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Removing Intra-1-Hz Covariant Error to Improve
Altimetric Profiles of σ 0 and Sea Surface Height

Graham D. Quartly , Walter H. F. Smith , and Marcello Passaro

Abstract— Waveform retracking is the process by which a
simple mathematical model is fitted to altimeter returns. Over the
ocean, the waveform location, the amplitude, and the shape can
be fitted by models with 3–5 free parameters, which may, in turn,
be linked to geophysical properties of the surface of interest—
principally sea surface height (SSH), wave height, and normalized
backscatter strength (σ 0, related to wind speed). However, ran-
dom multiplicative noise, which is due to the summation of power
from multiple differently orientated surfaces, produces errors
in the estimation of these model parameters. Examination of
the correlations among parameters estimated for each waveform
leads to simple empirical corrections that reduce the waveform-
to-waveform noise in geophysical estimates, resulting in smoother
(and more realistic) along-track profiles of σ 0 and SSH. These
adjustments are fundamentally dependent upon the waveform
model and retracker implemented, but when applied show
improved agreement between near-simultaneous measurements
from different altimeter missions. The effectiveness of these
empirical adjustments is documented fully for MLE-4 retracking
of the Jason-3 altimeter, with a reduction in the 1-s variance of
σ 0 by 97%. However, the ideas are applicable and beneficial for
data from other altimeters, with small improvements in σ 0 for
MLE-3 and for AltiKa at Ka-band, while reductions in range
variance of ∼40% are noted for most retrackers evaluated.

Index Terms— AltiKa, high-frequency correlations, Jason-3,
MLE-3, MLE-4, spectral analysis, waveform retracking.

I. INTRODUCTION

IN THE early decades of satellite altimetry over ocean
surfaces, the altimetric sea surface height (SSH) error

budget was dominated by inadequate knowledge or modeling
of spacecraft orbits, ocean tides, radar path delays, and other
phenomena extrinsic to the altimeter itself (see [1, Fig. 1]).
These errors typically had long (order 100 km and more) corre-
lation lengths along the satellite’s path, limiting applications of
the data to large-scale studies, unless along-track differences of
the radar range data could be exploited without external correc-
tions [2]. More recently, extrinsic errors are no longer the dom-
inant limitation, and as the signal-to-noise frontier has moved
to shorter and shorter spatial scales there is increasing interest
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in mitigating errors arising within the altimeter measurement
process itself. This paper is about exploiting intrinsic corre-
lations in altimeter measurement errors to partially mitigate
those errors. Here, we expand upon previous studies [3]–[6],
extending their work to several altimeters and retrackers, and
presenting a method that can be applied generally to any
altimeter and retracker.

A. Background and Previous Studies

A spaceborne radar altimeter operates by emitting short
radio wave pulses and recording their echoes from near-
nadir locations on the Earth. Over the open ocean, the pulse
may usually be considered to be randomly scattered from a
“homogeneously rough” surface, meaning that the probability
of echo power is directly proportional to the surface area
illuminated by the pulse. In this case, the statistical expectation
for the backscattered power as a function of time elapsing
within the echo has a simple mathematical formulation [7]–[9].
This will not be the case, if the instrument footprint
also contains inhomogeneities, whether due to land, falling
rain [10], very calm (“glassy”) seas [11], patchy sea-ice, oil
slicks [12], or large internal solitary waves [13]. Furthermore,
given that the vertical scale of variations due to wind waves
and swell in the scattering area (the radar’s “footprint”) greatly
exceeds the radar wavelength (22 mm for Ku-band), the ran-
dom power fluctuations in each echo [see Fig. 1(a)] will have
an exponential distribution, such that the fluctuation variance
is equal to the square of the mean power, a phenomenon often
called “speckle” in the radar literature.

A conventional altimeter emits pulses at a pulse repetition
frequency (PRF) of a few kilohertz, a rate expected to yield a
sequence of echoes with little or no echo-to-echo correlation
in the random variations in speckle [7], [14]–[18]. It forms
the simple (“incoherent”) average of the power received in
a sequence of typically 50–100 echoes obtained over about
0.05 s, producing a “waveform” [see Fig. 1(a)]. Empirical
studies of conventional altimeter waveforms confirm that the
random fluctuations in power behave as if each echo had
realized independent speckle, except for waveform samples at
the beginning of the leading edge, where there may be some
correlations in returns [19], although this is not a problem for
moderate and large wave heights [15], [18].

