MLE4 processing produces
four estimated parameters with correlated errors (SSH,
Hs, sigma0, and off-nadir angle). Fine-scale ocean dynam-
ics analysis therefore requires preliminary noise filtering,
and low-pass or smoothing filters (e.g., Lanczos, running
mean, or Loess filter) are frequently used. Each of these fil-
ters efficiently smooths noisy data but results in a system-
atic loss of small-scale (<100 km) geophysical
information or the creation of artifacts in the geophysical
variability analyzed. In addition, such filters only remove
some of the high-frequency noise, which is also the result
of approaches that infer a correction to eliminate corre-
lated errors from other aspects of the waveform data
(Zaron and de Carvalho, 2016; Quartly, 2019; Tran et al.,
2021), leaving a substantial amount of low-frequency noise
in the data. Such low-frequency noise remaining in the sig-
nals after smoothing will still interfere with the precise mea-
surement of geophysical peak height, width, and position
(O’Haver, 2019).

To overcome these difficulties, we present an alternative
approach providing an adaptive noise elimination method
for satellite altimeter measurements. It is based on the
non-parametric Empirical Mode Decomposition (EMD)
method developed to analyze non-stationary and non-
linear signals (Huang et al., 1998; Wu and Huang, 2004;
Huang and Wu, 2008). EMD is a scale decomposition into
a limited number of amplitude and frequency modulated
functions (AM/FM), among which the Gaussian noise dis-
tribution is predictable (Flandrin et al., 2004). It can there-
fore provide the basis for a noise elimination approach,
optimized and applied to a variety of simulated determinis-
tic signals, with results often superior to those of wavelet-
based techniques (Kopsinis and McLaughlin, 2009). For
instance, to identify the occurrence of rogue waves,
Hadjihosseini et al. (2014) used EMD to filter high-
frequency variability related to the background sea state
in a 1-Hz surface elevation record taken by an ultrasonic
wave gauge in the Sea of Japan. Recently, EMD analysis
has been successfully applied to altimeter data to analyze
wave-current interactions (Quilfen et al., 2018; Quilfen
and Chapron, 2019), known to predominate at scales below
100 km (Ardhuin et al., 2017). These studies showed how
EMD analysis is suitable for processing non-stationary
and non-linear signals in low SNR conditions, enabling a
better exploitation of current and past satellite altimetry
missions. More specifically, it can help to consistently
recover power spectra of Hs and SSH variability, as well
as to provide an accurate representation of non-linear fea-
tures, such as strong gradients, and extreme values (Quilfen
et al., 2018; Quilfen and Chapron, 2019). As the EMD
denoising method was only briefly presented in these two
previous articles, it is the purpose of the present study to
present it in detail, especially since it is being used for pro-
cessing of the upcoming sea state CCI and Copernicus
Marine Environment Monitoring Service (CMEMS)
products.

Particular attention is paid to comparing the results
obtained from EMD with those obtained using a smooth-
ing technique based on a Lanczos low-pass filter. The latter
method is very popular among oceanographers, due to its
simplicity and favorable characteristics. It is widely used
for altimeter noise filtering, as performed in the current
altimeter sea level and sea state products distributed by
CMEMS (Taburet et SL-TAC team, 2018; Taburet et al.,
2019). A Lanczos filter is a reformulated low-pass filter that
incorporates a multiplicative factor to attenuate spectral
ringing and signal energy leakage in the pass band (caused
by overshoot ripples known as the Gibbs’ phenomenon,
Emery and Thomson, 2014). In practice, the signal is
reconstructed by adding the low-frequency Fourier compo-
nents to those within a frequency window, centered on the
cut-off frequency, which are weighted. A side effect of the
Lanczos filter is excessive signal smoothing in the presence
of strong gradients and extreme values. Designing a practi-
cal Lanczos filter is thus not easy, because it requires set-
ting of both the cut-off wavelength and the number of
weighted Fourier terms required to achieve the desired
roll-off between the stop and pass bands. It always becomes
a compromise. Signals filtered with a Lanczos filter are
therefore strongly constrained by the inherent Fourier
mathematical framework decomposition, while EMD fil-
tered signals are based on a different assumption. The
EMD decomposition assumes that the observed variable
is the sum of a piecewise-smooth deterministic background
part and a stochastic part.

Hereafter, for demonstration purposes and because it is
implemented to process data distributed to users, this study
focuses on the EMD-based method for processing Hs mea-
surements. However, it also applies to SSH and sigma0
measurements. Section 2 presents the data used, Section 3
the principles of EMD, its algorithm and properties, and
Section 4 describes the EMD-based denoising algorithm
applied to altimeter measurements. In Section 5, the results
are presented for a few illustrative cases and the variances
of both the resulting filtered signals and associated noise
are analyzed. In addition, the uncertainty parameter asso-
ciated with the denoised Hs is presented and characterized.
Finally, Section 6 provides a summary.

2. Data

The multi-mission altimeter dataset processed at IFRE-
MER by Queffeulou and Croizé-Fillon (2013) was analyzed
from January 2014 to December 2016. This dataset con-
tains inter-calibrated Hs and sigma0 measurements for all
altimeter missions from the ERS-1 mission starting in
1991 and lasting until April 2017 for the Saral/AltiKa,
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Cryosat-2 and Jason-2 missions. The present study uses
measurements from these last three altimeters. Each altime-
ter performed measurements at nadir along the satellite
track, and standard processing delivers 1 Hz data with
ground sampling that varied slightly from 6 to 7 km
depending on the altimeter. The study uses quality-
controlled, unfiltered and non-resampled, along-track Hs
measurements. Data editing performed on the Queffeulou
and Croizé-Fillon (2013) dataset was based on testing the
quality flags of the AVISO Geophysical Data Record prod-
ucts, which are the primary source, and on along-track
data screening to eliminate anomalous Hs values that devi-
ate too far from adjacent values. However, this did not
eliminate all data contaminated by land or sea ice transi-
tions, rain, slicks or very light winds (sigma0 blooms). Out-
liers associated with such conditions are therefore likely to
have remained in the analyzed dataset, causing the so-
called spectral hump, which adds a spatially coherent error
to the Gaussian white noise, especially at scales below
about 25 km (Dufau et al., 2016; Dibarboure et al.,
2014). Improved data editing will be a necessary to mitigate
these errors.

