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Abstract

The paper discusses short- and long-term probability models of ocean waves. The Gaussian
theory is reviewed, and nonlinear short-term probability distributions are derived from a narrow
band second-order model. The nonlinearity has different impact on different measurement
techniques, and this is further demonstrated for wave data from the WAVEMOD Crete measure-
ment campaign and laser data from the North Sea. Finally, we give some examples on how the
short-term statistics may be used to estimate the probability distributions for the maximum waves
during individual storms as well as in a wave climate described by long-term distributions. q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Knowledge of the probability distributions for extreme wave and crest heights is of
central importance for offshore and coastal engineering. In the present paper, we first
outline a general methodology for estimating extreme wave and crest heights in deep
and shallow waters based on a probabilistic combination of short- and long-term wave
statistics. Whereas long-term wave statistics in general is quite site specific, the
short-term statistics appears to be rather universal. It is therefore of interest to establish
suitable forms and parameterisations of the short-term statistics for broader applications.
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In the present context the necessary short-term wave statistics consists of the
probability distributions for the maximum wave and crest heights in a constant sea state.
Although it is common, and may be quite adequate, to derive these distributions as the
distributions of individual wave or crest heights raised to the number of waves occurring
during the sea state, this will not be assumed a priori. Since the number of waves
occurring during a period of, say 1 h, may be several hundreds, it would in any case be
the very upper tail of the individual wave distribution that is of interest and not its main
part.

Gaussian linear wave theory is an important first order approximation, and it is
shown by computer simulations that the asymptotic relations for the maximum crest
height fit quite well for reasonable wave spectra and durations of the order of 1 h. For
the maximum wave height, where simple theoretical expressions are harder to obtain,
the simulation results turn out quite close to relations initially derived for narrow-banded

Ž . Ž .spectra by Longuet-Higgins 1980 and Næss 1985 . We also discuss how non-lineari-
Žties modify the probability distributions, including analytic the Rayleigh–Stokes model

Ž .. ŽNerzic and Prevosto, 1997 and empirical models the Jahns–Wheeler shallow water
Ž ..model Jahns and Wheeler, 1973 . The non-linear models are applied to analyse the

performance of various recording systems where it is shown that instruments like
down-looking radars and lasers, buoy and pressure gauges all produce different results
for the crest height.

Several data sets in addition to the WAVEMOD data have been available for
analysis. We start by summarising a study carried out for the Norwegian Petroleum
Directorate that included several different instruments around the Ekofisk area in the
North Sea. The water depth at Ekofisk is about 70 m. The data from Vøringplataet and˚
Haltenbanken in the Norwegian Sea reported next are obtained by large oceanographic
data buoys in approximately 1600 and 230 m of water, respectively. The WAVEMOD
data analysed below have been collected by two directional Waverider buoys at 10 and
100 m water depths and one non-directional Waverider in 20 m water depth in the
Rethymnon bay north of Crete.

The shallow water data give no support for the Jahns–Wheeler model, but the
parameterisation which is used was actually derived for quite different conditions. The
Rayleigh–Stokes model show reasonable agreement when the Lagrangian character of
the buoy and the low frequency filtering in the processing is taken into account. Pure
empirical models fitted to the data sets have been based on Weibull probability models.
The Weibull distribution is a natural choice, in particular for the maximum wave crest
where it is follows from the Gaussian assumption of Linear Wave Theory. For wave
height there is no general theoretical foundation for the Weibull form, apart from the
above-mentioned narrow-banded models. Narrow-banded models lead in the limit of
zero width to Rayleigh distributed wave heights but this is never observed in real wave
data.

The measured characteristics of waves like skewness and crest–trough asymmetry are
in good agreement with the narrow-band non-linear model, whatever the water depth,
and demonstrates clearly the underestimation of horizontal wave asymmetry as com-
pared to buoy measurements. The model also explains why the buoy does not ‘‘lin-
earise’’ the waves equally in deep and shallow water.
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2. Probabilistic models of ocean waves

2.1. Nested stochastic models

Ocean wave properties, like individual wave height and period, significant wave
height and period, and seasonal and long-term variations in the wave climate, vary

Ž .simultaneously on many different time scales Barstow and Krogstad, 1993 . In order to
estimate, say the 100 years individual maximum wave height, it is therefore necessary to
combine phenomena of highly different time behaviour. It has turned out, see e.g.

Ž .Athanassoulis et al. 1992 , to be useful to consider the ocean waves as a system of
nested stochastic models where model parameters on one time scale become stochastic
variables on the next and slower scale. The scales are reasonably well separated, i.e., the

Ž .individual wave period is O 10 s , the temporal correlation of the surface elevation at a
Ž . Ž .fixed location O 2 min and the duration of a fairly stationary sea state O 1 h . Sea state

variations occur on a scale of the order of days, whereas seasonal and climatic scales
range from 1 to many years. In our case, the fastest time scale is the scale associated
with individual waves and the slower scales are associated with variations in the sea
state.

Ž .Let X t,s be a stochastic process dependent on time t and a multivariate state
variable s varying on a time scale longer than the characteristic time of dependence in

ŽX We assume that this time of dependence is larger, but not very much larger than fast
. Ž .time scale . It is convenient to denote the slow time variation by t and consider s t as

Ž .a stochastic process in its own right. The fast time t is measured with a time unit T s
Ž . Ž .and X t,s is therefore locally stationary over time intervals long compared to T s but

short compared to variations in s.
When deriving extreme value distributions for temporary dependent variables one

frequently employs some kind of mixing condition which ensures that maxima occurring
in disjoint time intervals are asymptotically independent when the intervals increase
Ž .Leadbetter et al., 1983 . In the present case we shall assume this is the case for intervals
that are long with respect to the fast time scale. Such a condition then leads to
expressions of the form

Ž .DrT sP max X t ,s -xN0F tFD sF x ,s 1Ž . Ž . Ž .Ž .t

Ž .for fixed s and durations D considerably larger than T s . This expression has the
Ž .correct product property of independent events, and F x,s is similar to a cumulative

Ž .distribution function. By splitting a time history s t into segments where the state is
Ž .approximately constant, we obtain by a simple limiting argument that

D
P max X t ,s -xN0F tFD sexp log F x ,s t dtrT s t 2Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ž . Ht ½ 5

ts0

Ž Ž . Ž ..see e.g. Borgman 1973 or Krogstad 1985 . Alternatively, the integral can be written
Ž ..as an integral over the corresponding distribution of states, P s ,e

P max X t ,s -xN0F tFD sexp log F x ,s P s d srT s 3Ž . Ž . Ž . Ž . Ž .Ž . Ht , s e½ 5
s



( )M. PreÕosto et al.rCoastal Engineering 40 2000 329–360332

Ž . Ž .When D™` and the process s t is ergodic, P s converges to the stationarye
Ž . ² : Ž . Ž .distribution P s of the slow process. If we further let 1r T sH G s rT s , thens

P max X t ,s -xN0F tFDŽ .Ž .t , s

² :Dr T
N² :s exp log F x ,s P s T dtrT s sG x 4Ž . Ž . Ž . Ž . Ž .Ž .H½ 5ž /s

² :where NsDr T Since G, similar to F, has the properties of a cumulative probability
function, we obtain the familiar form for the maximum of N independent identically
distributed events, or since N is typically quite large, the corresponding asymptotic
form.

