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Abstract

As compared to conventional methods of ocean surface currents measurement, spaceborne Synthetic

Aperture Radar (SAR) offers cloud-penetrating ocean current observation capability at high spatial

resolution. While some studies have shown the potential for using SAR for studying ocean surface

currents through feature tracking, they have only analyzed a few images to demonstrate the basic

measurement technique, and no concise general technique has been developed. This paper shows the

application of the Maximum Cross-Correlation (MCC) method to generate ocean surface currents from

nearly 2 years of available sequential spaceborne C-band SAR imagery from the Envisat ASAR and

ERS-2 AMI-SAR sensors over the coastal California Current System. The data processing strategies are

discussed in detail, and results are compared with High Frequency (HF) radar measured currents. One-

dimensional wavenumber spectra of the SAR-derived surface currents agree with the k−2 power-law as

predicted by submesoscale resolution models. Comparisons with HF radar currents show encouraging

results. MCC SAR surface currents are found to have larger magnitudes than the HF radar currents,

≈11 cm/s, which may be due to the fact that SAR penetrates only a few cm into the ocean surface

while HF radar currents are averaged over the top 1 m of the ocean surface. Along-shore rotation of

the currents shows that most of this magnitude difference is contained in the along-shore component,

which can be attributed to higher HF radar accuracy in the direct radial cross-shore measurements as
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compared to lower accuracy in the along-shore components derived from multiple cross-shore radial

measurements.

Index Terms

Synthethic aperture radar (SAR), ocean surface currents, remote sensing, sea surface.

I. INTRODUCTION

Ocean surface currents are a significant part of the global ocean circulation and they strongly

influence ocean-atmosphere interaction. Coastal surface currents are responsible for surface

advection of nutrient-rich waters, which are biologically the richest parts of the oceans [1],

thus having a direct impact on the fishing industry. Surface currents are also significant for

shipping, navigation, and the analysis and prediction of the spread of pollutants like oil spills.

In-situ instruments for measuring ocean surface currents, drifting and moored buoys and ADCPs

(Acoustic Doppler Current Profilers), have the disadvantage of being restricted to point measure-

ments only. Difting buoys can provide a Lagrangian view of the near-surface current but this

requires repeated re-seeding of the buoys to comprehensively cover an area. Though effective for

current measurement in specific areas of interest, it is prohibitively expensive to routinely and

repeatedly deploy in-situ measurement systems in large numbers in all sea conditions. Ground-

based coastal HF (High frequency) radar stations can measure high temporal resolution real-time

surface currents up to ≈180 km off the coast with a spatial resolution of a few kilometers in

most weather conditions [2]. However, their coverage is limited to areas near the coast, and

furthermore it is difficult to deploy them in remote areas and harsh environments, such as Alaska

and the Polar Regions, due to power and maintenance requirements. Radar altimetry is a popular

space-based remote sensing method to measure mesoscale current features. However, altimetry

measurements can only generate geostrophic currents as the currents are derived by inversion of

the altimeter sea surface height estimates [3]. Another major restriction is that radar altimetry

cannot function well in shallow waters or near coastlines because of land contamination in the

large antenna footprint, tidal variations, and rapid atmospheric variations in coastal waters. Ocean

surface currents can also be estimated from thermal infrared (IR) and ocean color (OC) remote

sensing imagery by tracking the movement of features through sequential temporal imagery;

one popular and effective method used for feature tracking is the Maximum Cross-Correlation
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(MCC) method [4], [5]. The MCC method has been successful for AVHRR (Advanced Very

High Resolution Radiometer) and MODIS (Moderate-Resolution Imaging Spectroradiometer)

thermal IR data as well as OC data from MODIS. However, this method is inhibited by weather

because IR and OC data cannot be acquired under cloudy conditions. Furthermore, thermal

feature tracking cannot be used in regions where thermal gradients are weak.

Synthetic Aperture Radar (SAR), with its cloud-penetrating, day-night operational capability

at a high resolution, typically on the order of a few meters, provides another attractive option

for surface current measurement in both the coastal regions and the open ocean. Ocean surface

currents can be estimated from SAR imagery by feature tracking in intensity imagery [6], [7],

while radial (across-track) currents can be estimated by two methods: through Along-Track

Interferometry (ATI) [8], [9] and Doppler centroid tracking [10]. SAR measurements also offer

wider coverage in areas inaccessible by in-situ measurement devices, and where cloud cover

is very persistent, such as higher latitudes and the tropics. With SAR, surface currents can be

mapped over large areas with resolutions typically on the scale of a few km, which are higher

than those possible with in-situ methods and most other remote sensing methods.

The microwave range generally used for SAR imaging of the ocean (C-band to X-band)

does not penetrate the surface more than a few millimeters, and thus the scattered returns are

characteristic of the surface. At intermediate incidence angles (20◦ - 75◦), the primary scattering

mechanism is Bragg scattering through small-scale surface capillary waves; however the long-

scale waves (primarily wind-driven) also affect the backscatter by influencing the capillary

waves through the processes of tilt and hydrodynamic modulation [11]. Biogenic surface slicks

associated with fish, upwelling, and phytoplankton blooms generally form monomolecular layers

on the sea surface [12]. The effect of these monomolecular slicks is to dampen the surface

capillary waves by Marangoni damping, which in turn reduces the Bragg backscatter [13], [14].

Biogenic surface slicks thus appear in SAR imagery as lower backscatter regions, as compared

to the surrounding ocean surface. In upwelling zones, SAR imaging of upwelling-related surface

slicks may also result due to thermal effects. Increased air stability due to the colder upwelled

waters reduces wind stress on the waves, effectively reducing the surface roughness, which leads

to lower backscatter [15].

