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Abstract - In this paper we consider the circulation induced by waves breaking near a coast. We show that the 
vertical nonuniformity of the wave-averaged horizontal velocities leads to mixing-like terms for the horizontal velocity 
in the depth-integrated equations of momentum. The mechanism is analogous to Taylor’s (1953, 1954) shear-dispersion 
mechanism for solutes in a shear flow. The results presented here are an extension of the results found by Svendsen & 
Putrevu (1994) to the general case of unsteady flow over an arbitrary bottom topography. @  Elsevier, Paris 

1. Introduction 

In a previous paper (Svendsen & Putrevu 1994, SP94 hereafter), we considered the case of steady wave- 
driven longshore currents on an alongshore-uniform coast and found that the vertical nonuniformity of the 
currents leads to a mixing-like term in the depth-integrated alongshore momentum equation. The mechanism 
by which this happens is analogous to the shear-dispersion mechanism found by Taylor (1953, 1954) for the 
lateral spreading of solutes in a shear flow. 

For the case considered in SP94, the lateral mixing caused by the shear-dispersion mechanism was an order 
of magnitude larger than the turbulent lateral mixing, even inside the surf zone (e.g., Figure 1). This result 
suggests that the dispersive mixing will be a major contributor to the total lateral mixing in the nearshore 
region. Therefore, it is desirable to extend the results of SP94 to the general case of unsteady circulations 
induced by waves breaking over an arbitrary bottom topography. This paper presents such an extension. 

Recently, Smith (1997) presented a rather general derivation of the shear dispersion of momentum using a 
multi-mode representation of the flow. The principal difference between our work and that of Smith’s is that 
we specifically concentrate on nearshore flows driven by breaking waves. Unlike in Smith’s case, the short-wave- 
induced volume flux is an important component of the flows we are interested in. (For a zero wave-induced 
volume flux, our results are similar to those of Smith.) Another (less important) difference is that our style 
of calculation is quite different from that of Smith and leads to a result that is somewhat more general than 
that given by Smith even for the case in which there is no wave-induced volume flux. However, it is also shown 
that the extra terms we obtain (relative to Smith’s results) are likely to be small in most situations. Finally, in 
Smith’s derivation special attention is needed to allow for a no-slip condition at the bed. Here we instead allow 
for a slip velocity at the bed. However, the solution can, in principle, be readily extended to incorporate the 
no%lip condition at the bed. 

The present paper is organized as follows. Section 2 discusses the depth-integrated, short-wave-averaged 
equations of continuity and momentum for the case in which the short-wave-averaged horizontal velocities are 
allowed to vary with the vertical coordinate. The evaluation of the extra terms that arise from the vertical 
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FIGURE 1. Variations of the turbulent mixing (solid line) and dispersive mixing (dashed line) 
coefficients as a function of the nondimensional cross-shore distance for the case of steady 
longshore currents on an alongshore-uniform coast (from Putrevu & Svendsen 1992). 

nonuniformity of the short-wave-averaged horizontal velocities forms the subject of Sections 3 and 4. Section 5 
discusses the implications of the results derived in Section 4. The final section is devoted to concluding remarks. 

2. Depth-integrated, short-wave-averaged equations 

We start with the depth-integrated, short-wave-averaged equations of continuity and horizontal momentum 
which allow for the short-wave-averaged velocities to vary with the vertical. These equations are derived 
following the steps given in Phillips (1977) or Mei (1989) and are minor extensions of the equations given therein 
[eqs. 3.6.4 and 3.6.11 of Phillips (1977, pp. 61-62) and eqs. 2.50 and 2.51 of Mei (1989, p. 463)]. (Phillips and 
Mei only considered situations where the short-wave-averaged velocities are uniform over the vertical.) 

Following Phillips (1977)l we split the instantaneous horizontal velocity into four components 

where ub, is the turbulence component, u Wcy is the wave component (whose short-wave-averaged value is zero be- 
low trough level), and & and VI, are two components of the short-wave-averaged velocity. The first component, 
v, (oa in Phillips’ notation), is uniform over depth and is given by 

lThere are some differences in the way Phillips and Mei define their variables [see Svendsen & Putrevu (1996) for a discussion]. 
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where z is the vertical coordinate (measured from the still water level). In the above, an overbar denotes 
averaging over a short-wave period, ho, C, and <t represent the still water depth, instantaneous water surface 
elevation, and the elevation of the wave trough level, respectively and h = ho + 3 represents the total depth. 