Ž . Ž . Ž .In order to apply Eq. 4 , it is thus necessary to determine i the function F x,s and
Ž . Ž .ii the long-term distribution. If one can identify Eq. 1 by the distribution for the

Ž .maximum of individual independent events, the choice for F x,s is obvious. However,
Ž .Nit is important to observe that a form F x,s may well be adequate for reasonably

Ž .large Ns even if F x,s is different from the distribution of a single event. In the limit
Ž .procedure carried out in Eq. 2 , it is tacitly assumed the partition is never finer than

Ž .results in the duration of one section becoming much longer than T s .
A fairly general way of determining F is by means of the Rice formula and the

Ž .Poisson property of high up-crossings Leadbetter, 1994 . We recall that the mean
Ž . Ž .up-crossing frequency of a level x is from the Rice formula given by a x f xX X

Ž . � Ž .4 Ž . Ž .where a x sE max d Xrd tN ,0 when X 0 sx, and f x is the probabilityX 0 X

density of X. When up-crossings of high levels occur according to a Poisson process,
the probability of no up-crossings throughout the interval gives

F x ,s sexp ya x f x T s . 5Ž . Ž . Ž . Ž . Ž .X Ž( , s. X Ž( , s.

Ž .As well known, a x is constant for Gaussian processes, and in many cases aX

slowly varying function of x compared to f .x

For ocean waves, the expressions above may be applied in different settings. First of
all, they apply to the maximum crest heights in which case X is the surface elevation at

Ž .a single point and s is the sea state, e.g. varying during a storm as in Borgman 1973 ,
or given in the form of a long-term distributions of significant wave height and mean

Ž .period as in Krogstad 1985 . However, exactly the same methodology may be applied
for X being the significant wave height where s signifies the seasonal and climatic
variations for the stochastic process of significant wave height. In the present paper we
only consider the first case, also treating the maximum wave height within the same
framework. The continuous data recordings from Crete during WAVEMOD reported
below made it possible to really check the dependency of maxima in adjacent wave
records of duration 30 min. As expected, it was not possible to reveal any dependency
on a statistically significant level.

A similar approach may also be applied for the maximum period, but instead of the
maximum period, one is rather interested in the period accompanying the maximum
wave height. As long as the sea state is constant, the period distribution for the
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maximum wave height is simply the conditional period distribution for this particular
Ž .wave height. The generalisation to a varying sea state is discussed in Krogstad 1985 .

2.2. The short-term waÕe statistics

By the term sea state we shall understand the full condition of the sea defined e.g. in
term of the wave spectrum, its derived parameters or whatever is necessary. The most
basic parameters defining the sea state are the significant wave height, H , and the means

zero-crossing period, T . We shall assume that both parameters are defined in terms ofz
1r2 Ž .1r2the wave spectrum as H s 4m s 4s and T s m rm , where m ss 0 0 z 2 0 k

` k Ž .H f S f d f. The peak period, T , is the period corresponding to the maximum of the0 p

spectrum. We shall sometimes apply non-dimensional spectra such that

H 2Ts p
S f s S f T 6Ž . Ž .Ž .0 p16

` Ž . Ž Ž .. Ž .where H S x d xs1 and max S x sS 1 . The average steepness of the sea is the0 0 0 0

dimension-less number ssH rl where l is the wavelength corresponding to thes 0 0

spectral peak.
Short-term wave statistics deals with the properties of individual waves in a constant

sea state. The joint distribution for the height and period of individual waves has
Ž . Ž .attracted extensive research, see Cavanie et al. 1976 , Longuet-Higgins 1975 and

Ž .Robin and Olagnon 1991 , and the references therein. However, it is known that the
heights and crests of adjacent waves are correlated in time, and the sequence of wave

Ž .heights is actually sometimes modelled as a Markov chain. Since the function F x,s is
supposed to define the distribution for the maximum occurring over the duration of the
sea state rather than the individual event, it is therefore not necessarily relevant to use
the distribution of individual wave or crest heights.

2.3. Linear and non-linear models for the sea surface

The first order Gaussian model for the sea surface is based on superposition of
unbounded, freely propagating Airy waves fulfilling the dispersion relation. Starting
with a Gaussian model as the first approximation, it is possible to compute higher order
approximations by perturbation methods.

The most direct effect of the non-linearity is the introduction of a certain skewness in
the surface height distribution. It has been shown in Srokosz and Longuet-Higgins
Ž .1986 that in the unidirectional case, the skewness in deep water is given by l s3

3r2 ` ` Ž X. Ž . Ž X. X
k rm where k s3H H min k,k S f S f d fd f and k is the wavenumber from3 0 3 0 0

Ž .the dispersion relation. For a spectrum scaled as in Eq. 6 , we obtain

l s3p sx 7Ž .3

` x
X 2 X X

xs S x x S x d x d x 8Ž . Ž . Ž .H H0 0
0 0
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where s is the average steepness. For a narrow spectrum centred at f we obtain at oncem

k s3k m2 and l s3k Hsr4s3p sr2. A standard JONSWAP spectrum character-3 m 0 3 m

istic for wind waves gives about the same value. Analysis of bi-directional spectra in
Ž .Longuet-Higgins 1963 showed that in deep water directionality in general diminished

the skewness, which varied between 44% and 101% compared to the unidirectional
Ž .value. This has been confirmed for irregular seas in Prevosto 1998 . The exact formula

Ž .for the skewness in an arbitrary second-order random wave field is given in Ding .
Ž .By assuming a narrow band spectrum centred around k , the first order Gaussianm

wave elevation may be written as a product of an amplitude and a phase time function
Ž . Ž . Ž Ž ..X t ss a t cos u t , where the amplitude and instantaneous frequency are slowly0

varying. With s k sp sr2 as the perturbation parameter, the unidirectional narrow0 m

band second-order model for the normalised elevation becomes

p p
2z t rs s s c k q s c k a t qa t cos u tŽ . Ž . Ž . Ž . Ž . Ž .Ž .0 0 diffž / ž /2 2

p
2q s c k a t cos 2u t 9Ž . Ž . Ž . Ž .Ž .sumž /2

where ksk h is the dimensionless depth. The constants c , c and c are ratherm 0 diff sum
wŽ .xcomplicated expressions of dimensionless depth, see Appendix A Prevosto . This

Ž .model has the same form as the model used by Martinsen and Winterstein 1992 .
The coefficients are calculated using a Bernoulli constant which ensures that the

expectation of the elevation is zero. The choice of this constant has of course no effect
on the skewness of the elevation and no effect on the coefficient of the low frequency
part c . The demonstration of the effect of the constant term on skewness made bydiff

Ž .Winterstein et al. 1991 is therefore not correct, because it was based on a confusion
between the regular wave model and the narrow band model. The coefficients of the
narrow band model should not be derived directly from the coefficients of the regular

Ž . Žwave model, as it is made in some other papers e.g. Huang et al., 1983 This problem
.was pointed out 1 year later by the same author in Martinsen and Winterstein, 1992 .

Ž . Ž .As derived in Winterstein et al. 1991 , the expression for skewness of j t given by
Ž .Eq. 9 is easily seen to be

3
l s k H c k qc k q3p s c k qc k . 10Ž . Ž . Ž . Ž . Ž .Ž . Ž .3 m s diff sum diff sum2

Actually, it turns out that within the frame of the narrow-banded model, expressions
Ž . Žsimilar to Eq. 9 are valid whatever property of the waves we consider free surface

.elevation, pressure, particle velocities, particle displacements , but the functional form of
Ž .c0, c and c vary see Appendix A .diff sum

Ž .A similar expression for the kurtosis could be derived from Eq. 9 . The discrepancy
between the different relations between the skewness and the kurtosis which have been

Ž . Ž .found for infinite water depth in Vinjie and Haver 1994 , Winterstein et al. 1991 and
Ž .Martinsen and Winterstein 1992 does not come from the inability of the Stokes

expansion to give correct results but again from the confusion between the regular wave
Ž .model and the narrow band model. The relation which corresponds to Eq. 9 in deep
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Ž .water would be the relation stated by Martinsen and Winterstein 1992 , which gives in
any case values very close to 3 in actual situations:

l s3q1.33l2 . 11Ž .4 3

It is interesting to compare the coefficients and the skewness of the narrow band
model for the three basic ways of measuring the surface elevation; a fixed point,