3. Empirical mode decomposition principles and algorithm

EMD is a method to decompose signals into a limited
number of scale-dependent components, called intrinsic
modulation functions (IMFs), each modulated in ampli-
tude and frequency. An IMF represents a simple oscilla-
tory mode as a counterpart to a simple harmonic
function derived from Fourier analysis. However, instead
of imposing a constant amplitude and frequency in a sim-
ple harmonic component, an IMF can have an evolving
amplitude and frequency. The decomposition is based on
the local characteristic sampling scale of the data and is
therefore applicable to non-linear and non-stationary pro-
cesses. IMFs have well-behaved Hilbert transforms, from
which instantaneous frequencies can be calculated. Thus,
any event can be well localized in both the time and fre-
quency domains (Huang et al., 1998).

Unlike a more conventional decomposition method
such as the wavelet technique, which projects the signal
considered onto a basis of predefined wavelet functions,
IMF expansion depends only on the analyzed signal.
IMF calculation is performed using an iterative procedure
called sifting. By construction, IMFs share the following
properties: they are zero mean, all their maxima and min-
ima are respectively positive and negative, they have the
same number (or ±1) of zero-crossings and local extrema,
and they are modulated in both amplitude and frequency
(AM/FM). EMD belongs to the class of multi-scale,
orthogonal and adaptive decompositions. The EMD
method ranks IMFs by construction from the first, con-
taining the finest scales, to the last, containing the global
trend.

EMD adaptively decomposes a signal x(t) into a small
number L of IMFs
h ið Þ tð Þ; 1 � i � L; so that:

x tð Þ ¼
XL

i¼1
h ið Þ tð Þ þ d tð Þ ð1Þ

where d(t) is a residue that is a non-zero mean slowly vary-
ing function with only a few extrema.

The IMF number, L, depends on the length of the
record and typically varies from 1 to 10 for the lengths ana-
lyzed in the altimeter dataset.

The IMFs are calculated successively, the first contain-
ing the shortest scales by the construction of the algorithm.
Each IMF is estimated using an iterative process called sift-
ing (illustrated in Fig. 1), which is successively applied to

the residual multicomponent signal x ið Þ tð Þ with:
x ið Þ tð Þ ¼ x tð Þ; i ¼ 1 to derive the first IMF

x ið Þ tð Þ ¼ x tð Þ �
Xi�1

j¼1
h jð Þ tð Þ;

i � 2 to derive the IMFs of rank > 1 ð2Þ

For the estimation of an IMF of rank i h ið Þ tð Þ, during the
(n + 1)th sifting iteration, a temporary IMF estimate h ið Þ

n tð Þ,
called proto-IMF, gets improved according to the follow-
ing steps:

(1) Find the local maxima and minima of h ið Þ
n tð Þ.

(2) Interpolate, using natural cubic splines, along the

maxima and minima of h ið Þ
n tð Þ found in the first step

in order to form an upper and a lower envelope.
(3) Calculate the average of the two envelopes.

(4) Obtain a refined estimate h ið Þ
nþ1 tð Þ of the proto-IMF by

subtracting the average found in the previous step.
(5) Repeat the process from step 1 unless the stopping

criterion has been met.

The sifting process to estimate an IMF of rank i is illus-
trated in Fig. 1. The signal called ‘‘arbitrary input” in panel
(a) can be the original signal x(t) for the estimation of the
first proto-IMF of the first IMF, or the residual signal for
the estimation of higher ranking IMFs, or a proto-IMF
obtained during the sifting process for any IMF estimation.
Panel (a) presents a smooth input signal for clarity. Panels
(b) to (e) show the steps of the sifting process for two iter-
ations, i.e., searching for extrema in panel (b), determining
the upper and lower envelopes in panel (c), and estimating
a refined proto-IMF by removing the average of the upper
and lower envelopes in panel (d). Panel (e) is like panel (c)
but an iteration later, showing that the average of the two
envelopes is approaching 0. Panel (f) shows the IMF result-
ing from the sifting process. This IMF signal is removed
from the input signal in panel (a) for estimation of the rank
i + 1 IMF, or for estimation of the residue if the number of
extrema is too small. As can be seen by comparing panels
(a) and (f), the sifting process has isolated the shortest
scales as an AM/FM function.

To best eliminate the noise in Hs or SSH measurements,
the stopping criterion should be met when the number of



Fig. 1. Simplified diagram of the sifting process for two successive iterations, panels (a)–(e), and the IMF obtained at the last iteration, panel (f). (a) an
arbitrary input; (b) identified local maxima (blue diamonds) and minima (green circles) superimposed on the input; (c) upper and lower envelopes (blue
and green lines) and their average (dashed line) superimposed on the input; (d) proto-IMF (new input calculated as the difference between the solid line
and the dashed line in Fig. 2c), which must be refined; (e) upper and lower envelopes (blue and green lines) and their average (dashed line) of the proto-
IMF superimposed on the new input; and (f) the IMF resulting from the sifting process. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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iterations of the sifting process has reached a predefined
number. A value of eight iterations is used to comply with
the optimization work performed by Flandrin et al. (2004)
and by Kopsinis and McLaughlin (2009). Other stopping
criteria may be used. The reason for choosing a given num-
ber of iterations is the behavior of the energy distribution
of an EMD-processed Gaussian noise according to the
IMF ranking, as detailed in Section 4. Fig. 2 gives an exam-
ple of an AltiKa Hs record and associated IMFs. The
shortest scales are mapped in the first IMF, the second
panel from the top in Fig. 2, to likely contain mostly noise
information. The bottom panel shows the last IMF and the
residual. For this data record, six IMFs and the residual
explain the total signal.
4. Data denoising from empirical mode decomposition

