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ABSTRACT

In this paper, different partitioning techniques and methods to identify wind sea and swell are investigated,

addressing both 1D and 2D schemes. Current partitioning techniques depend largely on arbitrary parame-

terizations to assess if wave systems are significant or spurious. This makes the implementation of automated

procedures difficult, if not impossible, to calibrate. To avoid this limitation, for the 2D spectrum, the use of a

digital filter is proposed to help the algorithm keep the important features of the spectrum and disregard the

noise. For the 1D spectrum, a mechanism oriented to neglect the most likely spurious partitions was found

sufficient for detecting relevant spectral features. Regarding the identification of wind sea and swell, it was

found that customarily used methods sometimes largely differ from one another. Evidently, methods using 2D

spectra and wind information are the most consistent. In reference to 1D identification methods, attention is

given to two widely used methods, namely, the steepness method used operationally at the National Data Buoy

Center (NDBC) and the Pierson–Moskowitz (PM) spectrum peak method. It was found that the steepness

method systematically overestimates swell, while the PM method is more consistent, although it tends to

underestimate swell. Consistent results were obtained looking at the ratio between the energy at the spectral

peak of a partition and the energy at the peak of a PM spectrum with the same peak frequency. It is found that

the use of partitioning gives more consistent identification results using both 1D and 2D spectra.

1. Introduction

An ocean wave spectrum describes the distribution of

the total wave variance over frequency and direction.

Such a distribution is the result of the occurrence of a

certain number of individual wave systems originating

from different meteorological events. For the interpre-

tation and archival of large datasets, integral parameters

rather than whole spectra are preferred. However, while

integral parameters suitably describe a wave spectrum

composed of a unique wave system, the simultaneous

occurrence of different wave systems turns integral pa-

rameters less meaningful, unless they refer to individual

wave components. Partitioning of wave spectra into in-

dependent wave systems provides an excellent tool for

data reduction. Also for the comparison of datasets or

when evaluating model performance, the analysis at

the level of wave systems gives more insight into pro-

cesses than the analysis of mean parameters of the whole

spectrum. For data assimilation purposes, the use of

spectral partitioning has given rise to the development of

more robust sequential algorithms (Hasselmann et al.

1996; Young and Glowacki 1996; Voorrips et al. 1997),

because previous sequential schemes had faced con-

straints at the moment of updating the spectrum as

there is no reason to change the partial contribution of

each individual system in the absence of additional in-

formation (Thomas 1988; Lionello et al. 1992). Addi-

tionally, spectral components can be associated in space

and time to trace the evolution of wave systems origi-

nating from remote storms (Hanson and Phillips 2001;

Quentin 2002).
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Kasteelpark Arenberg 40, Postbus 2448, 3001 Heverlee, Belgium.

E-mail: jesus.portilla@bwk.kuleuven.be

JANUARY 2009 P O R T I L L A E T A L . 107

DOI: 10.1175/2008JTECHO609.1

� 2009 American Meteorological Society



One of the potential applications of partitioning in

third-generation wave modeling is the determination of

wind sea and swell. As these components are no longer

computed separately, and model users have traditionally

disposed of such information, there is a need for splitting

the spectrum to provide this information as part of the

output products (Bidlot 2001). On the other hand, in

wave studies where the identification of wind sea and

swell is relevant, nearly each author has adopted his/her

own criteria based on some physical properties of wind

and waves, and therefore several methods can be found

in the literature (Wang and Hwang 2001; Violante-

Carvalho et al. 2002).

For consistency, in the rest of the paper, partitioning

will be seen as the mechanism to detect wave systems

looking at morphological features of the spectral sig-

nature only. Identification, on the other hand, refers to

labeling with wind sea or swell as a supplementary des-

ignation taking into account environmental and physical

characteristics.

For the present study, different partitioning–identifi-

cation schemes available in the literature have been

implemented and compared. The description of the dif-

ferent methods has been structured in two main blocks,

the first considering partitioning methods only (section

2) and the second considering the identification step

(section 3). Within each of these two blocks, 2D and

1D schemes are treated. The analysis points at strengths

and shortcomings, and wherever possible, a more robust

scheme is proposed. Examples at the end of each section

illustrate the findings.

2. Partitioning methods

a. 2D partitioning schemes

The first conceptual partitioning algorithm was pre-

sented by Gerling (1992). In his algorithm, the lowest

energy threshold value at which upper parts of the

spectrum get disconnected is found. This process is re-

peated until all systems are detected. To determine

whether partitions are significant, integral mean param-

eters are compared with spectral components of neigh-

boring points and subsequent times (pattern-extraction

algorithm). A partition is considered significant if it is

persistent in time and space.

Many partitioning schemes (e.g., Hanson and Phillips

2001; Voorrips et al. 1997) are specific implementations

of the scheme described by Hasselmann et al. (1996).

The basic idea of this scheme is the same as that of

Gerling (1992), although the concept of the algorithm

differs slightly. According to Hasselmann et al. (1996), a

wave spectrum can be regarded as an inverted catch-

ment area, making an analogy with hydrological con-

cepts (see also Brüning et al. 1994; Hasselmann et al.

1994). The different subcatchments of that main catch-

ment area are determined by associating each spectral

grid point to a unique neighbor, namely, the one with the

highest energy level. Grid points corresponding to the

same local peak are clustered, and each of these clusters

defines a partition (watershed algorithm). To assess the

significance of the partitions, some of their morphologi-

cal characteristics are intercompared. In Hasselmann

et al. (1996), two partitions are merged into one:

d if two peaks are one grid cell apart,
d if the trough between them is not sufficiently pro-

nounced (i.e., the lowest point between two partitions

is greater than 85% of the smaller peak), or
d if the square spectral distance between two peaks is

shorter than the spread of any of the two systems (see

Table 1 for definitions).