Ž . ŽŽ ..Eulerian, measurement h , a particle following, Lagrangian, measurement h ,eul lag
ŽŽ ..and a linearly extrapolated pressure measurements h . In deep water,p

1 p
2h t rs sa t cos u t q s a t cos 2u t , 12Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .eul 0 ž /2 2

1 p
2h t rs s s a t qa t cos u t , 13Ž . Ž . Ž . Ž . Ž .Ž .lag 0 ž /2 2

1 p
2h t rs sy exp2k s a t qa t cos u t , 14Ž . Ž . Ž . Ž . Ž . Ž .Ž .p 0 z ž /2 2

Ž .and in finite depth the relations are stated in Appendix A. We observe from Eq. 10 that
Eulerian and Lagrangian measurements will give the same positive skewness, whereas

Ž .linear extrapolation always give negative skewness see also Longuet-Higgins, 1986 .
In Fig. 1, the c and c coefficients are plotted as functions of the normaliseddiff sum

wavelength l rhs2pkr. For small l rh, all the nonlinearity is concentrated in them m
Ž . Žsum terms resp. difference terms when we consider Eulerian resp. Lagrangian or

.pressure measurements. When we go to intermediate water depths both terms partici-
pate to the global nonlinearity, but with a value c qc and an offset c which arediff sum 0

the same for Eulerian and Lagrangian measurements. For the pressure measurement,
where the coefficients are shown for a measurement point 10% of the wavelength below
the MWL, the extrapolated elevation global coefficient c qc is always negative,diff sum

as it was for infinite depth, showing the inability of linear extrapolation to furnish good
non-linear terms whatever the water depth.

2.4. Models for the maximum waÕe and crest heights

Due to the importance of Gaussian linear wave theory, it is essential to know the
Ž Ž ..form of the F-function Eq. 1 for this case. Consider a Gaussian ocean surface

Ž .elevation record h t , 0- t-T , taken at a fixed location. The typical ocean wave
record has a wave spectrum peaking around f s0.1 Hz and decaying at high frequen-0

cies as f yp where p is between 4 and 5. The corresponding Gaussian process is
therefore well behaved with a correlation extending almost to a few minutes, that is,
much shorter than the typical duration of a stationary sea state. The number of

y1 Ž 2 .up-crossings of a level x pr time unit is by the Rice formula lsT exp yx r2m .z 0

Moreover, high up-crossings tend to occur according to a Poisson point process.
Ž .Therefore, the probability for the crest height of not exceeding x )0 during the time

interval D is

P hFx sexp ylD sexp y DrT exp yx 2r 2mŽ . Ž . Ž . Ž .Ž .Ž .z 0

N2yx r 2 mŽ .0f 1ye , NsDrT . 15Ž .Ž . z



( )M. PreÕosto et al.rCoastal Engineering 40 2000 329–360336

Fig. 1. Second order coefficients vs. wavelengthrdepth ratio.

The last approximation is good for high levels when N)100 or larger, and is a
proper distribution function. Thus, the distribution for the maximum crest height is
approximately the same as for the maximum of NsDrT independent Rayleighz

distributed crest heights. Note that N is the number of waves rather than the number of
Ž . Ž .crests DrT , which might have been the first choice. In the derivation of Eq. 15c

there is no assumption about narrow-bandedness of the spectrum or the existence of the
Ž .fourth-order spectral moment. Both expressions in Eq. 15 are of course virtually

Ž yŽ yyaN .r bN . y1 Ž .1r2identical to the asymptotic Gumbel form exp ye , b sa s 2log N ,N N
Ž .ysyrs when N is large Leadbetter et al., 1983 .0

There exists no simple expression for the distribution of the height of individual
waves in a Gaussian wave record apart from degenerate simple situations. However,
very accurate approximations to the distributions of wave height and the simultaneous
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Ž .distributions of height and period have been developed by Lindgren and Rychlik 1991
based on so-called Slepian models. These expressions require knowledge of the correla-

Ž .tion function or equivalently the wave spectrum , and lead to rather complicated and
non-explicit expressions for the height distribution. Derivations based on processes with
narrow band spectra are more easily adapted to practical situations, and the works of

Ž . Ž .Longuet-Higgins 1975 and Næss 1985 are particularly useful. Longuet-Higgins
showed that wave height should be normalised according to the rms wave amplitude
rather than the surface standard deviation in the Rayleigh distribution, and Næss went on
to prove the explicit formula

2x
1r2P Hrm Fx s 1yexp y , 16Ž .Ž .0 ž /m 1yr Tr2Ž .Ž .0

where r is the correlation function in the wave record and T is the typical wave period.
Actually, the value to use is the minimum of the correlation function, which is typically

Žfound to be between y0.6 and y0.75 for ocean wave spectra The minimum value
. Ž .depends only on the shape of the spectrum . From Eq. 16 it is necessary to find the

Ž .form for the maximum height in a constant sea state, and, as noted by Næss 1985 ,
applying an assumption of independent wave heights is somewhat inconsistent with the
narrow band assumption. Nevertheless, as also noted by Næss, the effect of correlation
between the heights of adjacent waves for typical wave spectra does not appear to be

Ž .more than a few percent when N is large. Eq. 16 raised to the power NsDrT isz

therefore a suitable model.
The simplest generalisation of the Gaussian model is to assume that the wave record

is a deterministic transformation of an underlying Gaussian process, that is,

h t sG X t , 17Ž . Ž . Ž .Ž .

Ž .where G is a fixed function Rychlick et al., 1997 . Expressions for G may be
determined from observations of the probability distribution of h, or, as discussed in
Ž .Rychlick et al., 1997 , by fitting the level crossings properties of h as obtained from the
Rice formula. For the maximum crest height we then have

DrTz2P max h Fx s 1yexp yg x r2 , 18Ž . . Ž . Ž .Ž . Ž .
where g is the inverse function of G. The same argument is not immediately applicable
to the maximum wave height since the wave height would be dependent on G both at

Ž .the crest and at the trough, see also Rychlick et al. 1997 . In fact, it is often noted that
the higher crests and shallower troughs seen in real ocean waves tend to balance and
give a distribution of wave height closer to the Gaussian result. Applications of
transformed Gaussian models to wave data are among others given in Winterstein et al.
Ž .1991 .

The asymptotic extreme value distributions we are encountering are mostly of the
Gumbel form, and if V belongs to the Gumbel class with an extreme value distribution

Ž Ž Ž . .. Ž .of the form exp yexp y yya rb and ZsH V is a smooth, strictly increasingN N
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transformation of V, then Z also belongs to the Gumbel class with asymptotic constants
˜ XŽ . Ž .given by a sH a , b sH a b . This applies in particular for the transformation˜N N N N N

Ž .in Eq. 17 for which we obtain the asymptotic constants
X' ' 'a sG s 2log N , b sG s 2log N r s 2log N , NsDrT .Ž . Ž . Ž .N x N x x z

19Ž .

We recall that the mode, that is the most probable value of the Gumbel distribution is
a , the mean is a q0.5772b and the standard deviation 1.28b .N N N N

2.4.1. The Jahns–Wheeler model
Ž .The Jahns and Wheeler 1973 model of crest heights is an empirically based

modification of the GaussianrRayleigh model to shallow water. The model accounts for
an elevated crest height at moderate depths followed by a decrease in very shallow
water, governed by the wave amplitude to depth ratio. By introducing dimensionless
variables Xs4h rH and asH r4h where h is the crest height and h the waterc s s c

Ž .depth, the distribution may be expressed, in the same form as in Eq. 18 , as
2P XFx sF x s1yexp yY ax r 2 a 20Ž . Ž . Ž . Ž . Ž .a

Ž . 2w Ž .xwhere Y y sy 1yb y b yy . The values b s4.37 and b s0.57 were obtained1 2 1 2
Ž .by Haring and Heideman 1978 using data from the Mexican Gulf. The Rayleigh

distribution is recovered for as0 and the function Y is strictly increasing for all
Ž . Ž .positive values of y. It is also easily seen that F x )F x , 0-x-b ra, whereas0 a 2

the opposite is true when x)b ra. Thus, the probability for the crest of reaching a2

certain level x is larger than for the Rayleigh model as long as x)b ra or the level is2

less than 0.57=h. The obvious expression for the maximum crest height for the
Jahns–Wheeler model is, according to the Gaussian limit case,

DrTz2P X FxN0F tFT s 1yexp yY ax r 2 a . 21Ž . Ž . Ž . Ž .Ž .max

The asymptotic extreme value distribution is of the Gumbel type, and applying the
general result above, we find the constants

Yy1 2 a2 log NŽ .
a s , 22Ž .N a

Y X abŽ .Ny1b s , 23Ž .N 2 a

where Y y1 is the inverse function of Y.

