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Abstract

The paper develops and analyzes two fully nonlinear boundary conditions that incorporate the motion of the shoreline in

nonlinear time domain nearshore models. A moving shoreline essentially means the computational domain is changing with the

solution of the flow. The problem is solved in two steps. The first is to establish an equation that determines the motion of the

shoreline based on the local momentum balance. The second is to develop and implement into a shoreline model the capability

of accommodating a changing computational domain. The two models represent two different ways of addressing this step: one

is to track the position of the shoreline in a fixed grid by establishing a special shoreline point which generally is not a fixed grid

point. The second is by a coordinate transformation that maps the changing domain onto a fixed domain and solves the basic

equations in the mapped domain. The two shoreline conditions are tested against three known solution for nonlinear shoreline

motion. Two are the 1-D solutions to the nonlinear shallow water (NSW) equations by Carrier and Greenspan [J. Fluid Mech. 4

(1958) 97], one representing the response to a transient change in the offshore water level, the other the motion due to a periodic

standing wave, both on slopes steep enough to allow full reflection. The third is the 2-D horizontal (2DH) computational

solution by Zelt [Coast. Eng. 15 (1991) 205] for the run-up of a solitary wave on a cusped beach. In all cases, both models are

shown to behave well and give high accuracy results for suitably chosen grid and time spacings.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction es and the flow in the swash region, an accurate and
One of the problems faced when modeling near-

shore flows is to establish an appropriate representa-

tion at the shoreward boundary of the domain. Near

the shoreline, flow properties change rapidly with the

cross-shore position. A significant amount of sedi-

ment transport also occurs in the neighborhood of the

shoreline. In order to be able to predict these process-
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efficient model for the treatment of the shoreline is

required.

Depth integration, which is used in many nearshore

models to reduce complete three-dimensional (3-D)

governing equations to 2-D horizontal (2DH), pro-

vides excellent results in the nearshore. However, as

the water depth goes to zero at the shoreline, the

convenient description based on volume fluxes rather

than velocities degenerates to zero at the shoreline. At

finite depth, velocities can be calculated by dividing

the fluxes by the water depth. This, however, cannot be

done at the shoreline, and this results in the necessity
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to carefully consider the proper equation for the motion

of the shoreline itself.

The nonzero particle velocity at the shoreline

changes the shoreline position with time which results

in a time-varying fluid domain in the numerical

computations.

Therefore, the problem at hand can essentially be

divided into two parts: first, to develop a description

for the velocity of the shoreline and thus the changes

in the shoreline position with time, and second, to

devise a method to incorporate a time-varying model

domain in the numerical scheme.

The simplest boundary condition that can be ap-

plied at the shoreward boundary of a model domain is

a wall boundary condition at the initial shoreline.

Under this condition, the shoreline does not move

with time and the fluxes at the initial shoreline are

always zero. As shown by Lynch and Gray (1980),

this type of shoreline boundary condition does not

affect the results even a moderate distance from the

boundary very much, but near the boundary, it may

result in significant errors.

In the past, the time-varying fluid domain has been

modeled in Eulerian schemes essentially using either a

wet–dry interface for the shoreline with fixed grids or

a coordinate transformation, where the instantaneous

model domain is transformed onto a fixed, evenly

spaced, rectangular computational grid.

Due to its conceptual simplicity, many numerical

models use fixed grids with a wet–dry interface to

treat the moving shoreline. Reid and Bodine (1968)

were among the first to use this type of model at the

shoreline. This scheme was used in a storm surge

model, where the bottom elevation was assumed to be

constant over each grid interval. This results in a

stairstep-like approximation of the actual topography.

The flux through the last wet grid point to the first dry

grid point was given by an empirical relation that was

a function of the height of the water column in the wet

grid above the land elevation in the dry grid. Hibberd

and Peregrine (1979), in another fixed grid method,

used linear extrapolation to describe the run-up of a

uniform bore on a plane-sloping beach. The first dry

grid point was included in the computational domain

if the water depth at that point was greater than a

threshold value. Similarly, during run-down, the last

wet point was excluded from the computational

domain when the water depth there goes below a
threshold value. Kobayashi et al. (1987), Militello

(1998), Liu et al. (1995) and Balzano (1998) are

some of the other implementations of a fixed grid

method for treatment of shoreline. These methods

had slightly different criteria for declaration when a

grid point becomes wet or dry. They also differed in

the way to calculate the volume of water left in a grid

interval after it was declared dry. However, all the

methods discussed above determine the position of

the shoreline as one of the fixed grid points, which

means the shoreline is moved one or more Dx at a

time. This makes the wet–dry methods more prone to

instabilities.

Sielecki and Wurtele (1970) and VanDongeren and

Svendsen (1997) introduced ways to determine the

actual shoreline position. In a fixed grid, the shoreline

position will generally fall between two grid points,

the last wet and the first dry point in the shoreward

direction. Sielecki and Wurtele (1970) determines the

shoreline position between the last wet and the first

dry grid points by using a linear extrapolation of the

surface elevation and velocity to the shoreline from

the neighboring wet points. This approach has recent-

ly been explored further by Lynett et al. (2002) who

determined (imaginary) values of both the surface

elevation and the fluid velocity at the first two dry

points by linear extrapolation from the two last wet

points. Those imaginary values were then used in their

fourth-order space derivatives needed in a predictor–

corrector method similar to the scheme used in the

present paper to solve the equations. VanDongeren

and Svendsen (1997) determined by extrapolation the

volume of water stored past the last wet point and

assumed a triangular shape of that to estimate the

actual shoreline position. When the distance of the

shoreline from the last wet point becomes more than a

grid spacing, the first dry grid point was declared wet

and was included in the calculations at the next time

steps. Similarly, when this distance becomes less than

zero, the last wet point is excluded from the compu-

tational domain at the next time steps. However, as

also discussed by Lynett et al. (2002), these methods

based on extrapolation are very sensitive to numerical

noise and frequently become unstable unless proper

filtering is applied.

In the fixed grid method described here, the posi-

tion of the shoreline is determined as a special point

positioned between the last wet and the first dry grid
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point. This is done by solving the momentum equa-

tion for a fluid particle at the shoreline.