By fitting parametric models to altimeter waveforms,
a process called “retracking,” one may estimate various para-
meters of geophysical interest. Nearly, all retracking schemes
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Fig. 1. (a) Illustration of a typical Jason-3 20-Hz waveform (in blue), with a long-period average (in black) indicative of the fitted model. The scatter of
observations about the mean waveform is fading noise due to speckle, which is expected to be random and uncorrelated between neighboring bins and between
successive waveforms. (b) Comparison of the mean waveform shape for Hs = 2 m from Jason-3 and AltiKa. Note both data sets have 104 waveform bins,
but the width of the window (in time) is smaller for AltiKa because the sampling rate is every 2 ns, instead of every 3.125 ns as for most Ku-band altimeters.
The waveform power rises from background to a maximum and then decays at a rate dependent on the antenna gain pattern. AltiKa, operating in Ka-band,
has a decay rate nearly three times that of Jason-3, at Ku-band.

aim to estimate SSH, h, significant wave height, Hs , and nor-
malized backscatter strength, σ 0, from which the wind speed
above the ocean may be estimated. Some studies have also
estimated the square of an apparent antenna mispointing angle
(ψ2, [20]), the skewness of the surface roughness distribution
[9], [21], [22], background instrument noise, or other para-
meters. Since each waveform is an average of the realizations
of a random scattering process, each estimated geophysical
parameter is also a random variable.

Previous studies have found that there is an inevitable
correlation in the random estimation errors in the parameter
estimates of interest. Sandwell and Smith [3] showed that h
and Hs must have correlated errors. Quartly [4] examined the
correlation between the 20-Hz residuals in σ 0 and ψ2, and
subsequently showed that similar results could be obtained
by comparing Jason-1 and Jason-2 20-Hz data during their
joint tandem mission [5]. Zaron and deCarvalho [6] did
an equivalent analysis for the connection between h and
Hs values for Jason-1 and -2 (except that they only used
1-Hz values), producing an adjustment that varied with mean
Hs conditions. The concept of exploiting the high-frequency
correlations between σ 0 and ψ2 and between h and Hs was
showcased at the Ocean Surface Topography Science Team
meeting in 2016 [23]; this paper develops on those ideas with
a more robust analysis.

The mathematical model for the waveform expectation is
nonlinear in the primary geophysical parameters, and so para-
meter estimation proceeds by an iterative process that aims to
minimize the misfit between the model and the waveform; this
process must inevitably take a guided random walk through
the model parameter space. Retracking algorithms differ in
whether or not they use weighted optimization, whether or not
the optimization they use is unconstrained [as is the case
for “MLE-3” (3-parameter fit with a so-called “maximum
likelihood estimator”) [24], “MLE-4” [20], and “PISTACH”]

or constrained (as used by Rodriguez and Martin [21],
and whether they apply “two-pass retracking” [3], [25], [26]),
and what the criteria are for stopping their iterations. There-
fore, the correlations among the errors in geophysical parame-
ters are dependent on the retracking algorithm as well as on
the nature of the ocean scattering.

Recalling that the instrument footprint has considerable
overlap between successive waveforms, we investigate the
correlated errors in the high-rate retrievals in order to derive
empirical corrections. This paper first repeats the work done
by Quartly [4] on σ 0 values from Jason-2 data to show the
consistent effect in the latest processing of Jason-2 and Jason-3
data, and then progresses to show how the effect is different
for AltiKa. Section IV then extends the work to correct the
derivation of range, and again demonstrates that the resultant
adjusted values show less noise and more consistency than
the standard MLE-4 or MLE-3 products. Section V shows
that this empirical adjustment, although simple, needs to be
separately defined for each altimeter and each retracker applied
to it. Section VI summarizes the work and discusses the
applications.

II. REPRISE OF σ 0 ADJUSTMENT

Most modern altimetric satellites have good attitude control
such that the boresight of the instrument is pointing directly
down to the nadir point, and thus the irradiation pattern is
centered on the location giving the earliest returns. In such a
case, the expected waveform shape is very well described by
a model using the three parameters (h, Hs , and σ 0). However,
Jason-1 developed problems with its attitude control, such
that it “mispointed” by a significant fraction of the antenna
beamwidth. This led to changes in the slope of the waveform
trailing edge, which were proportional to the square of that
mispointing (hereafter ψ2).
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Fig. 2. Correlation of σ 0
Ku and ψ2. (a) Example of 20 observations within a 1-Hz record. (b) Scatter plot of those values with regression slope α = 10.02.

(c) Histogram of observed values of α for 10 cycles of Jason-3. (d) Variation of mean value of α with wind-wave conditions (characterized by Hs and σ 0).

Amarouche et al. [20] introduced the MLE-4 algo-
rithm, which also fits ψ2 as a fourth unknown, and
this approach has become standard. However, as noted by
Challenor and Srokosz [27] adding this free variable also
affects the constraints on the fitting of σ 0. Consequently,
independent 20-Hz estimates of ψ2 and σ 0 show significant
along-track variability that is not physically reasonable, since
neither is the platform changing its attitude markedly every
0.05 s nor are the backscatter estimates for highly overlapping
footprints that different. Quartly [4] showed that the anom-
alies (i.e., deviations from the mean) noted for ψ2 and σ 0

were highly correlated, and later demonstrated that applying
similar corrections to both Jason-1 and Jason-2 improved the
consistency of their σ 0 values by a factor of three [5].