2.4.2. The Rayleigh–Stokes model
Ž . Ž . Ž .If we return to Eq. 8 , the amplitude a t will be slowly varying compared to u t .

Ž . Ž . Ž .Thus, the maximum of h t will occur around the maximum of a t when u t equal 0,
and hence

p p
2h t rs s s c k qa t q s c k qc k a t , 24Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .c 0 0 c diff sum cž / ž /2 2
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Fig. 2. Distribution of maximum crest from Jahns–Wheeler model.

Ž .where t are the times of the maxima of the first order Gaussian process X t sc
Ž . Ž Ž ..a t cos u t . Thus, for the maximum we may as well consider the maximum of

p p
2Zs s c k qXq s c k qc k X sH X . 25Ž . Ž . Ž . Ž . Ž .Ž .0 diff sumž / ž /2 2

which again is of the transformed Gaussian form. Assuming the expression above for the
maximum of X we obtain the Rayleigh–Stokes model:

DrTz2h xrsŽ .0
P h FxN0F tFD s 1yexp y ,Ž .max ž /ž /ž /2

1q4g zyp sc r2 y1( Ž .0
h z s , 26Ž . Ž .

2g
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Ž Ž . Ž .. Ž . Ž 2 .where gsp s c k qc k r2. Note that std h ss qO s and the asymp-diff sum 0
Ž .totic Gumbel constants for the maximum h t of are

p s'a rs s 2log N q y2c k q 2log N c k qc k 27Ž . Ž . Ž . Ž . Ž .Ž .N 0 diff diff sum2
p s ' 'b rs s 1q2 c k qc k 2log N r 2log N 28Ž . Ž . Ž .Ž . Ž .N 0 diff sum2

where NsDrT .z

The Rayleigh–Stokes model has been studied and validated on deep water measure-
Ž . Ž . Ž . Ž .ments in Nerzic and Prevosto 1997 . As c k and c k qc k are the same for0 diff sum

Eulerian and Lagrangian measurements, the maximum crest heights given by this
second-order model will be also the same.

We illustrate the evolution of the distribution of the maximum crest height when
propagating from offshore to shallow water depth by two examples. First, the propaga-

Ž .tion of a wind sea Fig. 2, top, and Fig. 3, top with offshore sea state H s5 m,s

T s6.3 s, l s63 m and ss0.08, where the period and the steepness s are assumedm m

Fig. 3. Distribution of maximum crest from Rayleigh–Stokes model.
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to be constant with the water depth. By limiting the value of s, we are in a way taking
into account wave breaking. The crest height distributions are quite different from those
given by the Jahns–Wheeler model. This is due to the fact that the Jahns–Wheeler

Ž .model takes steepness into account only by the combination asp sr 2k , whereas it is
in this case the main factor of nonlinearity. The second example is the propagation of a

Ž .swell Fig. 2, bottom, and Fig. 3, bottom with offshore sea state: H s2 m, T s14.2s m

s, l s314 m, and ss0.006 where the period and H are taken as constant with them s

water depth. Here the bottom effect is the main factor of nonlinearity and the
distributions are not very different from the Jahns–Wheeler model.

The Jahns–Wheeler and Rayleigh–Stokes models are actually quite incompatible.
This is most easily revealed by a Taylor expansion in the steepness of the Rayleigh–

ŽŽ . .Stokes exponent. Neglecting the small and constant shift term p sc s k r2 , and0
Ž Ž . Ž .. Ž .writing gsp s c k qc k r2 as above, we easily obtain from Eq. 26 thatdiff sum

2Ž . 2Ž 2 2 . Ž 3.h z sz 1y2g zq5g z qO g . To second order in g this is a similar form as
the Jahns–Wheeler exponent, and equating the coefficients of the polynomial, we obtain

Ž Ž . Ž ..2 2 Ž .Ž Ž Ž . Ž ...y1b s5 c k qc k k and b s 2r5 k c k qc k . There seems1 diff sum 2 diff sum

be no way to obtain a constant set of parameters as is used in the Jahns–Wheeler model
from these expressions.

2.5. Instrument effects

Whereas Eulerian and Lagrangian measurements will in principle give the correct
skewness and hence the correct maximum crest heights according to the second-order
narrow band theory, the extrapolated pressure shows an important bias. In practice there
are however, limitations also for the first two measurement principles. We are here
essentially thinking of problems due to the recording principle and not difficulties with
sea spray for a radar and breaking waves for a buoy.

2.5.1. Free-floating buoy
Consider a free-floating buoy, that is, a buoy which is considered to follow the

movement of the free surface particles in the frequency band of interest. Although we
have seen above that the skewness of the free surface elevation should be well
estimated, this is in fact not true. Until recently, all existing buoys obtain the displace-
ment by a double integration of an acceleration measurement. This integration has to
apply an attenuation of the very lowest frequencies where the signal to noise ratio is bad.

Ž .As it was already pointed out in Martinsen and Winterstein 1992 , this filtering will
therefore drastically decrease the contribution from the c -term, most severe when thediff

spectral bandwidth is small. If we suppose that the high-pass filtering reduces the
c -term to 0, then the measured skewness will be 0 in deep water while some positivediff

Ž .skewness is retained for shallower water Fig. 1, top-right . This ‘‘linearisation’’ of the
wave profile is actually a well-known characteristic of buoy measurements.

2.5.2. Pressure sensor
The signal-to-noise ratio problem with pressure gauges is in a sense similar to the

Ž Žbuoy case. The pressure fluctuations down the vertical diminish as cosh k hy
.. Ž .z rcosh kh , and so the variations at high wavenumbers are very small. This requires a
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Fig. 4. Example of crest measurements.

high frequency attenuation in the filtering from pressure to surface elevation, and hence
a possible decrease in the c -term. The net effect is to decrease the negative skewnesssum

Ž .ever further Fig. 1, bottom-right .
A typical example of the measurement of a crest with different types of instruments is

given in Fig. 4. The linear profile corresponds to the first order free surface elevation.
The Eulerian measurement could be from a perfect radar or wave gauge, it shows clearly
the effect of the second-order component to increase and to narrow the crest. The
Lagrangian measurement corresponds to a perfect particle-following buoy, and shows
also an increase of the crest height, but no significant modification of the shape of the
crest. This, in fact, follows from the above discussion since the second-order component
Ž . Ž Ž . 2Ž ..in deep water affects the crest heights by a slowly varying time function c k a tdiff

for a Lagrangian measurement, whereas it affects the Eulerian measurement by a
Ž Ž . 2Ž . Ž Ž ...wave-scale varying time function c k a t cos 2u t . If we look at the effect ofsumf

Ž .applying a filter cut-off frequency of 0.03 Hz called filtered Lagrangian in Fig. 4 ,
which is typical of the Waverider double-integration processing, we lose the main part
of the slowly varying second-order component and the crest height is reduced to the
height of the first order elevation. Similarly, as mentioned above, the extrapolated

Ž .elevation from a pressure measurement here, 10 m below the MWL filtered with a
lowpass filter with a cut-off frequency of 0.3 Hz which is a typical value for the pressure
sensor at this depth, gives a drastically underestimated crest height. Similar comments
may also be made for the trough height.

