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Introduction

This paper describes a method for approximating the scattering of linear surface gravity waves on
water of varying depth in two dimensions. The essential difficulty in the scattering problem is the
application of the Neumann condition, representing zero normal flow, on a bed profile of general
shape. Fitz-Gerald (1976) showed that this difficulty is removed by conformally mapping the fluid
domain into a strip of uniform width in such a way that the bed transforms into a coordinate line.
The mapping therefore allows the bed condition to be satisfied exactly, but it complicates the free
surface condition by introducing a variable coefficient there. However, this coefficient is relatively
slowly-varying for steep and even discontinuous bed profiles, a feature exploited by Evans & Linton
(1994), who used a piece-wise constant approximation of the transformed free surface condition to
obtain accurate solutions in a number of test problems.

Here we take a different approach and, by analogy with the mild-slope approach familiar for
slowly-varying bed profiles in the original problem, we seek an approximate solution of the trans-
formed problem in the form of a slowly-modulating propagating wave. Optimising the use of this
approximation by means of a variational principle leads to a second order ordinary differential equa-
tion for the amplitude of the modulated wave. The differential equation can be solved numerically and
also analytically, in the form of a rapidly convergent infinite series that leads to simple explicit formu-
lae for the scattered wave amplitudes. Fitz-Gerald (1976), who used an integral equation method to
solve the transformed problem, demonstrated that the approach has wide applicability by presenting
several families of mappings covering a range of bedforms. The approach described here is even more
versatile, as small amplitude and slow variations about the topography that is transformed can be
incorporated by a straightforward extension of the theory.

Formulation and approximation

We use cartesian coordinates x and y, where y is directed vertically upwards, and we denote the bed
by y = −h(x), where it is assumed that

h(x) →

{
h0 (x → −∞),
h1 (x → ∞).

The usual hypotheses of linear wave wave theory and the removal of a harmonic time dependence with
angular frequency ω lead to equations for the spatially varying part φ(x, y) of the velocity potential
in the familiar form

φxx + φyy = 0 = 0 (−h(x) < y < 0), φy − Kφ = 0 (y = 0), φn = 0 (y = −h(x)), (1)

where φn denotes the normal derivative of φ on y = −h(x) and K = ω2/g.
We follow Fitz-Gerald (1976) by using the conformal mapping z = F (ζ), where z = x + iy and

ζ = ξ + iη, to transform the domain −∞ < x < ∞,−h(x) < y < 0 into the domain −∞ < ξ <
∞,−1 < η < 0. Writing φ(x, y) = ϕ(ξ, η), the boundary value problem (1) becomes

ϕξξ + ϕηη = 0 (−1 < η < 0), ϕη − f(ξ)ϕ = 0 (η = 0), ϕη = 0 (η = −1), (2)



in which f(ξ) = KF ′(ξ) is real-valued, positive and continuous and the final equation represents the
transformed bed condition. We assume that

f(ξ) =

{
f0 + O(eδ0|ξ|) (ξ → −∞),
f1 + O(e−δ1ξ) (ξ → ∞),

where fi = Khi and δi > 0 for i = 0, 1, which applies to a wide range of transformations.
Now with f(ξ) = fi in (2), separation of variables gives the propagating wave solutions

ϕi(ξ, η) = e±iκiξvi(η), vi(η) = c(κi) cosh κi(η + 1), c(κ) =
{∫ 0

−1
cosh2 κ(η + 1) dη

}−1/2
,

c being the normalising factor for v and κi the positive, real root of the dispersion relation

fi = κ tanh κ.

This calculation shows that the scattering problem is completed by adding the far-field conditions

ϕ(ξ, η) ∼

{
{A0e

iκ0ξ + B0e
−iκ0ξ} c(κ0) cosh κ0(η + 1) (ξ → −∞),

{A1e
−iκ1ξ + B1e

iκ1ξ} c(κ1) cosh κ1(η + 1) (ξ → ∞),
(3)

to (2), where A0 and A1 are prescribed incident wave amplitudes and B0 and B1 are the scattered
wave amplitudes that we seek. A straightforward transformation of (3) gives the corresponding far-field
conditions that apply to (1) but these are not required here.

We now suppose that f is a slowly-varying function and approximate the solution of (2) by

ϕ(ξ, η) ≈ χ(ξ)v(ξ, η), f(ξ) = κ(ξ) tanh κ(ξ), v(ξ, η) = c(κ(ξ)) cosh κ(ξ)(η + 1),

where κ(ξ) denotes the positive, real root of the local dispersion relation. We therefore approximate
the dependence of ϕ on η locally by the eigenfunction v corresponding to the local value of f .

It remains to determine χ. Now it is easily shown that the functional

L(ψ) =
1

2

∫ b

a

{∫ 0

−1
(ψ2

ξ + ψ2
η) dη − f(ξ)(ψ2)η=0

}
dξ,

is stationary at the solution of (2) (we assume that variations δψ vanish at the arbitrary locations a
and b, as we are not seeking to satisfy the far-field conditions at this stage). Thus approximations to
the stationary point of L are also approximations to solutions of (2). In the spirit of the Rayleigh-Ritz
method, we therefore set ϕ(ξ, η) ≈ ψ(ξ, η) = χ(ξ)v(ξ, η) and ensure that L is stationary for arbitrary
variations in χ (that vanish at a and b). After some manipulation, this procedure results in the
differential equation

χ′′ + {κ2 − p0(κ)f ′2}χ = 0, (4)

where p0 is a known function. The far-field conditions are satisfied exactly by the approximation from
which it follows that we require the solution of (4) for which

χ(ξ) ∼

{
A0e

iκ0ξ + B0e
−iκ0ξ (ξ → −∞),

A1e
−iκ1ξ + B1e

iκ1ξ (ξ → ∞).