There have been a few published studies exploring feature tracking in SAR intensity imagery

for surface current estimation, and they show that surface slicks act as passive tracers for
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advection due to surface currents. Lyzenga and Marmorino [6] used feature correlation to track

ocean surface slicks imaged by airborne SAR to generate surface currents and current gradients;

their results from one single pair of images 20 minutes apart compared well with ADCP currents

averaged over 10-20 m depths. Surface currents were estimated in two cases by Liu and Hsu

[16] through wavelet feature tracking in Envisat ASAR & ERS-2 SAR datasets, however they

didn’t compare their results with any other ocean current measurements. In Marmorino et al. [7],

surface slicks in spiral-eddy convergence zones were tracked to estimate surface currents in a

few cases of airborne SAR observations at time separations of around 1.5 hours. More recently,

Gade et al. [17] compared the results of current generation from feature tracking on both natural

and man-made surface slicks (oil spills). Currents were generated using cross-correlation feature

tracking on biogenic surface films (ERS-2 SAR and Landsat Thematic Mapper data) and oil

spills (Envisat ASAR sequential images). Comparisons with currents generated from a model

showed that currents from feature tracking were larger in magnitude, which is attributed to local

wind forcing at the sea surface, which is not seen in the model currents which are a mean over

the upper-ocean grid point (8 meters in this case).

Ciappa et al. [18] have shown that ocean surface currents can also be estimated from SAR

intensity images by tracking macro-algae movement through the MCC method. It should be

noted that macro-algae blooms, unlike the micro-algae blooms associated with upwelling, form

a few-inches thick layer at the sea surface, and appear as a rough and reflective surface.

Previously published work on feature tracking in SAR imagery for estimation of surface

currents has been limited to processing and analysis of relatively small and sporadic datasets,

and a concise general technique for the same has not been reported. Comparisons with other

datasets have been scarce or performed for very specific cases. The research outlined in this

paper attempts to fill these gaps by using a semi-automated algorithm with minimal user input

to process a large dataset and performing comparisons with ocean currents measured by coast-

based HF radar stations. For most of their mission coincidence time frame (2002 - 2011), ESA’s

Envisat and ERS-2 remote sensing satellites with onboard C-band SAR instruments remained

in a specific orbit configuration where ERS-2 followed Envisat in the same orbit with a time-

lag of 30 minutes. This small time-lag with their high spatial resolution means these SAR

sensors are a unique resource for measurement of ocean surface currents. In the study area,

the California Current System (CCS), this 30-minute separation is well-suited for observing
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advection of features which exist at submesoscale to mesoscale time and length scales (see Sec.

II).

This research study is concerned with the processing of Envisat-ERS2 30-minute lag image

pairs acquired over the coastal region in the CCS for 2008-2009. A total of 124 30-minute lag

image pairs were processed, and their results and analysis are presented. The paper is organized

as follows. Section II delineates the area of study and its characteristics. Section III describes

the SAR data used for generating surface currents in this study and also the HF radar data used

for comparison and analysis. The MCC method and data processing are discussed in detail in

Section IV. The results from data processing are given in Section V. A discussion follows in

Section VI, and the paper is summarized in Section VII.

II. STUDY AREA

The California Current System (CCS) is an eastern boundary current system along the US

West coast which is well-known for wind-driven upwelling that occurs in the spring-summer

(April-August) when surface winds are aligned nearly along-coast, persistently blowing equator-

ward. The resulting upwelling cold-water filaments can range from submesoscale (1-10 km) to

mesoscale (20-100 km) and sometimes grow as large as 200 km [19]. For the purpose of this

study, the region of interest in the CCS is the nearshore region of high biological productivity

off the US West Coast (up to about 200 km offshore) [20]. The study area is shown in Fig. 1.

The CCS is relatively well understood, and its oceanographic characteristics at the meso-

and larger scales are well-known (for a good review, see [19], [21]). The CCS is known to

experience high upwelling in the summer due to offshore Ekman transport when surface wind

blows southward along the coast or a strong wind stress curl is present [22].

Phytoplankton that rise to the surface during upwelling undergo increased photosynthesis

activity at the surface due to better availability of sunlight and increased nutrient availability

due to upwelling. The phytoplankton release extra-cellular products, mainly photosynthesis by-

products, in the form of biogenic surface slicks; most of these surface slicks are surface-active

(surfactants) which adhere and accumulate at the air-sea interface [23].

Besides phytoplankton, which are the primary producers of surface slicks, bacteria, fish,

and zooplankton also produce surface slicks. Surface slicks (of any origin) may appear in a

convergence zone of an eddy, particularly the submesoscale spiral eddies that appear in the
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Southern California Bight. Studies using ERS 1/2 SAR [24] and airborne SAR [7] in the Southern

California Bight demonstrate how spiral eddies can be detected through convergence-zone slicks.

The study in [24] shows that surfactants can converge within small-scale eddies and delineate

sea surface slicks with widths in the range tens to hundreds of meters and lengths greater than

10 km.

The existence of monomolecular surface slicks causes damping of the surface capillary waves

through Marangoni damping, which in turn reduces the SAR Bragg backscatter from the ocean

surface [14]. The CCS is thus well-known to have features of interest which can be investigated

for feature tracking through SAR imagery. Furthermore a large amount of published references

of currents and other related variables are available for this region. Currents from coast-based

HF radar stations along the California Coast (see Sec. III-B) will be used as reference dataset

for comparison with currents generated from SAR through the MCC method.

It is important to consider the balance between biological and physical forcing in the CCS in

order to infer current advection from spatial variations in phytoplankton (or chlorophyll, which

is an indirect measurement of phytoplankton density), which are sources for surface slicks. It

has been well established that in the nearshore region, over time scales of 1-10 days and spatial

scales of 25-100 km, phytoplankton behave largely as passive scalars and biological forcing

mechanisms play only a marginal role in determining their spatial and temporal distributions

[25]. Abbott and Letelier [26] show that in the nearshore region, chlorophyll and SST (sea

surface temperature) respond to similar physical forcing, and have identical decorrelation scales.

The temporal decorrelation scales of SST and cholorophyll in the CCS are strong functions of

spatial scales; length scales of up to 25 km are coupled with time scales of up to 24 hours [25]–

[27]. Spatial statistics of SST and chlorophyll are also the same over time scales of 1 day-1 month

and spatial scales of 25-100 km [25]. These observations are consistent with the dominance of

physical forcing over biological forcing in the nearshore region. In addition to phytoplankton,

another manifestation of surface slicks in the CCS is due to small-scale eddies, especially in the

Southern California Bight (SCB), which accumulate surface slicks in their convergence zones.

Often called spiral eddies, these submesoscale eddies are found at length scales of 10km or less

and time scales of less than a day [7], [28].