Other authors (e.g., Voorrips et al. 1997; Hanson and

Phillips 2001) have used the scheme of Hasselmann

et al. (1996) with different settings for the combining

parameters. These implementations are briefly de-

scribed in section 2a.

1) DISCUSSION

Actually, partitioning results from the two methods

above are similar. However, assessing whether those

systems are significant is less straightforward. This is es-

pecially the case for observed spectra because these con-

tain considerable random variability. Although model

spectra do not contain such random variability, assessing

the significance of partitions will become more problem-

atic as spectral resolution increases.

Gerling’s (1992) approach is consistent if several ob-

servations of the same network, or model spectra, are

TABLE 1. Summary of parameters for combining partitions in the

2D spectrum according to different implementations.

Low energy

threshold Contrast Df 2=df 2�

Hasselmann

et al. (1996)

— 0.85 1

Voorrips

et al. (1997)

0.0025 m2 0.70 0.5

Hanson and Phillips

(2001)

e # A/(fp
4 1 B)** 0.65–0.75 0.4–0.5

* Squared distance of spectral peaks (1) and (2): Df 2 5

ð f ð1Þx � f ð2Þx Þ
2
1ð f ð1Þy � f ð2Þy Þ

2; f x 5 f cos u; f y 5 f sin u. Spectral

spread: df 2 5 ð f x � f xÞ
2
1ð f y � f yÞ

2; f x 5 f cos u; f y 5 f sin u:

** The wave system energy is denoted by e, fp is peak frequency,

and A and B are calibration parameters.

108 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 26



processed. In both cases, wave systems can be inter-

compared and their persistence can be assessed. A

practical limitation is that it demands the availability of

other spectra. Moreover, the number of partitions de-

tectable in an observed spectrum is typically of the order

of tens; thus, associating several wave components with

neighboring components at different times becomes

very, if not too, intricate. Gerling (1992) already pointed

at this when he states: ‘‘It does not appear possible to

obtain completely satisfactory results with the simple

metric just defined.’’

Hasselmann et al.’s (1996) approach does not suffer

from these limitations. In their scheme, spectral features

are intercompared within the spectrum. However, the

criteria used for merging partitions rely on rather arbi-

trary parameters that need to be adjusted from situation

to situation. Moreover, different users of this scheme

have adopted different parameters (Voorrips et al.

1997; Hanson and Phillips 2001). To this end, Hanson

and Phillips (2001) suggested the need for an additional

routine that optimizes the choice of the parameters by

an iterative procedure. And they emphasized the need

for removing partitions with energy under a threshold

value determined by the spectral falloff given by Phillips

(1985). However, it is not evident that those small par-

titions should actually be removed. Voorrips et al.

(1997) simply merge partitions with low energy (i.e.,

lower than 0.0025 m2). Table 1 summarizes the param-

eter settings for the different implementations de-

scribed above.

While spectral partitioning is conceptually a robust

and simple method, the need for continuous calibration

becomes tedious, especially in operational or auto-

mated conditions. Moreover, inappropriate choice of

combining parameters renders the method unstable and

unreliable. The combining mechanism is crucial because

it determines which partitions are significant and how

those partitions are merged to determine the resulting

wave systems. Similar remarks referring to the complex-

ity of determining the significance of partitions have been

pointed out before by Aarnes and Krogstad (2001).

2) PROPOSED 2D PARTITIONING ALGORITHM

The previous section pointed out that the calibration

of the combining algorithm is the main difficulty in pro-

ducing meaningful partitions. In general, adjusting pa-

rameters for one situation produces deficient results in

others. This will be illustrated with example 1. In this

paper, an image-processing tool is introduced in the

combining algorithm, aimed at alleviation of the pa-

rameterization dependence. The 2D wave spectrum is

thus treated as an image. As in many cases (either for

observed or model spectra), the main problem is the

presence of spurious partitions. A 2D noise-removal

(smoothing) filter has been implemented and tested with

satisfactory results. This filter consists of a 2D discrete

convolution operation between the spectrum and an

equally weighted convolution kernel that averages all

immediate neighbors of a central bin. That operation is

mathematically expressed as

Ŝði; jÞ5 kðm; nÞ � Sði; jÞ

5
X1

m5�1

X1

n5�1

kðm; nÞSði�m; j� nÞ; ð1Þ

where Ŝ is the filtered spectrum and S is the raw spec-

trum, both having dimensions i 3 j. The operator 5

indicates a convolution. The convolution kernel k is

chosen as a constant 3 3 3 matrix with coefficients

summing to unity [i.e., k(m,n) 5 1/9, " m,n].

Obviously, different possibilities exist for the choice

of the kernel, and the spectral image might be subject to

more elaborated image processing. However, a setup

including this filter seems to perform well in most typ-

ical circumstances. Note that this filtering process can be

repeated, and an important aspect to be addressed is to

what extent the wave spectrum has to undergo repeated

filtering. It is clear that more spurious partitions are

present in observed spectra than in model spectra and

will require more filtering. On the other hand, excessive

filtering causes blurring, which may render patterns in-

discernible. Two measures are taken to tackle this as-

pect: the first is to indicate a priori a number of expected

significant systems in the spectrum, and the second is to

merge partitions with low energy by setting a noise

energy threshold (called thresholding).

The partitioning-combining method advocated in this

paper is set up as follows:

1) the spectrum is partitioned with the watershed

algorithm;

2) low-energy partitions are merged (thresholding);

3) if the number of partitions is higher than the pre-

scribed number, the spectrum is filtered, partitioned,

and low-energy partitions are merged (thresholding);

4) step 3 is repeated until the number of partitions

detected is equal or lower than the prescribed

number; and

5) low-energy partitions are merged (combining).