A. Analysis of Correlation for MLE-4 Estimates From
Jason-3

In Fig. 2, we demonstrate that this is still the case for
Jason-3, with the latest processing, with the example time
series [Fig. 2(a)] showing a high correlation [regression slope,
α = 10.02, r2 = 0.9756, Fig. 2(b)]. From analyzing 10
cycles of Jason-3 data (i.e., over 1 million 1-Hz records
in 99 days), we note that the slope has a median value, α
of 11.02 [Fig. 2(c)] with a weak dependence on Hs at very

low winds [high σ 0, see Fig. 2(d)]. The spread of values of
α [as shown in Fig. 2(c)] is broadly the same for all extant
combinations of σ 0 and Hs . This analysis has been repeated
for data from the latest version of the Jason-2 Geophysical
Data Record (GDR, version E) with essentially the same
results. Analysis of a specimen cycle of Jason-2 data from
each of its 9 years of mission to-date shows no discernible
differences with instrument aging; this is not surprising, as the
correlation is principally a result of the chosen retracking
approach (as will be shown later).

B. Comparison With MLE-3

Quartly [4] proposed that a more useful estimate of
Jason-2’s σ 0 values could be achieved by correcting for this
observed correlation

σ 0
adj = σ 0

MLE4 − αψ2 (1)

with the expectation that σ 0
adj (the “adjusted value”) would

be like the estimates from MLE-3 (i.e., fitting with ψ2 con-
strained to a fixed value), as the output of that reduced model
was not then available. As both MLE-4 and MLE-3 estimates
are available on the current Jason-3 data stream, it is easy to
compare them. Regressing 20-Hz values of σ 0

MLE4 − σ 0
MLE3

against ψ2, we find a very high correlation for the values
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Fig. 3. Correlation of σ 0
MLE4 − σ 0

MLE3 and ψ2. (a) Example scatter plot of 20 observations within a 1-Hz record, with slope α4−3 11.57. (b) Histogram
of observed values for 10 cycles of Jason-3 [note that different x-axis scale from that in Fig. 2(c)]. (c) Variation of mean value of α4−3 with wind-wave
conditions (characterized by Hs and σ 0).

within an individual 1-Hz ensemble [r2 = 0.9999, for the
example shown in Fig. 3(a)] and that the regression slope
calculated from these many independent ensembles has a
mean value of 11.50, with a very narrow range of values
(S.D. = 0.10).

The slightly asymmetric histogram of observed slopes
[Fig. 3(b)] is due to a variation in the mean value with
wave height [Fig. 3(c)] combined with an intrinsic variability
(S.D.) of about 0.08 for a given set of conditions. Thus,
although the MLE-4 and MLE-3 estimates of σ 0 come from
separate retracking algorithms, the output from the MLE-3
retracker can be reliably predicted from the MLE-4 one, as the
difference between the two is almost fully specified by the
adjustment α4−3ψ

2 (where α4−3 = 11.50), which explains
99.97% of the variance of their difference. The value for α
corresponding to the change from σ 0

MLE4 to σ 0
MLE3 is slightly

greater than that to neutralize the dependence on ψ2. Thus,
in some sense, σ 0

MLE3 appears slightly overcorrected for the
effects of ψ2.

Quartly [4] had also derived a correction factor for the
C-band estimate, σ 0

C , which was, at that time, based on an
MLE-3 solution using the value of ψ2 determined from the
MLE-4 applied to Ku-band. In the current version of Jason-2
and Jason-3 data, it is based on an MLE-3 retracker with no
input from the Ku-band estimates, and the derived values for

αC are close to zero (mean = −0.02, S.D. = 1.08), and thus
we recommend no correction to these values.

C. Reduction in Variability of σ 0

Given that the aim of this empirical adjustment is to
reduce the very small-scale variability, it is not surprising that
the correction using the simple mean value of α reduces the
S.D. within the 1-Hz ensembles; however, the scale of the
improvement is impressive (Fig. 4), as the S.D. values noted
for MLE-4 are typically reduced by a factor of six. This
implies a significant reduction in the standard error of the
1-Hz mean values. The intra-1-Hz consistency achieved by this
simple correction is also slightly better than that for the MLE-3
estimations (note that the C-band values also obtained from
an MLE-3 estimator are larger than the MLE-3 for Ku-band,
because there are far fewer pulses averaged, and thus much
more sensitivity to the vagaries of the fading noise).