The CCS has been modeled extensively at grid resolution sufficient to capture submesoscale

features. Capet et al. [29]–[31] describe simulations of up to 750 m resolution in this location.
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A primary result of this work is that the surface velocity field follows a spectral slope (k−2) that

is shallower than that predicted by ordinary quasi-geostrophic (QG) theory (k−3), but steeper

than that predicted for three-dimensional turbulence and surface quasi-geostrophic (SQG) theory

(k−5/3). HF radar surface current observations also show agreement with the k−2 spectral slope

at submesoscale wavenumbers [32]. Capet et al. [30] associate this slope with the presence of

submesocale fronts and filaments squeezed between the mesoscale and submesoscale eddies in

this region. Capet et al. [31] relate these fronts and the distribution of spectral energy with

important conclusions about upper-ocean energy cascades. For this reason, we chose to evaluate

the spectral slope of our data, to see whether our velocity spectra agree with this important

theoretical and modeled result. To date, many of the developments in submesoscale oceanography

have been led by theory and modeling without observational validation; the spectra observed

from HF radar surface current observations are very recent. It will be shown here that the MCC

SAR velocities can be used to directly measure the surface velocity of submesoscale processes.

At the length and time scales in the CCS described above, SAR observations at a resolution

of 12.5 m, swath widths of 100 km, and a time separation of 30 minutes, are very suitable for

observing surface slick advection due to ocean surface currents.

III. DATA

A. SAR Data

The SAR sensors of interest for this study are the C-band (5.3 GHz) Advanced Microwave

Instrument (AMI) SAR onboard ERS-2 and the Advanced SAR (ASAR) onboard Envisat. Both

Envisat and ERS-2 were ESA satellites, active, from July, 1995 to July, 2011, and October,

2002 to April, 2012, respectively. For most of their mission coincidence time period, Envisat

and ERS-2 flew in the same near-polar, sun-synchronous orbit, with ERS-2 following Envisat

by a lag of 30 minutes. Both of these SAR instruments’ standard stripmap image mode acquired

imagery at a swath width of 100 km and a maximum along-track length of 100 km. The ASAR,

however, was an improvement over the ERS AMI SAR instrument in many ways; it featured the

standard HH and VV polarization modes along with alternating polarization modes (VV/HH,

HV/HH, VH/VV), and it also operated in two ScanSAR modes: the Wide Swath mode with 150

m nominal resolution in azimuth/range and 400 km swath, and the Global Monitoring mode

with 1 km nominal resolution in azimuth/range and 400 km swath.
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Since we are concerned with feature identification and tracking in SAR backscatter images, so

phase-preserved data is not required, rather intensity images are suitable. Archived Image Mode

GEC (Ellipsoid Geocoded) SAR datasets from both ASAR and AMI SAR sensors were acquired

from ESA. The GEC format is an intensity image format, generated from the raw SAR data

using the Range-Doppler algorithm, geolocated and resampled to a map projection, delivered at

a pixel sampling of 12.5 m by 12.5 m, with a gemometric resolution of approximately 30 m in

ground range by 30 m in azimuth. All of these images were acquired in VV-polarization mode,

which is better for current mapping purposes than HH-polarization and provides more contrast

for the ocean in the presence of a slick (VV-polarization gives higher radar backscatter from

the sea surface than HH-polarization [33]). The images were already multi-looked. SAR data

processing is described in Section IV-B

B. HF Radar Data

Coast-based High frequency (HF) radar stations measure real-time surface currents in the

upper 1 meter of the ocean surface at 0.5 - 6 km horizontal resolution; the coverage zone

extends from the near-coast, except for the surfzone, to 50 - 150 km off the coast (depending

upon the radar frequency) [32]. The HF range (3 - 30 MHz) is used to receive Bragg backscatter

from the surface capillary waves. The Doppler spectrum of the backscatter is used to derive

the underlying current that modifies the phase speed of the surface capillary waves [34]. Since

the radar backscatter only measures radial velocities, observations from at least two HF radar

stations are required for a vector solution. Interpolation techniques are used to convert the radial

observations from mulitple stations into a two-dimensional surface current field.

High frequency radar stations cover a large portion of the California Coast and give hourly

high-temporal resolution data independent of weather conditions. Surface current fields observed

from HF radar are available on resampled post-processed grids at both 6 km and 2 km res-

olutions since 2007 [2]. Hourly 2-km and 6-km grid current fields for 2007-2010 over the

California Coastal region have been acquired from the Marine Physical Lab at Scripps Institute

of Oceanography.
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IV. METHODS

A. The Maximum Cross-Correlation (MCC) Method

The MCC method, illustrated in Fig. 2, is an automated procedure that tracks the movements

of patterns across sequential images by cross-correlating a pattern template subwindow in an

initial image within a specified search window in a second image [4]. The displacement vector

between the two sequential images is defined to have its origin at the center of the initial pattern

subwindow in the first image and the endpoint at the center of the subwindow location with

the maximum cross-correlation in the second image. The velocity vector is calculated using the

time separation between the sequential images. The use of MCC for generating ocean surface

currents from feature tracking in thermal IR and OC imagery is well-established [5], [35].

One of the requirements for MCC to work well is that the time-separation between the

sequential images should not be large enough such that the features being tracked decorre-

late significantly. Crocker et al. [5] showed that for sequential IR and OC images at 1 km

resolution, the MCC method can function well for time separations up to 24 hours between

them. Submesoscale features captured by the finer resolution of SAR will evolve on somewhat

faster time scales, so the 30 minute separation of the Envisat & ERS-2 configuration is an ideal

dataset for this purpose.

The other two main parameters which control the MCC method are the sizes of the template

subwindow and the search window. The size of the template subwindow should be large enough

to contain enough pixels to define a pattern; however, the larger the subwindow size, the more

it smoothes out the structure of the flow. The template subwindow size thus has to be defined

keeping in mind a balance between the above two factors. The search window in the second

image is set in order to resolve the maximum expected velocity.

A raw velocity field output from the MCC method contains vectors at every grid point, with

varying values of cross-correlation. Post-process filtering has to be applied to the raw vector

field to get a vector field that depicts the geophysical characteristics of ocean surface currents.