The degree of filtering is thus determined implicitly by

the prescribed number of partitions and the noise

threshold. Note that the thresholding (step 2) and the last

combining due to low energy (step 5) are carried out by

the same subroutine, but they are conceptually two
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different operations. Thresholding aims at suppressing

noise, because if the reduction of partitions is carried

out by filtering alone, excessive filtering would be

needed and the blurring effect would be stronger. The

combining process aims to disregard small systems that

are probably real systems but are not necessarily im-

portant. The thresholding-combining subroutine merges

the target partition with the closest adjacent partition in

the frequency-direction space. Tests in a number of dif-

ferent circumstances with buoy and model spectra sug-

gested the following settings:

d number of expected partitions: between 4 and 6,
d energy level for noise thresholding: between 1% and

2% of the total energy in the spectrum, and
d energy level for last combining: between 5% and 8%

of the total energy in the spectrum.

3) EXAMPLE 1

The 2D partitioning–combining procedures are illus-

trated using wave spectra from the National Buoy Data

Center (NDBC) buoy 41013. The period from 0000 UTC

10 April 2006 to 0600 UTC 12 April 2006 was chosen.

During this period, the wave conditions are charac-

terized by double-peaked spectra, as shown in Fig. 1

(for clarity, 1D spectra are shown).

These spectra have been partitioned and combined

according to the criteria of Hasselmann et al. (1996;

Table 1) and also by using the combining algorithm

proposed in this study (section 2a). Time series of wave

energy and mean frequency are presented in Fig. 2.

Note that to draw Fig. 2, partitions in consecutive

spectra need to be numbered in a consistent manner.

For all combinations of partitions of the current and the

previous time step, the difference between the mean

frequency is calculated. Combinations closest in mean

frequency are assigned the same partition number.

Using Hasselmann et al.’s (1996) scheme, there is

only one main partition most of the time (thin, contin-

uous, circle-marked line in Fig. 2), although a second

partition appears and disappears on some occasions.

The mean parameters of the first partition are relatively

FIG. 1. 1D energy spectra from NDBC buoy 41013 (338269110N,

778449350W) from 0000 UTC 10 Apr 2006 to 0600 UTC 12 Apr

2006. Spectra are drawn every 6 h.

FIG. 2. Time series of (a) wave energy and (b) mean wave frequency (Tm21) for NDBC buoy 41013 (338269110N, 778449350W) for the

period 0000 UTC 10 Apr 2006 to 0600 UTC 12 Apr 2006 for the whole spectrum (gray thick line). For partitions calculated with the

Hasselmann et al. (1996) scheme: first partition (continuous circle-marked line) and second partition (dashed circle-marked line). Results

from this study 2D implementation: first partition (thick continuous cross-marked line) and second partition (thick dashed cross-marked line).
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stable and agree well with those of the total spectrum,

while two systems are discernible from the spectra (Fig. 1).

The mean parameters of the second partition look more

like pure noise. The combining algorithm proposed here

detects two wave systems as being equally significant.

Their evolution in time is quite stable. This is in agree-

ment with what it is expected from the spectra (Fig. 1).

To analyze details, the spectrum at 1800 UTC 10

April 2006 is shown in Fig. 3. Visual inspection indeed

suggests that two main wave systems are present (note,

in fact, that also a third one is distinguishable in the 2D

spectrum, but its energy is much lower). To facilitate the

discussion, one of these systems has been contoured

(with a black thick line) in Fig. 3a.

The watershed algorithm detects 16 partitions in this

spectrum. According to the Hasselmann et al. (1996)

criteria, basically all systems are merged into one par-

tition. The condition for which the two (indicated) main

partitions are combined is that the square distance be-

tween the two peaks (i.e., 0.0088) is lower than the

spread of either system (i.e., 0.0183 and 0.0259). On the

other hand, according to the 2D implementation of

Voorrips et al. (1997; see Table 1), the spectral peak

distance must be lower than the 0.5 spread of either

system, but even that condition is not yet sufficient to

keep these two main systems uncombined. Alterna-

tively, following Hanson and Phillips (2001) that dis-

tance must be lower than 0.4 the spread of either system.

Although this factor seems appropriate in this case,

these two partitions would be combined in a further step

with their set of parameters because the trough between

the two peaks (contrast) is required to be less than 0.65

the energy of the lower peak. The contrast level corre-

sponds in this example to 0.67 which, on the other hand,

satisfies Hasselmann et al.’s (1996) and Voorrips et al.’s

(1997) contrast conditions (i.e., 0.85 and 0.70, respec-

tively). Conveniently, one could choose other factors

for this case (i.e., 0.4 for the spectral spread and 0.70 for

the contrast) without guarantee that these factors will

work for the other spectra.

Using the combining procedure proposed here alle-

viates the sensitivity to parameter settings and increases

the ability of the method to detect relevant spectral

features. For the present example, after the spectrum

has been smoothed once (Fig. 3b), the watershed algo-

rithm detects 5 partitions instead of 16. From those five

partitions, three have energy lower than 2% of the total

energy and are merged by the thresholding step; the

low-energy combining threshold was set to 5%, but it

does not operate in this particular spectrum. This results

in the two main wave systems shown in Fig. 3a.

b. 1D partitioning schemes

The 1D partitioning and combining scheme intro-

duced by Voorrips et al. (1997) is a straightforward

adaptation of the 2D scheme of Hasselmann et al.

(1996). Similarly, each local peak represents the peak of

a wave system. The minima between adjacent peaks

constitute the partition limits. The combination of par-

titions is also done under similar criteria:

d if two peaks are within their spectral width (i.e., peaks

are closer than half the width at half the maximum of

either of the two peaks),
d if the trough between them is not sufficiently pro-

nounced (i.e., the lowest point between two partitions

is greater than 50% of the smaller peak), and
d if the partition energy is lower than a threshold (i.e.,

0.0025 m2).

