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This paper provides strong numerical evidence for the existence of two-dimensional
trapped waves supported by a symmetrically arranged pair of submerged cylinders
with a particular form of cross-section. Wide-spacing arguments applied to single
submerged obstacles exhibiting zeros of transmission are used as the basis for seek-
ing trapped waves. The integral equation technique developed for the scattering by
arbitrary submerged obstacles in Porter (2001) is extended for this problem, and
it is shown how trapped waves correspond to the point of intersection of two inde-
pendently computed curves. Results are given for a variety of symmetrical pairs of
submerged obstacles.
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1. Introduction

Trapped water waves in two-dimensional linearized flows were first discovered by
McIver (1996), who constructed a solution in which localized time-harmonic fluid
oscillations were proved to exist in the presence of two partly immersed bodies,
each belonging to a family of cross-sections. These oscillations are called trapped
waves, since they persist for all time in the vicinity of the trapping structure without
radiating any of their energy away from the structure to infinity. As a consequence,
they therefore also represent a non-uniqueness in a corresponding forcing problem,
such as the scattering of waves by such structures.

The existence of trapped waves in certain three-dimensional wave problems involv-
ing finite periodicity in one of the horizontal directions is well established (see Evans
& Kuznetsov (1997) for an extensive review). This is because trapped waves for this
type of three-dimensional problem usually occur at frequencies lying below a ‘cut-off’
frequency, which ensures that a wave motion local to a trapping structure (if one can
be found satisfying other conditions of the problem) is certain to remain localized
for all time. However, in general no such cut-off exists for the two-dimensional water
wave problem and hence the task of finding trapped waves in this case is extremely
challenging.

McIver’s (1996) example used a so-called inverse procedure, by placing a source and
a sink of equal strength in the free surface of a fluid of infinite depth at a separation
such that the waves generated by the source–sink pair cancels at either infinity. Any
pair of streamlines of the resulting flow which isolate the two singularities can be
interpreted as the boundaries of solid surface-piercing bodies and the fluid motion
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exterior to these bodies as trapped waves. This inverse procedure has since been
used to provide further examples of two-dimensional trapped waves. Its advantage is
clear: in the construction of a prospective trapped-wave solution one automatically
ensures that the far-field vanishes, as is required. Its disadvantage is that the shape
of a trapping structure, if a suitable candidate can be found, cannot be selected a
priori.

More recently, McIver (2000) has provided an example of wave trapping by a spe-
cific pair of submerged cylinders using the inverse procedure with a combination
of submerged vertical and horizontal dipoles. However, the cylinders are only sub-
merged to a very small depth below the free surface. So far this is the only example
of a trapping structure that is entirely submerged. It is therefore interesting and
mathematically challenging to seek further examples of pairs of submerged cylinders
that can trap waves. There are limitations on the geometries that can be considered,
since Simon & Ursell (1984) proved that two-dimensional submerged obstacles in
deep water cannot support trapped waves if entirely contained between two lines
drawn at angles of 45◦ to the vertical from a single point on the free surface. In fluid
of finite depth, this angle is increased slightly to 452

3
◦. McIver’s (2000) example can

be contained between lines making angles of ca. 89.88◦ to the vertical and so cer-
tainly lies well outside the region of uniqueness of Simon & Ursell (1984), bounded
by the two lines at 45◦ to the vertical. By considering further examples, there is the
possibility of reducing the angle for which non-uniqueness occurs towards Simon &
Ursell’s 45◦ bound on uniqueness.

A different approach, and the one we adopt in this paper, to finding trapped
waves in two-dimensional water waves is motivated by use of a wide-spacing argument
applied to an identical pair of bodies which, in isolation, possess a zero of transmission
at some particular frequency. Thus, if two submerged cylinders are placed far enough
apart for neighbouring evanescent effects to be ignored, while arranging the spacing
such that phases of the reflected waves coincide in the appropriate manner, one can
envisage the trapping of waves between the two cylinders at that particular frequency.
Just such an approach has been used by Linton & Kuznetsov (1997) for an identical
pair of inclined surface-piercing plates in deep water, each of which has been shown
to have zeros of transmission (Parsons & Martin 1994), and recently by Kuznetsov
et al . (2001) for four thin vertical surface-piercing plates, based on the fact that
a pair of closely spaced vertical plates has zeros of transmission (Evans & Morris
1972). The disadvantage of adopting such an approach for seeking trapped waves is
two-fold. First, there are very few explicit solutions to wave-scattering problems and
therefore little hope of finding explicit expressions for trapped waves in problems
where the geometry is not extremely simple. Thus, trapped waves must be sought
numerically with little hope of providing a rigorous proof of their existence. Secondly,
unlike the inverse procedure first used by McIver (1996), the wave field at infinity is
not automatically zero and so this must also be confirmed numerically. This is not
an easy task, as Linton & Kuznetsov (1997) revealed, the existence of their trapped
waves corresponding to a single point at which two numerically computed curves
grazed each other only for certain precise geometries.

