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ABSTRACT

Wherever one stands, deep water, intermediate or shallow water,
in extreme conditions the nonlinearity in the wave kinematics is
large and has a strong influence on the design parameters. Simple
models of the wave kinematics have been studied based on hypothe-
ses of narrowband and unidirectionality.

Obviously a real sea is neither narrowbanded nor unidirectional
and the width of the spectral density and the directional spreading
influence the nonlinear characteristics of the waves (skewness,
asymmetries,...).

A second order directional irregular wave model is used to simu-
late time series of the free surface elevation. Based on a large simu-
lated data base, a parametric study of the influence of the spectral
width and directional spreading is led on several wave characteris-
tics sensitive to nonlinearities (skewness, wave and crest heights dis-
tributions, steepness of maximum crest). Three typical situations
are analysed which correspond to extreme situations in long and
short fetch wind sea. The validity of the simplified assumptions of
narrowband and unidirectionality is then discussed. 
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INTRODUCTION

Wherever one stands, deep water, intermediate or shallow water, in
extreme conditions the nonlinearity in the wave kinematics is large and
has a strong influence on the design parameters. This has been showed
clearly for the crest height distribution in deep water (Nerzic, 1997). In
a very simple model of a real sea wave, let us say an unidirectional har-
monic wave, the nonlinearity is driven by a steepness parameter (the
amplitude divided by the wavelength) and a dimensionless water depth
parameter (the water depth divided by the wavelength). This is also the
case for the narrowband models where the amplitude is replaced by Hs
the significative height and the wavelength by "a" mean wavelength.

Obviously a real sea is neither narrowbanded nor unidirectional and
the width of the spectral density and the directional spreading influence

the nonlinear characteristics of the waves (skewness, asymmetry,...).
In this study we consider uniquely in the kinematics of the waves, the

elevation of the free surface. A second order directional irregular wave
model based on a Stokes expansion and a first order directional Gaus-
sian process is used to simulate time series of the free surface elevation.
Based on a large simulated data base, a parametric study of the influence
of the spectral width and directional spreading is led on several wave
characteristics sensitive to nonlinearities (skewness, wave and crest
heights distributions, steepness of maximum crest). Three typical situa-
tions are analysed which correspond to extreme situations in long and
short fetch wind sea. The validity of the simplified assumptions of nar-
rowband and unidirectionality is then discussed. 

EFFECT OF DIRECTIONAL SPREADING AND SPECTRAL 
BANDWIDTH

At our knowledge, good literature does not exist about the effect of
the directional spreading and spectral bandwidth on the nonlinear char-
acteristics of waves, and particularly none can be found for shallow wa-
ter. 

In (Longuet-Higgins, 1963) the skewness of the free surface eleva-
tion, in deep water, is bounded with a lower bound corresponding to the
superposition of two orthogonal longcrested seas and an upper bound
corresponding to a single one:

 (1)

with  the skewness in the unidirectional case.
Most of the studies about effect of the spectral bandwidth concern the

wave height distribution in a Gaussian sea (Longuet-Higgins, 1980),
(Naess, 1985), considered as representative of the wave height distribu-
tion in nonlinear sea. Tayfun (1983) studied the nonlinear effects on the
distribution of crest-to-trough wave heights but without considering the
directional spreading.

Effects of the directional spreading and spectral bandwidth on the
skewness and kurtosis and cumulative distribution of maximum crest
and wave heights have been also studied in (Stansberg, 1995). In that
study, wave tank measurements were considered and he concluded that
“extreme wave events due to nonlinear modulations are most pro-
nounced in longcrested waves”. This remark will be confirmed hereafter
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in the deep water case.