An analytic solution of (4) can be determined by adapting the method given in Porter (2003).
Explicit expressions for the scattered wave amplitudes are thereby obtained in the form of infinite
series in which successive terms are determined by a recursion relation. The series converge sufficiently
rapidly that a good estimate is given by retaining only a small number of terms. Thus the simplest
approximation to the reflected wave amplitude corresponding to a wave of unit amplitude incident
from either the left or the right, |R|a say, given by taking only the leading term of the series and
neglecting the term proportional to f ′2, is

|R|a ≈ {1 + X−2}−1/2, X =

∫ ∞

−∞

(
κ′

2κ

)
exp

{
− 2iκ̂s − 2i

∫ s

0
(κ(t) − κ̂)dt

}
ds, κ̂ =

{
κ0, s < 0,
κ1, s > 0,

with κ′ = [(1 + cosh 2κ)/(2κ + sinh 2κ)]f ′.



More general topography

We suppose now that the bedform can be partitioned in the form h(x) = h(s)(x)−h(m)(x), where h(s)

is a ‘steep’ component that corresponds to a known conformal mapping, and the ‘mild’ component
h(m) ≥ 0 is slowly-varying and satisfies h(m) → 0 as |x| → ∞. The equations replacing (2) are

ϕξξ + ϕηη = 0 (−d(ξ) < η < 0), ϕη − f(ξ)ϕ = 0 (η = 0), ϕη + d′(ξ)ϕξ = 0 (η = −d(ξ)),

where y = −h(x) maps into η = −d(ξ) ≥ −1. This set of equations reduces to (1) in the case where
h(x) is differentiable if the original variables are restored, d is replaced by h and f by K.

We follow the previous approach and set

ϕ(ξ, η) ≈ χ(ξ)v(ξ, η), v(ξ, η) = c(κ, d) cosh κ(ξ) cosh κ(ξ)(η + d(ξ)), f(ξ) = κ(ξ) tanh{κ(ξ)d(ξ)},

where c again denotes the normalising factor for v and κ the positive, real root of the local dispersion
relation. Modifying the functional L by replacing the lower limit in the integral over η by −d(ξ) and
applying the Rayleigh-Ritz method again, we find in this case that χ satisfies

χ′′ +
{

κ2 − 1
2 ||w||−2d′′ − q0f

′2 − q1d
′2 − q2f

′d′
}

χ = 0,

where q0, q1 and q2 are known functions of κ and d. This equation contains (4) and the modified
mild-slope equation in the simplified form given by Porter (2003) as special cases. We note that this
approximation requires the transformed bed shape d to be a slowly-varying function and, because of
the ‘stretching’ effect of the mapping, the restriction on h(m) is relatively weak.

Results

Roseau (1976) identified a bed profile for which there is both an exact solution and a conformal
mapping, and this can be used to rigorously analyse the error in the present approximations. Figure 1
shows four examples of the Roseau bedform for different values of the ‘shoaling’ parameter β (indicating
the width of the transition between the two far-field depths), for the fixed value ǫ ≡ h1/h0 = 0.5 of the
‘steepness’ parameter. We consider the amplitude of the reflected wave corresponding to an incident
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Figure 1: Examples of the Roseau profile for different values of the shoaling parameter β, with the
depth ratio ǫ = 1

2 .

wave (from left or right) of unit amplitude for this purpose, denoting the exact value by |R|. In Figure
2(i), various boundaries in the error ||R| − |R|n|, maximised over Kh0, are shown in (β, ǫ) parameter
space, |R|n denoting the approximate solution obtained by solving (4) numerically. The error only
exceeds 0.01 when ǫ is small (corresponding to a large far-field depth ratio) and β close to unity (for
which the Roseau profile overturns). Generally, the approximation is very good. Figure 2(ii) shows
the error boundaries ||R| − |R|a|, where |R|a denotes the one-term analytic solution; the solid line
corresponds to the retention of the term proportional to f ′2 and the dashed line to the formula given
earlier when this term is neglected, an omission that makes little difference to the approximation. We
note here that the error in |R|a is more sensitive to shoaling than steepness, but overall it is remarkably
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Figure 2: Error boundaries for the Roseau profile for (i) the numerical solution of (4), (ii) the one-term
analytic approximation.

small given that it results from a succession of approximations. We remark that taking two terms in
the infinite series form of |R| gives an error distribution similar to that in Figure 2(i).

As an example of more general topography, we consider the bedform

d(ξ) =

{
1 − 1

20(1 + cos(π(ξ − σ))), |ξ − σ| ≤ 1,
1, |ξ − σ| > 1,

in the transformed plane, in conjunction with the mapping that transforms a plane slope joining
horizontal beds at depths h0 and h1 (the familiar Booij profile). Examples of the resulting bed shapes
in physical space are shown in Figure 3(i) and the corresponding numerical approximations to |R| in
Figure 3(ii), according to the scheme: (a) σ = 0 (long dash); (b) σ = 0.5 (short dash); (c) σ = 1; and
(d) σ = 1.5. The value of |R| for the unperturbed profile with d = 1 is shown as a solid line in Figure
3(ii). We note that the comparatively small adjustments (c) and (d) to the core profile result in the
most significant variations in the approximations to |R|.
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Figure 3: Perturbations about a plane sloping bed profile are shown in (i) and the corresponding
approximations to |R| in (ii). (The solid line in (ii) results from the unperturbed profile.)
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