This paper uses the methods introduced in the companion paper, Porter (2002,
hereafter referred to as I). In I, the two-dimensional problem of reflection of small-
amplitude monochromatic waves normally incident upon an infinitely long sub-
merged cylinder of arbitrary but uniform cross-section in a fluid of either constant
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depth h or of infinite depth was considered. It was shown how highly accurate esti-
mates for the reflection coefficient could be found by formulating the problem in
terms of a first-kind integral equation for a function related to the tangential velocity
around the cylinder surface and approximating its solution using a Galerkin scheme.
Accuracy was maintained even when the cylinders were reduced to having zero cross-
section (i.e. were replaced by thin curved plates), where special test functions were
employed to incorporate the known inverse square-root singularity in the velocity at
the ends of the plate.

In particular, it was shown that several families of cylinder cross-section possessed
the property of having frequencies at which total reflection occurred. Parsons &
Martin (1994) showed that a thin flat submerged horizontal plate, if close enough
to the free surface in deep water, exhibited frequencies at which there was total
reflection of incident waves. In I, this result was extended in two directions, showing
that zeros of transmission also exist for thin plates in fluid of finite depth and for a
larger class of submerged obstacle including inclined plates, curved plates and long
thin elliptical cylinders.

The method of solution is based upon the same techniques used in I for scattering
by a single submerged cylinder. The problem for trapped waves above a symmet-
rical pair of cylinders may be reduced to a problem involving a single cylinder in
a half-space with either a Neumann or a Dirichlet condition on the plane of sym-
metry, corresponding to symmetric and antisymmetric trapped waves, respectively.
By defining an appropriate Green’s function and applying Green’s identity one can
formulate a real integral equation of the first kind for an unknown function related to
the tangential velocity around the surface of the cylinder. In addition there is a real
side condition that must also be satisfied to ensure that the wave field at infinity is
zero. The solution of the integral equation is approximated using the same Galerkin
method shown in I to be highly accurate.

The method used to locate trapped waves is based on that of Evans & Porter
(1998), who investigated embedded trapped waves in a waveguide problem, and had
a similar system to solve. There, trapped waves corresponded to the solution of a
real homogeneous system of equations subject to a real constraint. They showed
that the trapped mode could be interpreted as the intersection of two independently
computed curves, providing compelling numerical evidence for the existence of their
trapped wave.

It turns out that the same technique is successful when applied to the present prob-
lem. That is, trapped waves computed for pairs of submerged cylinders correspond to
the intersection of two independently computed curves. While being short of a rigor-
ous proof of their existence (as provided, for example, by McIver (1996)), the numer-
ical evidence presented here for the existence of trapped waves is extremely strong.

The results obtained from the present work also agree with those computed inde-
pendently by C. M. Linton (1998, personal communication) for a pair of thin hor-
izontal plates in deep water using the hypersingular integral equation approach of
Parsons & Martin (1992).

2. Formulation and solution

As in I, we shall develop the formulation for the more complicated case of a pair
of cylinders having non-zero cross-section, concentrating on the case of finite depth.
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Figure 1. A symmetrical pair of submerged cylinders in fluid of constant depth, h.

Later in this section the changes required for cylinders in a fluid of infinite depth are
outlined.

(a) Statement of problem

The problem is two dimensional and we work with Cartesian coordinates (x, y).
These are arranged with y measured vertically downwards, y = 0 coinciding with
the undisturbed free surface and with the fluid bottom at y = h. The fluid occupies
the region D+ ∪ D−, where D+ = {x > 0, 0 < y < h}\V+ and D− = {x � 0, 0 <
y < h}\V−, as shown in figure 1.

A pair of cylinders of cross-section V± is placed symmetrically about the line
x = 0. The boundary of the cylinder in x > 0 and x < 0 is given by the curves C+
and C−, respectively, described parametrically by (x, y) = (±X(θ), Y (θ)) ∈ C± for
0 � θ � 2π, where θ is measured anticlockwise from the downward vertical from
the interior points (c, d) of the cylinder in x > 0. We shall later employ a different
parametrization more suitable for symmetric pairs of thin plates.