The other category of methods for treatment of the

moving shoreline, which have been described in the

literature, is the use of a coordinate transformation. In

this method, the real, time-varying physical domain is

transformed onto a time-invariant, computational do-

main. As the moving shoreline changes the cross-

shore length of the domain, most of the coordinate

transformation schemes used to model this change the

grid spacing only in the cross-shore direction.

An early example of coordinate transformation

methods (or domain mapping) is Joseph (1973). The

simplest type of coordinate transformation scheme to

achieve this goal was used by Johns (1982) where a

linear mapping of the time-varying real domain x=[0,

L(t)] is transformed onto a fixed computational do-

main X=[0, 1] using the transformation X = x/L(t).

Johns et al. (1982) describe another similar approach

of coordinate transformation which was used for the

modeling of storm surges on the east coast of India.

Shi and Sun (1995) describe a coordinate transforma-

tion method that takes into account the time-varying

shoreline in their finite difference model for storm

surge in the generalized curvilinear coordinate. In

these methods, the horizontal coordinates get trans-

formed and the velocities also get modified so that the

modified velocity in the transformed plane is zero.

Jamet and Bonnerot (1975), Lynch and Gray

(1980) and Gopalakrishnan and Tung (1983) describe

a few examples of implementation of a transformation

method in finite element models. Jamet and Bonnerot

(1975) and Lynch and Gray (1980) used continuously

deforming finite elements where the last element

followed the fluid boundary. Gopalakrishnan and

Tung (1983) used Lagrangian acceleration to find

the motion of the shoreline and a variable element

length, which splits into two parts when this length

becomes larger than 1.2 times the initial element

length.

Özkan Haller and Kirby (1997) used a shoreline

transformation technique to take into account the

moving shoreline using a Chebyshev collocation

method to calculate spatial derivatives in the cross-

shore direction. The coordinate transformation was

done in two steps that provided smaller grid spacings

in the region closest to the shoreline where a higher

resolution is required than the rest of the domain.
However, this effect is included in the second trans-

formation and hence cannot be used with other

numerical schemes.

With the use of Lagrangian description, moving

boundaries can be treated efficiently. Some examples

of this are presented in Pedersen and Gjevik (1983),

Zelt and Raichlen (1990) and Zelt (1991).

Brocchini and Peregrine (1996) suggest different

ways of analyzing the mean shoreline for wave-

averaged models and outline a method of treatment

of the moving shoreline for such models as the lower

edge of the swash by using the integral flow proper-

ties of the swash zone. The work by DeSilva et al.

(1996), which includes the effect of surface tension, is

also mentioned.

The approach adopted in the present work is to

derive the equations for shoreline motion, and then

any method (transformation or fixed grid) can be used

to model a time-varying fluid domain. An example of

fixed grid method and another example of coordinate

transformation method are described.

The paper is structured as follows. In Section 2, the

governing equations and its solution method are

described. Section 3 describes the different methods

used for inclusion of a time-varying fluid domain, i.e.

the fixed grid method and the coordinate transforma-

tion method. Section 4 contains comparison of the

results between the model computations with the

shoreline boundary condition implemented using both

these methods and the analytical results for 1-D cases

as given by Carrier and Greenspan (1958) and the

numerical results for 2-D cases given by Zelt (1986)

and Özkan Haller and Kirby (1997). Finally, discus-

sions and conclusion are described in Section 5.
2. Governing equations and solution scheme

2.1. Governing equations in the interior domain

Near the shoreline, the nonlinear motion with

sufficiently large horizontal scale can be described

by the nonlinear shallow water (NSW) equations. In

cases where the motion is generated by local forcing,

such as short-wave-generated infragravity waves, the

forcing makes the NSW equations inhomogeneous.

An example is the equations used in, e.g., the SHOR-

ECIRC (SC) nearshore circulation model. The model
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equations are the continuity and momentum equations

which, for the general case of depth-varying currents,

are given by, e.g., VanDongeren and Svendsen (1997),

Sancho and Svendsen (1997) and Haas and Svendsen

(2000).

These equations can be written as inhomogeneous

NSW equations by placing all the contributions to

changes in the NSWoperator on the right-hand side of

the equations. The result is

Bf
Bt

þ BQa

Bxa
¼ R1 ð1Þ

BQb

Bt
þ B

Bxa

QaQb

h

� �
þ gðh0 þ fÞ Bf

Bxb
¼ R2b ð2Þ

where g is the acceleration of gravity. Here, R1 and

R2b include the short-wave forcing (radiation stress

and short-wave volume flux), the dispersive lateral

mixing, the surface and bottom shear stress and the

turbulent stress terms that are part of the mass and the

momentum equations, respectively. In the following,

these terms are referred to as the source terms. In a

similar way, in the case of a Boussinesq approxima-

tion, the source terms on the RHS would represent the

nonlinear-dispersive terms.

Fig. 1 shows the definitions of the geometrical

variables used.

2.2. Equations for the shoreline motion

The depth-averaged Eqs. (1) and (2) give the fluid

flow in terms of the volume fluxes and the surface
Fig. 1. Definition sketch.
elevation. At the shoreline, where the water depth

goes to zero, the volume fluxes also become zero, but

the velocity of the fluid particles, which are calculated

by dividing the fluxes by the water depth, may not

become zero. This velocity cannot be calculated by

using the depth-integrated equations of motion as the

water depth is zero there. Here, we will derive the

equations to calculate the velocities at the shoreline

and the shoreline position, once the velocities are

known.

The source terms in the governing equations do

not change the principal nature of the problem at

the shoreline, so for simplicity, we are, in the follow-

ing, focusing on the homogeneous version of the

equations.