The second component of the short-wave-averaged velocity, VI,, accounts for the vertical variation and 
satisfies 

s 
c 

V1,d.z = - 
-ho J’ 

c 
uw, dz = -&,a (3) 

Ct 

where Qw, is short-wave-induced volume flux. (In terms of Phillips’ variables, this component is analogous to 
0, - Ua.) Notice that, in addition to representing the vertical variation of V,, the depth-averaged value of 
VI, is the part of the short-wave-averaged motion that compensates for the volume flux due to the short wave 
motion. Figure 2 shows the definitions of the two components of the short-wave-averaged velocity. Note that 
the decomposition of the velocity field is not unique. We have found that the decomposition used here is the 
most convenient one to use for the present problem. Other forms of decomposing the velocity also lead to the 
same result but the calculations are more complicated. 

v(z)= t + v,(z) 

FIGURE 2. Sketch showing the definitions of v, Via(z), and V(z). Compare this figure with 
Figure 3.3 of Phillips (1977). 

In terms of these variables, the depth-integrated, short-wave-averaged equations read 

(4) 
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(5) 

where r,“, r,“, Sap, and Tap are the surface shear stress, the bottom shear stress, the short-wave-induced 
radiation stress, and the depth-integrated Reynolds’ stress, respectively. In the above, we have assumed that 
the scales associated with the turbulent motion are such that averaging over the short waves also gives a 
suitable average over the turbulence. This is a reasonable assumption and is commonly made in the analysis of 
circulations induced by breaking waves. 

In (5) the radiation stress is defined by 

where p is the total pressure and 6,p is the Kronecker delta function. This definition of the radiation stress is 
slightly different from the one used by Phillips (1977, eq. 3.6.12, p. 62). 

Note that since we have allowed for a time variation in (4) and (5), these equations model both mean currents 
and long waves. 

In this work, we concentrate on nearshore flows whose main driving force is the gradient of the radiation stress. 
We specifically exclude wind-driven flows. Thus, we will neglect surface stresses in the following. Furthermore, 
we assume that the first integral in (3) may be simplified as follows 

I 
6 

I 
T 

Vl,dz M V&z = -Qwa 
-ho -ho 

(7) 

which implies that we assume that VI, is approximately constant in the interval < to c. Since we are specifically 
excluding wind-driven flows, this is a reasonable approximation that does not change the characteristics of the 
results. (7) also implies that the integrals involving VI in (5) may be written as 

s 

6 c c - - 
v,,%p dz -t- 

I 
(u,aF/1p + Via~w~) dz = 

I 
T/1,% d.z + Kp(l)Qwa + Kx(I)Qwp (8) 

-ho Ct -ho 

Thus, in the following, we will consider the simplified form of the momentum equation given below 

(9) 

The terms involving VI in (9) represent the effects of the vertical nonuniformity of the short-wave-averaged 
velocities, and it is these terms that give rise to the dispersive mixing. The goal of the following is to express 
the dispersive terms in terms of va and the short-wave-related quantities (SLypI Qwol, uwol, etc.) so that (4) 
and (9) reduce to equations in which the only unknowns are T and pa. The benefit of reducing (4) and (9) 
to equations in which the only unknowns are 5 and va is that by doing so we can incorporate the effects of 
three-dimensionality in two dimensional calculations. 



413 

Three-dimensional dispersion of momentum 

The first step in the calculation of the dispersive terms is the determination of the vertical structure of VI, 
which is discussed in the next section. 

3. Vertical structure of VI, 

To derive the equation governing the vertical structure of V ia, we start with the horizontal momentum 
equation 

(10) 

where p is the instantaneous pressure. Introducing (1) into the above and averaging over a wave period leads to 

(11) 

We assume that the the short-wave-averaged pressure is hydrostatic 

P = I% (T - 2) (12) 

and that the Reynolds’ stresses may be modeled using an eddy viscosity closure as follows 

- -4(Z+$) l&u; = (13) 

(14) 

(15) 

where vt is an eddy viscosity and V, is the total short-wave-averaged velocity (= v, + VI,). Previous studies 
have shown that such a closure predicts the vertical structure of the nearshore currents reasonably accurately 
[e.g., Svendsen & Hansen (1988) for cross-shore currents and Svendsen & Putrevu (1994) for longshore currents]. 

