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Abstract

A vertical 2-D water–mud numerical model is developed for estimating the rate of mud mass

transport under wave action. A nonlinear semi-empirical rheology model featured by

remarkable hysteresis loops in the relationships of the shear stress versus both the shear strain

and the rate of shear strain of mud is applied to this water–mud model. A logarithmic grid in

the vertical direction is employed for numerical treatment, which increases the resolution of

the flow in the neighborhood of both sides of the interface. Model verifications are given

through comparisons between the calculated and the measured mud mass transport velocities

as well as wave height changes.
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1. Introduction

Muddy coasts covered with very soft fine sediments or underconsolidated clays are
usually found at the mouths of major rivers, such as the Mississippi, Amazon, Niger,
Ganges-Brahmaputra, Mekong, and Yellow. Almost all these river mouths are the
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Nomenclature

a amplitude of Z
d depth of water layer or mud layer
G0 parameter of rheology model
H surface wave height
n complex wave number
p dynamic pressure
t time
T wave period
u velocity component in x-direction
~u amplitude of velocity component u
~w amplitude of velocity component w
~p amplitude of pressure p
w velocity component in z-direction
W water content ratio
x horizontal coordinate
z vertical coordinate

Greek letters

a parameter of rheology model
b parameter of rheology model
m0 parameter of rheology model
Z free surface displacement
d wave attenuation rate
x component of mud particle displacement in x-direction
B component of mud particle displacement in z-direction
t shear stress
e shear strain
emax maximum shear strain
g rate of shear strain
r density of water or mud
n viscosity of water or mud

Subscripts

0 initial values
E Eulerian coordinate
l equals 1 or 2
L Lagrangian coordinate
m mud layer
r real part
w water layer
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main sea-going exists of important waterways. Many of these muddy coasts are the
site of major activities related to the installation and operation of offshore oil and
gas production platforms and pipelines (Kraft and Watkins, 1976).

In such areas, when water waves propagate over a seabed of soft mud, two
noteworthy phenomena take place due to the interaction between the water body in
wave motion and the mud bed. One is large mud mass transport and the other is high
wave attenuation as the waves propagate over the mud bed. The significance of mud
mass transport in the mud layer could be recognized in the field experiment in
Kumamoto, Japan (Kihara et al., 1987). Regarding to the wave attenuation over
mud beds, Gade (1958) notes that there is a location off the central Louisiana coast,
known as the Mud Hole, where the wave attenuation due to the mud bed is so great
that fishing boats use it as an emergency harbor during storms. The river mouth area
of the Yellow is also known as ‘‘Mud Hole’’ in China.

The studies of water waves over mud beds have been conducted since the first
work of Gade in 1958. Constitutive model characterizing mud dynamics becomes
essential in formulating the problem of water waves over mud beds. For example, a
viscous fluid model was used by Gade (1958) and Dalrymple and Liu (1978); an
elastic model by Mallard and Dalrymple (1977) and Dawson (1978); a poro-elastic
model by Yamamoto and Takahashi (1985); a visco-elastic model by Macpherson
(1980); Hsiao and Shemdin (1980) and Maa and Mehta, (1990); a Bingham
fluid model by Krone (1963) and Mei and Liu (1987). The experimental results by
Trien et al. (1990) show the visco-elastic–plastic characteristics of mud under waves,
that is the mud exhibits a nearly viscoelastic behavior at low shear rate, and a
Bingham fluid behavior at hight shear rate. Mathematical modeling based on the
visco-elastic–plastic model was presented by Shibayama et al. (1990) and Trien
(1991). Recently, laboratory experiments were conducted for more than 800 runs by
Jiang (1996) using the kaolinite soft mud under such oscillatory external forces as
water waves. The mud showed combined features of viscous, elastic and plastic
materials depending on the magnitude of external forces and especially on its water
content ratio. The shear stress of the mud is a function of both the shear strain and
the rate of shear strain with strong nonlinearity featured by remarkable hysteresis
loops in their relationships. Although, this model is still not the final choice
considering the complexity of mud rheological behavior, we use it in the present
study to develop a relatively simple predictive model for wave–mud interaction
problem.