Additionally, two extra conditions are adopted to detect

significant partitions. The first aims at identifying mixed

sea states by comparing the mean direction with peak di-

rection of two potentially merging partitions to split them

FIG. 3. Spectrum from NDBC buoy 41013 (338269110N, 778449350W) at 1800 UTC 10 Apr 2006. (a) 2D spectrum,

(b) 2D smoothed spectrum, and (c) 1D spectrum.
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again. The second also considers wind information to

combine all potential pure wind sea states. These two extra

conditions should not (or cannot) be considered if no

directional or wind information is available.

Rodrı́guez and Guedes Soares (1999) also presented a

method to detect significant peaks. Taking into account

the energy variability of the spectrum, they consider

that some spurious peaks appear due to natural random

fluctuations of the spectral estimates. Significant peaks

lie outside the confidence interval of those estimates—

that is, if the height of a peak, measured from the

previous minimum, is greater than the width of the

confidence band. The confidence interval is computed

considering a chi-square distribution. The parameters

of the chi-square distribution (i.e., number of degrees

of freedom and the level of confidence) determine the

magnitude of significant and spurious peaks.

Violante-Carvalho et al. (2002) presented another set

of criteria to detect significant peaks:

d if two peaks are very close to each other (i.e., closer

than twice the spectral resolution, 0.03 Hz),
d if the ratio between two adjacent peaks is lower than

15, and
d if the trough between them is not sufficiently pro-

nounced (i.e., lower limit of the 90% confidence in-

terval of the greater peak higher than the upper limit

of the 90% confidence interval of the trough between

the peaks).

1) DISCUSSION

As in the case of the 2D spectrum, the combining

mechanism is based on contrast and the ratio of peak

square distance to spectral spread is deficient and de-

pends strongly on the parameterizations. Therefore, the

1D combining algorithm of Voorrips et al. (1997) based

on these criteria suffers of the same shortcomings as-

sociated with the 2D scheme of Hasselmann et al.

(1996). Moreover, in the scheme of Violante-Carvalho

et al. (2002), the comparison between energy levels of

adjacent peaks and the magnitude of the trough be-

tween peaks are conditions analogous to the contrast

criterion and have the same limitations.

Also the criterion of Rodrı́guez and Guedes Soares

(1999) is similar to the contrast criterion. However,

increasing the number of degrees of freedom of the

spectrum has a similar effect as filtering. In that sense,

this approach is consistent with the idea used in section

2a to improve the 2D scheme. However, the scheme of

Rodrı́guez and Guedes Soares (1999) was not investi-

gated further in this study, mainly because tests using a

convolution function to smooth the 1D spectrum

showed that the blurring effect was too aggressive in the

case of the 1D spectrum. As a consequence, spectral

patterns quickly became indiscernible, resulting in un-

satisfactory overall performance of the scheme. Be-

cause the smoothing approach did not contribute to the

improvement of the 1D algorithm, results are not pre-

sented here. However, satisfactory partitioning results

were obtained by a mechanism aiming to combine the

most likely spurious peaks. This scheme is presented in

the next section.

2) PROPOSED 1D PARTITIONING ALGORITHM

To disregard the most likely spurious peaks and

eventually concentrate efforts in detecting more com-

plex features, a simple scheme was implemented. It

turned out that once these (most likely spurious) peaks

are disregarded, the so-determined partitions are rather

consistent and these criteria are considered sufficient for

the 1D combining mechanism. The procedure to detect

peaks as spurious is as follows:

1) partitions having the peak frequency above a certain

threshold (i.e., 0.35–0.4 Hz); the reason for this

measure is that in the tail of the spectrum, usually

high variability is present, which is very difficult to

treat, while in reality peaks in the tail belong to the

wind sea part;

2) partitions with low total energy (i.e., lower than 5%–

8% of the total energy);

3) partitions having few spectral bins before or after the

peak (i.e., less than 2 bins); and

4) partitions that are placed between two other

(neighboring) partitions and have a lower peak en-

ergy level than these two neighbors.

3) EXAMPLE 2

In the present example, the 1D partitioning–combining

procedure of Voorrips et al. (1997) (without using wind

or directional information) is compared to the 1D im-

plementation given in this study (section 2b). The da-

taset is the same as that used in the illustration of the

2D scheme (Fig. 2). The resulting time series of the 1D

partitioning for wave energy and mean frequency

(Tm21) are shown in Figs. 4a,b, respectively.

As in the case of the 2D scheme (Hasselmann et al.

1996), one main wave system is detected using the 1D

scheme of Voorrips et al. (1997) (thin continuous circle-

marked line). This first partition contains most of the

energy, and its main frequency agrees with that of the

entire spectrum. A second partition appears sporadi-

cally. From the spectra (Fig. 1), two significant parti-

tions are expected.
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The 1D combining procedure outlined here detects

the two systems present in the spectra. These time series

are also quite consistent with the time series of the 2D

scheme (Fig. 2). Obviously, certain differences exist

between results of the 1D and the 2D schemes (i.e., 1800

UTC 11 April 2006), mainly because not all of the fea-

tures that are visible in the 2D spectrum are also visible

in the 1D spectrum. However, the evolution of the two

systems is very similar.

3. Wind sea–swell identification methods

In section 2, the detection of different wave systems

was done exclusively on the basis of morphological

features. In this section, environmental and physical

features are also regarded to assess the character of

their meteorological origin. Locally generated waves

growing actively under the influence of wind (wind sea)

and remotely generated waves (swell) arriving to the

measuring site are distinguished. Following Holthuijsen

(2007), wind sea waves are more irregular and short

crested, respond quickly to wind variations, and are

characterized by a rather broad spectrum, while swell

consists of rather regular long-crested waves whose

evolution is not as strongly affected by wind. A swell

spectrum is narrower, and as the wind drops or when

waves leave the generation area, their steepness reduces

sharply due to frequency-direction dispersion.

From a more practical point of view, the energy of

wind sea waves is contained at higher frequencies (i.e.,

between about 0.1 and 4 Hz) while swell waves have

lower frequencies (i.e., between 0.03 and about 0.2 Hz).