An interesting demonstration of the improvement in σ 0

values is the much greater consistency between simultaneous
estimates at Ku- and C-bands. In many ways, the two different
frequencies of Jason-3 can be seen as separate instruments
observing the same location simultaneously, although probing
at different wavelengths of sea surface roughness. Although,
some physical factors affect the two frequencies differently,
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Fig. 4. Histograms of the variability (S.D.) of the 20 σ0 observations within
each 1-Hz record. The magenta curve (labeled “adj”) is for the MLE-4 values
adjusted according to (1).

Fig. 5. Variability of ψ2 causes greater variability of MLE4 estimates of σ0.
(a) Standard deviation of 1-Hz mean values of ψ2 as a function of σ 0

C (or
equivalently, see top axis, of wind speed). (b) Standard deviation of 1-Hz σ0

Ku
measurements for given 1-Hz σ 0

C values. The curves for MLE3 and σ 0
adj agree

to within 2%. [The wind speed axis is derived from the empirical relationship
between σ 0

C values and wind speed estimates in the Jason-3 GDRs, as depicted
in Fig. 7(a) of [28].]

an improved agreement of the observations at Ku- and C-bands
should indicate that the effects of instrument noise have been
minimized. The close correspondence between σ 0

Ku and σ 0
C is

the root of altimetric rain-flagging provided as quality control
indicators in the 1-Hz data streams; therefore, we demonstrate
the effect of implementing σ 0

adj using the 1-Hz values at Ku-
and C-bands. As (1) is a linear relation, it is readily applied
using the mean of each set of 20 ψ2 values.

The scatter of the σ 0
Ku values from the MLE-4 algorithm

for a given σ 0
C value is much greater than the scatter for

σ 0
adj [Fig. 5(b)], with especially large variations at high σ 0

C
values. This is because, in such calm conditions, the spatial
scales associated with reflectivity changes are much smaller,
so that significant variations within the instrument footprint
are likely. This leads to much higher variability in ψ2 at low

Fig. 6. (a) Spectra of σ 0
MLE4, σ 0

MLE3, and σ 0
adj averaged over many short

segments of Jason-3 data with mean Hs close to 2 m. (b) Spectra of difference
between Jason-3 and Jason-2 σ 0 values for same conditions.

wind speeds [Fig. 5(a)]. In contrast, the MLE-3 estimates show
essentially the same scatter as σ 0

adj. An earlier processing of
the Jason-2 data did not contain σ 0

MLE3, but again σ 0
adj showed

much greater consistency between the two frequencies than
did the MLE-4 estimates [29, Fig. 3(b)]. Since the magnitude
of intrinsic scatter affects the threshold on the detection of
rain σ 0

MLE3 and σ 0
adj offer almost the same performance, which

is much better than using σ 0
MLE4. Thus, any useful dual-

frequency rain-flagging [30] should be based on one of these
robust estimates of σ 0.

D. Spectra of Variations in σ 0

To examine the spatial scales affected by this adjustment,
spectra were calculated for sections free from land or ice, using
the Welch method with Hamming weighting. Fig. 6(a) shows
the mean of 1445 sections for conditions with Hs = 2 m, with
similar results (not shown) for other wave height regimes. The
spectrum for “adjusted” values of MLE-4 (Eq. 1) shows much
less variability than its parent retracker at scales smaller than
48 km, and shows very little of the “excess power” feature at
10–48 km.

The reduction in the noise floor at short wavelengths is
by a factor of ∼50, consistent with the values found for
Jason-2 [4]. Note that the spectra for σ 0

MLE3 and its adjusted
version are almost the same as for σ 0

adj. This shows that
the spectral shape is not particularly sensitive to whether the
correction was with a value of α of 11.02 or 11.50, and
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indicates that it is not important to model the slight variation
of α with environmental conditions [Fig. 2(d)].

A further test of the quality of the correction is afforded by
comparisons between Jason-2 and Jason-3 observations during
their tandem mission. To avoid interpolation, which effectively
applies a smoothing filter to one of the data sets, we compare
the satellites using their nearest neighbor points. As Jason-2
provides 20 measurements every 1.020 s, while those of
Jason-3 are every 1.019 s, there is a slight mismatch in the
spacing, so we constrained the length of observation sections
to 1024 points in order that the locations of each would match
to within 200 m along track.

There is a little bias between the two instruments (0.25 dB),
which has not been removed here; instead, for each of the
four flavors of σ 0 being considered, we computed the standard
deviation of the 1024 differences and the spectrum of those
differences. The mean spectrum for the MLE-4 evaluation is
much noisier at all wavelengths considered, while the other
three curves are very similar [Fig. 6(b)]. We note an apparent
feature at a wavelength of 6 km (and also faintly visible in the
spectra of the individual σ0 profiles [Fig. 6(a)]. This feature
was present in ∼1% of the difference spectra, but prominent
enough to be manifest in the mean; we have not been able to
identify its cause.