3. Data analysis

3.1. Procedures

The rationale for choosing parametric distributions based on the Weibull distribution
has been explained above and is easily extended to distributions of the form

Na
F x sP XFx s 1yexp yg x rb , 29Ž . Ž . Ž . Ž .Ž .
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where g is a fixed and strictly increasing function of x. Any data analysis will basically
be concerned with the following two questions: Do the data conform to a given model,
and if this is not the case, what is the model fitting the data best? The first question may
be answered by applying the Kolmogorov–Smirnov test. In the test, the normalised
variable,

Na
Us 1yexp yg X rb , 30Ž . Ž .Ž .

w xis tested for being uniform on the interval 0,1 . In practice, the empirical distribution
Ž . Ž .function of U, F y , is formed and the maximum deviation, dsmax NF yU Ž0 - y -1. U

yy is the test statistics.
Ž .Since Eq. 30 may be written as

1rNlog ylog 1yF x sa log g x y log b , 31Ž . Ž . Ž . Ž .Ž .Ž .ž /
Ž .it is always possible to estimate a and log b as the parameters of a straight line fit to

Ž Ž Ž .1r N .. Ž Ž ..the transformed empirical distribution function, log ylog 1yF x , vs. log g x .e

The value of N is also of importance, since the fit of such a line will be limited to a
Ž . ŽŽ Ž ..1r a .range of x–s where g x sO b log N . Since this range varies slowly for large

Ž .N–s, a typical wave record with NsO 200 is nevertheless sufficient to determine the
Ž 4. Ž .distribution up to NsO 10 when g x fx. One problem with real wave records is

that they contain a varying number of waves and that the expected number of waves,
which would have been the reasonable number to use, is not known. However, the
estimate of T computed from the spectrum is quite stable and, moreover, 1rT is thez z

expected number of waves pr time unit in the record for a Gaussian sea. If one now
wants to merge records with different H and T , for a given set of a and b , thes z

Ž y1Ž ..bias-correcting transformation Y s F F X on the non-dimensional variable0
Ž . w4 X rH will bring the data towards the common distribution F x s 1ymax s 0

Ž a .xN 0exp yx rb .
Related to the Kolmogorov test is also the possibility of estimating optimal values of

a and b by simply minimising the deviation d. The resulting Kolmogorov probability
is then a goodness-of-fit measure. Although there is hardly anything wrong with the
method per se, it has turned out that finding the minimum is not quite straightforward.
The solution is typically poorly defined in a narrow, flat and curved ‘‘valley’’. The
minimum may therefore occasionally be found far away from the expected solution.
Even if such solutions fit the data well, extrapolation with obtained parameters to highly
different values of N may be questionable. A reasonable alternative is to keep the a

parameter fixed and only fit b.

3.2. Analysis of simulated waÕe records

Analysis of simulated wave records has turned out to be a valuable tool for assessing
Ž .the theory Forristall, 1984 . A limited study of Gaussian, linear records has been carried

out using standard wave spectra of the JON-SWAP form with mean parameters and a
f y4.5 decay at high frequencies. One set of simulations used a single peaked spectrum
with peak period of 10 s, whereas the other used a mixed spectrum consisting of an
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equal sum of two JONSWAP spectra with period of 8 and 12 s, respectively. In both
cases 1000 series of 1024-s duration with a sampling frequency of 8 Hz were generated,
using the standard method of simulating complex Gaussian Fourier coefficients accord-
ing to the spectrum and then obtaining the series by an inverse FFT. Sea state
parameters and the maximum crest and wave height were then computed for each series.
The FFT technique was used for its simplicity, but carefully fitted AR models could
equally well have been applied.

As expected, some differences in the results were observed according to whether the
sea state parameters, i.e. H and T , were estimated from the simulated time series ors z

used exactly as computed from the input spectrum. The results from the simulations
were tested by the Kolmogorov test as explained above. With 1000 observations the test
is quite sensitive. One important and reassuring conclusion from the study is that there

Ž .appears to be no reason to reject the expression in Eq. 15 for the maximum crest
height. The values asbs2 are therefore the simple choice for the Gaussian sea.

The results for the maximum wave height are presented in Table 1. The Kolmogorov
probabilities are shown in parenthesis. Here, there is no universally valid theoretically
based distribution to check against apart from the Rayleigh distribution which was
rejected with very large margin in all cases. The narrow band modification by Næss was
tested next. It was necessary to compute the correlation function from the spectra, and in
accordance with previous studies, its minimum value was found to be y0.70 for the
single peaked spectrum and y0.65 for the double peaked spectrum. This corresponds to
bs6.8 and 6.6, respectively. We observe that for both spectra, when the exact
expressions for the sea state parameters are used, there is no reason to reject the Næss

Žmodel. Moreover, fixing a to 2 gives an optimal in the sense of the Kolmogorov
. Ž .metric b quite close to 2 1yr . When estimated sea state parameters are used, themin

Žfit is somewhat poorer the test statistics for wave crests showed a slightly lower
.probability for asbs2 also, but not low enough to be rejected . Nevertheless, as long

as a is fixed to 2, the optimal value of b does not change much. When both parameters
are free to vary, the optimal fits appear to be closer to the parameters we find when

Table 1
Results from the simulation studies. Kolmogorov probabilities shown in parentheses

Simulation Test of Næss Test of Forristall Optimal b Optimal
narrow band values, a s2.125, for a s2 a and b

model b s8.42

Ž . Ž . Ž .Single peaked spectrum, 2, 6.8 0.98 0.12 6.78 0.98 1.96, 6.35 0.997
exact sea state parameters

Ž . Ž . Ž .Single peak spectrum, 2, 6.8 ;0 ;0 6.94 0.005 2.42, 14.7 0.86
computed sea state
parameters

Ž . Ž . Ž .Double peaked spectrum, 2, 6.6 0.30 0.21 6.58 0.40 2.15, 8.63 0.93
exact sea state parameters

Ž . Ž . Ž .Double peaked spectrum, 2, 6.6 0.04 0.008 6.59 0.06 2.38, 13.1 0.81
computed sea state
parameters
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analysing real data. Since the ‘‘correct’’ values in this case appear to be close to the
Næss model, this suggests that one should keep a fixed e.g. to 2 also when analysing
real data.

Previous unpublished simulation studies have also suggested some support for the
Ž . Ž .empirical parameter set as2.125, bs8.42 proposed by Forristall 1978 , 1984

based on buoy data from the Mexican Gulf. These values were also tested and, as noted
by Longuet-Higgins and Forristall, may also be a possible set.

3.3. The Ekofisk waÕe crest study

As an example on how various instruments measure the maximum crest height, we
shall briefly discuss a study of North Sea data carried out for the Norwegian Petroleum

Ž .Directorate NPD . The subsidence of the Ekofisk floor with correspondingly ever more
critical wave conditions has actualised the need for accurate measurements of the wave
crest height.

The study only considered quite severe sea states, mostly taken from the WADIC
Ž .material. The WADIC experiment Allender et al., 1989 was a major effort to validate

directional wave instrumentation, with the by-product that other properties of the
recording instruments, e.g. their wave profiling capability could also be studied. The

Ž .data material for some of the data sets was not large about 30 records and the study
only considered simple Weibull models of the form

DrTa z
4 xrHŽ .z

P h Fx s 1yexp y . 32Ž . Ž .max ž /ž /b

The fits to the Weibull models were carried out by minimising the Kolmogorov
distance while allowing a limited variation on the slope parameter a . The resulting

Ž .optimal parameters are given in Table 2. Fig. 5 shows a plot where the mode of the
maximum crest height is displayed as a function of the number of waves. The results are
seen to differ considerably. In particular, fixed instruments like radars and lasers are
definitely different from buoys, even laying on different sides of the Gaussian result.
That fixed instruments give crest heights above the Gaussian results is in accordance
with the Rayleigh–Stokes theory. Buoys should measure closer to the Gaussian result,
and there is no theoretical reason why they come out below the Gaussian result. This is
probable due to the three dimensional character of real waves and that buoys tend to
avoid the highest peaks, steered in part by their mooring.