In wave modeling, wind sea is the part of the spectrum

subjected to a positive wind-input term (Bidlot 2001).

The distinction between wind sea and swell is often

not obvious. Under changing winds (both magnitude

and direction) wave systems can overlap in the frequency-

direction domain, giving origin to a rather continuous

spectrum in which the presence of two or more distinct

systems is not clearly discernible. Wave systems in these

situations are referred to as mixed sea states and are

particularly difficult (if not impossible) to detect and/or

identify by automated procedures.

It is evident that more objective and reliable identi-

fication algorithms can be constructed when the full 2D

wave spectrum and the wind speed and direction are

considered. In cases when only the 1D spectrum is avail-

able, extracting some extra information from it is also

advantageous. In the following sections, different wind

sea – swell identification methods reported in the litera-

ture are studied. Both 2D and 1D spectra are considered.

a. Wind sea–swell identification using 2D spectrum
and wind data

If 2D spectrum and wind information are available, a

straightforward step to identify wind sea and swell is to

apply a definition for wind sea. Suitably, the definition

from numerical modeling might be adopted, for which a

wind wave generation formulation must be considered.

In the wave model (e.g., WAM cycle VI; Komen et al.

1994), in particular, although the wind wave generation

mechanism actually implemented is the one given by

Janssen (1991), the identification of wind sea and swell

FIG. 4. Time series of (a) wave energy and (b) mean wave frequency (Tm21) for NDBC buoy 41013 (338269110N, 778449350W) for the

period 0000 UTC 10 Apr 2006 to 0600 UTC 12 Apr 2006 for the whole spectrum (gray thick line). For partitions calculated with Voorrips

et al. (1997) 1D scheme: first partition (continuous circle-marked line) and second partition (dashed circle-marked line). Results from this

study 1D implementation: first partition (thick continuous cross-marked line) and second partition (thick dashed cross-marked line).
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is based on the formulation of Komen et al. (1984) [Eq.

(2)]. While Janssen’s (1991) mechanism takes into ac-

count the sea state to compute the wind input, Komen

et al.’s (1984) formula simply defines a region in the 2D

spectrum for the wind input (Fig. 5):

b
Uz

cp
cos u � cð Þ . 1; ð2Þ

where Uz is the wind velocity at height z, cp is phase

speed [i.e., cp5 g/(2pf) in deep water], u is the wave

direction, c is the wind direction, g is the gravity ac-

celeration, f is the wave frequency, and b is a calibration

factor. Similar criteria based on wave age (Uz/cp) are

used by others to identify wind seas; see, for example,

Donelan et al. 1985 and Drennan et al. 2003.

The magnitude of the factor b in Eq. (2) is not irrel-

evant, as it directly affects the extent of the wind sea

area in the spectrum. A value of b # 1.3 has typically

been applied to characterize the region of pure wind sea

(Hasselmann et al. 1996; Voorrips et al. 1997; Bidlot

2001). Moreover, Hasselmann et al. (1996) consider old

wind sea systems as those having the peak within the

region where 1.3 , b # 2.0. Additionally, to identify

mixed sea states produced by a (fast) wind rotation, they

impose that either the peak parameters or the mean

parameters (frequency and direction) of a wave system

must fulfill the old wind sea criterion.

1) DISCUSSION

In practice, Eq. (2) can be applied in either one of two

ways: 1) by considering the partitioned 2D spectrum, in

which case the phase velocity and direction are those of

the peak (or mean) of the partition or 2) by not parti-

tioning the spectrum, in which case each spectral grid

point is evaluated independently by Eq. (2).

The disadvantage of applying Eq. (2) to each grid

point is that the frequency-direction area that fits the

wind sea–swell criterion (Fig. 5) does not necessarily

correspond with a wave system and the spectrum is split

even in situations in which the spectrum is composed of

only one wave system. Not surprisingly, more consistent

results in terms of wave systems are obtained if parti-

tioning is used.

2) EXAMPLE 3

The difference between applying Eq. (2) to the par-

titioned and nonpartitioned spectra is illustrated, con-

sidering 6-hourly spectra from the European Centre

for Medium-Range Weather Forecasts (ECMWF)

Meteorological Archive and Retrieval System (MARS)

archive (limited-area deterministic system WAM using

the assimilation system) at Westhinder in the southern

North Sea (51.508N, 2.508E) from 0000 UTC 26 January

2007 to 1800 UTC 31 January 2007. Note that the

ECMWF WAM model applies Eq. (2) to each frequency-

direction bin for identifying wind sea.

The ECMWF gives a continuous occurrence of swell

(Fig. 6b) with a notorious peak at 1200 UTC 27 January,

but with the support of partitioning there are two suc-

cessive swell events: one at 1200 UTC 28 January and

the second at 1200 UTC 29 January, originating from

the two wind activity events (Fig. 6a). In any case, the

ECMWF swell estimates are of larger magnitude. Also,

maxima of swell energy are not occurring at the same

time. For instance, for the first swell event, the ECMWF

identification reaches its maximum 12 h earlier than

when working with partitions. Note the evolution of the

decaying wind sea system when partitioning is used. For

example, the wind sea system present at 1200 UTC 27

January evolves from a pure wind sea into an old wind

sea, then into a mixed wind sea (due to wind rotation

from northwest to north) and finally into swell.

One can also follow the evolution of wave systems

from looking at the time series of frequency and direc-

tion (Figs. 6c,d). While the swell frequencies from the

ECMWF estimates are quite continuous and appear

rather constant, the evolution of the systems also using

partitions looks more episodic. For instance, in the swell

event of 28 January starting at 1800 UTC, low- frequency

swell waves arrive first. The swell mean frequency in-

creases progressively. The energy in the swell systems

from the two storm events decay faster (and even extin-

guish) than the ECMWF-assigned swell energy (Fig. 6b).