Under the assumptions of linearized water wave theory in two-dimensions, there
exists a velocity potential Φ(x, y, t) which, for time-periodic motion of angular fre-
quency ω, can be written as

Φ(x, y, t) = Re{φ(x, y)e−iωt},

and φ satisfies

∇2φ ≡ φxx + φyy = 0, in D+ ∪ D−, (2.1)
φy + Kφ = 0, on y = 0, −∞ < x < ∞, (2.2)

with K = ω2/g (g is acceleration due to gravity),

φy = 0, on y = h. (2.3)

In a fluid of infinite depth, (2.3) is replaced by

φ, ∇φ → 0, as y → ∞.

Also,
φn = 0, on (x, y) ∈ C+ ∪ C−, (2.4)

the subscript ‘n’ denoting the normal derivative from D± into C±. For trapped waves,
there are no incoming or outgoing waves at infinity, so that

φ → 0, as |x| → ∞. (2.5)
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On account of the symmetry in the geometry about x = 0, we may consider sym-
metric and antisymmetric motions independently, defined by the potentials φs,a(x, y)
satisfying (2.1)–(2.5) and

φs,a(x, y) = ±φs,a(−x, y), (2.6)

where the superscript ‘s’ refers to the upper sign and superscript ‘a’ refers to the
lower sign. Thus, we may restrict attention to the semi-infinite domain D ≡ D+
involving just one cylinder by imposing the boundary conditions

∂φs

∂x
= 0, φa = 0, on x = 0, (2.7)

and recovering the wave field in D− from (2.6). The no-flow condition (2.4) is now
imposed only on the cylinder boundary C+ ≡ C.

Finally, since φ satisfies Laplace’s equation with homogeneous boundary condi-
tions, we may take φ, and therefore φs,a, to be real without any loss of generality.

(b) Wide spacing

Before developing an exact formulation of the problem defined above we first use
the so-called wide-spacing argument, described briefly in § 1, to motivate the search
for trapped waves and to provide approximations to the wavenumber and spacing at
which they may be expected to occur. First, consider the problem in I: the scattering
of incident waves by a single submerged obstacle centred on the line x = 0. The
velocity potential for this problem, φscat, say, as x → ∞ due to a wave of wavenumber
k incident from x = ∞ is given by

φscat(x, y) ∼ (e−ikx + Reikx)d(y), (2.8)

where R is the reflection coefficient, d(y) is a function dependent upon the depth of
the fluid and k is related to frequency through the dispersion relation

K = ω2/g = k tanh kh

(note k = K in infinite depth). For certain submerged obstacles, it was shown that
there exists a wavenumber k = k̃, say, for which |R| = 1 so that R is expressible in
terms of its phase, 2σ, by writing

R = e2iσ.

Now place a second cylinder symmetrically about a plane x = c̃ and centred on
x = 2c̃, where c̃ � 1 so that evanescent modes from wave interactions at each obstacle
may be neglected. By arranging the spacing 2c̃ so that the phase of the reflected
wave matches correctly at each obstacle, a wave of wavenumber k = k̃ travelling
between the obstacles will make permanent reflections and therefore be trapped. As
previously mentioned, we may consider trapped waves that are either symmetric
(φs) or antisymmetric (φa) about the plane of symmetry between them. Thus, the
approximate condition for symmetric trapped waves is given by

∂

∂x
φscat(c̃, y) = 0,
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and for antisymmetric trapped waves

φscat(c̃, y) = 0,

where φscat assumes its asymptotic form given by (2.8). These two conditions imply
the relations

σ = nπ + k̃c̃, n ∈ Z (symmetric modes),

σ = (n + 1
2)π + k̃c̃, n ∈ Z (antisymmetric modes),

which provide approximations to the wavenumber and spacings between pairs of
cylinders for trapped waves in terms of the wavenumber and phase of the reflection
coefficient at which total reflection occurs.

The argument described above is heuristic and gives approximations to trapped-
wave parameters. Hereafter we formulate the problem exactly.

(c) Formulation of integral equations: finite depth

The notation that follows is defined in § 2 of I. We seek the real potential φ ≡ φs,a

satisfying (2.1)–(2.5) in x > 0 with (2.7). To do this, we define the Green’s functions

Gs,a(x, y | x0, y0) = Re{G(x, y | x0, y0) ± G(−x, y | x0, y0)},

where G is defined in (2.13) in I, for the symmetric and antisymmetric problems,
respectively, and satisfying

∂

∂x
Gs(0, y | x0, y0) = 0, Ga(0, y | x0, y0) = 0.