In the present study, a two-layer water–mud model based on the nonlinear semi-
empirical rheology model by Jiang (1996) is developed for water waves interaction
with a soft mud bed and the resultant mud mass transport. The features of the
proposed rheology model of soft mud by Jiang (1996) are further described in
Section 2. By incorporating the proposed rheology model with the linearized
Navier–Stokes equations, a vertical 2-D numerical model is then formulated in
Section 3, followed by the description of boundary and initial conditions in Section
4. The mud mass transport velocity is formulated in Section 5. In Section 6, mud
mass transport velocities as well as rates of the decay of the surface water wave
heights are calculated and compared with the experimental data concerned.
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2. A semi-empirical rheology model of the kaolinite soft mud under cyclic loadings

Rheology is defined as the study of relationships between ‘‘stress’’ and corresponding
‘‘strain’’ or ‘‘the rate of strain’’. Recently, the rheological response of soft mud to
oscillatory forcing like waves was studied experimentally with a dynamic rotary
shear viscometer (Jiang, 1996). From the experiments, it is concluded that the soft
mud is characterized by the combined visco-elastic–plastic properties under such
oscillatory external forces as water waves. The shear stress of the mud is a function of
both the shear strain and the rate of shear strain with strong nonlinearity featured
by remarkable hysteresis loops in their relationships. The constitution equation is
generally written as

t ¼
G0e

1� a ej j
þ

m0g
1þ b g

�� �� (1)

in which, t; e and g denote shear stress, shear strain and the rate of shear strain,
respectively; G0, m0, a and b are model parameters, G0 denoting the initial shear
modulus at e ¼ 0, m0 the initial viscosity at g ¼ 0, and a and b being coefficients
determining the shapes of the backbone curves (Jiang, 1996).

The empirical expressions for these model parameters are as follows:

G0 ¼ ð5:56042� 105 �W�2:76631Þ � �7:25526� 558:83242½
�

� ð1þ tanhð�0:57846 � TÞÞ� þ 81:69310þ 707:43501½

� ð1:0� tanhð�0:47194 � TÞÞ � a
1:714

1:0þ9:872�expð�0:866�TÞf g

o
, ð2Þ

m0 ¼ 5:56042� 105 �W�2:76631
� �

� 29:0336 � ð1:31TÞ
� �

� ln 24:714 � expð�0:308 � TÞ½ � � bþ 1:0
� �

, ð3Þ

a ¼
1

emax
1:0� ð0:79051� 5:04571� 10�3 � TÞ
�

� expð� 0:74946 � tanhð0:242983 � TÞ½ � � emaxÞ
�
, ð4Þ

b ¼ ð0:34135þ 0:088222 � T þ 0:011651 � T2Þ � eð1:04529�1:41946�T
0:174215Þ

max , (5)

where emax is the maximum shear strain, T the period of cyclic shear loads, W the
water content ratio.

The constitution equation, Eq. (1), and the formulas for the model parameters
G0, m0, a and b; Eqs. (2)–(5), form a complete rheology model for the soft mud
under the action of cyclic loads. Fig. 1(a) and (b) show the calculated results
of the shear stress versus the shear strain as well as the shear stress versus the
rate of shear strain for the case in which the water content ratio is 200%, and
the period of the cyclic load is 6.0 s. These figures are in good agreement with
the measurements (see Jiang, 1996). We find that the stress-strain as well as the
stress-rate of strain paths form hysteresis loop instead of a single curve. We also
discover that the stress-strain path is nearer to linear if the strain is small. Otherwise,
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Fig. 1. Shear stress vs. shear strain (a) and rate of shear strain (b).
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Fig. 2. Definition sketch illustrating the hysteresis phenomenon of mud.
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if the strain is large enough, the stress-strain path will follow a large hysteresis
loop resulting in higher energy dissipation. We give Fig. 2(a) and (b) as a definition
sketch showing the hysteresis phenomenon of mud. Fig. 2(a) is of the shear strain
versus shear stress, and Fig. 2(b) of the rate of shear strain versus shear stress.
Note that, as dependent variables, the shear strain as well as the rate of shear strain
are defined in the vertical coordinates. The imaginary lines OCand O0C0 in the
figures are the initial curves illustrating relationships of the shear strain versus
the shear stress and the rate of shear strain versus the shear stress at the beginning
stage. When the shear stress due to oscillatory external forces decreases to
zero, however, both the shear strain and the rate of shear strain do not return
to zero along their initial curves OC and O0C0. This shows the shear strain as
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well as the rate of shear strain lag behind the shear stress. This is the hysteresis
phenomenon of mud under external cyclic loadings. When the shear stress equals
zero, the shear strain as well as the rate of shear strain do not equal zero, but e0 and
g0, respectively, that is, a residue of the shear strain, and a residue of the rate of shear
strain in the mud.
3. Governing equations of mud motion