With these assumptions the equation governing VI, reduces to 

In the above, we have used the local continuity equation (dV,/dx, + dW/& = 0) and defined fa (which is the 
local contribution to the radiation stress) by 

(17) 
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Using (4), the depth-integrated momentum equation (9) may be written as 

la T [i - --- 
haxfi -ho 

Kav,o d.z + J’dC)Qwa + Vt&)Q,p 1 
(18) can be used to rewrite (16) as 

(18) 

(19) 

Note that upto this point the only assumption that has been made is that the short-wave-averaged pressure is 
hydrostatic. 

Equation 19 governs the vertical structure of VI,. Here we will solve (19) by applying an initial condition 
and the following conditions in the vertical 

ah rB T vt - =-.?- 
a2 > J VI, dz = -&,a 

z=-ho P’ -ho 
(20) 

This will lead to a solution for VI, in which I& will appear as an unknown parameter. We intend to use this 
solution in combination with the depth-integrated equations by substituting the result for VI, into (9). Together 
with the continuity equation (4), this step will lead to a system of equations in which the only unknowns are z 
and v,. It is worth noticing that when we solve (19) by specifying the conditions (20), the resulting solution 
for VI, will also automatically satisfy the correct condition for the shear stress at the surface (rs = 0 in our 
case). This is a consequence of the fact that (19) represents the correct local momentum balance at any vertical 
location, and, at the same time, incorporates the information about the depth integrated total balance, which 
was introduced through the elimination of some of the terms in (19) using the depth-integrated equation (9). 

To clearly expose the sizes of the various terms on the RHS of (19), we introduce the following non-dimensional 
variables 

h=hb h’, Z=hb Z*, X, =L X;, t=T t* 

via = 6 cb v;a, -j=dhb T*, SCY~~ = 6 PC& s:,, fcY=b$ fct, &,a = 6 C&b Q:, 

v,=Kcb v;, hb w = (Rf6) LCb w*, T,” = (K+d)fw PC: T,“*, Ut = 6 hbCb V; (21) 

where T is a typical time scale of the short-wave-averaged motions, hb (- lm) is a typical vertical length scale, 
L (- 100m) is a typical horizontal length scale, and cb = && is a typical wave celerity. In the above, all 
starred quantities are expected to be order 1. The nondimensional parameters (6,~~ E, fW) that appear in some 
of the definitions represent the sizes of the physical quantities measured in terms of the chosen scales. 6 (- 0.1) 



415 

Three-dimensional dispersion of momentum 

represents the size of the short-wave-induced quantities; c represents the size of vt/h@ in the nearshore region; 
fW (- 0.01) is the friction factor; and IE (with typical values between 0 and 0.3) represents the size of the current. 

In terms of these dimensionless variables (19) may be written as 

L av;, EL d 
---hbdZ* CbT dt 

where 

(22) 

(23) 

(24) 

(25) 

The definitions of the scales imply that CL/h6 N 1. For both longshore currents and undertow on an 
alongshore uniform beach, the second term on the LHS of (22) is of the same order of magnitude as the 
combination of terms in I. It is therefore consistent to assume that the combination of the terms in I and the 
second term on the LHS of (22) are of the same order of magnitude. L/cbT is an independent parameter - it is 
zero for steady flows and will be an order one quantity for the fastest of the infragravity motions. For generality, 
this parameter is assumed to be order 1 here. 

For ~,6 << 1, the terms represented by II on the RHS of (22) are an order of magnitude smaller than the 
terms represented by I. Finally, the terms represented by III are much smaller than those represented by I 
and II. To keep the solution as general as possible, we assume from here on that K N S. (The cases K << b and 
K > 6 form subsets of the solution given below.) 