FIG. 5. Limit of wind sea and swell in the frequency-direction

domain according to Eq. (2) for different values of wind speed

(U10) and b 5 1.3. The wind sea area is under the curves.
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To analyze these differences, wave spectra from the

swell system of 1200 UTC 28 January are shown in Fig. 7.

Figure 7a suggests that part of the spectrum is wind sea

and part is swell, while partitioning indicates that the

spectrum is composed of a single (old wind sea) system.

There is little change in Fig. 7b with respect to Fig. 7a,

while Fig. 7e shows that some energy of the previously

old wind sea system was transferred to lower frequen-

cies forming a second (swell) system. The old wind sea

part in Fig. 7d has now (Fig. 7e) become a mixed wind

sea due to the rotating wind from 3008 over 3208 to 3508.

In Fig. 7c, the ECMWF swell part is composed of the

low-frequency wave system plus a significant part of the

higher-frequency system, while in Fig. 7f the more

natural (morphological) decomposition into two wave

systems is kept in a consistent manner.

b. Wind sea–swell identification using 1D spectrum only

A simple method often used in practice to identify

wind sea and swell, because of the sensitivity of ships to

large period waves, is to set a constant splitting frequency

or period (i.e., 10 s). Although this method might be re-

liable in zones where wind sea and swell occur markedly

separated in the frequency domain, in many circum-

stances this method is not consistent because frequency

FIG. 6. Wind and wave characteristics from the ECMWF MARS archive (WAM) at Westhinder in the southern North Sea (51.508N,

2.508E) from 0000 UTC 26 Jan 2007 to 1800 UTC 31 Jan 2007. (a) Wind speed and direction, (b) significant wave height, (c) mean wave

frequency (Tm21), and (d) mean wave direction. (b)–(d) The entire spectrum (gray thick line), the ECMWF swell estimates (thin black

line), the ECMWF wind sea estimates (dash line), of swell estimates using 2D partitioning (thin black dot-marked line), pure wind sea

estimates using 2D partitioning (white circles), old wind sea estimates using 2D partitioning (black circles), and mixed wind sea estimates

using 2D partitioning (squares).
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as such does not determine whether a wave system can be

considered wind sea or swell.

Another common practice is to split the spectrum

close to the peak frequency of the Pierson-Moskowitz

(PM) spectrum (1964):

f PM 5 0:13
g

U10
: ð3Þ

A factor of 0.8 is commonly applied to indicate the

splitting frequency ( fs 5 0.8fPM) to account for uncer-

tainties in the actual sea state or in the angular shift

between wind and waves (Earl 1984; Quentin 2002).

Wang and Hwang (2001) use a splitting frequency fs

based on wave steepness. They define the wave mean

steepness as

a f �ð Þ 5
8p

R f max

f �
f 2S fð Þdf

h i

g
R f max

f �
S fð Þdf

h i1=2
; ð4Þ

where a(f*) is the steepness function at frequency f*, S( f)

is the 1D spectrum, f is frequency, fmax is the upper-

frequency limit of the spectrum, and g is the acceleration

due to gravity. Because of the f 2 in the formula, the mean

wave steepness is more related to the higher-frequency

waves and is less affected by lower-frequency waves.

Wang and Hwang (2001) evaluated this steepness

function for the PM spectrum at different wind speeds

and found that the peak frequency of the steepness

function fm can be related to the wind speed U through

the regression equation U 5 0.379fm
21.746. The sepa-

ration frequency ( fs) was then set at the frequency

where the wave phase speed equals the wind speed: fs 5

g/2pU. To disregard the wind speed, these (the re-

gression and separation) equations were combined to

obtain an expression for the separation frequency as a

function of the peak of the steepness function:

f s 5 4:112 f mð Þ1:746: ð5Þ

Violante-Carvalho et al. (2002) proposed to fit a Joint

North Sea Wave Atmosphere Program (JONSWAP)

spectrum [Hasselmann et al. 1973; Eq. (6)] to the high-

frequency spectral components to detect the peak that

corresponds best to wind sea. For more complex situa-

tions, however, when more than two peaks are present,

they extend this criterion by two other conditions: one

looks at the wind and wave directional information and

the other looks at the equilibrium range parameter a

FIG. 7. Wave spectra from ECMWF MARS archive (WAM) at Westhinder (51.508N, 2.508E): (a), (d) at 1200 UTC 27 Jan 2007; (b), (e)

at 1800 UTC 27 Jan 2007; and (c), (f) at 0000 UTC 28 Jan 2007. (a), (b), and (c) The swell part is contoured (thick continuous line) for

ECMWF swell estimates. (d), (e), and (f) For swell estimates using 2D partitioning.
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(Phillips 1958). Fitted a values above 0.001 were con-

sidered wind sea:

S fð Þ 5 ag2ð2pÞ�4f�5 e�
5
4 f=f pð Þ�4

ge
� ðf�f pÞ=2s2 f 2

p
; ð6Þ

where S( f) is the energy spectrum; f is frequency, a is

the Phillips constant; g is the acceleration of gravity; fp is

the peak frequency; g is the peak enhancement factor;

and s is the spectral width factor, s 5 sa if f , fp, and

s 5 sb if f . fp.

Although another 1D method to consider is that of

Voorrips et al. (1997), this method uses both wave di-

rectional information and wind information and be-

comes a sort of 2D. Therefore, it will not be used further

here.

1) DISCUSSION

It should be mentioned that methods like those of

Wang and Hwang (2001) and the ‘‘non-extended ver-

sion’’ of the method of Violante-Carvalho et al. (2002)

have the advantage of disregarding wind data. Moreover,

when dealing with 1D spectra, wind data are of lower

value because the wind and wave velocity vectors cannot

be compared.

Criteria based on the PM peak might overestimate

wind sea, especially in growing wind sea conditions

where swell is also present. Consequently, the method of

Wang and Hwang (2001) is implicitly affected by the

two shortcomings mentioned above, as it implicitly

compares wind and wave velocities through a criterion

obtained from the PM spectrum.