As a first step, a minimum correlation cutoff value is used to remove vectors that result from low

values of pattern cross-correlation. Vectors associated with single-pixel displacement or having

a magnitude larger than a defined threshold value are also removed. Finally, a nearest-neighbor

filter is used to ensure spatial coherence. For each grid point in the vector field, the target
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Fig. 1: Study Area. The solid thin line is the US West Coast, the thick dashed line is the study

area over which SAR images were acquired.
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Fig. 2: The Maximum Cross-Correlaton (MCC) method. The solid box in the first image is the

template subwindow which selects the pattern. This pattern is tracked in the search window

(bigger dashed box) in the second image.
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vector is compared with all other vectors in its immediate neighborhood. The comparison can

be made in many ways, the most common method is to use difference thresholds for u- and

v-component magnitudes and direction, and the number of neighborhood vectors violating any

of these thresholds is determined. If the number of neighborhood vectors that exceed the defined

difference thresholds is greater than a specified limit, the target vector is flagged and discarded.

In its common form, the nearest-neighbor filter is thus characterized by the neighborhood size,

choice of thresholds for u- and v-components magnitudes, choice of threshold for direction, and

choice of the number of neighborhood vectors that must agree to the target vector within these

thresholds to keep the target vector.

One important additional step in the processing of thermal IR and OC imagery for MCC is

cloud filtering. This is not needed for SAR as clouds are transparent for the microwave range

of frequencies used for SAR remote sensing.

B. Data Processing for Generating Currents from 30-minute Lag SAR Images

The data processing chain for the Envisat, ERS-2 30 minute lag image pairs is shown in Fig.

3 as a flowchart. Each processing step is described in detail below. Since the Envisat and ERS-2

SAR intensity images are acquired from two different instruments, they were radiometrically

calibrated to normalized backscatter σo as a first step.

SAR datasets for both Envisat and ERS-2 are delivered as “scenes” of maximum along-track

length of 100 km. This poses a problem when an image “strip” of length > 100 km is ordered

from the archive: the image strip is delivered as a sequence of 100 km scenes with some overlap

between consecutive scenes. Since the Envisat and ERS2 SAR images do not cover the exact

same area on the ground, mosaicking these separate scenes into one image strip is required, for

each of Envisat and ERS-2, separately. However, during initial experiments, it was noticed that

consecutive scenes in a strip do not have the exact same geolocation, rather there is a “sliding”

shift between them in the direction of cross-track imaging; an example of this is shown in Fig.

4.

The magnitude of this slide-shift varies for different strips. The geolocation error due to this

slide-shift has to be corrected first before mosaicking the scenes into a single seamless strip. The

requisite geolocation correction was performed through image registration. For consistency, the

northern-most scene was always chosen as the base image in the geo-registration process. For
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Fig. 3: Data processing flowchart for generating currents from 30-min lag SAR images (see Sec.

IV-B for detailed description).
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strips with more than 2 scenes, a consecutive registration process was used, i.e. the 3rd scene in

the strip was registered to the warped 2nd scene as base, the 4th scene in the strip was registered

to the warped 3rd scene as base, and so on.

Since the geolocation error between overlap scenes is only a translation due to slide-shift in one

direction, and there is no perceptible rotation or skew error, a polynomial of the first degree with

bilinear resampling was deemed sufficient for image registration. Automated area-based matching

algorithms were used for tie-point selection between the overlapping scenes, which were then

used to generate the fit parameters of the one-degree transformation polynomial between the

base and warp images.

The automated methods for tie-point selection did not work properly in all cases. An automated

procedure for testing the automated tie-point selection and subsequent image registration was

developed and manual tie-point selection and registration had to be performed for the cases

which failed the test. This testing procedure is described in Section IV-C.

After correcting for the slide-shift in all scenes of the strip, a single seamless strip is generated

through mosaicking. Geolocation errors also exist between the Envisat and ERS-2 images,

corrections for these are discussed further below.

SAR intensity images have a characteristic “speckle” noise due to the coherent integration

of randomly distributed backscatter phase from multiple scatterers within one ground resolution

cell. The grainy speckle noise results in a SAR intensity image that does not have a constant

mean radiometric level in homogeneous areas. In SAR intensity images, speckle noise has an

exponential distribution, and can be statistically modeled as multiplicative noise. Speckle can

be reduced at the cost of resolution by “multilook processing” on the Doppler spectrum [36].

Although the SAR intensiy images were already multi-looked, there was still significant speckle

noise in the images. Spatial filters were used to further suppress speckle: sucessive Lee, Median,

Median (3 x 3 pixels) were applied to preserve edges while smoothing.

The mosaicked speckle-filtered Envisat and ERS-2 image strips were then spatilly subset to

the region of mutual coverage. For ease in data handling and faster processing, the images were

downsampled at this point by a factor of 2, from the native 12.5 m resolution to 25 m resolution.

In the calibrated σo image, ocean has low backscatter values in general, and the features of

interest are at even lower backscatter due to damping effects (Sec I). It is useful to increase the

contrast of these low intensity values; this is done through applying a dB transformation, at the
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cost of decreasing the overall dynamic range in the image. It should be noted here that pixels

in SAR intensity data have a negative exponential probability distribution, with a mean equal

to variance. A dB transformation standardizes the variance, i.e. variance becomes constant and

independent of the mean [37].

At this point in the processing chain, the SAR images were stored in single-precision (32-bit

floating point) format. The legacy MCC program, however, takes data input only in 16-bit integer

format. The processed SAR images were thus converted at this stage to 16-bit integer format

through linear histogram stretching.

The MCC program was run with a maximum velocity threshold of 60 cm/s for the search

window. High-velocity jets in the CCS are known to achieve velocities in excess of 50 cm/s

[19]; Crocker et al. [5] used a maximum velocity threshold of 70 cm/s for defining the search

window for running MCC on IR and OC imagery. We ran a few datsets using two different

maximum velocity limits of 60 cm/s and 70 cm/s. In the case of 70 cm/s velocity threshold,

there were only a few vectors generated with magnitude higher than 60 cm/s, and most of them

were discarded during post-process filtering. The velocity threshold of 60 cm/s was chosen as a

constant value for processing all datasets. For a pixel resolution of 25 m and a time separation

of 30 minutes, this corresponded to a search box of 75 x 75 pixels. The pattern subwindow

size was chosen to be 1.1 km x 1.1 km (44 x 44 pixels), adequate enough to track the features

that exist in the range of tens of meters up to 2-3 km, yet small enough to not smooth out the

fine-resolution during pattern matching. Thus, the resolution of the MCC velocity field will be

less than the 25 m SAR images (1-2 km is chosen here).