Equation 22 suggests that V& may be solved using a perturbation expansion of the type 

v;, = v;,(O) + m;$) + . . . (26) 

with V;cd”’ governed by 

f* + .fdK + wp* _ 1 as:p 
h* ax:;;, a dhb a 

The conditions associated with (27) are 

ut az* = f& + 6) p* 66 a’ 
z*=-h' J K* V*(O) & = -Q:, la 

-h; 
0 

(27) 

(28) 

and an appropriate initial condition. 
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In the steady case the If(‘) rcu problem described above is completely analogous to the familiar undertow 
problem (Svendsen 1984): T/,(,0) ’ is forced by the local imbalance between the depth-averaged and local values of 
the forcing and, integrated over depth, V,d”’ compensates for the short-wave-induced volume flux. Thus, V$!’ 
may be interpreted as a generalized, time-varying undertow. 

The VI;‘) problem reduces to the following 

1 d 
+-- 

h* ax; 
v*(O)v*(O) 

la 
lp dz* + V;j”(F)Q;, + V;;“)(~)Q;o 1 

(29) 

subject to the conditions 

(3N 

and an initial condition. 
Below we discuss the solutions for V:z’ and I$:‘. 

3.1. Solution for If::) 

Here we outline the solution for r/,‘,“‘. Returning to dimensional variables, the equation governing V/z’ is 

(31) 

where F, represents the difference between the depth-averaged and local values of the forcing on a fluid element 
and is given by 

F CY 

The conditions associated with (31) are 

av,(,o) 9 T Q- dz 
=a, 

P s V,(,o) dz = -Q,, 
z=-ho -ho 

(32) 

(33) 

and an appropriate initial condition. 
The solution for V,(,o) can be derived by dividing V/(,0) . into a part that satisfies the inhomogeneous conditions 

(33) and an additional contribution VI, (“‘l). Hence, 

(34) 
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Substitution of (34) into (31) leads to the following equation for V$(,oyl) 

The conditrons on VI, (OJ) are 

along with an appropriate initial condition. 
The solution for V$z”) is given by (see Appendix A) 

V,(,o’l) = V,d”‘(z, t) 

s T V,(,o’l) dz = 0 
-ho 

1 

(36) 

(37) 

where 

T/(O)(z,t) = - z l .I s ‘l sa 
-ha Y, -ho 

Rt) (z2, t) dzz dzl + 1 h~oJ_:,,;S_T:,RbO)(z2>t) dz2dzldz 

(38) 

Note that Viz)(z, t) is the quasi-steady solution for IJ’/(,O’~) (it represents the steady state response to the 
instantaneous value, R?), of the forcing). Also note that each successive term in the expansion (37) is of 
magnitude hi/~oT times the previous term (where ~0 is the magnitude of the eddy viscosity). Thus, if 

h;/voT < 1 (40) 

(a condition that is satisfied for short-wave-averaged motions in the nearshore, e.g., infragravity waves), then 
VJz)(z, t), the quasi-steady solution given by (38), represents the first approximation to the complete solution. 

Finally the solution for Vj(,o) is obtained by substituting (37) into (34). In the following, we assume that the 
solutions for rJ,(,o’l) and V/(,0) are known. 
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3.2. Solution for V/L) 

The problem for V,, (l) is identical to the V$(,oyl) problem, and a solution can be 
outlined in Appendix A. Defining, 

obtained by the method 

(41) 

we can write the solution for V/i) as 

R;)(z2, t) d.z2 d.q dz + H.O.T. 

(42) 

where H.O.T. represents the higher order terms given by the integrals similar to those in (37). Equation 42, 
with the higher order terms neglected, will be used in the calculations below. Thus, the results below represent 
the first approximation to the complete result. We expect that this approximation will, in most cases, be 
sufficiently accurate. 

4. Results for the integrals 

The integrals required in (9) can now be calculated as follows 

+@(?)Qwcx + V,%)Qwp + O(T/,(1))2 (43) 

Substitution of the results for I’$:) leads to the following result as the first approximation for the integrals 
(Appendix B) 

where the tensors A, B, D, and M are defined in Appendix B (equations 96-99). 
Substituting (44) into (9) we get 

(44 

(45) 
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Thus, as in SP94, we find that the vertical variation of the short-wave-averaged horizontal velocities leads to 
mixing-like terms in the depth-integrated momentum equation. An attractive feature of this result is that the 
resulting dispersion tensor can be readily calculated. This is important because, as in SP94, the lateral mixing 
caused by the shear dispersion mechanism is expected to dominate the lateral mixing in the nearshore even in 
the presence of turbulence from breaking waves. 