Gilhousen and Hervey (2001) indicate that the

steepness method of Wang and Hwang (2001) overes-

timates wind sea under certain conditions. They re-

placed Eq. (5) by fs5 0.75fm and introduced an extra

mechanism similar to the one of Eq. (3) to complement

the algorithm. This approach has not been considered

further here because of the rather arbitrary decision to

use the higher of the splitting frequencies calculated

from the two criteria used.

Following the methodology of Violante-Carvalho

et al. (2002), it was found that fitting a JONSWAP

spectrum to the higher-frequency part of a wave system

helps to identify the peaks that are correlated to that

particular wave system. The first tests using this method

showed a rather good agreement compared to the 2D

scheme (section 3a). Unfortunately, the fitting crite-

rion by itself is not sufficient to decide what is wind sea

and what is swell. Therefore, a criterion related to the

magnitude of the fitting parameter g is introduced in

the next section.

2) PROPOSED 1D IDENTIFICATION ALGORITHM

In the JONSWAP formulation [Eq. (6)] the peak

enhancement factor g says that the spectrum is sharper

than the PM spectrum at the peak frequency, which is

considered to be an indication of active wave growth.

The Phillips constant a was also found to depend on

wind and wave conditions (Hasselmann et al. 1973).

However, assuming that the energy at the peak fre-

quency of a swell system cannot be higher than the value

of a PM spectrum with the same peak frequency (i.e., a

is fixed to its PM value, aPM 5 0.0081), a simple 1D

identification algorithm is set up as follows:

d the ratio (g*) between the peak energy of a wave

system and the energy of a PM spectrum at the same

peak frequency [Eq. (6) with g 5 1, f 5 fp and a 5

aPM 5 0.0081] is calculated; and
d if g* is above a threshold value (g* . 1.0), the wave

system is considered wind sea; otherwise, it is con-

sidered swell.

Note that in fact the spectrum no longer needs to be

fitted. This criterion was tested here showing good

agreement with the results of the 2D scheme. In the

following sections, two rather different situations are

considered to illustrate the operation of different iden-

tification methods.

3) EXAMPLE 4

The dataset of this example corresponds to buoy

measurements from the Gulf of Tehuantepec, on the

southern Mexican coast at the Pacific Ocean (168N,

958W), taken at about 30 km offshore (Garcı́a 2006). The

relevant feature there is a particular combination of

meteorological and wave conditions. Due to a geo-

graphical depression in the mountain range that crosses

the isthmus, a particular wind system, ‘‘Tehuanos,’’ is

formed. Tehuanos winds blow offshore, generating

fetch-limited northerly wind sea in a region where the

wave climate is to a great extent characterized by open

ocean southerly swells. As a consequence, during Te-

huanos wind events, wind sea and swell systems are very

distinct in the wave spectra both in frequency and di-

rection. The period considered here goes from 2322

UTC 3 March 2005 to 1651 UTC 5 March 2005 (Fig. 8).

The 1D wave energy spectra are shown in Fig. 9.

From Fig. 9 it is clear that these spectra can be split

conveniently (at a rather constant frequency) at the

trough of the two systems (around 0.15 Hz). Thus, the

wave systems present in the spectra are known. Three

wind sea and swell identification methods have been

applied to these spectra, namely, Wang and Hwang
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(2001) method [Eqs. (4) and (5)], the PM peak [Eq. (3)],

and the method described here (section 3b).

The separation frequencies from these methods were

plotted on top of the time series of 1D spectra. By looking

at the gray levels in Fig. 10, the wind sea and swell systems

can be clearly discerned. In these conditions, the sepa-

ration frequency according to the steepness method of

Wang and Hwang 2001 (dash line) is systematically at

higher frequencies than the splitting frequency (0.15 Hz)

which, consequently, results in swell overestimation. The

PM peak frequency (dashed–dotted line) is systemati-

cally at lower frequencies than the splitting frequency

(0.15 Hz), but it seems rather consistent. Note that using

factors lower than one would bring the separation fre-

quencies to even lower values, causing more overesti-

mation of wind sea. With the implementation given in

this study (section 3b), the separation of the systems

(continuous line) is very consistent. Actually, the parti-

tioning of these spectra results in a very clean detection

of the two main systems. Regarding the g* values of the

wave systems, factors corresponding to the swell parti-

tions are in any case lower than 1.0, while g factors cor-

responding to wind sea are above 3.

To analyze details, the spectrum at 2100 UTC 4 March

2005 is shown in Fig. 11. The separation frequencies using

these three methods are also indicated. The main fea-

tures observed in the time series are also visible in the

spectrum. According to the method of Wang and Hwang

(2001), the wind sea portion only takes part of the tail of

the actual wind sea component (dash line). The PM peak

frequency corresponding to the present wind conditions

(i.e., U10 5 13.5 m s21) is 0.1 Hz, taking part of the tail of

the swell system as wind sea (dashed–dotted line). With

the 1D scheme outlined here (section 3b), two peaks are

detected by partitioning. The limit of the two partitions

is indicated (filled diamond). The PM spectra corre-

sponding to the two main wave systems are also indi-

cated (dot line). In the case of the swell system, the peak

of the PM spectrum has a larger magnitude than the

observed swell system (g* 5 0.0306), while the peak of

the wind sea has a larger magnitude than a PM spectrum

at that peak (g* 5 14.3644). Note that using partitioning

in combination with the PM peak frequency would yield

results very similar to those obtained looking at the

value of g*, but the associated disadvantage is the need

of wind speed.

4) EXAMPLE 5

The present dataset was measured by a directional

Waverider buoy at Westhinder in the southern North Sea

(51.388N, 2.448W), where wave conditions are charac-

terized by the presence of local wind sea and occasional

swells coming from the north. Wind sea and swell were

present in the period from 0030 UTC 12 October 1997

to 1830 UTC 15 October 1997, which is a period of

moderate winds in turning wind conditions (Fig. 12).