Thus, for x, x0 � 0,

Gs,a(x, y | x0, y0) =
ψ0(y)ψ0(y0)

2kh
(sin k|x − x0| ± sin k(x + x0))

+
∞∑

m=1

ψm(y)ψm(y0)
2kmh

(e−km|x−x0| ± e−km(x+x0)), (2.9)

with superscripts ‘s’ and ‘a’ corresponding to upper and lower signs, respectively.
Here we have used km to denote the real positive roots of K = −km tan kmh, m � 1,
with k0 = −ik and

ψm(y) = N−1/2
m cos km(h − y), Nm = 1

2(1 + sin(2kmh)/(2kmh)).

The Green’s functions defined in (2.9) have a standing-wave behaviour at infinity
(given by the first term in (2.9)) and the use of Gs,a in Green’s identity will not
automatically ensure that φs,a → 0 as x → ∞. The vanishing of the far field at infinity
will require a further condition to be placed on φs,a which cancels the standing-wave
contributions from Gs,a at infinity.

Applying Green’s identity (eqn (2.15) in I) to φ ≡ φs,a and G ≡ Gs,a in turn on
the domain D′ : {0 < x < X, 0 < y < h}\V+, then taking the limit X → ∞ by
means of (2.5), we find that

φs,a(x0, y0) = −
∫

C

φs,a(x, y)
∂

∂n
Gs,a(x, y | x0, y0) ds, (x0, y0) ∈ D. (2.10)
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Taking the limit x0 → ∞, using (2.5) and (2.9), shows that the potential on the
cylinder must also satisfy the condition

0 =
∫

C

φs,a(x, y)
∂

∂n

(
ψ0(y)

{
cos kx
sin kx

})
ds, (2.11)

where the upper (respectively, lower) entry in the braces refers to the symmetric
(respectively, antisymmetric) problem.

Hereafter, we follow the method used in I. It is a straightforward matter to confirm
that

∂2

∂n0∂n
Gs,a(x, y | x0, y0) = − ∂2

∂s0∂s
Hs,a(x, y | x0, y0), (2.12)

for (x, y) 	= (x0, y0), where

Hs,a(x, y | x0, y0) =
χ0(y)χ0(y0)

2kh
(sin k|x − x0| ∓ sin k(x + x0))

+
∞∑

m=1

χm(y)χm(y0)
2kmh

(e−km|x−x0| ∓ e−km(x+x0)), (2.13)

using the relations (2.16) in I, where χm(y) are defined by

χm(y) = N−1/2
m sin km(h − y), m = 0, 1, . . .

(see eqn (2.15) in I). Also, the stream function ψs,a(x, y) is related via the Cauchy–
Riemann equations to φs,a(x, y) using (2.16) in I by

∂

∂n
φs,a(x, y) = − ∂

∂s
ψs,a(x, y). (2.14)

First, taking the normal derivative ∂/∂n0 at the point (x0, y0) in (2.10), substituting
from (2.12) and (2.13) and integrating with respect to s0 gives

ψs,a(x0, y0) = −
∫

C

φs,a(x, y)
∂

∂s
Hs,a(x, y | x0, y0) ds, (x0, y0) ∈ D.

Then integration by parts transfers the tangential derivative from Hs,a to φs,a to
give ∫

C

Hs,a(x, y | x0, y0)
∂

∂s
φs,a(x, y) ds = ψs,a(x0, y0), (x0, y0) ∈ D, (2.15)

since the function φs,a is continuous on C. Moving the point (x0, y0) onto C gives∫
C

Hs,a(x, y | x0, y0)
∂

∂s
φs,a(x, y) ds = ψs,a

C , (x0, y0) ∈ C, (2.16)

where ψs,a
C is the constant value of the stream function on the cylinder boundary C.

As in I (cf. eqn (3.11)), we introduce the parametrization of the cylinder surface at
this point by writing

qs,a(θ) =
[
X ′(θ)

∂

∂x
+ Y ′(θ)

∂

∂y

]
φs,a(X(θ), Y (θ)), 0 � θ < 2π,
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which is related to the tangential fluid velocity on the surface of the cylinder, and
employ the shorthand notation

Hs,a(θ | θ0) ≡ Hs,a(X(θ), Y (θ) | X(θ0), Y (θ0)), 0 � θ, θ0 < 2π.