The MCC program takes the input integer-format sequential images as 2-D arrays and the

output vectors are given in terms of pixel coordinates. Using the map projection information

attached with the input images, the pixel coordinates were converted to geographic coordinates

(longitude and latitude). The output grid resolution of the current fields was 1.87 km.

The slide-shift geolocation error between consecutive scenes in the same strip and its correction

was described above. Besides that, there is also a slide-shift error between the Envisat and ERS-2

images. The correction for this intra-sensor slide-shift depends upon the number of scenes in

the image strip for each sensor. In the simpler case where the image strips for both Envisat and

ERS-2 are composed of only one scene each, this geolocation error can be treated simply as

a uni-directional slide-shift between the two images. The input images to the MCC algorithm
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are not land-masked, and ideally the cross-correlation over land should not show any movement

vectors over the time-period of 30 minutes. Any vectors over land are thus a depiction of the

geolocation error between the two sensors. Experiments indicated that the vector magnitudes

are nearly constant over land, with some outlying vectors near the image edges and coast-ocean

boundaries. The intra-sensor geolocation error in this case is corrected by first calculating the

overall mean of the shift vectors over land and then removing this mean value from the ocean

current vectors. Note that while calculating the mean shift, vectors near the coast-ocean boundary

are ignored, along with any vectors that are statistical outliers (any vectors outside 1.5 standard

deviation range, calcultaed from the total set of vectors over land).

The intra-sensor geolocation error correction gets more complicated when either or both of

Envisat and ERS-2 strips have multiple scenes: every scene in each strip is on a slightly different

geolocation grid. Assuming that image registration during the mosaicking process for each strip

is accurate enough, the overall mean shift vectors over land should give a shift vector close

to the true shift vectors between every pixel in the overlap region of the two sensors. While

calculating the mean shift vector over land, the same pruning process is used as in the case of

single-image strip: vectors near the coast-ocean boundary and vectors that are statistical outliers

(vectors that fall outside the 1.5 standard deviation limit) are ignored. Due to the underlying

assumption above, the accuracy of the geolocation correction for mosaicked strips depends upon

the accuracy of the image registration in the mosaicking process.

The raw MCC output vectors fields were post-processed using the filters described in Section

IV-A. The cross-correlation minimum cut-off was set at 0.2; this was an empirical value decided

by experimenting with a few sample cases. Vectors associated with single-pixel displacement

and a maximum velocitoy of 60 cm/s were removed. The nearest-neighbor filter was used with

a neighborhood size of 5 x 5 grid points, with the target vector at the center grid point. The

direction difference threshold was set at 60◦ and the u- and v-component difference thresholds

were set at 0.8 times target vector u- and v-component magnitudes, respectively. If more than

3 neighborhood vectors violated any of the above thresholds, the target vector was discarded.

Post-process filtering is the final step in the processing chain.
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C. Procedure for Testing Automated Tie-Point Selection and Registration

As mentioned in Sec. IV-B, an automated procedure for testing tie-point selection and subse-

quent image registration prior to scene mosaicking in a strip needs to be devised. This procedure

was developed based on the MCC algorithm, and is shown in Fig. 5 as a flowchart. For any

two consecutive scenes in the strip which need to be geo-registered, the auto-tie point algorithm

is run with different settings. If the auto tie-point algorithm gives unrealistic values of points

(e.g. sometimes the top-left corner in both images is erroneously chosen as a tie-point), then the

images are not registered, and manual tie-point selection is required in this case.

In the other case, when realistic tie-points are chosen, the images are registered using the

selected tie-points, subset to their overlap area, downsampled to 25 m resolution, transformed

to dB, and converted to 16-bit integer format through histogram stretching. These images now

cover only the overlap area between the consecutive scenes. To check for geolocation errors in

these subset images, the MCC algorithm is run over them, with a pattern subwindow size of 25

x 25 pixels and a search window size of 50 x 50 pixels; these window sizes are chosen as a

balance between efficient processing and assumptions regarding expected maximum geolocation

errors. A time-separation value of 1 sec is used, so that the output vectors effectively give the

shift vectors in cm units.

The raw vectors from the MCC algorithm are filtered at a minimum cross-correlation coeffi-

cient threshold of 0.3. If the MCC vectors are non-existent or have zero values above the 0.3

cross-correlation threshold, this indicates that the images have been properly geo-registered. If

the number of non-zero MCC vectors is more than 10 % of the total number of vectors, that

means there is a possibility of georegistration error. In this case, the vectors are filtered again

by removing outliers (vectors that fall outside the 1.5 standard deviation range), and the overall

mean of the filtered vectors is calculated. This overall mean vector is a quantitative measure of

the geolocation error in cm. This can easily be converted into the 25 m pixel georegistration

error.

A summary of these parameters is generated, which identifies the multi-scene strips which

need manual tie-point selection and geo-registration.
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V. RESULTS

Each Envisat-ERS2 30-min lag image pair was processed independently, with the final results

being the post-processed ocean surface current vectors. An example of surface current generation

from one pair is shown in Fig. 6. Envisat and ERS-2 strips for this case were comprised of two

scenes each. The mosaicked Envisat and ERS-2 σo [dB] strips are shown in Fig. 6a and Fig.

6b, respectively. These images are speckle-fitlered, subset to their mutual overlap region, and

downsampled to 25 m resolution. The ERS-2 image lags the Envisat image by 30 minutes.