Contrary to the previous example, the wave systems

in this case are not markedly separated. The spectra are

rather complex, and the splitting and identification

procedures become more complex as well. Moreover,

the true systems are not known. Therefore, in this case

estimates of the true systems are obtained from the 2D

scheme (section 3a). The 2D spectra were reconstructed

from spectra of energy, mean direction, and directional

spread following Kuik et al. (1988).

Time series of significant wave height of the whole

spectrum (thick gray line) and of swell estimates of the

FIG. 8. Wind conditions at the Gulf of Tehuantepec (168N,

958W) on the southern Mexican Pacific coast for the period from

2322 UTC 3 Mar 2005 to 1651 UTC 5 Mar 2005.

FIG. 9. Wave spectra obtained at the Gulf of Tehuantepec (168N,

958W) for the period from 2322 UTC 3 Mar 2005 to 1651 UTC 5

Mar 2005. Spectra are given every 30 min (gray lines).
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2D and three 1D identification methods used in the

previous example are shown in Fig. 13.

In Fig. 13 it can be seen that the results of the 1D

method given here (section 3b, continuous thick black

line) are in good agreement with the results of the 2D

scheme (section 3a, continuous circle-marked thin black

line). The method of Wang and Hwang 2001 (star-

marked dashed line) provides similar estimates in cases

in which swell is dominant and there is little or no wind

sea (period around the 0000 UTC 13 October 1997 and

period after the 1200 UTC 14 October 1997). In periods

of wind sea, this method systematically overestimates

swell. There is rather good agreement using the PM peak-

frequency method (diamond-marked dashed–dotted line),

FIG. 11. Wave spectrum from the Gulf of Tehuantepec (168N,

958W) at 2100 UTC 4 Mar 2005 and separation frequencies using

the Wang and Hwang (2001) method (thick dashed line), the 1D

wind sea–swell identification method propose in this study (black

diamond), and the frequency of the PM peak (thick dashed–dotted

line). The PM spectra corresponding to the two main local peaks

(dot lines) are also indicated.

FIG. 12. Wind conditions at Westhinder (51.388N, 2.448W) in the

southern North Sea for the period from 0030 UTC 12 Oct 1997 to

1830 UTC 15 Oct 1997.

FIG. 10. Time series of 1D energy density spectra (gray levels) obtained at the Gulf of Tehuantepec (168N,

958W) for the period from 2322 UTC 3 Mar 2005 to 1651 UTC 5 Mar 2005. And wind sea–swell separation

frequencies obtained using the Wang and Hwang (2001) method (thick dashed line), the 1D method pro-

posed in this study (thick continuous line), and the PM peak frequency (thick dashd–dotted line).
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especially in the swell-dominated period after 0000 UTC

15 October 1997, but in general this method tends to

underestimate swell in typical swell periods.

To analyze the schemes in more detail, the spectrum at

0000 UTC 15 October 1997 is shown in Fig. 14, from where

it can be seen that the steepness method splits the spec-

trum somewhere at the tail of the wind sea component,

underestimating wind sea, while the PM peak frequency

tends to be at lower frequencies than those obtained for

the 2D scheme, resulting in wind sea overestimation. The

1D scheme presented here (section 3b) splits the spec-

trum more consistently, because of the use of the parti-

tioning step. The values of g* for the two main peaks in

the present example are 0.27 and 5.52, respectively.

In general, the trends are similar to those from the

previous example.

4. Conclusions

Different spectral partitioning techniques have been

investigated, emphasizing the fact that the varied existing

methods differ mainly in the way they assess whether

partitions are significant, which implies basically the use

of different combining strategies. It was found that

the current mechanisms used for combining partitions

reported in the literature are not very robust. Moreover,

they demand the use of arbitrary parameterizations. As a

consequence, the existing spectral partitioning methods

deliver rather inconsistent output for wave systems.

The introduction of an image-processing tool based

on a 2D low-pass-filtering step aiming to reduce noise

was found to improve the robustness of the 2D parti-

tioning scheme considerably. The detection of wave

systems is more consistent, and the method is not very

sensitive to parameter value settings.

Also, a more robust partitioning scheme for 1D

spectra has been proposed. The method aims to remove

the most obvious spurious peaks. The criteria used for

this purpose proved to be sufficient to reduce the

number of partitions to a reasonable value.

Wind sea and swell can be identified from looking at

different environmental and physical characteristics of

wave systems. However, results from different methods

reported in the literature sometimes differ largely.

FIG. 13. Time series of significant wave height at Westhinder (51.388N, 2.448W) for the period from

0030 UTC 12 Oct 1997 to 1830 UTC 15 Oct 1997 and swell estimates: using the Wang and Hwang (2001)

method (star-marked dashed line), the 1D wind sea–swell identification method proposed in this study

(thick continuous black line), the PM peak frequency (dashed–dotted diamond-marked line), and the

2D scheme outlined in this study (thin continuous circle-marked line).
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For the identification of wind sea and swell using the

2D spectrum plus wind speed and direction, a wind wave

generation mechanism in combination with 2D parti-

tioning uses all available information and gives the most

consistent estimates.

Regarding the 1D wind sea–swell identification

methods, it is pointed out that the method of Wang and

Hwang (2001) used at the NDBC tends to overestimate

swell, especially during wind sea periods. The PM peak-

frequency method is more consistent but underesti-

mates swell systematically. Quite consistent results were

achieved using 1D spectra only, by looking at the ratio

(g*) between the energy at the spectral peak of a par-

tition and the energy at the peak of a PM spectrum with

the same peak frequency.

The identification of wind sea and swell both in the

2D and 1D spectra is found more consistent in combi-

nation with partitioning.
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