Most denoising methods consist of three steps: project-
ing the signal on a basis of functions capable of usefully
distributing and distinguishing the underlying signal and
noise; then making a threshold selection (e.g., hard or soft
for wavelet filters, frequency or wavelength cut-off for low-
pass filters) in the transformed domain; and finally recover-
ing the signal by back-projecting the modified coefficients
into the initial domain. Wavelet and Fourier analyses are
often used to effectively decompose signals. With Fourier
low-pass filtering, the density energy contained in scales
below a given threshold is eliminated. As Gaussian noise
contamination can extend over the entire harmonic range,



Fig. 2. EMD expansion in L IMFs and residue for a segment of AltiKa
Hs measurements (October 7, 2016). (Upper panel) raw Hs; (intermediate
panels) L-1 IMFs; (bottom panel) last IMF and residue. As obtained, six
IMFs plus the residue describe the total signal.
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this operation likely eliminates the useful signal at scales
below the prescribed cut-off scale and leaves noise above
this prescribed scale. This makes it impossible to determine
an optimal cut-off wavelength since the actual characteris-
tics of the SNR vary over space and time. Low-pass filtered
signals are also subject to spectral ringing (i.e., forced oscil-
lations are generated) and Fourier analysis is not the most
effective method for decomposing non-linear and non-
stationary signals.

Wavelet decomposition is a more powerful technique,
suitable for decomposing non-stationary signals. However,
it requires the design of the basis of functions on which the
signal is projected, i.e., the choice of the mother wavelet
and the number of vanishing moments. This design can
be optimized for well-characterized signals but is difficult
for Hs or SSH measurements whose geophysical variability
and associated noise can have very different signatures.
This is the main reason why wavelet shrinkage methods
have not yet been successfully used to eliminate noise from
altimeter measurements. In this context, the adaptive EMD
decomposition provides a simplified framework that over-
comes the need to design the basis of functions.

Once the signal is broken down into a set of IMFs, a
denoising strategy inspired by those used for wavelet tech-
niques can be applied. Indeed, the analysis to be carried out
takes advantage of (1) the well-behaved and predictable
distribution of Gaussian noise energy with the IMF basis,
(2) the legacy of decades of wavelet-based denoising tech-
niques, and (3) an ensemble average approach to estimate
a robust noise-free signal.
4.1. Characteristics of the Gaussian noise spectrum with an

IMF basis

Reporting on numerical experiments, Flandrin et al.
(2004) showed that in the case of pure fractional Gaussian
noise, the first IMF possesses the characteristics of a high-
pass filter while the higher order modes behave similarly to
a dyadic filter bank, which is reminiscent of what is
observed in wavelet decompositions. A bank of dyadic fil-
ters is obtained by decomposing the input signal into
octave frequency bands in different channels, for which,
as descending the frequency scale, the successive frequency
bands have half the width of their predecessors. For the
EMD decomposition of a white noise, the logarithm (base
2) of the number of zero-crossings (which is an approxi-
mate indication of the average frequency of each mode)
is shown to decrease linearly with the increasing rank of
the IMF, with a slope close to �1. Flandrin et al. (2004)
further found that, for IMFs ranking >1, the IMF’s power
spectra are self-similar, i.e., the power spectra of all IMFs
could be reduced to a single curve when properly renormal-
ized. The result is a well-defined behavior of the decrease of
noise energy with increasing IMF ranking. The Gaussian
noise variance projected onto the IMF basis can be mod-
eled as follows:

varðhn tð ÞÞ � 2 a�1ð Þn ð3Þ

where n > 1 is the IMF rank and a depends on the Hurst
exponent of the fractional Gaussian noise (i.e., a= 0.5 for
an uncorrelated noise, e.g., white noise;a – 0.5 for an auto-
correlated noise).

With the EMD basis, noise energy decreases rapidly
with the increasing IMF rank: ~59, 20.5, 10.3, 5.2, 2.6%
of total energy for the first five IMFs, respectively. The first
four IMFs represent ~95% of the noise energy.

The reasoning behind the EMD denoising approach is
derived from this result. Since the IMF energy resulting
from the decomposition of a noise signal is predicted from
Eq. (3), then in real cases of signals containing both infor-
mation and additive Gaussian noise, a significant difference
between the predicted noise energy and the energy of the
IMF signal indicates the presence of useful information.
Eq. (3) then gives the expected noise energy in each IMF
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to determine the different thresholds below which signal
fluctuations are associated with noise.

As an illustration, Fig. 3 shows how the EMD filter
bank distributes a white noise signal and the Jason-2
altimeter Hs signal in the Agulhas Current region. The
standard deviation of noise was adjusted to fit the Hs
background noise at scales <20 km. In agreement with
Flandrin et al. (2004), for a white noise, the EMD filter
bank is composed of a high-pass filter, IMF1, and a dyadic
filter bank for higher ranking IMFs. It is interesting to note
that a similar structure is observed when EMD is applied to
the Hs along-track signal. Hs IMF1 resembles the noise
IMF1, confirming that it contains mainly noise. A higher
power spectral density at scales >20 km is associated with
a higher noise modulation, since the noise amplitude
depends on Hs and therefore varies along the altimeter
track and with very large geophysical Hs gradients, which
are common in the Agulhas current region. Pure noise
and Hs higher ranking IMFs share the same frequency
ranges and, in the logarithm representation used, the
SNR increases very rapidly with the increase of IMF rank.
This gives the practical rule for denoising since the signal
modulation in each IMF can be compared to the noise
energy expected in a noise-only IMF of the same rank.
Hs IMF2 and IMF3 show comparable energy at the 70-
km scale, below which IMF2 energy dominates. On aver-
age, Hs IMF2 is noise only at a 30-km scale, and the
SNR increases to ~0.5 at a 50-km scale which means that
some geophysical signals can be retrieved locally under
conditions where the SNR is still larger.