Fig. 3 is a definition sketch of the water–mud model in which the water
waves propagate in the x-direction. The surface and the inter-surface displacement
are denoted by Z and Zm, respectively; the thickness of the overlying water layer and
the underlying mud layer by dw and dm, respectively. In the present study, the water
layer will be treated as the Newtonian fluid and the mud layer will be treated as
rheological materials of the constitution equation, Eq. (1). For both layers, the
Navier–Stokes equations are given neglecting nonlinear terms:

qu

qt
¼ �

1

r
qp

qx
þ

1

r
qtzx

qz
, (6)

qw

qt
¼ �

1

r
qp

qz
þ

1

r
qtxz

qx
, (7)

qu

qx
þ

qw

qz
¼ 0 (8)

in which p is the dynamic pressure, u and w are the velocity components in the
horizontal (x) and vertical (z) direction, and r is the density.

For the mud layer, the shear stresses txz and tzx in the above equations can be
expressed in terms of velocities u and w by substituting shear strain e and the rate of
dw

�m

dm �m

z=0

z=-dm

z=dw

Mud
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Fig. 3. Sketch of the two-layer water-mud model.
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shear strain g into the rheological model equation (1)

e ¼
qx
qz
þ

qz
qx
; g ¼

qu

qz
þ

qw

qx
, (9a,b)

where x and z are the components of the mud particle displacement in the horizontal
(x) and vertical (z) directions, and

x ¼
Z t

0

u dt; B ¼
Z t

0

w dt. (10a,b)

Eqs. (6)–(8) become a closed set of governing equations for the variables u, w and
p. Here the solution is assumed to be

uðx; z; tÞ ¼ ~uðzÞeiðnx�stÞ; wðx; z; tÞ ¼ ~wðzÞeiðnx�stÞ;

pðx; z; tÞ ¼ ~pðzÞeiðnx�stÞ; Zðx; tÞ ¼ aeiðnx�stÞ;
(11a2d)

where n is the complex wave number expressed by n ¼ nr þ id, whose real part nr

gives the wavelength (2p=nr) and imaginary part d gives the wave attenuation rate; Z
denotes the displacements of water surface and the intersurface; a is the amplitude.

Eq. (11) is incorporated into Eqs. (6)–(8). From Eq. (8), we have

~u ¼
i

n

q ~w
qz

. (12)

Introduction of Eq. (12) into Eq. (6) yields

~p ¼
rlnl

n2

q3 ~w
qz3
þ

rl

n2

qnl

qz

q2 ~w
qz2
þ

irls
n2
� rlnl

� �
q ~w
qz

, (13)

where subscript l ¼ 1 or 2. l ¼ 1 indicates the water layer, and n1 is the viscosity of
water; l ¼ 2 denotes the mud layer, and n2 is the viscosity of mud.

Substitution of ~p into Eq. (7) yields the differential equation of the fourth order
for ~w

q4 ~w
qz4
þ

1

nl

qnl

qz

q3 ~w
qz3
þ �2n2 þ

n2

nl

q2nl

qz2
þ is

� �� �
q2 ~w
qz2
�

2n2

nl

qnl

qz

q ~w
qz
þ n4 �

in2s
nl

� �
~w ¼ 0.