2.2.1. Velocity of the shoreline

The x component of the homogeneous version of

Eq. (2) can be written as

BQx

Bt
þ B

Bx

Q2
x

h

� �
þ B

By

QxQy

h

� �
þ gh

Bf
Bx

¼ 0 ð3Þ

On substituting Qx = uh and Qy = vh in Eq. (3) and

using the continuity equation, we get

h
Bu

Bt
þ hu

Bu

Bx
þ hv

Bu

By
þ gh

Bf
Bx

¼ 0 ð4Þ

or, for any arbitrarily small h>0,

Bu

Bt
þ u

Bu

Bx
þ v

Bu

By
¼ �g

Bf
Bx

ð5Þ

If we assume that a particle at the shoreline will

remain at the shoreline, the LHS of Eq. (5) will also

represent the acceleration of the shoreline itself in the

x direction. Hence, we have the x component of the

velocity us of the shoreline point (denoted by super-

script s) given by

dus

dt
¼ �g

Bfs

Bx
ð6Þ

On extending this to the 2DH case, us and y

component vs of the velocity of the shoreline can be

determined from the equations

dusðy; tÞ
dt

y

¼ �g
Bfs

Bx

����� ð7Þ



Fig. 2. Definition sketch for the shoreline position.
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and

dvsðy; tÞ
dt

y

¼ �g
Bfs

By

����� ð8Þ

Here, us and vs are calculated along a line of

constant y so that the shoreline motion can be calcu-

lated by Eq. (12). Hence, Eqs. (7) and (8) represent

the general 2DH equations which will be used in the

following to determine by integration in time the

horizontal velocities of the shoreline points with

coordinates (xs,ys).

2.2.2. Position of the shoreline

The kinematic condition at the shoreline states

that the fluid particles at the shoreline remain at the

shoreline. This provides us with an equation to

calculate the time variation of the shoreline position

when the particle velocity at the shoreline is

known. If x = n( y,t) is the x coordinate for the

shoreline as shown in Fig. 2, then the shoreline

is given by

S ¼ x� n ¼ 0 ð9Þ

We therefore have the kinematic condition,

DS

Dt
¼ 0 Z

Dðx� nÞ
Dt

¼ 0 ð10Þ

where

D

Dt
¼ B

Bt
þ us

B

Bx
þ vs

B

By
ð11Þ

is the derivative following the shoreline. On expand-

ing the derivatives, we get

Bn
Bt

¼ us � vs
Bn
By

ð12Þ

The assumption here is that the shoreline position

is a single-valued, continuous function of the long-

shore coordinate y at any time t.

The surface elevation fs at the shoreline can be

calculated when the horizontal shoreline position

obtained by Eq. (12) and the bottom topography are

known. This, in turn, can be used to calculate the
surface gradient terms on the right-hand side of Eqs.

(7) and (8).
3. Methods to compute a time-dependent fluid

domain

The time-varying shoreline position computed by

Eq. (12) results in a time-dependent boundary value

problem that is to be modeled in a numerical simula-

tion. Two different methods are described in the

following for the treatment of this problem. In the

first method, the shoreline position is treated as a

special point between equally spaced grid points,

whereas in the second method, the last grid point

always represents the shoreline and the grid spacing

near the shoreline changes as the shoreline moves.

3.1. Fixed grid method

In this approach to adopt a time-varying model

domain, the computational domain is discretized on a

fixed grid and the shoreline is defined as the point

separating wet and dry regions, which need not be a

grid point. In order to do this, the last wet and the first

dry grid points are identified and the shoreline point is

treated as a special point between these grid points.

When the shoreline passes a dry grid point while

moving in the shoreward direction, that grid point is

included in the active calculation zone, which is the

wet region of the domain, at the following time steps

of the computation. Similarly, when a wet grid point is



Fig. 3. Domain near the shoreline. xs is the shoreline position. x0 and

x1 are the last two wet points. Notice that during the motion of the

shoreline, s>1 is used in some phases (see Section 3.1.2).
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passed in the seaward motion of the shoreline, it is

excluded from the active calculations in the following

time steps.

In the past, most of the implementations using

fixed grid points with wet–dry interface do not

resolve the shoreline position between the last wet

and the first dry point. Many such examples were

discussed in Section 1. Sielecki and Wurtele (1970)

and VanDongeren and Svendsen (1997) give a few

examples where the shoreline position between the

last wet and the first dry grid points was determined,

though they use extrapolation schemes to do this. In

the method used by VanDongeren and Svendsen

(1997), the shoreline position between the last wet

and the first dry point was determined along with the

surface elevation at the last wet point. This was done

by calculating the volume of water stored past the last

wet point and assuming a linear variation of the

surface elevation from the last wet point to the

shoreline point. The volume flux at the last wet point

was also obtained by interpolation.

In the method described here, the velocities of the

fluid particles at the shoreline are obtained first. The

shoreline position is then calculated by using these

velocities. The actual shoreline position is calculated

at each time step, and thus the position of the

shoreline between the last wet and the first dry grid

points is known.

3.1.1. Spatial derivatives near the shoreline

Since the distance between the last wet point and

the shoreline point is not the same as the constant grid

spacing in the rest of the domain, and this spacing also

changes with time, the finite difference formulation

for spatial derivatives near the shoreline needs to be

modified. This is done by using the Taylor series

expansion and obtaining the spatial derivative formula

for a nonconstant grid spacing near the shoreline.

The shoreline position is identified as xs, the last

wet grid position as x0 and the second last wet grid

position as x1. The spacing between x1 and x0 is Dx

which is the grid spacing in the rest of the domain.

The spacing between x0 and xs changes with time. The

ratio of this distance to the constant grid spacing in the

rest of the domain Dx is denoted by s. A sketch of the

domain near the shoreline is given in Fig. 3.