Equations 6.la-c of Smith (1997) are analogous to our (44). There are a few differences between these two sets 
of equations. The most important difference is that in our case the vertical integral of V$z’ is non-zero whereas 
it is zero in Smith’s case. A second difference is that we have a few extra terms (the B,p and Aa terms) that 
Smith does not have. Smith does not get these terms because he essentially neglects the terms $$&‘~,/8z, and 
W~3V~,/dz in (29) and assumes that L@~/&, = 0. As shown in the next section, the consequences of these 
simplifications are likely to be minor. 

Before proceeding further, we note that the expression for the dispersion tensor, D,p, can be rewritten in a 
form that is similar to the one given in Fischer et al. (1979) for the dispersion of solutes. To do that, we define 

so that 

The boundary terms vanish since p(-ho) = q(<) = 0. Therefore, 

(46) 

(47) 

(48) 

(49) 

(50) 

The structure of the expression (50) for the dispersion tensor is similar to that given in Fischer et al. (1979, 
eq. 4.64) for the dispersion of solutes in a two-dimensional shear flow, showing the close analogy between the 
shear-dispersion of momentum considered here and the shear-dispersion of solutes initially considered by Taylor 
and expanded on by others [see Fischer et al. (1979, Chapter 4) for a discussion of the solute dispersion problem]. 

5. Discussion 

The results derived above show that the vertical nonuniformity of the short-wave-averaged velocities leads 
to mixing-like terms in the depth-integrated momentum equation. The mechanism by which this happens (the 
combination of vertical mixing and horizontal advection) is identical to Taylor’s (1953, 1954) shear dispersion 
mechanism for solutes; the results summarized by Fischer et al. are generalizations of Taylor’s results to two 
horizontal dimensions. 

Equation (45) shows that the Map term modifies the radiation stress term’, the Aa term modifies the 
convective.acceleration term, and the D,p and B,p terms modify the lateral mixing term. Below, we estimate 

2Probably a more natural interpretation of the A&p term is that it is analogous to the momentum correction factor of hydraulics. 
The interpretation chosen here essentially follows from Phillips (1977). In fact, Phillips defines the radiation stress (eq. 3.6.12, p. 
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the importance of these modifications by first estimating the size of the various tensors and then comparing 
these sizes to the magnitude of the terms they modify. Based on the second of the conditions (28) we use the 
estimate V,‘,“’ N -Q,,/h [see also (34)]. In the calculations, we also use the following estimates (which are 
reasonable for typical nearshore conditions): ut - O.Olh&& Qw - 0.1H2fi/h, H - 0.6h, h - 1 m, L N 100 
m. The various tensors have the following magnitudes 

As mentioned above, the Maa term may be thought of as modifying the radiation stress term. Thus, it is 
reasonable to estimate the importance of the Map term by comparing its size with the typical size of S,p. Using 
the estimates mentioned earlier, we have 

N 0.1gh2 

Thus, we expect that the effect of the Map term will be small. 
Next, let us consider the Aorp6 term. This term modifies the convective acceleration term and has a magnitude 

(55) 

where v is a typical value of the current. In comparison, the convective acceleration term has the following 
magnitude 

Therefore, as long as 

(57) 

the &OS will not modify the convective acceleration term significantly. Since, nearshore currents typically have 
sizes that satisfy (57), we expect that the modification of the convective acceleration term due to the Aap6 term 
will be minor. 

To discuss the effects of the B,p term, it is convenient to first rewrite this term using the continuity equation 
(4 as 

(58) 

Thus, the B,p term modifies both the temporal and convective acceleration terms. Therefore, we have to 
compare a/axp(B,&/at) term with the l&&f/at and d/dxp(B,gV~dh/ax~) with the a/ax&,vjh) term to 

62) by including a term (-pQwaQ,a/h) that represents the first approximation to M,+. In particular, if we use V,k”’ = -Qwa/h, 

we get Sao Phillips = sao + J,,&, 
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estimate the importance of the B,p term. We have 

whereas 

(60) 

Comparing (59) and (60), we deduce that the V.&f/at term will dominate over the B,&fdt term as long 
as (57) is satisfied. A comparison of d/dz~(B,pV~l#~/dzs) with the convective acceleration terms leads to a 
similar result. 