Table 2
Various short-term parameterisations for the CDF of maximum crest height for data from the Ekofisk area

Case Owner Sea states Size a b

Gaussian sea – – – 2 2
Ž .Laser average WADIC group ) ;57 2 2.5

Wavestaff WADIC group 8 m- H ;30 1.99 2.20s

Large oceanographic buoy NrA 8 m- H ;100 2 1.85s

Pressure cells, extrapolated NPDrDHI 9 m- H ;30 2.05 1.79s
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Ž . Ž .Fig. 5. Mode most probable relative crest height for various instruments from the Ekofisk area: laser L ,
Ž . Ž . Ž . Ž .wavestaff S , Gaussian sea G , large oceanographic buoy B and inverted pressure recording P .

3.4. Vøringplataet and Haltenbanken deep water measurements˚

The WAVEMOD data reported below from Crete are all from relatively shallow
water. However, deep water buoy data recorded by the Norwegian national programs
have also been available to the project. Unfortunately, the data files only contain
estimated sea state parameters and the maximum wave height for each record. The
maximum crest heights have not been stored.

The Vøringplataet deep water measurements have been carried out by the OCEANOR˚
ASA for the Norwegian Petroleum Directorate. The water depth is about 1600 m and the

Ž .data set comprises 5927 records from 1989-03-30 to 1991-06-30 Barstow, 1992 . The
data set therefore represents a truly deep water buoy measurement. The sampling
frequency was 1 Hz and the duration of the records 34.15 min.

Ž .Wave measurements in the Haltenbanken area depth about 250 m have been going
on since 1974, but the project has had access to the directional measurements from

Table 3
Results from Haltenbanken. Weibull parameterisations for the maximum wave height for various classes of
significant wave height

Case No. of data a s2 Test of Forristall’s values, Optimal a and b

a s2.13, b s8.42

Ž . Ž .2–3 m 1534 6.72 0.34 0.09 2.14, 8.730 0.999
Ž . Ž .3–4 m 1243 6.91 0.54 0.0 2.08, 7.01 0.95 0
Ž . Ž .4–5 m 798 7.05 0.60 0.0 2.15, 9.22 0.999 0
Ž . Ž .5–6 m 414 6.98 0.25 0.0001 2.33, 12.79 0.99
Ž . Ž .6–7 m 215 7.14 0.43 0.0 2.15, 9.31 0.74
Ž . Ž .8 m- 111 7.36 0.93 0.0 2.20, 10.61 0.998
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Table 4
Results from Vøringplataet. Weibull parameterisations for the maximum wave height for various classes of˚
significant wave height

Case No. of data a s2 Test of Forristall’s values, Optimal a and b

a s2.13, b s8.42

Ž . Ž . Ž .2–3 670 6.25 0.99 0.0 1.96, 5.75 0.999
Ž . Ž . Ž .3–4 610 6.30 0.90 0.0 1.90, 5.25 0.99
Ž . Ž . Ž .4–5 377 6.43 0.96 0.0 1.99, 6.29 0.97

Ž . Ž .5–6 250 6.51 0.37 0.02 2.27, 10.82 0.85
Ž . Ž .6–7 145 6.77 0.81 0.66 2.17, 9.25 0.96
Ž . Ž .7–8 72 6.50 0.80 0.40 2.25, 10.18 0.99
Ž . Ž .8 m- 57 6.50 0.48 0.24 2.65, 21.02 0.99

Ž .1980–1988 12,792 records . The sampling frequency for these data is 1 Hz and the
duration 17.04 min.

Since we expect some variation with wave steepness, and one is primarily interested
Ž .in the larger sea states, only data where the mean steepness based on T and not on Tz p

was larger than 0.045 has been included in the analysis.
The results for the two locations are shown in Tables 3 and 4. A somewhat surprising

observation is that even if both stations use similar types of buoys, the results are
definitely different.

First of all, we note that both data sets could be fitted with as2 to a satisfactory
degree in all cases. However, whereas the Vøringplataet measurements show optimal˚
b-values in this case of the order of what we expect from the Gaussian theory, the
Haltenbanken measurements show definitively higher b-values. A certain increase in b

with significant wave height is obvious in both cases.
The Forristall values fit the uppermost data from Vøringplataet, whereas the Hal-˚

tenbanken data gives no support for these values. However, one should bear in mind that
the test, for the large amount of data in the Haltenbanken case, is very selective and
even small offsets in the observed a and b from the Forristall values will be rejected
by the test.

The optimally fitted a and b are also quite different for the two data sets, the
Vøringplataet showing a clear trend with significant wave height. The Haltenbanken˚
data do not show an obvious trend and give values around what has been reported
previously.

It is difficult to explain the differences between these two data sets which have been
Ž .obtained with similar buoys WAVESCAN and NORWAVE heaverpitchrroll buoys .

It is likely that the difference is due to the buoyrmooring behaviour rather than actual
changes in the maximum wave height distributions.

3.5. Analysis of the Crete WAVEMOD data

This Mediterranean site was located on the north-western coast of the island of Crete,
Žwith a relatively long fetch in the Aegean Sea and a bottom slope around 2.5% Barstow

.et al., 1994 . Three wave buoys were deployed along a line approximately perpendicular
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Table 5
Data collection procedures for the WAVEMOD measurements at Crete

Instrument Depth Sampling Rec. duration Number of Maximum
Ž . Ž . Ž .m frequency min valid time series H ms

Ž . Ž . Ž .Hz =20 min H )0.4 ms

Ž .DWR Ø90 cm 10 1.28 20 4648 4.4
Ž .WR Ø70 cm 20 2.56 20 5013 5.0
Ž .DWR Ø90 cm 100 1.28 20 5021 5.7

to the coast. Two DATAWELL Directional WAVERIDERs were located at 10 and 100
m depth and one non-directional DATAWELL WAVERIDER buoy was located at 20 m
depth. The campaign lasted from February 1994 until the end of October the same year
Ž .see Paillard, 1994 for details . Although summer and winter climatology are quite

Ž . ŽFig. 6. Measured skewness vs. skewness from narrow band transfer model marker equality of the skewness
Ž . Ž ..dashed line , mean of measured skewness conditional to model skewness solid line .
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Ž .different, severe sea conditions H )4 m near shore occurred at any season. Waves

directions at the site are predominantly north-west to north-east. Details of the data
collection procedure are given in Table 5.

Skewness. Fig. 6 gives the skewness of the sea surface elevation for all selected time
Ž .series for each Waverider buoy. The mean of the measured skewness solid line

Ž Ž ..conditional to the skewness given by the narrow band model Eq. 10 is compared to
Ž .the theoretical mean given by the model dotted line . Note that the measured values are

quite low and seldom exceed 0.2 at 100 and 20 m and 0.3 at 10 m. A significant
skewness is observed for the Waverider at 10 m depth, whereas at 100 m depth the sea
state is completely ‘‘linearised’’. This point confirms what has been said previously on
the effect of the high pass filtering with the buoys. For a comparison, the same plot is
given from measurements by Elf at the Frigg offshore site located in the North Sea at

Ž100 m water depth. The wave data here were obtained with a radar altimeter Robin and

Ž . Ž ŽFig. 7. Maximum crest height vs. maximum trough height marker equality of crest and trough height solid
. Ž . Ž ..line , linear regression on measurements dashed line , linear regression on simulators dash dotted line .
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Table 6
Regression between maximum crest and maximum trough: Crests a =Trough

I a coefficient from a coefficient
measurement from model

Buoy 10 m, Crete 1.08 1.151
Buoy 20 m, Crete 1.03 1.145
Buoy 100 m, Crete 0.99 1.173
Radar 100 m, Frigg 1.16 1.162

.Olagnon, 1991 , which is expected to provide more accurate and reliable measurements
of crest heights at a fixed point than is the case for buoy measurements. In this case the
measured skewness is in very good agreement with the model.