Some ocean feature changes can be seen between the two images, however this is clearer in the

difference image in Fig. 6c, especially in the regions to the west of Santa Catalina Island. The

dark linear features in region A seem to have shifted position as a group in the two images,

as evident from the alternating increase and decrease pattern seen in Fig. 6c. Region B also

depicts change in intensity, however this is more of a homogenous change over a relatively large

region, and is not due to advection; the actual cause of this change may be changes in wind

patterns, or atmosphere/ocean fronts. Due to the MCC pattern subwindow and search window

size definitions, intensity changes of the kind depicted in region B, which might not be due to

ocean surface advection, are automatically ignored for the most part. This can be seen in the raw

MCC vector field in Fig. 6d: there are few vectors over region B. The raw vector field shows

a nearly-constant vector flow over land, this is due to the intra-sensor geolocation error (see

Sec. IV-B). Fig. 6e shows the vector field after correction for this geolocation error. The final

vector output after post-process filtering is shown in Fig. 6f; notice the elimination of vectors

that appear spurious and spatially incoherent, and what appears to be a small-scale eddy in the

top left corner of Region B. Note that the vector fields shown in Fig. 6d and 6e have been

filtered at a cross-correlation threshold of 0.2 for display.

A. Wavenumber Spectra

The wavenumber spectrum of ocean currents gives an insight into the kinetic energy distri-

bution in the ocean over a range of spatial scales. Recently, there has been great interest in the

use of wavenumber spectra to analyze energy distributions over the meso to submeso scales.

Wavenumber spectra of surface velocity over the global ocean were calculated for the geostrophic

case by Stammer [38] using satellite altimeter data; however that analysis was restricted to length

scales of 100 km and above as altimeter signals become dominated by noise below length scales
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of ≈100 km. In the CCS, there is substantial velocity variance that resides in the submesoscale

range. Capet et al. [29], [31] derived currents from a high-resolution numerical model of the

CCS, and were able to derive wavenumber spectra in the submesoscale range down to 1.5 km.

Kim et al. [32] used HF radar currents to estimate the wavenumber spectra in the CCS; the high

resolution of the HF radar current fields allowed for derivation of wavenumber spectra at length

scales as small as 2 km.

In the submesoscale wavenumber regime, theory predicts a power-law decay behavior; current

traditional quasigeostrophic (QG) theory specifies a power-law slope of -3 [39], so called ”surface

quasigeostrophic theory (SQG)” and 3D isotropic turbulence theory predicts a power-law slope

of -5/3 [40], [41], and high-resolution simulations and frontogenesis theory predicts a slope of -2

[29], [31]. The submesoscale wavenumber spectra derived over the CCS using a high-resolution

CCS model [29], [31] and HF radar currents [32] both show very good agreement with the k−2

power law.

The MCC SAR currents generated at a base resolution of ≈1.87 km should capture subme-

soscale phenomena well, and wavenumber spectra from them should also show agreement with

the power law decay. The wavenumber spectrum calculated for the KE in MCC SAR currents is

shown in Fig. 7, along with the 95 % confidence limits and relevant power-law spectrum slopes:

the k−2 slope is reproduced, with appropriate magnitude, from Fig. 1 in Capet et al. [31] while

the k−5/3 and k−3 slopes are arbitrary.

Each current field calculated from a 30-min lag image pair was re-gridded and interpolated

to a constant 1.9 km resolution field. One-dimensional KE spectra were calculated over these

2-km re-gridded vectors along the x-direction (each line of constant latitude); prior to this, each

row was conditioned by a Hann window. All of these 1-D spectra from one current field were

then averaged together to generate a mean spectrum for one field. The mean KE spectrum for

each field was band-averaged to increase the 95 % confidence interval. Out of the total 124

processed 30-min lag image pairs, only 96 current fields were used for the wavenumber spectral

analysis; other pairs either had no or less than 15 vectors, or did not produce enough vectors

after re-gridding and interpolation to a 1.9 km grid. The mean KE spectrum shown in Fig. 7

was produced by taking an overall mean of the individual mean spectra from each current field.

The MCC SAR vectors seem to follow the k−2 power law in the wavenumber range of 10−4

rad/m to 10−3 rad/m, in excellent agreement with the kinetic energy spectrum from the model
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of Capet et al. [31]. The slightly different behavior in the wavenumber range <10−4 rad/m

may be due to the fact that the 1.9 km interpolation grid is set up over the minimum and

maximum distance from the shore present in each derived currents field. Since the features of

interest, surface slicks, predominantly exist close to the coast, the probability of detecting vectors

gets less as distance from the coast increases. At the same time, all spectra are calculated at a

fixed wavenumber resolution and length (by zero-padding during spectra calculation) to achieve

constant wavenumbers for all cases for calculating the means. Both of these factors combine to

cause larger interpolation errors in the spectra calculation in regions farther from the coast. On

the whole, the KE wavenumber spectrum in Fig. 7 indicates consistency between SAR MCC

velocities and actual geophysical ocean current signals in the CCS.

B. Comparison with HF Radar Currents

Coast-based High frequency (HF) radar stations are rapidly developing into an observational

tool for ocean surface currents over the US West Coast for the last few years. There have

been quite a few validation studies which show their general agreement with other current

measurements, ranging from 1 to 19 cm/s (see [32] for a good summary). High frequency radar

measured currents are a unique resource in that they measure surface currents in the coastal zone

at high spatial and temporal resolutions, which are difficult to achieve using other methods.

High frequency radar currents datasets over the US California Coast are available at two

different spatial resolutions: 2 km and 6 km. MCC currents derived from SAR are compared with

both 2 km and 6 km resolution HF radar currents separately. Before comparison, the HF radar

currents were filtered at a normalized uncertainty threshold of 0.8 for both u- and v-components

[2]. MCC SAR currents were re-gridded to 2 km and 6 km resolutions for comparison with the

HF radar datsets at the same resolution. After re-gridding, any MCC SAR grid points which were

at a distance of greater than half the grid resolution from the original grid points were omitted

from further analysis. Also, any interpolated grid points which did not have both MCC SAR

and HF radar current vectors were omitted from further analysis. The HF radar current fields

at an hourly temporal resolution were composited by linear weighting (following the method in

Chubb et al. [42]) to bring them to the same time span as the MCC SAR currents. Some sample

plots of re-gridded MCC SAR and HF radar vectors are shown for both the 2 km and 6 km

resolution case in Fig. 8. The vector fields in each plot are scaled together to the same reference
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vector. Both MCC SAR and HF radar vectors show the same general circulation, however some

disagreements can also be seen in these sample plots.