For the altimetry dataset, the white noise hypothesis
(H = 0.5) is made, following studies showing a near-
Fig. 3. Mean Power Spectral Density (PSD) of the first four IMFs for
white noise (red curves) and Jason-2 Hs along-track measurements (black
curves), and mean PSD of the corresponding noisy (solid blue line) and
denoised (dashed blue line) Jason-2 Hs measurements. The PSD is the
average of PSDs computed over all data segments covering the years
2014–2016, and the Agulhas region (10�E – 35�E; 45�S – 33�S). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
white noise spectrum (Zaron and de Carvalho, 2016;
Xu and Fu, 2012; Sandwell and Smith, 2005). The reference
noise energy level is then estimated from the first IMF,
which contains mainly noise. The theoretical noise energy
level of each IMF of rank n > 1 is then given by:

En ¼ E1

0:719
2:01�n ð4Þ

The two constants may vary slightly depending on the
number of sifting iterations used to calculate the IMFs.
The values in the above equation are optimized and corre-
spond to eight sifting iterations (Flandrin et al., 2004). For
the estimation of E1, a robust estimator is the absolute
median deviation (MAD) from zero, calculated as follows:

E1 ¼ median n1 tð Þj j=0:6745ð Þ2 ð5Þ
where n1 is the noise contained in IMF1, evaluated from a
wavelet analysis as described in the following section. The
formulation based on a scaled median value is well suited
for estimating noise variance, with the factor 0.6745 being
a scaling for estimating the noise standard deviation for a
Gaussian distribution (Johnstone and Silverman, 1997).
It is robust to cases where the analyzed signal, here n1, con-
tains residual values associated with a small amount of geo-
physical information (large Hs gradients) or outliers
(Mallat, 2009).
4.2. Signal denoising

The denoised signal y(t) is then reconstructed as:

y tð Þ ¼
XM2

i¼M1
h ið Þ tð Þ þ

XL

i¼M2þ1
h ið Þ tð Þ þ d tð Þ ð6Þ

where h(t) represents the IMFs associated with signal x(t),
and the tilde over h(t) indicates the IMFs that are effec-
tively denoised with the threshold technique. M1 and M2

are two parameters that give the flexibility to exclude
lower-order IMFs than M1, if they are thought to contain
only noise, and to give optional denoising for higher-order
IMFs than M2, understood as containing very little noise.
Indeed, in the case of a white noise signal, the fourth com-
ponent contains four times less noise energy than the sec-
ond, and the first four IMFs contain 95% of the total
noise energy. This strongly ‘‘colored” nature of the noise
with the EMD basis has the advantage that few IMFs of
a real signal are significantly contaminated by noise, with
the SNR increasing rapidly with IMF rank as shown in
Fig. 3. For M1, a value of 1 was chosen for the analyzed
dataset, because the strong transient or nonlinear features
associated with the large Hs or SSH gradients are impor-
tant geophysical information to be recovered, which are
likely to appear in the first IMF. This is illustrated in
Fig. 4, which shows the raw and filtered Jason-2 Hs mea-
surements (upper panel) with very large gradients
(~1.5 m/10 km) triggered by wave-current interactions.
Locally, close to the maximum of Hs, the IMF1 shows a



Fig. 4. (Top) Jason-2 Hs along-track raw (blue) and filtered (black)
measurements as a function of latitude; (bottom) associated IMF1
obtained from EMD expansion. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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large amplitude modulation well above the average noise
level.

For a given noisy input signal, the SNR and robustness
of the denoised signal are increased by estimating the final
result as an ensemble average of several denoised signals.
The denoising algorithm follows steps such as:

(1) Perform an EMD expansion of the noisy signal x(t)
(2) Perform the IMF1 noise filtering to separate the

IMF1 stochastic noise, n1(t), from the targeted signal
and possible outliers. This is done using the wavelet
denoising approach described in Huang and Cressie
(2000). Indeed, IMF1 is a purely oscillating function
with a limited bandwidth, dominated by noise, and
sharing the same properties and almost the same fre-
quency range everywhere. It makes an adequate
wavelet design much easier and robust

(3) Perform a reconstruction of signal xs(t) by adding the
residual signal, after eliminating noise and outlier in
IMF1, with higher order IMFs

(4) Randomly modify the positions of the noise n1(t) to
obtain a new noise realization nk(t) and a new noisy
signal xb(t) = xs(t) + nk(t)

(5) Perform an EMD expansion of xb(t)
(6) Carry out the denoising of IMFs ranking from M1 to

M2 by hard thresholding, where the threshold is
based on En (Eqs. (4) and (5)) and reconstruct a
denoised signal xk(t) using Eq. (6). The advantage
of hard thresholding is that it preserves strong gradi-
ents better than soft thresholding (Kopsinis and
McLaughlin, 2009).

(7) Iterate k times steps 4 to 6 in order to obtain a set of
denoised signals

(8) Make an ensemble average of the xk(t) to obtain a
robust denoised signal and an uncertainty estimate
calculated as the standard deviation of xk(t)
Step 2 of the proposed algorithm is IMF1 denoising
with a double objective: first, to evaluate the zero-mean
stochastic noise that will be used to generate the ensemble
of noisy signals by random permutation of the noise sam-
ples; second, to identify the high SNR signal in IMF1 that
will be kept in the reconstructed signal. High flexibility is
provided by the use of Huang and Cressie (2000) wavelet
shrinkage method. These authors developed a Bayesian
approach to denoise various signals, assuming that it can
be the sum of the underlying targeted signal composed of
a piecewise-smooth deterministic part and a stochastic
part, plus a noise as a zero average stochastic part. For
the analyzed altimeter dataset, the signal may also contain
outliers, which can be part of IMF1. Outliers can be caused
in particular by rain and sigma0 blooms, resulting in cor-
rupted altimeter waveforms and abnormal Hs values,
which are difficult to edit. The impact of outliers on wavelet
analysis can often result in high values of the coefficients at
first level (the finest details) that will be targeted as a useful
signal by the wavelet shrinkage algorithm. The best way to
eliminate these outliers from both the signal and noise esti-
mations, is to analyze the IMF1 with the wavelet bank in
two different steps. First, for the estimation of the useful
signal in IMF1, the first wavelet scale containing the finest
details is systematically rejected in the reconstruction of the
signal. It acts as a low-pass filter with a ~25 km cut-off
wavelength, the wavelength below which the spectral hump
dominates (Dibarboure et al., 2014). However, outliers can
also corrupt the higher-level wavelet scales, so better edit-
ing of the data source would still be necessary. As shown
in Fig. 4, the strongest geophysical Hs gradients are pro-
jected in the largest scale levels of the wavelet decomposi-
tion and are therefore not impacted by this low-pass
filtering. Second, for the IMF1 noise estimation, all scale
levels are used to separate noise, associated with wavelet
coefficients below the prescribed threshold, from useful
information and outliers, associated with wavelet coeffi-
cients above the prescribed threshold. For the wavelet basis
design, Symmlet-4 is chosen as the mother wavelet.