Maximum crest and trough height. A similar conclusion to the above may also be
Ž .drawn from the maximum crest–maximum trough couples in each record Fig. 7 , again

showing the strong underestimation of crest heights with a buoy in deep water. If we
compare the regression coefficient between crest and trough heights from measurement
Ž . Ž .dashed line and from the Rayleigh–Stokes model dash dotted line , we observe as for
the skewness a very good agreement in the case of radar measurements, but a
decreasing-with-depth underestimation of the measured asymmetry with buoy measure-

Ž .ments see also Table 6 . This is well explained by the evolution of c and c termsdiff sum
Ž .with the water depth see the paragraph ‘‘Free-floating buoy’’ above . For this compari-

son, the simulated maximum crest and trough heights have been obtained, on each
Ž Ž . Ž .database, by 10 random draws of the Gumbel random variables Eqs. 27 and 28 for

.the crest and its corresponding for the trough, derived from the Rayleigh–Stokes model
Ž .and this for each H ,T couple. For example it corresponds for the Frigg database tos m

200,000 draws. The maximum crest and maximum trough on a time series of 20 min are
considered independent.

3.5.1. Distribution of maximum crest height
We first consider the Jahns–Wheeler and the Rayleigh–Stokes probability models for

Ž . Ž .the maximum crest height given in Eqs. 20 and 26 . In order to check the s and k

dependence, the data were split into bins with width 0.01 for s and 0.3 for k and
Žranging from 0.005 to 0.055 for s and 0.15 to 3.15 for k the uppermost class for k was

.extended to ` . Only classes with more than 25 data have been considered for the test.
The 10 m measurements included classes with k ranging from 0.9 and upwards, the 20
m measurements from 1.2, whereas the 100 m site has only data with ks3 or larger.

The Jahns–Wheeler model with the parameters given in Section 2.4.1 was rejected in
almost all cases apart from the lowest steepness class where the model is close to the
Rayleigh model of a Gaussian sea. Overprediction of the crest height was the reason for
the rejection. From the comparisons between the Rayleigh–Stokes and the Jahns–
Wheeler models above, and the reasonable fit for the Rayleigh–Stokes model reported
below, it seems clear that by introducing depth-varying b and b parameters in the1 2

model, it should be easy also to fit this model to the data, but this has not been pursued
further.
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Table 7
Test of the RrS model for the WAVEMOD Crete measurements

Case 10 m rejected hyp. 20 m rejected hyp. 100 m rejected hyp.

Only c -term 11 of 25 8 of 23 1 of 5sum

20% c -term 7 of 25 4 of 23 1 of 5diff

y80% c -termsum

The Rayleigh–Stokes model has been considered for two different cases. In the first
case, the c -term is set to zero, in accordance to the low frequency filtering applied indiff

the processing. The second case assumes a partial removal of this term such that the
c -term contributes 20% and the c -term 80%. The test acceptance probability hasdiff sum

been set to 5% when the number of data is less than 500 and 1% when the number of
data is larger than 500, and the result from the tests are shown in Table 7. The results
are not quite satisfactory for the model although they improve in the second case. It is
not an obvious systematic variation for the rejections apart from the 10 m data where
low values of k appear to be unfavourable for the model.

A closer inspection into cases where the model fails seems to attribute those to an
excessive amount of records where the maximum crest height is too low.

There is no simple relation between the exact form of the Jahns–Wheeler and
Rayleigh–Stokes models and the simpler Weibull distribution which was used for
significant wave height. The simplicity of the distribution and its easy fitting to real data
nevertheless makes it an interesting choice. For the crest we have chosen to fix a to 2
and only optimise b , again using the Kolmogorov test probability as the goodness-of-fit
measure. This worked quite satisfactorily in all cases. The large variation in the number

Ž .of data in the various s,k -classes make the results somewhat unstable, but by merging
all measurements and fitting a quadratic surface through the data, the contour plot in
Fig. 8 results. The general picture is that as the steepness tends to zero, the b value
approaches 2 as expected in this limit. In deep water, there is also a certain increase in
the b-value as the steepness increases although the apparent drop in the upper right

Fig. 8. Contour plot of b-parameter as function of s and k . Merged data set from all three Crete locations.
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Fig. 9. Variation of b-parameter with a fixed to 2 for the maximum crest height when H varies.s

corner is doubtful. The value increases sharply as the water gets shallow and the
steepness increases. We recall that for the Weibull model, the mode of the asymptotic
extreme value distribution is equal to such that an increase in b actually means an
increase in the mode.

The variation with significant wave height for the three measurement locations is
shown in Fig. 9. The 10 m location stands out from the two other, which are quite
similar for low waves. When the wave height increases, the 100 m drops below 2.0. This
is similar to the buoy data in the Ekofisk study above, and is probably due to the
mooring effects and a tendency for a floating buoy to avoid the highest wave peaks.

3.5.2. Distribution of maximum waÕe height
A full test of the Longuet-HigginsrNæss model has not been carried out on the data.

The Forristall parameterisations were checked on each set, similar to the Jahns–Wheeler
and Rayleigh–Stokes models above, and the tests showed that the data did not fit the
model as good as expected. Dividing the data into classes of significant wave height, the
test rejected the model for three out of eight classes for the 100 m measurements, two

Fig. 10. Variation of b-parameter with a fixed to 2 for the maximum wave height when H varies.s
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Fig. 11. Optimal fit of both a and b for the maximal wave height as a function of H .s

out of seven classes for the 20 m measurements and four out of seven classes for the 10
m class. There was no systematic variation seen in the rejections.

Estimation of the b parameter when the a parameter is fixed to 2 worked quite well
also in this case with values similar to the expected values from the Longuet-

Ž .HigginsrNæss model see Fig. 10 . There is a consistent drop in the b-value when the
Ž .wave height increases the highest sea state class for the 100 m location has few data .

Finally, a fit of both a and b showed that this estimation is quite unstable, at least
for the moderately sized data sets we use here. The variations with significant wave
height displayed in Fig. 11 are difficult to interpret.

4. Extreme statistics by combined short- and long-term statistics

In order to see the importance of a proper short-term statistics in the estimation of
extreme wave and crest height, we illustrate the use of the analysed models on two case

Fig. 12. Time history of significant wave height and mean period during the Frigg storm.
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ŽFig. 13. Frigg storm. Probability distribution for the maximum crest height dotted: Gauss; solid: RS theory;
.dashed: Weibull model with a s2, b s2.45 .

studies. The first is a storm from the Frigg database where time series of all sea state
parameters are available. The maximum wave and crest height are also available for
each record. A plot of the time history of significant wave height and mean zero-cross-
ing period is shown in Fig. 12.

Ž . Ž .Figs. 13 and 14 now show the probability distributions for the maximum crest and
Ž .wave heights for the storm integrating over the time history as given in Eq. 2 . For

Ž .wave crest, we observe that the Rayleigh–Stokes model and approximately the Laser
Weibull parameterisations from Ekofisk give practically identical results. For this case,
the Rayleigh–Stokes parameterisation has been computed from an expected wave period
of 12.5 s and a water depth of 100 m throughout the storm. It is also easy to verify that
the mode of the distributions are quite close also by plotting a figure similar to Fig. 5.
This is reassuring and adds confidence to the Rayleigh–Stokes model. The Gaussian
parameterisations show lower crest heights.