The derivatives of the variables at xs and at the last

wet grid point x0 are determined in the following way.
The Taylor series expansion of a function f(x) about

the last wet grid point x0 is given by

f ðxsÞ ¼ f ðx0 þ sDxÞ ¼ f ðx0Þ þ sDxf Vðx0Þ

þ ðsDxÞ2

2!
f Wðx0Þ þ OðDx3Þ ð13Þ

f ðx1Þ ¼ f ðx0 � DxÞ ¼ f ðx0Þ � Dxf Vðx0Þ

þ ðDxÞ2

2!
f Wðx0Þ þ OðDx3Þ ð14Þ

where the primes indicate derivatives in x. Multiply-

ing Eq. (14) by (sDx)2 and subtracting from Eq. (13)

eliminates f W(x0) and a relation for f V(x0) in terms of

f(x0), f(x1) and f(xs) is obtained as

f Vðx0Þ ¼
f ðxsÞ þ ðs2 � 1Þf ðx0Þ � s2f ðx1Þ

sðsþ 1ÞDx ð15Þ

Similarly, f V(xs) can be obtained as

f VðxsÞ ¼
ð1þ 2sÞf ðxsÞ � ð1þ sÞ2f ðx0Þ þ s2f ðx1Þ

sðsþ 1ÞDx
ð16Þ



Fig. 4. Three regions in 2DH case with fixed grid and wet–dry

interface. Region I has all the grid points wet, region III has all the

grid points dry and region II has some grid points which are wet.
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3.1.2. Addition and deletion of a grid point

In this method, the active calculation zone is the

wet region where the fluxes and the surface elevations

are calculated by solving the continuity and the

momentum equations. The second part of the compu-

tational domain is the dry region shoreward of xs. This

region is sufficiently described by

h0 þ f ¼ 0 or f ¼ �h0 ð17Þ

Qx ¼ 0 ð18Þ

Qy ¼ 0 ð19Þ

At the shoreline, the velocity components are

calculated by integration of Eqs. (7) and (8), and then

the horizontal position of the shoreline point is calcu-

lated by time integration of Eq. (12). The surface

elevation at the shoreline point is then calculated by

fs ¼ �ðh0Þs ð20Þ

and the volume fluxes Qa there are zero.

In the cases where the bottom topography is given

analytically, h0s can be calculated directly when the

shoreline position is known. In other cases, it has to be

obtained by interpolation between the undisturbed

water depths at the regularly spaced grid points near

the shoreline.

The ratio of the distance of the shoreline position

from the last wet grid to the constant grid spacing Dx,

s, appears in the denominator of Eqs. (15) and (16), so

s = 0 must be avoided during the motion of the

shoreline. Therefore, it is necessary to choose a small,

fixed minimum value for s = smin. During run-down, if

s < smin, it is assumed that the last wet grid point (x0)

has become dry, so that the grid point is removed from

the active calculation zone and the value of s is

increased by 1, so that we have sDx>Dx.

Similarly, during run-up, the first dry grid point

going shoreward is not included in the active calcu-

lation region until the value of s becomes larger than

1 + smin. When s>1 + smin, the first dry grid point is

declared to become a wet point and is included in the

active calculation zone. The value of s is then de-

creased by 1. In most of the simulations described

later on, we will use smin = 0.5.
3.1.3. Fixed grids for 2DH cases

In the 2DH case, some extra care is needed in

order to apply the boundary condition at the shore-

line using a fixed grid and a wet–dry interface. The

difference from the 1DH case is that now, the last

wet points and the shoreline points are functions of

longshore position.

The model domain is divided in this case into three

regions. In the first region, all the grid points in the

longshore direction are wet. In the second region,

some of the grid points in the longshore direction are

wet, and in the third region, none of the grid points in

the longshore direction are wet. Fig. 4 shows these

three regions for a typical model domain. Extending

the 1DH formulation to 2DH is straightforward in the

regions one and three since all the grid are either wet

or dry.

In the region II, the x derivatives near the shoreline

can be calculated by Eqs. (15) and (16) as before. To

obtain the y derivatives in this region, a fourth-order

central difference formula has been applied if there are

two wet points on both sides of a wet point along the y

direction; otherwise, a second-order finite difference

formula has been applied.

The y component of the velocity also needs to be

calculated using Eq. (8) before Eq. (12) can be used

for calculation of the shoreline position. Thus, the y

derivatives are to be calculated at and near the

shoreline, and filters are applied in the longshore

direction y also. The difficulty in the calculation of y

gradients at the shoreline is due to the fact that at an

arbitrary shoreline position, there may not be grid



Fig. 5. A typical situation encountered in calculation of the y

derivative at the shoreline. ( – – – ) marks the shoreline position at

the jth grid point in the y direction.
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points in the longshore direction, as s( y), in general,

can have different values at different longshore loca-

tions. It can be seen in Fig. 5 that in order to calculate

y derivatives at a shoreline point A, the variables at the

points B and C should be known. However, as B and

C are neither regular grid points nor shoreline points,

the values of the variables at these points are obtained

by extrapolation along the j+ 1 and j+ 2 lines (Fig. 5).

Thus, we use

f ðBÞ ¼ afsðjÞg2 þ bsðjÞ þ c ð21Þ

with s( j)=(xs( j)� x(i))/Dx, which was used to calcu-

late the value of f at point B. Here,

a¼ 1

2
ff ði; jþ 1Þ � 2f ði� 1; jþ 1Þ þ f ði� 2; jþ 1Þg

ð22Þ

b¼ 1

2
f3f ði; jþ1Þ� 4f ði�1; jþ 1Þ þ f ði� 2; jþ 1Þg

ð23Þ
and

c ¼ f ði; jþ 1Þ ð24Þ
Similarly, j+ 1 was replaced by j + 2 to calculate the

variables at the point C. The second-order forward

difference equation,

Bf

By
A

¼ 1

2Dy
f�3f ðAÞ þ 4f ðBÞ � f ðCÞg

����� ð25Þ

was then used to calculate the derivative at the point A

as the distances between A and B and B and C are

same and equal to Dy. In cases where too few points

are available in the y direction at a given x( j) level,

symmetry is assumed resulting in no longshore vari-

ation, and the y derivatives are set to zero.

Similar formulas were used in cases where the wet

point in the vicinity of the shoreline is on the left side

of the shoreline point. In this case, backward differ-

ence equations were used instead of Eq. (25).

3.2. The grid transformation method

Another method of implementation of a time-vary-

ing domain in a numerical model which will be

described here uses a coordinate transformation such

that the instantaneous physical domain, which expands

and contracts as the shoreline is moving, gets mapped

onto a fixed domain in the transformed coordinate

system. Near the shoreline, velocities and surface

elevations often have large gradients.

In selecting a coordinate transformation scheme,

which has a primary aim of mapping the irregular

and time-varying shoreline onto a fixed grid in the

computational domain, constraints can be prescribed

here so that a smaller grid spacing near the shoreline

than the rest of the domain can be obtained. This

transformation is expected to result in a computa-

tional grid, which has evenly spaced grid points in

the computational domain, and which corresponds to

a grid with varying spacing in the physical domain at

any given time.