SECOND ORDER MODEL

The nonlinear model of the free surface elevation of a directional sea
which we have used is a classical second order model based on a Stokes
expansion and a first order directional Gaussian process (see e.g. (Ding,
1994)). The nonlinear model of the elevation process is the superposi-
tion of two processes:

 (2)

The first order part of this model is a directional Gaussian process
(superposition of Airy waves with random phases and amplitudes):

 (3)

with the integration domain defined by:

 (4)

the vectorial wavenumber  and the angular frequency  defined by:

 (5)

and with the wavenumber directional spectral density  related to
 a Brownian, independent increment process, by:

 (6)

where E denotes the expectation, and with:

 (7)

The second order part can be written as:

 (8)

More detailed expressions of first and second order parts are given in
appendix.

SIMULATED DATA

Model of directional spectrum
The directional spectrum of the simulated sea-states has been based

on a Jonswap spectrum as point spectrum S(f) and the Mitsuyasu (Mit-
suyasu, 1975) directional distribution H(f,θ) for the directional part. The
frequency-angular spectrum is then calculated by:

 (9)

 (10)

where A(s) is a normalization factor to ensure that .
H(f,θ) is considered to equal 0 outside [-π/2,π/2].

The coefficient s is frequency-dependent and given by:

 (11)

The spectrum is then introduced in (3) and (8) in considering

 (12)

Discretization

The Fourier transforms of equations (3) and (8) have been discretized
in the frequency and angular domains. The frequency domain has been
discretized in 1024 points with a sampling frequency of 1Hz. The angu-
lar domain [-π/2,π/2] has been divided in 120 equal sectors.

As it is explained in (Chen, 1994), the non-linear interactions be-
tween long and short waves are very badly calculated with a short
Stokes expansion and to be taken into account accurately it is better to
introduced a modulated wave-mode approach. This approach furnishes
a so-called hybrid model (Zhang, 1996). If this approach seems neces-
sarily in the computation of the kinematics in the crest, in the case of
free-surface elevation, a more simple method could be used for the cal-
culation of the non-linear interactions. It consists merely in a truncation
of the spectral density, so removing very long and short waves. The
waves in the frequency bands corresponding to 1% of the total variance
m0 ( ) were removed as illustrated in fig. 1.

Fig. 1. Truncated spectrum (Hs=6m, Tp=9s, γ=1)

Sea-state characteristics

Three types of (Hs, Tp, h (water depth)) configurations have been
considered. A first one (Hs=12m,Tp=14s, h=100m) corresponds to an
offshore long fetch situation (typically the North Sea), a second one
(Hs=6m,Tp=9s, h=100m) corresponds to an offshore medium fetch situ-
ation (typically the Aegean sea) and the last one to the previous one
propagated on shallow water (Hs=4m,Tp=9s, h=10m). For each of these
situations the 16 combinations of the parameters γ of the Jonswap model
(γ = 1,3,10,100) and s of the directional distribution (s = 1000,16,7,2)
were considered. For each of these couples (γ,s), 100 time series have
been generated from the discretized Fourier transforms. We observe that
some of the (γ,s) couples are not really realistic, e.g. (γ = 100,s = 2)
which would correspond to a spreaded swell. In fact, all the couples
have been considered, the aim of this study being to proceed to a sys-
tematic parametric analysis in order to better understand the effect of
both sea-state parameters on nonlinear wave characteristics.

The different step of the simulations are as follows. First, simulation
of the first-order part η1(t) of the elevation for a given (γ,s) couple
(eq. (3)). Secondly, calculation of the corresponding second-order part
η2,dir(t), (eq. (8)). Finally, in order to compare to a second-order unidi-
rectional sea-state elevation with the same first-order elevation, calcula-
tion of the dB(k) corresponding to a unidirectional η1(t) first-order part
by inverse Fourier transform from:

 (13)

and secondly, with these dB(k), calculation of the second-order part:

 (14)

So we will be able to compare the statistical parameters of these three
elevation processes:

• the linear process ηlin = η1(t), 

• the non-linear unidirectional process ηuni = η1(t)+η2,uni(t),

• the non-linear directional process ηdir = η1(t)+η2,dir(t).