Step 2 of the algorithm then provides an estimate of the
IMF1 noise, E1, in order to calculate the noise energy En in
the other IMFs from Eq. (4), and the associated thresholds
Tn to be used in Step 6. Tn are derived from En following
the rules that are generally adopted in wavelet denoising
techniques. Mallat (2009) showed that the maximum
amplitude of Gaussian noise with variance r2 has a very

high probability of being just below T ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logN

p
, where

N is the number of samples. Indeed, a greater amplitude of
noise is likely to occur with increasing sample size. Follow-
ing this threshold formulation, longer altimeter records
also have a higher probability of including higher Hs values
for which the associated noise is higher, which requires a
higher threshold value. Mallat (2009) has shown that this
formulation is too restrictive and that a lower threshold
is a better choice for reducing the risk of filtering the under-
lying signal. The threshold formulation is then refined by



Fig. 5. IMF amplitude before (solid blue line) and after (red dots)
thresholding. Black dots represent the canceled signal and solid green lines
indicate the threshold values. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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introducing a factor A, giving for an IMF of rank n and
sample size N:

T n ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En � 2logN

p
ð7Þ
Fig. 6. AltiKa 1-Hz along track Hs measurements (October 7, 2016). (Upp
Lanczos-filtered Hs (dashed red line). (Bottom panel) noise estimated as the
sampling is about 7 km. (For interpretation of the references to colour in this
with A < 1 being a fine adjustment factor, and the logN
factor is constrained to vary within a limited range to
account for a possible change in noise amplitude statistics
for longer data records, as explained above. A standard
value of 0.7 was determined for A in the current Hs denois-
ing algorithm. This parameter can be refined if necessary to
account for the differences in the different altimeter mis-
sions. Besides, the sensitivity of the results to a prescribed
threshold is in practice reduced by the ensemble average
performed to estimate a denoised robust signal.

A detailed description of the interval hard thresholding
operation can be found in Kopsinis and McLaughlin
(2009) and subsequent publications dealing with the wavelet
thresholding technique. Its adaptation to IMF denoising is
illustrated in Fig. 5. Black dotted oscillations between the
thresholds indicated by the green lines are canceled, and
the red dotted line represents the recovered signal.
5. Results

5.1. Examples

Figs. 6–7 show the results for the two altimeter records
presented in the previous sections. On the upper panels,
er panel) raw Hs (solid blue line), EMD-denoised Hs (solid black line),
difference between raw Hs and EMD-denoised Hs. The abscissa spatial
figure legend, the reader is referred to the web version of this article.)
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raw data (blue solid line), EMD-denoised data (black solid
line) and data filtered using the Lanczos filter with a cut-off
wavelength of 60 km (red dashed line) are displayed. For
the long record in Fig. 6, the details do not appear and
the two filtered signals seem to be in good agreement.
The bottom panel shows the noise that has actually been
eliminated. The estimated noise amplitude varies along
the track, showing an expected dependence on Hs, with
values more than twice as high for Hs > 5 m as for
Hs ~ 2 m.

The example in Fig. 7 is a particularly good illustration
of the capability of EMD-based denoising to map very
large gradients and avoid smoothing the maximum values.
These large Hs values and associated gradients are the
result of energetic wave/current interactions (Quilfen
et al., 2018; Quilfen and Chapron, 2019). Since the algo-
rithm is based on measurements extrema detection and
removal of the estimated noise, rather than on smoothing,
the denoised maximum Hs reaches a peak close to 9 m,
about 20 cm less than the raw data. This contrasts with
Lanczos filtering at a 60 km cut-off (value used in CMEMS
operational products), which significantly modifies gradi-
ents and peak values, regardless of how smooth the roll-
off is. As tested, a 30 km cut-off for Lanczos filter will effec-
tively restore the observed Hs gradient and maximum, but
at a cost of a large number of artifact oscillations produced
Fig. 7. Jason-2 1-Hz Hs measurements (February 29, 2016). (Upper panel) raw
Hs with smooth (solid green line) and sharp (solid red line) roll-off. (Bottom pa
Hs. The abscissa sampling was about 5.9 km. (For interpretation of the referenc
this article.)
elsewhere. This expected behavior of low-pass filtering
(Emery and Thomson, 2014) is illustrated further in Figs. 8
and 9.

Fig. 8 shows a Cryosat-2 pass across the island of Fiji,
with an abrupt change in sea state on the northern side
of the island, between the lagoon area and the high seas.
The reason for such a marked Hs gradient is that the
lagoon is protected by the Yasawa coral reefs. The data
point in this area is missing from the original data as it
was corrupted by the ground, but the altimeter track seg-
ments on both sides were processed as a continuous seg-
ment for illustration purposes. Indeed, high resolution
altimetry can provide data very close to the coast and situ-
ations involving very rapid changes in fetch conditions will
often be encountered. The lower right panel of Fig. 8 shows
the raw and denoised Hs when using the EMD and Lanc-
zos processing approaches. Although the Lanczos filter is
specifically designed to reduce the Gibbs effect, at the cost
of gradient smoothing, residual artifact oscillations are still
produced on both sides of the gradient and their amplitude
depends on the number of coefficients (size of the convolu-
tion kernel) used to control the desired roll-off near the
cut-off wavelength. The solid green line shows the results
for a number of coefficients locally adjusted to best reduce
the Gibbs oscillations, and the solid red line shows the
results for a number of coefficients ensuring a sharp cut-
Hs (solid blue line), EMD-denoised Hs (solid black line), Lanczos-filtered
nel) noise estimated as the difference between raw Hs and EMD-denoised
es to colour in this figure legend, the reader is referred to the web version of
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off of the filter. This choice has a significant impact, both
locally and globally, as discussed in the following section.
EMD denoising provides a more realistic estimate of the
Hs profile. Indeed, as shown in the upper right panel of
Fig. 8, the IMF1 wavelet analysis effectively separates noise
from the frontal signature that occurs near 16.7� of lati-
tude. To avoid artifacts and data loss near the edges of
the data record for the Lanczos processing, the same mir-
ror padding was applied for both EMD and Lanczos
processing.