The governing equations described earlier are de-

rived for rectangular Cartesian coordinates. On intro-

duction of this coordinate transformation, the

governing equations need to be modified to take into

account the grid spacing variation and distortion.

3.2.1. Model domain definitions

The actual physical domain (x, y, t) extends from

x = 0 to x = L + n and y = 0 to y = Y. Here, n( y, t) is the



Fig. 6. Sketches of the real (on the left) and the transformed (on the right) model domains.
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shoreline position measured from a reference level

x = L (see Fig. 6). In most cases, the initial shoreline

position can be taken to be this reference level. The

physical domain is transformed onto a computational

domain (x̄, ȳ, t̄) by the transformation equations,

x ¼ gðx̄Þ þ nðy; tÞf ðx̄Þ ð26Þ

y ¼ ȳ ð27Þ

t ¼ t̄ ð28Þ

The computational domain extends from x̄ = 0 to

x̄ =M and ȳ = 0 to ȳ = Y. A sketch of the real and the

computational domains are shown in Fig. 6.

3.2.2. Conditions on the transformation functions

The function f(x̄) is selected such that the transfor-

mation maps the irregular shoreline onto a fixed,

straight line in the computational domain, whereas

the function g(x̄) is selected such that this transforma-

tion yields smaller grid spacing near the shoreline than

that offshore.

Since the offshore boundary of the real and the

computational domains should be at the same location,

x̄ ¼ 0Zx ¼ 0 ð29Þ

we must have

f ð0Þ ¼ 0; gð0Þ ¼ 0 ð30Þ
Similarly, the shoreline in both the domains must

coincide, so,

x̄ ¼ MZx ¼ Lþ n ð31Þ

Hence, f and g must satisfy

f ðMÞ ¼ 1; gðMÞ ¼ L ð32Þ

Without loss of generality, we can assume that

L=M as it does simplify the calculations later on.

Now, Dx/Dx̄ = 1 implies an equal grid spacing in both

the domains.

The grid size distribution in the cross-shore direc-

tion is given by

Dx

Dx̄
¼ gVðx̄Þ þ nðy; tÞf Vðx̄Þ ð33Þ

The condition that the grid spacing near the shore-

line should be smaller than that offshore is expressed

mathematically by

0 <
Dx

Dx̄

� �
x̄¼M

¼ gVðMÞ þ nðy; tÞf VðMÞ
� �

< 1 ð34Þ

Dx/Dx̄ = 0 would imply that two points in the

computational domain correspond to one point in

the physical domain. Since the inverse of the trans-

form would not be unique in this case, it must be

avoided in the transformation used here.



Fig. 7. Dx/Dx̄ for different n with f(x̄)=(e� j(M � x̄)� e � jM)/

(1� e� jM) and gV(x̄) given by Eq. (42). (——) n= 0; (– – – )

n= 3; (– - – - – ) n=� 3.0, for a= 0.01015 and j= 0.1.
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3.2.3. Selection of the transformation functions

Any function which satisfies the conditions de-

scribed in Section 3.2.2 can be used in the transfor-

mation equations. The conditions on the function f(x̄)

state that it goes from 1 to 0 as x̄ goes from the

shoreline x̄ =M to the offshore boundary of the model

domain x̄ = 0.

Different analytical functions which have a varia-

tion with x̄ similar to the one required by the con-

ditions on f(x̄) were tried and

f ðx̄Þ ¼ ðe�jðM�x̄Þ � e�jM Þ=ð1� e�jM Þ ð35Þ

was used in most of the simulations described here.

The purpose of the function g(x̄) is to ensure a

certain variation of Dx/Dx̄. Since the variation of

Dx/Dx̄ is directly related to the derivative gV(x̄) of

g(x), it is easier to obtain the desired variation of

Dx/Dx̄ if we select gV(x̄) directly. Thus, we require

gVðMÞ < 1 ð36Þ

andZ M

0

gVðxÞdx ¼ M ð37Þ

and then calculate g(x̄) by

gðx̄Þ ¼
Z x̄

0

gVðxÞdx ð38Þ

For any f V(M) p 0, the grid size distribution Dx/Dx̄

will be greater or smaller there than gV(M) depending

on the sign of n. If gV(M) = 0.5, then for any given

f V(M), (Dx/Dx̄)x̄ =M can accommodate maximum var-

iation of n about n = 0. In most of the simulations

described afterward, gV(M) = 0.5 will be used. Fig. 7

shows the effect of different n on Dx/Dx̄ for one

particular choice of f(x̄) and g(x̄). It can be seen that

the grid spacing near the shoreline (x̄ =M) is smaller

than that offshore (x̄ = 0) but it changes with n. During
the highest run-up (n = 3 in the example), the grid is

stretched and Dx/Dx̄ increases somewhat toward the

shoreline. When the shoreline is in the lowest position

of run-down (n =� 3), the resolution at the shoreline

is very high with Dx/Dx̄= 0.2 only. Thus, a very high

resolution is obtained during phase of the run-down

that is also the phase with the strongest spatial

variations and potential wave breaking.
We have only two required conditions on the

function g(x̄) and one of them has been used to

determine the value of gV(M). Therefore, only one

condition is left on g(x̄). It can be uniquely determined

if it has only one free parameter. If, for example, a

polynomial of x̄ is assumed for gV(x̄), only a linear

function can be determined uniquely and that is

gVðx̄Þ ¼ 0:5þ M � x̄

M
ð39Þ

For a second-degree polynomial, a family of functions

for gV(x̄) given by

gVðx̄Þ ¼ 0:5þ aðM � x̄Þ þ bðM � x̄Þ2 ð40Þ

is obtained. Here, a and b must satisfy the relation

3aM þ 2bM 2 ¼ 3 ð41Þ

which is obtained by substituting Eq. (40) into con-

dition (37).