(14)

The unsolved unknowns including the unknown variables n and a are determined
by use of the following boundary conditions.
4. Boundary and initial conditions

For the vertical 2-D problem concerned in this study, the boundary conditions are
given as follows:

At the water surface:

�pþ 2rnt

qw

qz
þ rgZ ¼ 0; rnt

qu

qz
þ

qw

qx

� �
¼ 0;

qZ
qt
¼ w. (15a2c)
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At the water– mud inter-surface (the subscript w denotes water layer, and m mud

layer):

uw ¼ um; ww ¼ wm; �pw þ 2rnt

qww

qz
þ rgZm ¼ �pm þ 2rmne

qwm

qz
þ rmgZm;

rnt

quw

qz
þ

qww

qx

� �
¼ rmne

qum

qz
þ

qwm

qx

� �
;
qZm
qt
¼ wm. ð16a2eÞ

At the bottom:

um ¼ 0; wm ¼ 0. (17a,b)

The initial condition is easily given by supposing that the calculation is started
from static state.
5. Mud mass transport velocity

Under the action of water waves, the soft bottom mud may be forced into oscillatory
motion. As a result, a positive mean velocity of a soft mud particle averaged over one
wave period is induced. This phenomenon is the so-called mud mass transport, and the
mean velocity of a soft mud particle is termed as the mud mass transport velocity.

The mud mass transport velocity can be evaluated by the following equation:

UL ¼ UE þ
qum

qx

Z t

0

um dtþ
qum

qz

Z t

0

wm dt, (18)

where subscripts L and E denote the Lagrangian and Eulerian coordinates, respectively.
The sum of the second and the third terms on the right-hand side of Eq. (16) is

known as Stokes’s drift, and denoted by US.
The physical meaning of Stokes’s drift can be explained as follows. In the Eulerian

space coordinates, the velocity of a fluid particle at the top of the elliptic orbit is
slightly larger than that at the bottom. Although this difference is not so large, the
orbital path is not closed after one wave period. As a result, the fluid particle moves
on the wave propagating direction.

On the other hand, the first term UE in the right-hand side of Eq. (16) represents the
mean Eulerian velocity, which exists due to the viscocity of the soft mud. By neglecting
effect of the mean dynamic pressure, Sakakiyama and Bijker (1989) suggested a simple
method for evaluating the value of UE . The simplified equation takes the following form:

mm
q2UE

qz2
¼

qðrm u2
m

____

Þ

qx
þ

qðrm umwm
________

Þ

qz
, (19)

where mm denotes the viscosity of the Newtonian fluid, which is a constant.
Thus, the mean Eulerian velocity can be evaluated from Eq. (19) under the

following boundary conditions:

UEj z¼�dm
¼ 0; ¼

qUE

qz
j z¼0 ¼ 0. (20a,b)
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Consequently, the mud mass transport velocity can be calculated by the sum of the
Stokes’s drift US and the mean Eulerian velocity UE.
6. Verifications of the numerical model

The finite difference method is applied to the numerical implementation.
A logarithm grid is used for both sides of the water–mud inter-surface. Numerical
experiments were conducted to examine the general performance of the developed
numerical model for simulating the wave-induced mud motion, the resultant mud
mass transport as well as surface wave attenuation. A view of the calculated result
for the whole computational domain is shown in Fig. 4, in which the water wave
surface damping along the wave propagating direction is easily seen, and the wave-
induced mud motion is characterized by the features of laminar flow, in which mud
particles move in oscillatory form in response to the wave action. Part of the vector
field of velocity in the neighborhood of the water–mud inter-surface is shown in
Fig. 5. Profiles of the horizontal velocity for different mud density along the full
depth are shown in Fig. 6. Here, depth of the mud layer is 0.10m for both of the
above figures. These figures show that the logarithm grid treatment can give a
description of the flow structures, particularly in the neighborhood of the water–mud
inter-surface. Meanwhile, features of the calculated distribution of velocity along
mud depth reflect a noticeable phase lag due to strong nonlinearity in the mud
rheological behavior.
4 6 8 10 12 14 16 18

0.1

0.2

0.3

Fig. 4. A view of the calculated result for the whole computational domain (from 4 to 19.8m).
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In order to verify the numerical model for simulating surface waves attenuation
due to soft mud beds, the calculated rate of decay of surface wave height is first
compared with the experimental data by Lian (1993).
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Fig. 7 shows the comparison between the calculated and measured rate of decay of
surface wave height. It can be seen that the calculated and measured results are in
good agreement.