III. APPLICATION TO ALTIKA

AltiKa is a very different instrument from Jason-3—it is
a single-frequency Ka-band altimeter on board the SARAL
spacecraft [31]. As the radar frequency is nearly three times
that of Jason-3, the operating beamwidth is much smaller, and
thus the decay on the trailing edge of the waveform much
greater [see Fig. 1(b)]. The width of the emitted pulses is
narrower (in terms of travel time), so the slope of the leading
edge is slightly steeper for given wave height conditions;
the bin-sampling interval is correspondingly finer, so the full
recorded waveform is shorter in extent. To allow finer spatial
resolution, it records 40 average waveforms per second (as
opposed to ∼20 for most altimeters), but the speckle charac-
teristics are similar because the higher radar frequency permits
a higher rate of independent pulses, and thus a similar number
are averaged in each mean waveform. However, the standard
processing on the GDRs uses the same MLE-4 code [32],
albeit tuned for different instrument parameters. We carried out
a similar analysis as for Jason-3 to determine the association
between the high-frequency variations in σ 0 and ψ2 for
AltiKa.

For the 40 geophysical estimates within any 1-s ensemble,
there is usually a significant correlation between ψ2 and
σ 0, but not with as high r2 values as shown for Jason-3
[Figs. 2(b) and 3(a)]. The overall distribution of α values
for AltiKa does show a broad unimodal distribution, but the
breadth of the distribution is greater than the mean or median
values [Fig. 7(a)]. The mean is markedly lower than the
median due to a long negative tail to the distribution, particu-
larly associated with calm conditions (AltiKa’s σ 0 > 13 dB).
A simple overall adjustment of the σ 0 values using (1) with
α = 8.51 makes a marginal improvement in the consistency

Fig. 7. Determination of σ 0-ψ2 relationship for AltiKa and its applica-
bility. (a) Histogram of the values of α from 35 days of data (cycle 033).
(b) Histograms of the variability of σ 0 within the 40 estimates in each 1-Hz
record.

of the 40 values in each 1-Hz record [Fig. 7(b)], but does not
reduce the intra-1-Hz variability of those records that were
already highly variable.

IV. EXTENSION OF ANALYSIS TO CORRELATIONS OF

RANGE AND WAVE HEIGHT

The bins on the leading edge of the waveform contribute
significantly to both the estimation of significant wave height,
Hs (linked to the slope of the leading edge) and to the epoch
(the position of the waveform, which is used to infer the range)
[3]. [A host of geophysical and instrumental corrections are
added to this latter value to produce the SSH.] A similar intra-
1-Hz correlation analysis is carried out to examine the links
between these two variables estimated from the leading edge.
Rather than use some estimate of SSH that would require
selections of geophysical corrections and their interpolation
from 1-Hz values, we concentrate on the raw records of
altitude minus range, which are fully present at 20 Hz. As there
are large-scale along-track changes in altitude minus range
due to the varying geoid as well as oceanographic features,
the connection between epoch and Hs within a 1-s record is
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Fig. 8. Correlation of range and significant wave height. (a) Example of 20 observations within a 1-Hz record, with both (altitude minus range) and Hs
being detrended to remove larger-scale changes. (b) Scatter plot of those values, with slope β = −0.119. (c) Histogram of observed values for 10 cycles of
Jason-3. (d) Variation of mean value of with wind-wave conditions (characterized by σ0

Ku and Hs).

more easily shown by removing a linear trend from both sets
of 20 measurements.

An example set of measurements is illustrated in Fig. 8(a),
with a clear anticorrelation between the two series; the display
as a scatter plot [Fig. 8(b)] shows a regression slope, β,
of −0.119, which is determined by ordinary least squares.
However, the scatter is much greater than for the σ0 − ψ2

comparison [Fig. 2(b)], with a correspondingly lower value
for r2. The relationship is nonetheless statistically significant,
and there is a high consistency amongst the regression slopes
found in analysis of 10 cycles of Jason-3 data [Fig. 8(c)]
with a median value for β of −0.102. There is also a clear
variation with wave height [Fig. 8(d)], which explains the
slight skewness observed in the histogram. Similar analysis for
the C-band estimates gives a median value for its regression
slope, βC , of −0.094, and the MLE3 estimates gives a median
value for βMLE3 of −0.091. In the following, we implement an
“adjustment” to altitude minus range of βHs , and investigate
the implications:

ζadj = ζMLE4 − βHs (2)

where ζ = (altitude minus range), and β is a simple constant
for each retracker. [Note that as we implement this using
absolute values of Hs , rather than anomalies, there is an effect

on the large-scale variation of ζ ; this should eventually be
accompanied by an improved sea state bias (SSB) model.]
A common measure of the variability within 1-Hz records is
σh , which is the standard deviation of ζ once a linear trend
has been removed. Applying the adjustment using a simple
constant value for β of −0.102 makes a marked improvement
for all wave height conditions, with reductions in the variance
by 30%–40%. [Although the appropriate value of β does vary
with Hs , as shown in Fig. 8(d), the extra improvement for
modeling this variation is minuscule in comparison with the
gain from the simple implementation.]