Two examples of a wave obtained from these three elevation process-
es are given in figures 2 & 3. We see here clearly the effect of nonline-
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arity and of directional spreading, effect that we will find again in the
statistical parameters analysis. In deep water depth as in shallow water
depth the nonlinearity, as well known, increases crest elevation. But the
directional spreading associated to a second-order nonlinear model, de-
creases the crest elevation in deep water depth (fig. 2) even though it in-
creases the crest elevation in shallow water depth (fig. 3).

These two different behaviours come from the different nonlinearities
concerned in each case. In deep water depth only a free surface nonline-
arity is concerned, but in shallow water nonlinearity is predominantly a
bottom effect one.

Fig. 2. Comparison of the shape of a wave, water depth = 100m

Fig. 3. Comparison of the shape of a wave, water depth = 10m

PROCESSING OF THE DATA

On each set of 100 time series, skewness, maximum crest height,
maximum wave height and maximum-crest front steepness have been
computed. Here crest front steepness is defined as:

 (15)

with, for the maximum crest height, C and T as defined in figure 4,
and λ(t) the dispersion relation function between wave period and wave-
length (see (Myrhaug, 1984)).

In a second step the mean skewness and crest front steepness have
been computed and a Gumbel law has been fitted on the two other set of
maximum wave characteristics:

 (16)

with N the number of waves of the time history, considered as constant
for a particular Tp. 

The two parameters of the Gumbel law, the mode aN and the scale bN,

have been estimated in using a Maximum Likelihood Method. All the
fits are very good, as well on the maximum crest as on the maximum
wave heights.

These results are summarized in tables 1-5 and commented hereafter.

Fig. 4. Definition of front crest steepness

ANALYSIS OF STATISTICAL PARAMETERS

As indicated previously, the skewness has been calculated empirical-
ly on the set of the time series to be consistent with the analyses of the
other parameters. But it could have been calculated directly from the di-
rectional spectra as proposed in (Longuet-Higgins, 1963) or (Ding,
1994). The formulas are given at the end of the appendix.

As it has been often demonstrated, (Stansberg, 1995), (Vinje, 1989),
(Vinje, 1994), (Nerzic, 1997), the mean steepness, e.g. defined as

, is the dominant factor of the nonlinearity in deep wa-
ter. The three types of situations considered here correspond to different
mean steepness (Hs=12m,Tp=14s, h=100m ⇒ s = 0.041),
(Hs=6m,Tp=9s, h=100m ⇒ s = 0.047) and (Hs=4m,Tp=9s, h=10m ⇒
s = 0.048). These differences between the mean steepnesses are suffi-
ciently low to compare the sensitivities to the directional spreading or to
the bandwidth.

Skewness

If we observe, for the deep water case, the values of the mean skew-
ness ratio (directional/unidirectional), given in table 1, two tendencies
appear clearly. The skewness decreases when the bandwidth increases
and when the directional spreading increases. But what seems very
strange is that for a very weak spreading (s = 1000) the ratio is higher
than unity. 

Table 1. Skewness ratio, directional/unidirectional

As explanation we recall here the results given in (Longuet-Higgins,
1963). The transfer function H2 which enters in the calculation of the
skewness (eq. 35) can be written as:

 (17)

where γ is the angle between and  and η, which indicates the
closeness of k1 and k2, is given by:

 (18)
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The function is plotted in figure 5. We observe on this graph
that for very close wavenumber (η = 1.001, η = 1.01) the value of the
function is higher in the directional case than in the unidirectional case,
and finally Longuet-Higgins demonstrated that is bounded by
the unidirectional case by:

 (19)

This relation led him to a similar relation for the skewness:

 (20)

In our simulations the ratio is up to 1.12 and never below 0.71. The
ratio 0.44 of eq. 20 corresponds to a very particular condition, two
swells with perpendicular directions but the ratio 1.01 to a more com-
mon one, a simple swell (e.g. s = 1000). The higher ratios that we found,
corresponding to the upper bound in eq. 20, could be explained by the
fact that this bound was calculated for infinite water depth and that we
consider here wavelength of 300m for water depth of 100m. The finite
water depth situation increases strongly this contrast between direction-
al and unidirectional case and explain our higher values.