To quantitatively compare the two datasets, their residuals were calculated and analyzed. In

Fig. 9 we show the histograms of residuals for magnitude and direction (anti-clockwise from

East) for 2 km HF radar currents subtracted from re-gridded 2 km MCC SAR currents (Fig.

9a, 9b) and for 6 km HF radar currents subtracted from re-gridded 6 km MCC SAR currents

9c, 9d). Mean and standard deviation values for each set of residuals are also noted. The residuals

for both 2 km and 6 km resolutions are quite symmetric about the mean, are unimodal, and show

some agreement to the estimated normal histograms. The magnitude residuals have a significant

non-zero mean, ≈11 cm/s, for both 2 and 6 km resolutions; the direction residuals have a wide

bias but the means are close to 0. This can be interpreted as showing that MCC SAR currents

agree overall with the HF radar currents in identifying current vector direction, but have higher

magnitudes than HF radar currents. Possible reasons for this are discussed in Sec. VI.

In Fig. 10 we show the histograms of residuals for u-component (zonal component) and v-

component (meridional component) for 2 km (Fig. 10a, 10b) and 6 km resolutions (Fig. 10c, 10d)

as in Fig. 9. The thick black lines are the normal histograms estimated from the mean and variance

in the respective residuals. Mean and standard deviation values for each set of residuals are also

noted. The residuals for both 2 km and 6 km resolutions are quite symmetric about the mean, are

unimodal, and show some agreement to the estimated normal histograms. The means for the u-

and v-component residuals are non-zero, positive, and have approximately the same values. For

both 2 km and 6 km resolutions, this can be interpreted as showing that the increased magnitude

in MCC SAR currents is distributed somewhat evenly in both the u- and v-components.

Since the area of study is in the near-shore region, it would be interesting to examine the

along- and cross-shore components of the current fields. The along- and cross-shore rotation is

performed by an anti-clockwise rotation of 45◦. In Fig. 11 we present the histograms of the

residuals for the along- and cross-shore components of the MCC SAR and HF radar vector

fields, calculated in the same way as Fig. 10. Fig. 11a and 11b show the residuals for the 2 km

resolution while Fig. 11c and 11d show the residuals for the 6 km resolution. The histograms

are again unimodal and symmetrical about the mean, and show some agreement to the estimated

normal histograms. However, for both the 2 km and 6 km resoltuions, a marked difference can

be observed between the means: the means for the cross-shore components are close to 0 while
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the means for the along-shore components have a significant positive value (≈7 cm/s). It seems

that the cross-shore component has very good agreement while the along-shore component has

higher magnitudes for MCC SAR. It should be noted here that the actual velocity measurements

of HF radar stations are only cross-shore radial velocities, and radial velocities from two or more

HF radar stations are used to acquire a full 2-D vector solution, where each radial measurement

is considered to be a linear combination of the full 2-D vector current components [2]. This

process of conversion of multiple measured radials to a 2-D vector imparts higher errors to the

interpolated along-shore component as compared to the directly observed cross-shore component.

It seems that MCC SAR currents have good agreement with the higher accuracy cross-shore HF

radar components, while the MCC SAR along-shore components have higher magnitudes than

the lower accuracy along-shore HF radar components.

VI. DISCUSSION

The physical mechanism for imaging of surface slicks in SAR intensity images has been

described in Sec. I. There are, however, certain conditions under which surface slicks cannot be

seen by SAR. One important factor in SAR backscatter from the ocean surface is wind. If the

wind speed is too low, there is not enough capillary wave action on the surface, which reduces

backscatter. In this case the Bragg backscatter is small in magnitude, so even an ocean surface

without slicks would appear as low-backscatter. On the other hand, strong winds make the ocean

surface rougher, which would cause the low backscatter from a slick over the ocean surface to

be contaminated with high backscatter. Thus, surface slick imaging from SAR is affected by

both low and high winds. In general, the chances of SAR detection of biogenic surface slicks on

the ocean surface decrease with increasing wind speed: higher wind speed causes higher waves,

removing surface films from the sea surface through wave breaking processes and upper layer

mixing [33], [43]. The lower wind speed threshold for biogenic surface slick detection in SAR

is not well-known, while the higher wind speed threshold has been noted to be in the range of

6-7 m/s [44], [45].

Low-backscatter signatures in SAR intensity images may also occur due to rain, wave-current

interactions, conditions in the marine atmospheric boundary layer, and oil slicks [43], [46]. These

sources of low-backscatter are generally ignored in the processing of sequential SAR imagery of

30-min lag because of the defined MCC processing parameters, which focuses on surface slick
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accumlation and advection. However, the MCC processing does not explicitly employ any other

mechanism to distinguish between low-backscatter features from different phenomena; this could

be a future improvement in the method to make it more robust. Also, due to the above-mentioned

phenomena, it is not always possible to detect surface slicks in SAR imagery even if they exist

on the surface. These restrictions limit the use of the MCC method for current detection in SAR

images.

The geolocation errors in a multi-scene strip and between the two sensors, described in Sec.

IV-B, play an important role in defining the absolute accuracy of the estimated currents. The

correction for intra-sensor geolocation errors indirectly depends upon the accuracy of the image

registration process during strip mosaicking for each sensor. For the mosaic slide-shift geolocation

error, preliminary analysis with a few image pairs shows that after correction, residual geolocation

errors have a maximum range of 4-6 pixels. For 12.5 m pixel resolution, this amounts to a 50-75

m displacement error, and an absolute velocity error of ±2.77 to ±4.16 cm/s for the 30-min lag

image pairs. These errors are ignored in the processing at this time. It is planned in the future

to derive uncertainty measures from these errors for the currents derived from each SAR image

pair.

While HF radar currents serve as a good reference dataset for MCC SAR currents due to

their coincident coverage at comparable resolution, the direct comparisons done here should be

accompanied by a note of caution. While C-band SAR penetrates, at most, only a few cm into

the ocean surface, the HF radar currents being used are measured and averaged over the top

1 m of the ocean surface [2]. In fact, this could be the reason why MCC SAR currents show

greater magnitudes than HF radar currents in general. Under ideal steady-state wind near the

ocean surface, the Ekman spiral is set up in the first few meters depth in the ocean. In the Ekman

spiral, the current vectors change direction and experience a reduction in magnitude with depth.