Fig. 9(a) shows a comparison of the spectra of ζ ; as there
has been no removal of the geoid, all the curves converge for
large wavelengths. Of the conventional retracking solutions,
MLE-4 can be seen to provide a lower noise level than MLE-3,
especially in the 6–24-km range associated with the “spectral
bump” [33]. However, the proposed adjustment of (2) reduces
the noise levels of both these retrackers over all scales less
than 24 km, with the noise level at subkilometer scales being
30% less. This improvement is equally clear when applied
to the differences between matched observations of Jason-2
and Jason-3 during the tandem phase [Fig. 9(b)]. In this case,
the geoid and all geophysical corrections are in common and
cancel out.
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Fig. 9. (a) Spectra of ζMLE4, ζMLE3, and ζadj averaged over many short
segments of Jason-3 data with mean Hs close to 2 m. (b) Spectra of difference
between Jason-3 and Jason-2 values for same conditions.

V. APPLICATION TO OTHER RETRACKERS

A. Assumptions of Alternative Retrackers

Although the MLE-4 is the standard inversion technique
applied on the GDRs of most current altimeters, a number
of other retrackers have been developed to offer improved
performance in various scenarios. Of particular interest has
been adaptive leading-edge subwaveform (ALES) [26], [34],
which was designed principally for use in the coastal zone.
It reduces the impact of land reflections, which start to
manifest themselves in the trailing edge of the waveform,
by focusing the inversion only on those waveform bins strad-
dling the leading edge. Consequently, it does not attempt to
estimate ψ2, as the relevant bins for that are in the trailing
edge. However, it does use the bins on the leading edge for
the determination of both the range and the wave height. The
wave height estimates from the ALES retracker have been
separately validated [35].

Another variant has been the use of a fully measured shape
for the emitted pulse (rather than a Gaussian approximation),
which has been implemented within the PEACHI project [36].
This project has implemented two different computational
approaches to locating the fitted waveform with the least error:
Newton–Raphson (N–R) and Nelder–Mead (N–M). [The N–R
is an unweighted fit driving the iteration with gradient-
minimizing steps, and so behaves essentially as MLE-4 but
with the numerical point target response (PTR), rather than
its Gaussian approximation; the N–M is a weighted fit with
iterations driven by a downhill simplex crawl; the primary

Fig. 10. Variation of β with Hs for various different combinations of
altimeters and algorithms.

difference in the results of the two methods comes from the
weighting of N–M and nonweighting of N–R, rather than
from the iteration scheme. The difference between an actual
PTR and its Gaussian approximation is irrelevant except at the
lowest possible values of Hs .]

We have evaluated the association between small-scale
anomalies in SSH and wave height for each of these retrackers,
and explored how the regression coefficient varies with wave
height, since that is the parameter that most governs the shape
of the waveform. In Fig. 10, we show the variation in β with
Hs for these different retrackers, with a summary of the results
for others also included in Table I.

B. Regression Results

The magnitude of the regression coefficient is very much
dependent upon the choice of retracker, so there is no simple
correction just for each altimeter, but rather for the com-
bination of altimeter and retracker. As would be expected,
the α and β values for Jason-2 and Jason-3 are almost the
same. Also, for an earlier processing, Quartly [5] showed the
mean αMLE4 value for Jason-1 to be similar to Jason-2. For
σ 0, the S.D. of the adjusted values for Jason-2 and Jason-3
are effectively the same for both MLE-4 and MLE-3 at
∼0.060 dB, with the histogram of the values being also close
to that for the original MLE-3 estimates (see Fig. 4). Although
the median value of α for AltiKa is 8.51, the spread of
values is larger, and thus the reduction in variance achieved is
only 4%.

For the S.D. of detrended SSH, the empirical adjustment
according to (2) reduces the variance for most retrackers
by between 35% and 44%, roughly equivalent to the factor
of 1.5 to 1.6 noted by Garcia et al. [25] for their two-
pass processing. The ALES retracker, which was designed for
greater resilience in the coastal zone, has a slightly larger
σh value than the MLE-4 or MLE-3 retrackers when its
original data are evaluated over the open ocean. However, as its
inversion only uses bins from the first half of the waveform, its
β value (showing the correlation of anomalies in Hs and range)
is different, and ultimately the “adjusted ALES” retracking
solution gives a median σh slightly less than the adjusted
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TABLE I

MEDIAN VALUES OF SENSITIVITY COEFFICIENTS α AND β FOR VARIOUS DIFFERENT COMBINATIONS OF ALTIMETERS AND
ALGORITHMS, AND THEIR EFFECT ON ESTIMATES OF VARIABILITY WITHIN 1-Hz RECORDS

forms for MLE-4 and MLE-3. The noise reduction in 1-Hz
ensembles for C-band and Ka-band is also within that range.