The expected crest height for the three parameterisations is 13.5 m for the Laser
parameterisation, 12.1 for the Gauss and 13.1 for the Rayleigh–Stokes model. The

ŽFig. 14. The Frigg storm. Probability distribution for the maximum wave height solid: Forristall values;
.dashed: a s2, b s6.8 .
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Fig. 15. Probability distribution for the maximum crest height combined with the long-term statistics
Ž .mentioned in the text dotted: Gauss; solid: RS theory; dashed: Weibull with a s2, b s2.45 .

observed maximum crest height for the storm was 13.9 m, which is of course quite
Ž .realistic considering the extension of the probability density shown in Fig. 15 .

Similarly, the expected maximum wave height for the Forristall parameterisation is
21.9 m and a Weibull model with as2 and bs6.8 is 22.4 m. The observed maximum
wave height was in this case 20 m, slightly low as compared to the bulk of the
distribution.

Ž .It is also possible, as stated in Eq. 4 , to integrate over a long-term distribution, and
a three parameter Weibull distribution for significant wave height, which could be
typical for an exposed Norwegian Sea location, has been used as input,

g
hyH0

P H Fh s1yexp yŽ .s ž /ž /Hc

with gs1.26, H s2.14 and H s0.7 m. The integration needs in addition a relationc 0

for the mean number of waves pr time unit, and the relation derived for the Hal-

ŽFig. 16. Probability distribution for the maximum wave height for the long-term distribution of H solid:s
.Forristall values, dashed: a s2, b s6.8 .
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tenbanken area was used for simplicity. This relation is actually reasonable site
independent in the Norwegian Sea:

y0 .37 y1² : w x w x1r T s0.234 H m s .Ž .s

It could be mentioned that some care must be exercised when carrying out the
integration which involved terms of highly different size. The results are shown in Figs.
15 and 16. The relative locations are quite similar to the single storm above, but the
distributions are considerably shifted towards higher values. Slight irregularities in the
Rayleigh–Stokes distribution is due to a preliminary inclusion of that model in the

w xSWAP software described in Krogstad, 1985 .

5. Conclusions

In the present paper we have studied short-term wave statistics for the maximum
waves and crest height that occur during a constant sea state. It is demonstrated that the
Rayleigh–Stokes model, based on a second-order unidirectional, narrow-band spectral
model, is able to give reasonable result for the overall surface steepness as well as the
maximum crest height. The model may also be applied to study the performance of
various wave recording systems. Although Eulerian and Lagrangian instruments should
in principle measure the same skewness of the surface, the necessarily low frequency
filtering in the processing of buoy data makes the results from radars and buoys
genuinely different.

The Jahns–Wheeler and the Rayleigh–Stokes are further found to be quite incompati-
ble. Not only do they differ in deep water, but there is actually no support for the
constants b and b parameters used in the Jahns–Wheeler model, unless they are fitted1 2

specially for every location and conditions they are applied to.
Computer simulations of Gaussian waves support the analytic theory for the maxi-

mum crest height and narrow band models for the maximum wave height. However, the
simulations reveal that obtaining the sea state parameters form the same record as the
maximum that is registered may lead to some bias in the distribution for the maximum.

For the analysis of real data, the simple and well-known Kolmogorov test is
advocated both for testing the acceptance of a given model, and also, somewhat more
unconventionally, for fitting optimal models.

Analyses of several field data sets are carried out in order to validate the models. It is
clear that for wave height, there seems to be good support for probability models similar

Ž .to the theoretically derived narrow-band Gaussian models by Næss 1985 . Weibull
distributions for wave height is therefore a reasonable choice, but even if there also is a
certain support for the Forristall set of parameters, the simulation study, and also the
results from the analyses of the real data suggest that the shape parameter in the Weibull

Ž .distribution a should be kept at 2, also when analysing real data.
For the maximum crest height, the Rayleigh–Stokes model has reasonable theoretical

support, and it is quite clear that also the simpler Weibull parameterisations which have
been used earlier should take both the wave steepness and the dimensionless depth into
account.
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Two case studies where the short-term models are combined with long-term varia-
tions in the sea state have been included to illustrate the theory.

Acknowledgements

This work was partly funded by the Commission of the European Communities,
Directorate General for Science, Research and Development under contract no. MAS2-

Ž .CT920025. The participants in the WAVEMOD project Guedes Soares et al., 1994
were IST from Portugal, the Laboratoire d’Hydraulique de France, STNMTE, STCP-
MVN and IFREMER from France, MARTEDEC and the National Technical University
of Athens from Greece, SINTEF and OCEANOR ASA from Norway, Delft University
of Technology from Netherlands and Programa de Clima Maritimo from Spain.

The authors are grateful to Elf for permission to use Frigg Field data, and OCEANOR
ASA for providing the data sets from Haltenbanken, Vøringplataet and the WADIC˚
experiment.

Appendix A. Narrow-band non-linear transfer coefficients

In the formulae below, ksk h is the dimensionless depth and the dimensionlessm

vertical coordinate. Moreover,
2Q k s tanhkqk 1y tanhk Q ` s1Ž . Ž . Ž .Ž .

c k s2 c k yc k . 33Ž . Ž . Ž . Ž .Ž .0 cst diff

Ž .Expressions for vertical displacement, Eulerian fixed point measurements:

c k s0 34Ž . Ž .cst

2Q k qk 1y tanhkŽ . Ž .Ž .
c k s c ` s0 35Ž . Ž . Ž .diff diff2Q k y4k tanhkŽ .

21 2q 1y tanhk 1Ž .Ž .
c k s c ` s . 36Ž . Ž . Ž .sum sum3ž /4 2tanhkŽ .

Ž .Expressions for vertical displacement, Lagrangian particle displacement measure-
ments:

1 1 1
c k s c ` s 37Ž . Ž . Ž .cst cst2 tanhk 2

2 21 1 2 tanhk 1y2k tanhk qQ k 1Ž . . Ž . Ž .
c k s c ` sŽ . Ž .diff diff2ž /4 tanhk 2Q k y4k tanhkŽ .

38Ž .
23 1y tanhkŽ .Ž .

c k s c ` s0. 39Ž . Ž . Ž .sum sum3ž /4 tanhkŽ .
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Expressions valid for both Eulerian and Lagrangian measurements:

Ž . Ž .c k qc kdiff sum

1 1
s

34 tanhk

2 2 2 4Ž . Ž . Ž . Ž . Ž .Q k 3y tanhk y12k tanhk 1y tanhk q4 tanhk 1y2tanhkŽ . Ž .
= 40Ž .2ž /Ž .Q k y4k tanhk

2Q k qk 1y tanhkŽ . Ž .Ž .
c k sy c ` s0. 41Ž . Ž . Ž .0 02Q k y4k tanhkŽ .

Ž Ž ..Dynamic pressure Pr r g :
2

1q tanh kqkŽ .Ž .z
Ts 42Ž .2

1y tanh kqkŽ .Ž .z

21 1y tanhk 1Ž .
c k sy T c ` s exp2k 43Ž . Ž . Ž .cst cst z4 tanhk 2

1 1 2c k sy 1y tanhk TŽ . Ž .Ž .diff ž4 tanhk

2Q k 1y tanhk q4tanhkŽ . Ž .Ž .
y Q kŽ .2 /Q k y4k tanhkŽ .

1
c ` sy exp2k 44Ž . Ž .diff z2

1 1 2 2 2c k sy tanhk y3T 1y tanhk 1y tanhkŽ . Ž . Ž . Ž .Ž . Ž .ž /sum 34 tanhkŽ .
c ` s0 45Ž . Ž .sum

2 21 1y tanhk 4 tanhk y3Ž . Ž .Ž . Ž .
c k qc k sy TŽ . Ž .diff sum 3ž 4 tanhkŽ .

22k 1y tanhk q tanhkŽ .Ž .
y . 46Ž .2 /Q k y4k tanhkŽ .
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