Therefore, we expect that the modifications caused by the Aao6, 1M,a, and B,p terms will be small under 
typical nearshore conditions. In contrast, we expect that the effect of the D,p terms will be significant. The 
D,p terms modify the turbulent lateral mixing. Thus, we have to compare the size of D,p with ut to estimate 
the importance of this additional lateral mixing. We have 

(61) 

Therefore, the lateral mixing due to the D,p terms will dominate the total lateral mixing in the nearshore 
region. 

Based on the analysis above, we conclude that the primary effect of the vertical nonuniformity of the short- 
wave-averaged horizontal velocities is an enhanced level of lateral mixing in the depth-integrated momentum 
equation, and that this enhanced mixing is primarily provided by the Doi0 terms. 

6. Concluding Remarks 

In this paper we extended the results of SP94 to the general case of unsteady flow over an arbitrary bottom 
topography. The results show that the vertical nonuniformity of the short-wave-averaged horizontal velocities 
leads to mixing-like terms for the horizontal velocity in the depth-integrated equations of momentum. An order 
of magnitude analysis shows that the lateral mixing effect caused by the vertical nonuniformity will dominate 
over the turbulent mixing. 

All the discussions in this paper have dealt with circulations induced by short-waves in the nearshore region. 
However, the equations derived here for shear dispersion of momentum, as well as the primary conclusion 
that the vertical nonuniformity of the horizontal velocities leads to enhanced horizontal mixing, will hold for 
a number of other flows modeled by depth-integrated equations. In that context, it is interesting to notice 
that Blumberg & Mellor (1987) observed a similar effect for mesoscale phenomena in the coastal ocean in their 
numerical experiments using a three-dimensional model. Describing their results, they write, “The relatively fine 
vertical resolution used in the applications resulted in a reduced need for horizontal diffusion because horizontal 
advection followed by vertical mixing effectively acts like horizontal diffusion in a real physical sense.” Our 
interpretation of this statement is that by using a fine vertical resolution in their fully three-dimensional model 
Blumberg & Mellor represented the vertical variations of the horizontal velocities sufficiently accurately. Hence, 
the nonlinear terms in their equations automatically provided the lateral mixing calculated in this paper. 
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Appendix A. Derivation of the solution for V:z”) 

The solution for I$:“) for the case in which the eddy viscosity does not vary with the vertical coordinate 
can be found in the following way. For convenience, we define 

where t = z + hc and consider the problem of solving 

subject to 

(62) 

(63) 

where a zero initial condition has been assumed for definiteness. The solution of the above is (Carslaw & Jaeger 
1959, eq. 20, p. 32) 

v,‘,O”‘(&t) =&V*(<,T,t-T)] dT 

where V* is the solution to the version of (63) with “steady” forcing given by 

dV* - - 
dt 

d2v* = RF) (5, T) 
ut a(2 

subject to 

dV* J h 

q =O, o V*dt=O, V*(<,T,t = 0) = 0 
c=o 

(65) 

(66) 

(67) 

The solution for V* may be expressed as follows: 

V*(l,T,t) = V;(I,T) +v,*(W,t) (f33) 

where the subscripts s and t represent steady and transient parts, respectively. Vz is given by 

(6% 

Note that If,* is a quasi-steady solution which represents the steady state response to the instantaneous value 
of the forcing R?) ([ t). 

I$*(<, T, t) is the iolution to the homogeneous problem 

av, a2 V,* -- 
& utF=o (70) 
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satisfying the conditions 

h 

= 0, v,* d[=O, v,*(<,T,t = 0) = -V,*((,T) 
c=o 

The solution for the problem for Vt* (<, T, t) described by (70) subject to the conditions (71) can be written 
as 

&*(t,T,t) = gAjr)(T)cos (y) exp(-Ant) (72) 
n=l 

where A, = n27r2ut/ h2 and A&“) (T) is given by 

At)(T) = $lhcos (T) V,*(<,T) d< 

Substitution of (69) and (72) into (65) leads to the following solution for V$zyl) 

v$($) = -~A,COS (T) ~A~)(T)exp[-h,(t-T)ldT 

(73) 

(74) is the exact solution for I’$:“). However, this form of the solution is not very transparent. The following 
manipulations are aimed at expressing (74) in a more transparent form. 