The concept of adjusting for the observed intra-1-Hz cor-
relations may also be translated to nonmarine surfaces. The
GDRs for ENVISAT contain the output of a number of
different retrackers implemented over all surfaces although
they might have specific regions of intended applicability.
One such is “ice-2,” which is a modification of the Brown
model for use over continental ice surfaces, for which there
will be some contribution from volume scattering as well
as surface scattering. The front half of the shape model is
a Gaussian, with the tail described by a fitted exponential.
From the Gaussian part, the range and leading-edge width
(LEW) are derived. Over marine surfaces LEW2 approximates
to (H 2

s + 1.02)/2.82 (with both LEW and Hs in meters) since
both are just descriptors of the slope.

Regression of the intra-1-Hz anomalies over the deep ocean
gives a median value for β of ∼0.56; application over polar
ice shelves (selected as being poleward of 60◦ and height over
2000 m) gives a median value of ∼0.48. This small change
reflects the different typical waveform shape, and thus the error
characteristics of the waveform space around the minimum
model fit error. Apart from at very low LEW, the effective
mean βice2 varies between −0.75 and −0.5 according to LEW
[Fig. 11(a)]. An adjustment using simply βice2 = −0.48
reduces the variance within the 1-Hz ensembles by 15%–30%
[Fig. 11(c)].

VI. SUMMARY, DISCUSSION, AND IMPLICATIONS

A. Adjustments to σ 0

In this paper, we have first recapped on the work of [4]
and [5] on the intra-1-Hz correlations between MLE-4 esti-
mates of σ 0 and waveform-derived mispointing. Neither prop-
erty is expected to vary rapidly on such short scales, so their

Fig. 11. Example over ice from RA-2 on ENVISAT. (a) Mean value of
βice2 as a function of LEW (background plot shows histogram of observations
used). (b) Standard deviation of detrended 20-Hz height measurements before
and after empirical correction. (c) Percentage reduction in variance.

correlation can be used to derive an adjustment that improves
the quality of the σ 0 data. This is particularly pertinent for
analyses that look at small-scale variability, such as analysis
of altimeter data for rain and for oil slicks, or for comparison
with point measurements such as meteorological buoys. For
climate studies of the large-scale wind patterns or comparison
with models (where averages over 50–100 km are used),
the adjustment is not usually relevant as the true platform
mispointing is normally very small, and thus the waveform-
derived values average to near zero over such scales.

Another application of high-frequency σ 0 data has been in
the use of wind speed in calculating SSB. This contribution to
SSH is normally computed using 1-Hz averages of σ 0 and Hs ,
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but could be implemented using 20-Hz data [37]. As both the
algorithms for converting σ 0 to wind speed and wind speed
to SSB are nonlinear, the fluctuations in σ 0 associated with
the MLE-4 retracker will produce a small residual error in the
SSB correction.

Version E of the Jason GDRs also provided MLE-3 esti-
mates of the parameters, enabling us to show that although
derived from a separate retracking process, σ 0

MLE3 was essen-
tially equivalent to σ 0

MLE4 − α4−3 .ψ
2. The extension of the

analysis to AltiKa showed that a major change in the
waveform shape leads to a different regression coefficient.
The investigation of AltiKa waveforms also revealed that as
the waveform bins sampled a greater part of the decay in the
trailing edge, the perceived effects of changes in backscatter
strength and mispointing became more separable. The correla-
tion coefficients for individual 1-Hz samples were then much
smaller (not shown), and a wider range of regression coeffi-
cients encountered [Fig. 7(a)]. Consequently, the benefits of
applying an empirical adjustment are much less [see Fig. 7(b)
and Table I].

B. Adjustments to ζ

For decades, there has been concern about errors in altimeter
range connected to wave height, with the term “SSB” being the
combined effect of three terms. These are skewness (the real
physical distribution of the sea surface, with typically sharper
wave crests than troughs), electromagnetic bias (different
reflecting properties of facets of the sea surface at crests from
those at troughs), and retracker bias (an effect inherent to the
retracker applied). The work covered in this paper addresses
the third term.

Considering first the MLE-4 retracker for Jason-3, we note
that while the r2 value linking ζ and Hs for a typical 1-s
ensemble [Fig. 8(b)] is not as large as that linking σ 0 and
ψ2, it is not only statistically significant but also there is a
strong consistency between the regression slopes determined
for all valid ensembles [Fig. 8(c)]. Although there is a clear
but small dependence on Hs , for simplicity, we implement the
“adjustment” to SSH as a simple linear function (2). This is
sufficient to make a clear reduction in σh (the S.D. of the 1-Hz
ensemble), and thus in the standard error of the altimetric
range. This is further manifested by a reduction in the SSH
spectra at scales below 48 km [Fig. 9(a)], and especially in
the difference between Jason-2 and Jason-3 in the tandem
phase. Section V demonstrates that different values for β are
required for different combinations of altimeter and retracker,
bringing together for the first time analysis of Jason altimeters,
ENVISAT, AltiKa, and Sentinel-3, along with a discussion of
different retracking strategies, including the focus of ALES on
waveform bins near the leading edge.