In addition, the data filtered by the Lanczos filter con-
tain a significant amount of statistically insignificant mod-
ulations, constrained by the Fourier analysis; this is
illustrated in Fig. 9, which shows a Cryosat-2 pass across
the Galapagos Islands. This is an area where the SAR
mode is systematically put into operation, resulting in a
1-Hz Pseudo Low Resolution Mode (P-LRM) noise
increase as shown in the right panel of the figure. In this
low SNR context, small mesoscale variability is embedded
in noise with similar or greater amplitude. In such condi-
Fig. 8. Left panel: Cryosat-2 1-Hz Hs measurements over the Fiji island (Janua
wavelet analysis of IMF1 (red line). Right bottom panel: raw Hs (solid blue lin
(solid green line) and sharp (solid red line) roll-off as a function of latitude. (For
referred to the web version of this article.)
tions, Hs derived from EMD varies more smoothly as a
result of the analyzed low SNR, while Hs derived from
the Lanczos filter shows forced oscillations, for example
near 5�S latitude. The EMD result is constrained by the
local SNR analyzed while the Lanczos result is strongly
constrained by the Fourier analysis framework.

5.2. – Analysis of the denoised signal and noise signatures

Fig. 10 shows the Hs wavenumber spectra in the Agul-
has current region (10–35 E; 45–33 S) for the period
2014–2016. The raw measurements spectra flatten at scales
<100 km where the measurements are more significantly
contaminated by noise. The differences in the average noise
levels of the different altimeters are as expected, with Saral
data being less noisy than Cryosat-2 data. Agulhas is one
of the regions where the Cryosat-2 Synthetic Aperture
Radar mode is systematically used, resulting in noisier data
for the 1-Hz low rate mode. In other regions where SAR
mode is not used, Cryosat-2 noise should be lower than
ry 1, 2016). Right upper panel: IMF1 (blue line) and noise estimated from
e), EMD-denoised Hs (solid black line), Lanczos-filtered Hs with smooth
interpretation of the references to colour in this figure legend, the reader is
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Jason-2 noise. The spectra of denoised measurements are
almost identical for all three altimeters, which gives a good
indication that the EMD processing worked satisfactorily.
The PSD obtained from the Lanczos filtering is shown for
a sharp (solid green line) and smooth (dashed green line)
roll-off at the cut-off wavelength. As expected, the results
are very different, which raises the question of the choice
of this control parameter. Surprisingly, this has not been
addressed in studies using the Lanczos filter for altimeter
Fig. 9. Left panel: Cryosat-2 1-Hz Hs measurements over the Galapagos Islan
Hs (solid black line), Lanczos-filtered Hs with smooth (solid green line) and sh
the references to colour in this figure legend, the reader is referred to the web

Fig. 10. Power spectral density (PSD) as a function of wavenumber (x-axis, labe
2 (red) and Jason-2 (blue), period 2014–2016, Agulhas region. Dashed lines sh
show the signal removed by the whole process (left panel) and for the IMF1 n
data processed with a Lanczos filter of 60 km cutoff wavelength with sharp (sm
30 km wavelength (right). (For interpretation of the references to colour in th
data filtering. For scales between 300 and 30 km, the
PSD slope calculated for data filtered by EMD is not lin-
ear. However, it compares favorably with a k�3 law, result
in agreement with the study by Ardhuin et al. (2017) based
on high resolution numerical simulations of the
WaveWatch-III model. Below a scale of about 25 km, the
PSD vanishes for the three altimeters as a consequence of
the cancellation of IMF10s finest wavelet scales (as dis-
cussed at the end of Section 4). The results can be analyzed
ds (October 7, 2016). Right panel: raw Hs (blue solid line), EMD-denoised
arp (solid red line) roll-off as a function of latitude. (For interpretation of
version of this article.)

ls in km) for altimeter Hs measurements: SARAL/Altika (black), Cryosat-
ow raw 1 Hz data, thick solid lines show filtered data, and thin solid lines
oise (right panel). The solid (dashed) green line gives the PSD for Jason-2
ooth) roll-off. The solid black line gives the k�3 law between 300 km and
is figure legend, the reader is referred to the web version of this article.)



Fig. 11. (Top) Standard deviation (m) of IMF1 noise amplitude as a function of Hs (m) in one-meter bins; (bottom) probability density function (%) of
IMF1 noise amplitude (m). SARAL/Altika (black), Cryosat-2 (red) and Jason-2 (blue). The dots map the PDF, obtained from Monte-Carlo simulations,
of the IMF1 amplitude for Gaussian noise with zero-mean and standard deviation of 12 cm (green dots) and 7 cm (magenta dots). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in more detail from the interpretation of the total noise
PSD (see Fig. 10 left panel), and of the IMF1 noise PSD
(see Fig. 10 right panel). The total noise is calculated as
raw Hs minus filtered, which therefore include outliers.
The total noise spectrum exhibits the same behavior for
all three altimeters, with a ‘‘plateau” for scales below
~25 km, at the same PSD level as the raw Hs signals. This
part of the signal is completely suppressed as explained
above, as it essentially corresponds to the sum of the instru-
mental Gaussian white noise and the hump artifact
(Dibarboure et al., 2014). The PSD of total noise gradually
diminishes with the increase in scale, indicating that signif-
icant low-frequency noise energy is removed from IMFs of
order >1, which can be evaluated from the difference
between the total noise and the IMF1 noise PSDs
(Fig. 10, left and right panels).