Different functions have been tested for gV(x̄). Fig.
8 shows some possible choices for g(x̄). For most of

the model simulations described afterward, we have

used

gVðx̄Þ ¼ 0:5þ tanhfaðM � x̄Þg ð42Þ

Here, a is calculated so that g(0) = 0 is satisfied. It can

be seen in Fig. 8 that the region where gV(x̄) < 1 is



Fig. 8. Some possible choices for gV(x̄). (——) represents Eq. (39); ( – – – ) represents Eq. (42); and (– - – - – ) is gV(x̄) given by Eq. (40), with

a= 1/3M and b= 1/M2 for M= 20 m.
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smaller for gV(x̄) given by Eq. (42). Therefore, the

region of Dx/Dx̄ < 1 is concentrated near the shoreline

where a high resolution is required.

3.2.4. Modification of the governing equations due to

the transformation

In order to be able to perform calculations in the (x̄,

ȳ, t̄) coordinate system, the derivatives with respect to

x, y and t in the continuity and the momentum

equations need to be changed to the derivatives with

respect to x̄, ȳ and t̄. These changes can be obtained by

implicit differentiation.

For the simplified form of the transformation in the

x direction only used here, we get

B

Bx
¼ B

Bx̄

Bx̄

Bx
ð43Þ

B

By
¼ B

Bȳ
þ B

Bx̄

Bx̄

By
ð44Þ

B

Bt
¼ B

Bt̄
þ B

Bx̄

Bx̄

Bt
ð45Þ
By differentiating the transformation equation (26)

with respect to x, y and t and rearranging, we then get

Bx̄

Bx
¼ 1

gVðx̄Þ þ nðy; tÞf Vðx̄Þ ð46Þ

Bx̄

By
¼ � 1

gVðx̄Þ þ nðy; tÞf Vðx̄Þ

� �
Bnðy; tÞ

By
f ðx̄Þ ð47Þ

Bx̄

Bt
¼ � 1

gVðx̄Þ þ nðy; tÞf Vðx̄Þ

� �
Bnðy; tÞ

Bt
f ðx̄Þ ð48Þ

respectively. Substitution from Eqs. (46)–(48) into

Eqs. (44) and (45) results in

B

By
¼ B

Bȳ
� B

Bx̄

Bx̄

Bx

Bn
By

f ðx̄Þ ð49Þ

B

Bt
¼ B

Bt̄
� B

Bx̄

Bx̄

Bx

Bn
Bt

f ðx̄Þ ð50Þ
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On applying these modifications from Eqs. (43),

(49) and (50) to the mass and the momentum equa-

tions, the governing equations are modified to the

following form

Bf
Bt̄

� Bf
Bx̄

Bx̄

Bx

Bn
Bt

f ðx̄Þ þ BQx

Bx̄

Bx̄

Bx
þ BQy

Bȳ

� BQy

Bx̄

Bx̄

Bx

Bn
By

f ðx̄Þ ¼ 0 ð51Þ

BQx

Bt̄
� BQx

Bx̄

Bx̄

Bx

Bn
Bt

f ðx̄Þ þ B

Bx̄

Q2
x

h

� �
Bx̄

Bx
þ B

Bȳ

QxQy

h

� �

� B

Bx̄

QxQy

h

� �
Bx̄

Bx

Bn
By

f ðx̄Þ ¼ �gh
Bf
Bx̄

Bx̄

Bx
ð52Þ

BQy

Bt̄
� BQy

Bx̄

Bx̄

Bx

Bn
Bt

f ðx̄Þ þ B

Bx̄

QxQy

h

� �
Bx̄

Bx

þ B

Bȳ

Q2
x

h

� �
� B

Bx̄

Q2
x

h

� �
Bx̄

Bx

Bn
By

f ðx̄Þ

¼ �gh
Bf
Bȳ

� Bf
Bx̄

Bx̄

Bx

Bn
By

f ðx̄Þ
� �

ð53Þ

When the functions f(x̄) and g(x̄) are selected, the

term Bx̄/Bx can be calculated by Eq. (46). Since n is

known as a function of y at any time step n and also at

the previous time steps n� 1, n� 2, etc., Bn/By can be
calculated at those time steps. As the components of

the velocity of the shoreline are also known at that

present time step n and previous time steps, Bn/Bt can
be calculated from Eq. (12), and then n at the next

time step n + 1 can be obtained by the time integration

of this equation. Thus, all the terms in the modified

governing equations (51)–(53) are known at a time

step n and previous time steps, and a third-order ABM

predictor–corrector scheme can be applied to calcu-

late the volume fluxes and the surface elevation at the

next time step for x̄ = 0 to x̄ <M. At x̄ =M, a similar

predictor–corrector scheme can also be used for Eqs.

(7) and (8)) to obtain us and vs, and then Eq. (12) is

used to obtain the shoreline position n at the next

time step.
4. Comparison with other solutions

Due to unavailability of detailed measurements of

the shoreline motion, analytical solutions and other

numerical solution for the simplified cases are used

here for the comparison of the present model.

4.1. Analytical solutions in 1DH

4.1.1. Carrier and Greenspan’s (CG58) transient case

The analytical solution of the nonlinear shallow

water equations for plane-sloping beaches was

obtained by Carrier and Greenspan (1958) (CG58)

by using a series of transformations which finally

express the NSW equations in terms of the variables

r* and k* given by

r* ¼ 4c* ð54Þ

k* ¼ 2ðu*þ t*Þ ð55Þ

where u is the horizontal velocity, t is the time and

superscript * refers to a nondimensional form of the

variables. c* is the nondimensional phase speed which

is equal to
ffiffiffiffiffi
d*

p
. For details, reference is made to

CG58.

At the shoreline, the water depth d* = f* + h0* = 0,
so c* =

ffiffiffiffiffi
d*

p
= 0, and thus with this transformation,

r* = 0 always represents the shoreline position.