Fig. 5. Graphs of f(η,γ) for various values of η

In table 2, the values of the skewness for the nonlinear directional
case are plotted. These values are all around 0.2 for the 100m water
depth situations but very sensitive to the directional spreading in shal-
low water.

Table 2. Skewness, directional

We observe particularly that the skewness is very high (up to 0.6)
with the spreading sea-states and close to zero in the unidirectional case.
In fact it indicates a change in the wave shapes, but, as we will see here-
after, does not demonstrate the absence of asymmetry between crest and
trough heights.

Mode crest

The analysis of the ratios of the most probable value of the crest
heights between directional and linear case (table 3) shows a slight de-
crease of the crest with spreading, in the deep water case. Globally, for

the 100m water depth, the crest ratio varies from 6% (g = 100, s = 2) to
15% (g = 1, s = 1000). The values of the ratios are higher for (Hs = 6m,
Tp = 9s), a sea-state which corresponds to a higher mean steepness. This
confirms, in deep water, the conclusion of (Stansberg, 1995) about the
severity of longcrested sea. For the shallow water depth situation the in-
crease is higher and can reach 35% (g = 100, s = 16). The effect of the
bandwidth is opposite in deep water and shallow water. The nonlinear
effect is increased in deep water and decreased in shallow water.

Table 3. Mode crest ratio, directional/linear

Mode wave

It has been often mentioned in previous studies that, in deep water,
wave heights are weakly affected by the nonlinearities. We see here
(table 4) that neither spreading nor bandwidth change this fact. On the
contrary, in finite depth (water depth = 10m) the effect of the nonlinear-
ities is completely different with an increase of up to 18%. In that case,
a high spreading diminishes the wave height ratio below 5%.

Table 4. Mode wave ratio, directional/linear

Crest front steepness

The mean maximum-crest front steepness follows, in deep water, the
same pattern (table 5) as the crest height with an increase of up to 75%
in the case of a unidirectional and Pierson-Moskowitz spectrum model.

Table 5. Mean maximum-crest front ratio, directional/linear

In deep and shallow water the effect decreases with the spreading. In
deep water, the spreading can almost completely cancel the effect of the
nonlinearity. In shallow water, the bandwidth has no effect on the front
steepness, but the nonlinearity has a very strong effect on the maxi-
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mum-crest front steepness for longcrested seas (increasing up to 130%).
Of course, we have not considered in this study the different breaking
phenomena.

CONCLUSIONS

Taking into account the directional spreading and the spectral band-
width in the nonlinear models of prediction of crest heights has signifi-
cative effects. If in deep water depth the hypothesis of unidirectionality
is conservative (the longcrested sea is the most severe), it is not the case
when the depth is sufficiently shallow to affect the nonlinear behaviour
of the kinematics. For the wave height and maximum-crest front steep-
ness, the hypothesis of unidirectionality is always conservative whatev-
er the water depth.

In deep water, the higher the bandwidth is the more severely the non-
linearity changes the wave characteristics. In shallow water the band-
width does not have very significative effect.

The nonlinearities brought into the kinematics in shallow water are
different from the deep water situation, where only the free surface non-
linearity is concerned. This changes completely the effect of the direc-
tional spreading and of the bandwidth with sometimes opposite effects
compared to the deep water situation.
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APPENDIX: SECOND ORDER MODEL

First-order part:

 (21)

with the wavenumber spectral density  related to  a Browni-
an, independent increment process, by:

 (22)

where E denotes the expectation.

 (23)

 (24)

Second-order part:
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with:
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and  a constant to ensure that E(η2) = 0:

 (29)

D is given by:

 (30)
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with:
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 (33)

Skewness

The cumulants are:

,  (34)
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The skewness:
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