The IMF1 noise PSD, which takes into account high fre-
quency Gaussian noise at scales below about 25 km, is
slightly lower than the raw Hs PSD. This difference should
correspond to outlier signatures and is small because the
sigma0 bloom occurrence is weak in the Agulhas region
(Tournadre et al., 2006). A different characterization of
the measurement noise, essentially free of outliers, can then
be made using the high frequency noise estimated from the
processing of IMF1. Indeed, EMD analysis is an efficient
way to isolate the high frequency part of the total noise
variance in IMF1, which theoretically represents about
59% of the total noise for a white noise signal. Since
the noise variance left in other IMFs is simply related
to IMF1 noise variance through Eq. (3), IMF1 noise
gives a good representation of the characteristics of the
total noise affecting the Hs noisy measurements. It is also
the noise figure used to perform the ensemble averaging
operation that ultimately gives the denoised signal and
associated uncertainty. The results are presented in
Fig. 11.

As mentioned earlier, outliers affect the EMD analysis.
A more thorough verification of the data is therefore car-
ried out before the noise analysis. The data are rejected
when the sigma0 is greater than the 99.5th percentile, when
the IMF1 absolute value is greater than the 99.9th per-
centile, and when the distance to the coast is less than
50 km. The sigma0 threshold allows the editing for sig-
ma0s, and corresponds to 18.9, 18.7, 19.4 dB for
Cryosat-2, Jason-2, and Saral/AltiKa, respectively. The
standard deviation of IMF1 noise in one-meter Hs bins is
shown in Fig. 11. The results are consistent with simula-
tions performed with recent retracking algorithms
(Thibault et al., 2017), showing an increasing standard
deviation of noise with the increase in Hs and an overall
lower standard deviation of noise for Saral/AltiKa. The
noise levels of Cryosat-2 and Jason-2 are of similar



Fig. 12. IMF1 mean square amplitude (cm2) of Hs raw (left panels) and denoised (right panels) measurements, period 2014 / 2016. Top: Saral/AltiKa;
Middle: Cryosat-2; Bottom: Jason-2.
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amplitude although this global analysis includes areas
where the Cryosat-2 SAR mode is used, for which noise
in 1-Hz low resolution mode is higher. Fig. 11 (lower panel)
shows the probability density function (PDF) of the IMF1
noise amplitude for the three altimeters, and that obtained
from Monte-Carlo simulations of the IMF1 amplitude for
Gaussian noise with zero-mean and standard deviation of
12 cm (green dots) and 7 cm (magenta dots). Two hundred
realizations of a Gaussian noise with 512 samples are per-
formed for the Monte Carlo simulation. The good agree-
ment between the measured and simulated PDFs is a
good indication that the chosen denoising approach is con-
sistent. A best fit between the altimeters and the simulated
PDFs gives an average estimate of the Hs measurement
noise standard deviation at 12, 12.75, and 7 cm for
Cryosat-2, Jason-2, and Saral/AltiKa, respectively.
Although not strictly comparable, these values are consis-
tent with the 9, 12, and 6 cm values obtained from the stan-
dard deviation of the high-resolution measurements used
to calculate 1-Hz Hs (Taburet et al., 2019), since our esti-
mate for Cryosat-2 includes the areas with SAR
operations.

The EMD method therefore also allows noise analysis
and monitoring over time and under local conditions.
The noise characteristics presented should be significantly
improved by the application of improved re-tracking algo-
rithms (e.g., Passaro et al., 2014; Thibault et al., 2017), as
planned in the ESA sea state CCI project.

Fig. 12 shows the spatial distribution of the IMF1 vari-
ance, calculated as the sum of the square amplitudes in
1� � 1� longitude/latitude boxes. Patterns are clearly
apparent in the IMF1 variance of the noisy dataset, the left
panels, which are related to a higher noise variance associ-
ated with regions with a higher mean sea state. For
Cryosat-2, in the center of the left panel, other patterns
with high variance show the areas where the altimeter is
used in SAR mode. When the EMD is applied to the
denoised data, the IMF1 variance (right panels) is associ-
ated with the variance of the finest mesoscale geophysical
signals (in the range ~30 to ~100 km). It shows that
EMD denoising effectively filters noise in the measurements
of the different altimeters, to map the overlooked geophys-
ical variance patterns in a consistent manner. These pat-
terns are mainly associated with increased sea state
variability resulting from wave–current interactions that
dominate Hs variance at scales below 100 km (Ardhuin
et al., 2017; Quilfen et al., 2018; Quilfen and Chapron,
2019).

5.3. Uncertainty associated with the denoised significant
wave height estimate

In the previous section, the noise derived from EMD
processing and associated with standard 1 Hz measure-
ments is analyzed and characterized. However, this does
not characterize the uncertainties associated with the ‘‘de-
noised significant wave height” parameter. Such uncertain-
ties could be assessed using conventional approaches, such
as comparisons with a reference dataset or a crossover
analysis, but this will give an estimate of the average uncer-