The dependent variables x, f, t and u are obtained

in terms of the independent variables r and k.
CG58 described some initial value problems and

their analytical solution. In the transient case, the

initial water surface elevation is assumed to have a

depression near the shoreline and it is released from

that state of rest at t* = 0. The situation is shown in

Fig. 11 where the initial position is the curve except

near the outer boundary. The surface elevation and

corresponding x locations in the nondimensional form

are given by

f* ¼ e 1� 5

2

a3

ða2 þ r2Þ
3
2

þ 3

2

a5

ða2 þ r2Þ
5
2

" #
ð56Þ

x* ¼ � r2

16
þ f* ð57Þ
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where e is a small parameter, which characterizes the

magnitude of the depression, and

a ¼ 1:5ð1þ 0:9eÞ
1
2 ð58Þ

At t* = 0, the solution assumes

u* ¼ 0 ð59Þ

The surface elevation becomes asymptotically equal

to e as x goes to infinity offshore and this is the

maximum surface elevation. The minimum surface

elevation is zero and it occurs at the shoreline at t* = 0.

Initial surface profile has a zero tangent at the shore-

line and at x* =� 1, f* = 0.9e. For nonbreaking cases,

the value of e should be less than or equal to 0.23 as

predicted by CG58.

The results are presented here for e= 0.1. The

bottom slope a is taken to be 1/50 and the length

scale l was selected to be 20 m.

Fig. 9 shows the nondimensional surface elevation

as a function of the cross-shore distance x* at time

t* = 0 to t* = 0.8 in steps of Dt* = 0.05 for the fixed
Fig. 9. CG58’s transient case. Comparisons with a fixed grid of the surface

steps. The analytical solution (n n n ); present model with fixed grid (——

position of the shoreline shown corresponds to t*= 0.8.
grid method, and Fig. 10 shows the same for the

coordinate transformation method.

Similarly, Figs. 11 and 12 show the time series of

the nondimensional surface elevation at the shoreline

for t* up to 5 for the fixed grid and the coordinate

transformation methods, respectively. As can be seen

from these figures, the shoreline shoots past the

maximum initial surface elevation e and then slowly

comes back to asymptotically approach e as time t*

goes to infinity.

In all the figures above, the surface elevation has

been scaled with the depression parameter e.

We see that the results with both the methods of

shoreline treatment are in excellent agreement with

the analytical solutions.

To illustrate the numerical sensitivity of the fixed

grid method, Fig. 13 shows computations with differ-

ent values of Dx*. The Courant number Cr is held

constant corresponding to Dt* values varying in

consonance with Dx*. We see that the numerical

errors grow in a controlled way with increasing Dx*.

For the coordinate transformation method, it was

found that the somewhat larger Dx̄* = 0.031 gave
elevation as a function of the cross-shore distance at different time

). The time t*= 0 corresponds to the lowest position and the highest



Fig. 10. CG58’s transient solution: results with the coordinate transformation method for surface elevation as a function of the cross-shore

distance at t*= 0 to t*= 0.8 at the steps of Dt*= 0.05. Analytical solution (n n n ); present model (——). Dx̄*= 0.007735 and Dt*= 0.025 were

used in the simulations.

Fig. 11. CG58’s transient case: fixed grid time series of the surface elevation at the shoreline. The analytical solution (n n n ); present model with

fixed grid (——). The part up till t*= 0.8 corresponds to the time interval covered in Fig. 9.
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Fig. 12. CG58’s transient solution: model results for the time series of the surface elevation at the shoreline with the coordinate transformation.

Analytical solution (n n n ); present model (——). Dx̄*= 0.007735 and Dt*= 0.025 were used in the simulations.

Fig. 13. Fixed grid method: time series of the surface elevation at the shoreline for the CG58’s transient case for different Dx*. The analytical

solution (n n n ); Dx*= 0.0039175 (——); Dx*= 0.007835 (– – – ); Dx*= 0.01567 (– - – - – ). Courant number Cr= 0.7 for all the cases.
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accuracies similar to those found above for the fixed

method with a Dx* = 0.01567. However, though these

Dx values are seemingly bigger than the values for the

fixed grid method, they actually correspond to grid

spacings near the shoreline, which are of the same

magnitude, suggesting that near the shoreline, the two

methods provide comparable accuracy. However,

since the coordinate transformation method corre-

sponds to larger grid spacing offshore, it requires a

smaller number of grid points to model a domain with

given accuracy at the shoreline than the number of

points required with the fixed grid method.

Computations with a fixed Dx* = 0.007835

and varying Dt* corresponding to Courant num-

ber Cr varying in the range of 07–1.0 shows

so little change with Dt* that the results cannot be

distinguished from each other or from the analytical

solution.

4.1.2. Carrier and Greenspan’s periodic case

CG58 also presented the analytical solution for

periodic standing waves on a plane-sloping beach.

For this case, the surface elevation f, cross-shore
Fig. 14. The CG58’s periodic case. Results from computations with a fixed

at different time steps. The analytical solution (n n n ); present model wit
position x, velocity u and time t are given in the

nondimensional form by

f* ¼ A

4
J0ðr*Þcosk*�

u*2

2
ð60Þ

x* ¼ � r*2

16
þ f* ð61Þ

u* ¼ � AJ1ðr*Þsink*
r*

ð62Þ

t* ¼ 1

2
k*� u* ð63Þ

This represents a wave of nondimensional frequen-

cy equal to 1, traveling towards the shore, getting

fully reflected from there and creating a standing

wave-like situation.

Here, A is the nondimensional wave amplitude. A/4

is the maximum vertical excursion of the shoreline.

The above solution is valid for 0VAV 1. A= 1
grid of the surface elevation as a function of the cross-shore distance

h fixed grid (——).



Fig. 15. Coordinate transformation model results for the surface elevation as a function of the cross-shore distance at different time steps

for the periodic solution. Model (——); analytical solution (n n n ). Dx̄*= 0.0647 and Courant number Cr = 0.7 were used.

R.S. Prasad, I.A. Svendsen / Coastal Engineering 49 (2003) 239–261 255
corresponds to a vertical tangent on the surface

elevation. Mathematically, when A= 1, the Jacobian

of the transformation used to arrive at these solutions

becomes zero and the transformation looses the one-

to-one correspondence between the actual and the

transformed variables.