This would imply that the magnitude of the 1 m averaged HF radar average currents will be

less than MCC SAR currents measured at the surface. Gade et al. [17] reported the same higher

magnitude in currents derived from SAR feature tracking when they compared their derived

currents with model currents averaged over the top 4 m of the ocean, and they too attributed

it to the effect of surface wind. While this is only a hypothesis and a probable explanation for

the higher-magnitude of currents in SAR, we expect to explore this further by analyzing surface

wind fields along with the SAR images. The conjecture is that higher velocity winds would
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set up a stronger vertical shear in the Ekman layer and should show higher difference between

MCC SAR currents and HF radar currents. A correlation between wind speed and disagreement

between the two current fields would be one affirmation of this conjecture.

Another factor that should be kept in mind is Stokes drift due to short-scale surface gravity

waves which induce a net flow in their direction of propagation. The contribution of this drift

would be present in surface slicks tracked in 30-min separation SAR image pairs. The hourly-

averaged surface current measurements by HF radar should also contain the effect of Stokes

drift, but the impact of this drift measured by HF radar would depend on the waves resonant to

the radar frequency. Hence, the MCC SAR method and HF radar could measure different Stokes

drift contributions in their total current velocity measurements. The contribution of Stokes drift

to total surfactant velocity is a topic of present research (e.g. [47], McWilliams, J. C. and Fox-

Kemper, B., Oceanic wave-balanced surface fronts and filaments, submitted to J. Fluid Mech.,

2012).

VII. SUMMARY

The initial results from MCC processing on sequential 30-min lag SAR images from Envisat

ASAR and ERS-2 AMI C-band SAR sensors over nearly 2 years show that ocean surface currents

can be generated from tracking surface slicks in SAR over the coastal CCS (California Current

System). We discuss in detail the data processing techniques used for deriving currents from

sequential SAR imagery. This general method can be applied to various kinds of sequential SAR

data by adjusting different parameters.

Wavenumber spectra calculated from the derived currents seem to follow k−2 power-law,

in agreement with high-resolution models and frontogenesis theory, and show that the derived

currents depict actual geophysical signals in the CCS. Comparisons with HF radar currents of

both 2 km and 6 km resolution show promise: the residuals are uni-modal and symmetric about

the mean. The MCC SAR currents appear to be greater in magnitude, by ≈11 cm/s, than HF radar

currents in general, while the direction agreements are reasonable. Transformation into cross-

and along-shore components shows that nearly all of this magnitude difference is contained in

the along-shore component, while the magnitudes of the cross-shore components are closely in

agreement with each other. This could be explained by the fact that the cross-shore radials are

directly measured by HF radar stations while the along-shore component is interpolated from

February 15, 2013 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING - UNDER CONSIDERATION 24

multiple radial observations. The comparisons with HF radar, however, should be considered

with a note of caution as C-band SAR penetrates only a few cm into the ocean surface, while

HF radar currents are averaged over the top 1 m of the ocean surface.

In the future, we plan to undertake further detailed analyses of the MCC SAR currents and

implementing comparisons with HF radar which would take into account the difference in their

measurements depths. Other plans include comparisons with other methods of surface current

measurement from SAR (Along-track interferometry and Doppler centroid methods).
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Fig. 4: Example of the slide-shift geolocation error between overlapping scenes in a single strip.

An Envisat ASAR strip comprised of two scenes is shown in the left panel, calibrated to σo and

converted to dB for visualization. The right panel shows a zoomed in view of the overlap region

of the two scenes; the white polygons represent a vector overlay tied to the coordinates of the

northern (top) image.
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Fig. 5: Data processing flowchart for testing automated tie-point selection and image registration

(see Sec. IV-C for detailed description).February 15, 2013 DRAFT
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Fig. 6: Sample case of Envisat-ERS2 30-min lag image pair processing. (a) and (b) show the

calibrated σo [dB] Envisat and ERS images, respectively. The difference image [dB] is shown

in (c). (d) shows the raw MCC current field derived from the SAR image pair in (a) and (b),

filtered at a cross-correlation coefficient threshold of 0.2. (e) shows the result after intra-sensor

geolocation error correction. The final output vector field after post-process filtering is shown in

(f).
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Fig. 7: Mean KE wavenumber spectrum for MCC SAR currents, averaged over a number of

different times and scenes as described in the text. Various power-law slopes are also shown.

The k−2 slope is reproduced, with appropriate magnitude, from Fig. 1 in Capet et al. [31] while

the k−5/3 and k−3 slopes are arbitrary.
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Fig. 8: Some sample plots of the MCC SAR vectors re-gridded to the overlapping HF radar

datasets of 2 km (plots on the left) and 6 km (plots on the right) resolutions. The top, middle,

and bottom panel each show processed MCC SAR vectors over different regions, along with the

HF radar vectors. In each plot, the vectors are scaled to the same reference vector.
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Fig. 9: Histograms of residuals for magnitude and direction of re-gridded MCC SAR currents.

The top row is for the 2 km resolution HF radar currents, while the bottom row is for 6 km

resolution HF radar currents. (a) and (c) are residual histograms for magnitude, (b) and (d) are

residual histograms for direction (anti-clockwise from East). The thick black lines in (a) and (c)

are the normal histograms estimated from the mean and variance in the respective residuals. The

mean and standard deviation for each case is indicated in the plots.
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Fig. 10: Histograms of residuals for vector components of re-gridded MCC SAR currents. The

top row is for the 2 km resolution HF radar currents, while the bottom row is for 6 km resolution

HF radar currents. (a) and (c) are residual histograms for the u-component, (b) and (d) are residual

histograms for the v-component. The thick black lines in are the normal histograms estimated

from the mean and variance in the respective residuals. The mean and standard deviation for

each case is indicated in the plots.
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Fig. 11: Histograms of residuals for cross-shore and along-shore components of re-gridded MCC

SAR currents. The top row is for the 2 km resolution HF radar currents, while the bottom row

is for 6 km resolution HF radar currents. (a) and (c) are residual histograms for the cross-

shore component, (b) and (d) are residual histograms for the along-shore component. The thick

black lines in are the normal histograms estimated from the mean and variance in the respective

residuals. The mean and standard deviation for each case is indicated in the plots.
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