Fig. 13. Statistical behavior of the e uncertainty parameter (meters) for SARAL/Altika (black), Cryosat-2 (red) and Jason-2 (blue): (top panel) probability
density function; (middle panel) Hs dependency; (bottom panel) radar cross-section, (r0) dependency. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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tainty rather than an estimate associated with each mea-
surement. The EMD ensemble average approach allows
this to be done in line with the estimate of denoised Hs.
Indeed, the uncertainty e can be calculated for each mea-
surement along the altimeter track as the standard devia-
tion of the ensemble of denoised signals used to calculate
the average denoised Hs. The probability density function
of e is shown in Fig. 13, top panel. It reflects the results pre-
sented in the previous section: the noisier the standard 1 Hz
measurements, the greater the uncertainties associated with
the denoised measurements. The central panel also shows
that e decreases with decreasing significant wave height,
except for the lower values for which Jason-2 and
Cryosat-2 values are slightly higher. This can be analyzed
in more detail by computing e as a function of the radar
cross-section, r0, which is mainly related to wind speed.
At low r0 values, corresponding to strong winds and large
associated Hs, e values are larger as expected. e values
decrease with decreasing r0, reaching a minimum close to
12 dB, then increase with decreasing wind speed. Uncer-
tainties associated with sea state measurements are also
expected to be greater under light wind conditions, but
Jason-2 and Cryosat-2 e values increase more rapidly. This
is probably related to the fact that the light wind zones are
climatologically associated with precipitation and surface
slicks. Under such conditions, the better Saral/AltiKa
SNR combined with the larger rain contamination in the
Ka band makes data editing and noise filtering more effi-
cient. Indeed, the number of edited data, before data
denoising, is significantly higher for Saral/AltiKa. e is then
a practical uncertainty parameter, taking into account the
different errors likely to affect the denoised Hs data and
their dependence on local conditions, which should be use-
ful in particular for assimilation in numerical wave models.
To further highlight its behavior, Fig. 14 shows the mean
geographical distribution of e computed over a three-year
time period (2014–2016). As expected, the uncertainty is
related to the altimeter measurements signal to noise ratio:
it is higher for Jason-2 than for Saral/AltiKa, it is higher
under high sea state conditions that predominate in south-
ern oceans and in the North Atlantic Ocean, and is higher
in the regions of increased sea state mesoscale variability as
depicted in Fig. 12 (right panel) for which the SNR is effec-
tively lower.



Fig. 14. Geographical distribution of the e uncertainty parameter (meters)
for Jason-2 (upper panel), Cryosat-2 (intermediate panel, and SARAL/
Altika (lower panel).
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6. Summary

An adaptive method to efficiently eliminate and charac-
terize altimeter data noise was defined and applied. Our
method is essentially built on Empirical Mode Decomposi-
tion (EMD), which projects a signal on a basis of empirical
AM/FM functions, called Intrinsic Modulation Functions
(IMFs), whose properties offer a new way of analyzing and
denoising along-track altimeter measurements. When
applied to a Gaussian noise signal, EMD provides a set
of IMFs with a predictable energy distribution. This prop-
erty was therefore used to define rules for altimeter data
denoising, which are based on existing wavelet filtering
techniques. The chosen approach simply assumes that the
Hs along-track variability is the sum of an underlying sig-
nal composed of a piecewise-smooth deterministic part and
a stochastic part, allowing the use of a Bayesian analysis,
and a zero-mean Gaussian noise. The stochastic hypothesis
for the wave field is a framework common to many studies,
as well as in traditional wave models such as
WAVEWATCH-III, to take into account the random nat-
ure of the wave field.
The method performs a local SNR analysis for each pro-
cessed data record. For each record, whose length varies
from about 50–1500 km depending on the continuity of
the data, the final noise-free altimeter signal is estimated
as an ensemble average of several signal realizations. A fine
adjustment of the result is possible thanks to a global scal-
ing parameter, making it possible to adapt the thresholds
used to separate the noise from the signal. It allows, if nec-
essary, to optimize the results according to the different
sensors on-board the different altimetry missions. Comple-
mentary to methods based on crossovers analysis, EMD
provides also a mean to effectively estimate the noise char-
acteristics for the various altimeter sensors. The noise vari-
ance parameter derived from the EMD should therefore be
useful for noise monitoring over time and under local con-
ditions and can provide practical information in various
applications such as altimeter data assimilation to numeri-
cal models.

The proposed method is free of systematic artifacts, pre-
serves the amplitude of spatial gradients and extreme val-
ues, and eliminate the noise over the whole frequency
range, which is not the case for the boxcar or low-pass fil-
ters currently applied to altimetry products distributed to
users. Indeed, such filters only remove some of the high-
frequency noise, which is also the result of approaches that
infer a correction to eliminate correlated errors from other
aspects of the waveform data (Zaron and de Carvalho,
2016; Quartly, 2019, Tran et al., 2021), leaving a substan-
tial amount of low-frequency noise in the data. Low-
frequency noise remaining in the signals after smoothing
will still interfere with the precise measurement of geophys-
ical peaks height, width, and position (O’Haver, 2019).

The EMD-based denoising method robustness stems
from the self-consistent, data-driven approach, and from
the ensemble average computed as the resulting denoised
signal. The method developed for processing altimeter data
benefited from previous optimization work and sensitivity
studies carried out by Flandrin et al. (2004) and Kopsinis
and McLaughlin (2009). Since the EMD-based denoising
method does not contain an implicit smoothing operator,
sparse data may still appear noisy in particular when the
data editing performed before denoising did not identify
large errors. It can occur mainly when altimeter waveforms
are corrupted by rain, surface slicks or very light winds
generating sigma0 blooms, or during transitions between
land, sea ice and sea. However, the use of more efficient
data editing and retracking algorithms should mitigate
these errors (e.g., Passaro et al., 2014; Thibault et al., 2017).

As reported, signals down to scales of nearly 30 km can
be recovered, provided that the signal-to-noise ratio is suf-
ficient. This is particularly the case in the presence of very
strong gradients and in main dynamic and/or eddy-rich
regions. Although recent studies (Ardhuin et al., 2017,
Quilfen and Chapron, 2019) reveal that wave–current inter-
actions can trigger a significant increase in energy below
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the 100-km scale, very little is known and very few mea-
surements are available for this scale of sea state variabil-
ity. Until now, the sea state variability at scales below
100 km was often considered to be noise only (Zaron and
de Carvalho, 2016).

Analysis of Jason-2, Cryosat-2, and Saral/AltiKa signif-
icant wave height power spectral density and of the spatial
distribution of variance at short scales shows that the pro-
posed method gives consistent results. As a newly devel-
oped tool for altimetry data, the EMD-based system
could certainly require further testing and optimization,
in particular for better screening of outliers that can shape
the energy spectrum and bias noise statistics. The proposed
method is a step forward to better exploit this unique set of
sea state observations, which now covers more than
25 years, and is easily applicable to other altimetric obser-
vations, such as sea level and radar cross-section.
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