Integrating (74) by parts and neglecting a term proportional to exp(-X,t), on the grounds that it decays 
after a sufficiently long time, leads to 

v,y = -gcos (T) A&$(t)+~cos(~)~‘$$exp[-A,(t-T)]dT 
n=l 

Substituting for A?)(t) in the first summation on the RHS of (75) we get 

--@j (y) A?)(t) = ;gcos (y) ihcos (F) V;(&,t) d& 

(75) 

(76) 

so that 

= V.(E,4 (77) 

Vtoyl) 1CU = V,*(<, t) + g cos (T) /ot $ exp [-X,(t - T)] dT 
n=l 

(78) 

The second term on the RHS in the equation above can be transformed as follows. Integrating the second term 
by parts and again neglecting a term proportional to exp(-A&) we get 

gcos(T) lgexp[-L(t--T)]dT = ~cos(?) --$&$ 

-gcos(T) &lgexp[-L(t-T)]dT 
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We can express the first summation on the RHS of (79) in terms of V,t(<, t) as follows. Let 

Gl([,t) = ecos (T) -&$ 
n=l 

Using (73) we then have 

Differentiating the above twice leads to 

d2G1 - = +-$0~ (T) ihcos (F) av’;;‘t) d& 
ata 

= 1 av;(t,t) - 
ut at 

which when integrated twice gives 

(81) 

(82) 

(83) 

(84) 

The constant of integration [the last term on the RHS of (84)] follows from the fact that (81) implies that the 
integral of of Gi over depth is zero. [(81) also implies that aGi/dc is zero at the bed.] Thus, 

The process of integrating by parts can be continued indefinitely to lead to the following result 

(86) 
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The structure of the result above suggests a more general solution. For cases in which ht/vsT < 1 (where ~0 
is a typical value of the eddy viscosity), the b/at term in 

= R$?)(<, t) (87) 

is smaller than the second term on the LHS. Solving (87) using a straightforward perturbation expansion leads 
to (37). The condition h~/vsT < 1 is satisfied for short-wave-averaged motions (e.g., infragravity waves) in the 
nearshore. 

Finally note that the solution presented here ignores the slow time variation of h in (64). The error caused 
by this neglect is of order 6 and is small. 

Appendix B. Derivation of the integrals 

Here we describe the calculations that lead to (44). First, we have (using the definition for QWcy) 

I 

c 
V%$) dz + V,‘;‘(c)Qwa = 1Or V;;‘(z) - I@(<)] V$’ dz (88) 

-ho 

From (42) we have 

V$ (z) - V,;) (<) = I’ f 1; R, dz” dz’ 
0 

which implies that 

Therefore, 

(89) 

(90) 

(91) 

I 
T - %x&a dz + WC)Qwa + L(C)Qwa = 

-ho I 
T 

,,)V$) dz + V$‘(<)Qwa + V,‘,O’(t)Qzup 

+-ilo (J_:, R, dz”) (lh, I@ dz’) ;dz 

+J_‘,. (s_:.% dr”) ([hoJ’-::) dz’) +dz 

(92) 

Substituting 
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where the vertical velocity W  is given by 

w=- 

into (92) leads to 

(G + v,‘,O’w) 2 + (ho + z) 2 + J 
= av$) 

- dz 
-ho axa (94) 

where 

B 
1 T1 22 

a4 = -- h {J [I -ho yt -ho 
(ho + z’)$ dzj (s_:, V$!)dz”) dz + 

Tl z J [J -ho yt -ho 
(h,, + z’f$ dzj (s_:. V$dz”) dz} 

D ap = ; JI:. $ (s_:, V,(,o) dz’) (s_:, V/j’ dz”) dz 

(96) 

(97) 

(98) 
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In (100) above 1, is defined by 
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