These correlated errors have been noted previously by other
researchers and estimated or mitigated in different ways.
Sandwell and Smith [3] were the first to demonstrate the
correlation between estimation errors in ζ and Hs , and partic-
ularly how the regression coefficient was markedly different
if the retracking used a weighting scheme rather than uniform
weighting. Their solution was to run the retracking process

over the extent of waveform data of interest, calculate a
running mean Hs (over a scale length of order 50 km), and
then retrack all waveforms again with all fitted waveforms
constrained to have Hs matching the appropriate smoothed
value. Garcia et al. [25] demonstrated that this methodology
removed the “spectral bump.” The process suggested in this
paper avoids the need for a “two-pass” approach, but achieves
similar reductions in noise levels and loss of that bump
(see Fig. 9).

Another landmark paper is that by Zaron and deCaravalho
[6] who tackled the issue starting from a comparison of the
1-Hz near-simultaneous measurements of Jason-1 and Jason-2,
but also investigated the implications for repeat-track analysis,
and the change in SSH spectra at short wavelengths. Their
results also showed a smaller regression coefficient at low
Hs (compare our Fig. 10 and their Fig. 2), although our
analysis documents the variation more clearly, since each
individual second of data contributes a value for the regression
slope, thus permitting more information in the rarer sea state
conditions. By starting explicitly at the shortest spatial scales,
we have demonstrated an approach that is not dependent upon
tandem missions or repeat-track operations, and is readily run
on large volumes of data to enable the variation with Hs

to be better elucidated. The coastal altimetry community is
increasingly interested in finer resolution data from individual
waveforms; our adjustments, being derived from such high-
rate data, will address their need for corrections evaluated at
20 Hz overall likely values of σ0 and Hs .

Such ideas have also been pioneered in the cryospheric
community, where correlations between LEW and range are
used to correct for the effect of different penetration depths
[38]–[40]. They use repeat-track analysis, but with full 20-Hz
data. Of those published analyses with an LEW-based correc-
tion, few show the magnitude of the regression coefficient;
however, [39, Fig. 3(b)] shows mainly the values of around
−0.8–−0.4 over the Antarctic Plateau. They were interested
in a purely empirical correction to compensate for changing
local surface conditions, but the values they derived overlap
with the range we obtain for our short-scale analysis of the
error for the ice-2 retracker.

The magnitudes of the corrections are principally dependent
on the retracker applied, rather than the design characteristics
of the instrument itself. However, Egido and Smith [18] have
shown that for Ku-band altimeters with a PRF of ∼2 kHz,
there is some correlation of the fluctuations in speckle, espe-
cially for bins on the leading edge of the waveform; new
retrackers may be envisaged that compensate for this by means
of weighted least squares with an error covariance matrix.
In such a case, the instrument specification may also have
a strong effect on the correlations observed.

The implementation of σ 0
adj is fairly straightforward in

an operational processing scheme (because there is gen-
erally no large-scale variation in ψ2) and so this was
readily incorporated within the RADS processing system
(http://rads.tudelft.nl). However, the implementation of ζ 0

adj
(or an adjusted range) will lead to large-scale changes,
because the mean field of wave height varies regionally.
Zaron and deCaravalho [6] suggest that the correction be
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applied to a high-pass filtered version of Hs , with scales
above 100 km removed. An alternative nontrivial solution is to
implement the simple form in (2) globally as a correction for
short-scale variability due to retracker bias and then rederive
an SSB model for the residual terms. Then, this SSB model
would have to be applied to a moving-average mean of Hs that
represented the genuine scales of variation of Hs , assuming
that the skewness and the electromagnetic bias do really vary
on those scales. Given that these latter two terms should be
instrument-independent for all Ku-band altimeters, one may
anticipate that the separation and removal of altimeter-specific
retracker bias should enable the unification of SSB models, and
allow more effort to be spent on understanding the physical
interpretation of the skewness and electromagnetic bias terms.

The benefits of resolving the issues of tracker bias are
principally for short-scale studies, where data are not being
averaged for 50 km or more along-track or being interpolated
to a broad grid. The removal of tracker bias will greatly
assist work to derive bathymetry (see [3]), which relies on
the differentials of along-track SSH profiles. This empirical
adjustment to SSH data should also aid point comparisons with
in situ tide gages or bottom pressure recorders. It is probably
not applicable over rivers and small lakes, as the waveforms
there require dedicated processing to account for their different
shapes.
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