Define parameter ~d as the ratio of the mud layer thickness dm to the Stokes’s
boundary layer thickness dm:

~d ¼ dm=dm, (21)

dm � 2vm=s
� 	1

2, (22)

where vm is defined as the depth-averaged mud viscosity, and

vm �
1

dm

Z dm

0

veðzÞ dz. (23)

The dimensionless parameter ~d was applied in the study of the rate of decay of
surface wave height. Fig. 8 shows the numerical results of the rate of decay of surface
wave height as a function of the dimensionless parameter ~d. It can be easily seen that
the most pronounced wave damping occurs when the mud thickness is 1.2–1.5 times
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the Stokes’ boundary layer thickness of mud, in other words, when the mud layer is
20–50% thicker than the boundary layer. This is in good agreement with Dalrymple
and Liu (1978) and Ng (2000) (in Dalrymple and Liu (1978), ~d ¼ 1.3–1.5; in Ng
(2000), ~d ¼ 1.5).

On the other hand, in order to verify the present model for simulating mud mass
transport velocity due to surface waves, the calculated results are compared with the
experimental data by Sakakiyama and Bijker (1989). These measured data were
obtained under the homogeneous mud bed by using the mixture of commercial
kaolinite and tap water and the technique for measuring mud mass transport was
confirmed reliable by Huynh (1991) and Shen et al. (1993). For case study, values of
the parameters concerned in the numerical simulation are given as in Sakakiyama
and Bijker (1989), that is, density of the homogeneous mud is 1300 kg=m3; the
incident water wave height and period are 0.027m and 1.01 s, respectively; depth of
the water layer and the mud layer are 0.3 and 0.093m, respectively. Fig. 9 compares
the calculated and measured mud mass transport velocity of homogeneous soft
mud. It is easily seen that the calculated and measured profiles of the Lagrangian
transport velocity agree very well, and in particular, for the flow in the upper
part of the mud layer, good resolution and accuracy are achieved due to the
logarithmic grid in the vertical direction. The present model is much better than
viscous model as well as than Shen et al. (1993) and Jiang (1996) in the prediction
of mud mass transport velocity, the agreement between the calculation and the
measurement is satisfactory.
7. Concluding remarks

A vertical 2-D two-layer numerical model has been developed for simulating the
interaction between water waves and the underlying soft mud bed and is featured by:
(a) the strong nonlinearity and hysteresis characteristics of the rheological properties
of soft mud is taken into account and (b) the use of logarithmic grid for the both
sides of the water–mud inter-surface in the vertical direction. The main conclusions
drawn from this study are as follows:

The rheological properties of soft mud are strongly nonlinear with characteristics
of remarkable hysteresis phenomenon under external cyclic loadings in the
relationships of the shear stress versus both the shear strain and the rate of shear
strain of mud. That is, when the shear stress decreases to zero, the shear strain as well
as the rate of shear strain do not return to zero, but a residue of the shear strain as
well as a residue of the rate of shear strain left in the mud.

The logarithmic grid technique proves to be helpful to the resolution of flow in the
neighborhood of the water–mud inter-surface.

The 2-D numerical model of mud motion under water waves on the basis of the
semi-empirical rheology model has been developed to predict the wave attenuation
as well as the bed mud motion. Agreement between the calculation and laboratory
data of Lian (1993) and Sakakiyama and Bijker (1989) is good for the rate of decay
of surface wave height and satisfactory for the mud mass transport velocity.
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However, the present study on the problems of the interaction between water
waves and soft mud bed is just a step towards fully understanding of the phenomena.
Many subjects and much work are left to the future study. These include, for
instance, the flocculation, settling, deposition and erosion of cohesive sediment, the
fluidization and liquefaction of mud bed layers, as well as the motion of bed mud
under both waves and currents.
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