At k = 0, we have u* = 0 and t* = 0. Therefore, the

initial conditions are given here by

f* ¼ A

4
J0ðrÞ ð64Þ

x* ¼ � r2

16
þ f* ð65Þ

and

u* ¼ 0 ð66Þ

The length scale l= 20 m and the bottom slope a was

chosen to be 1/30. Results for A= 0.6 are presented

here (Fig. 14).
Similarly for the coordinate transformation meth-

od, the initial surface profile as given by Eqs. (64) and

(65) was imposed in the numerical model in the

dimensional form. Again the length scale l was se-

lected to be 20 m and the beach slope a = 1/30. Fig. 15
shows the surface elevation as a function of the cross-

shore distance at different time steps.

As mentioned, the time and grid steps of Dx̄* =

0.0647 and Courant number Cr = 0.7 are chosen so

that the agreement is good. This result, however, is not

as trivial as it may seem because particularly, the

motion around the extreme downrush is very fast and

can place severe strains on the accuracy of the

method. Figs. 16 and 17 show the time series of the

surface elevation at the shoreline for different values

of Dx. We see that, again, the errors grow at a

moderate and controlled rate as Dx increases.

4.2. Numerical solutions in 2DH

In the course of studying the response of

harbors to long-wave excitation, Zelt (1986) devel-

oped a Lagrangian finite element model. It was



Fig. 17. CG58 periodic case. Time series of the surface elevation at the shoreline with different grid spacing in coordinate transformation model.

Analytical solution (——); Dx̄*= 0.032345 (n n n ); Dx̄*= 0.06469 (– – – ); Dx̄*= 0.12938 (– - – - – ); Dx̄*= 0.25876 (- - - -). Cr = 0.7 for all

the cases.

Fig. 16. The CG58’s periodic case. Time series of the surface elevation at the shoreline for different Dx* in the model with fixed grid. The

analytical solution (n n n ); Dx*= 0.015 (——); Dx*= 0.02 (– – – ); Dx*= 0.03 (– - – - – ). Courant number Cr= 0.7 for all the cases.
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applied to the case of the run-up and run-down due

to the incidence of a solitary wave on a beach

where a curved shoreline meets a region of con-

stant depth with a sloping bathymetry nearshore.

The bottom topography is shown in Fig. 18. Such

geometry was chosen to demonstrate the interaction

of different processes affecting the shoreline run-up.

This case is used here for comparison with the

results of the coordinate transformation model in

2DH.

The undisturbed water depth, as shown in Fig. 18,

is given by

hðx; yÞ ¼

h0; for x < L

h0 �
h0p
L

ðx� LÞ

3� cos

�
py
L

�
2
664

3
775: for xzL

8>>>>><
>>>>>:

ð67Þ

where the length scale L is half the wavelength of the

cosine form of the shoreline.
Fig. 18. Bottom topography
By setting h = 0 in Eq. (67) and solving for x, the

initial shoreline position can be obtained and is given

by

xs ¼ Lþ L

p
3� cos

py
L

� �
ð68Þ

The results of the simulations by Zelt (1986) for

the topography shown in Fig. 18 were presented as the

time series of the surface elevation of the shoreline at

the five locations, y/L= 0, 0.25, 0.5, 0.75 and 1,

respectively, in the longshore direction and the max-

imum run-up and run-down as a function of the

longshore position for the different values of a. Time

has been nondimensionalized with a time scale T ¼ffiffiffiffiffiffiffi
gh0

p
=L, and the nondimensional time t= 0 is chosen

as the time at which the run-up is maximum at the

lateral boundaries.

Figs. 19 and 20 show the comparison of the

present model results with fixed grid with the results

presented by Zelt (1986) for the time series of the

surface elevation at the five longshore locations and

the maximum run-up and the minimum run-down as a

function of the longshore position. Figs. 21 and 22
used by Zelt (1986).



Fig. 19. Time series of the surface elevation at the shoreline. SHORECIRC with fixed grid (——); Zelt (1986) (– - – - – ).
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show these results with the coordinate transformation

method. Özkan Haller and Kirby (1997) also used

Zelt’s case to test the moving shoreline boundary
Fig. 20. The maximum run-up and the minimum run-down as a function o

(1986) (– - – - – ).
condition in 2DH for their Fourier–Chebyshev col-

location model. Those results are also included in

Figs. 21 and 22.
f the longshore position. SHORECIRC with fixed grids (——); Zelt



Fig. 21. Time series of the surface elevation at the shoreline along different longshore locations. The present model with coordinate

transformation (——); Zelt (1986) (– - – - – ); Özkan Haller and Kirby (1997) (– – – ).

Fig. 22. The maximum run-up and the minimum run-down as a function of the longshore position. The present model with coordinate

transformation (——); Zelt (1986) (– - – - – ); Özkan Haller and Kirby (1997) (– – – ).
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5. Discussion and conclusion

As mentioned in the comparisons, the grid spacing

Dx and the size of the time step Dt have been chosen

so that the accuracy of the comparisons is reasonably

good. For the time step, this implies a Dt that

corresponds to a Courant O( < 1).

On one side, this means that the values of the grid

spacing used for each of the two methods are an

indicator of the efficiency of the method. We see that

in this regard, the transformation method generally is

a little more efficient than the fixed grid formulation.

At the same time, increases in the grid spacing

illustrate the nature of the errors that develop if Dx is

chosen larger than what good accuracy requires.

These experiments indicate that the error for large

Dx is benign. Errors are evenly distributed and within

the range if none of the methods blow up in the grid

sizes tested.

It is also observed that while both methods natu-

rally are quite sensitive to the value of the grid size,

the sensitivity to changes in the time step is not nearly

as prominent.

Finally, it is noted that both methods have been

tested and shown to run well on a wide range of

situations ranging from the highly nonlinear 1-D

horizontal cases of Carrier and Greenspan to the fully

2-D horizontal run-up of a solitary wave on a cusped

beach first analyzed by Zelt. It is characteristic for all

cases that the most challenging phase of the motion is

the rapid changes occurring at the time of maximum

downrush. There, the accelerations can become huge

and if the amplitude of the imposed motion is large

enough, the local surface variation at the shoreline

becomes vertical. In that case, the basis for the

underlying NSW equations fails and computations

collapse.

While the transformation method may be more

efficient, the fixed grid method is attractive in its

simplicity and probably easier to fit into large-scale

simulations.
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