Then (2.16) can be written as the equation

(Ks,aqs,a)(θ0) = ψs,a
C (2.17)

in L2(0, 2π), where

(Ks,aq)(θ0) =
∫ 2π

0
q(θ)Hs,a(θ | θ0) dθ. (2.18)

We also require that qs,a(θ) be continuous (qs,a(2π) = qs,a(0)) and impose continuity
of φs,a on C, which can be written as

(qs,a, 1) = 0, (2.19)

where the inner product notation

(u, v) =
∫ 2π

0
u(θ)v(θ) dθ (2.20)

for real elements u, v ∈ L2(0, 2π) has been used.
Finally, we return to the supplementary condition that the far field vanishes at

large distances, by transferring from normal derivatives to tangential derivatives in
(2.11) to give

0 =
∫

C

φs,a(x, y)
∂

∂s

(
iχ0(y)

{
sin kx
cos kx

})
ds.

Integrating by parts and employing the parametrization in terms of θ gives

0 = (qs,a, f s,a) ≡
∫ 2π

0
qs,a(θ)f s,a(θ) dθ, (2.21)

where we have defined the (real) functions

f s(θ) = iχ0(Y (θ)) sin kX(θ), fa(θ) = iχ0(Y (θ)) cos kX(θ). (2.22)

Trapped waves therefore correspond to non-trivial solutions of (2.17) subject to (2.19)
and (2.21).

(d) Infinite depth

We refer the reader to § 5 of I in which modifications were made in the scattering
problem in finite depth to consider the case of infinite depth. The Green’s functions
appropriate to the symmetric and antisymmetric problems are defined by

Gs,a
∞ (x, y | x0, y0) = Re{G∞(x, y | x0, y0) ± G∞(−x, y | x0, y0)},

where G∞ is given in I, and leads to

Gs,a
∞ (x, y | x0, y0) = − 1

2π

{
log

(
r0

r1

)
± log

(
r2

r3

)}

− 1
π

−
∫ ∞

0

e−ν(y+y0)

K − ν
{cos ν(x − x0) ± cos ν(x + x0)} dν. (2.23)
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The integral in the above expression is Cauchy principal-valued and r2
0 = (x−x0)2 +

(y−y0)2, r2
1 = (x−x0)2+(y+y0)2 as in eqn (5.1) in I, while r2

2 = (x+x0)2+(y−y0)2,
r2
3 = (x + x0)2 + (y + y0)2. Also, the far-field behaviour of the Green’s functions is

given by the standing-wave behaviour

Gs,a
∞ (x, y | x0, y0) ∼ −e−K(y+y0){sin K|x − x0| ± sin K(x + x0)}, |x − x0| → ∞,

which can be found by indenting the integral around the pole at ν = K in (2.23). In
accordance with the method used in finite depth, Hs,a

∞ is defined by

∂2

∂n0∂n
Gs,a

∞ (x, y | x0, y0) = − ∂2

∂s0∂s
Hs,a

∞ (x, y | x0, y0),

giving

Hs,a
∞ (x, y | x0, y0) = − 1

2π
{log(r0r1) ∓ log(r2r3)}

+
1
π

−
∫ ∞

0

e−ν(y+y0)

K − ν
{cos ν(x − x0) ∓ cos ν(x + x0)} dν,

which can be confirmed using eqns (2.14) and (2.16) from I with m = 0.
The development of the formulation described previously for the case of finite

depth is unchanged in the case of infinite depth, apart from a slightly different far-
field behaviour. It turns out that trapped waves in infinite depth require (2.17) to
be satisfied with Hs,a

∞ replacing Hs,a in the definition of (2.18), subject to (2.19) and
such that (2.21) is also satisfied where, in this case, the functions f s,a defined by
(2.22) are replaced by

f s(θ) = e−KY (θ) sin kX(θ), fa(θ) = e−KY (θ) cos kX(θ).

(e) Thin plates

The changes required to formulate the problem for thin plates are similar to those
described in I. Briefly, the curve C is replaced by a line L parametrized by (x, y) =
(X(t), Y (t)), −1 � t � 1. The integral operator in (2.18) is replaced by

(Ks,a)q(t0) =
∫ 1

−1
q(t)Hs,a(t | t0) dt,

on L2(−1, 1), where Hs,a(t | t0) = Hs,a(X(t), Y (t) | X(t0), Y (t0)) and

qs,a(t) = σ(t)[φs,a
s (X(t), Y (t))]L,

the square brackets indicating the jump in φs across the plate L, and σ2(t) =
(X ′(t))2 + (Y ′(t))2. The definition of the inner product is replaced by

(u, v) =
∫ 1

−1
u(t)v(t) dt (2.24)

for real functions u, v ∈ L2(−1, 1). The function qs,a(t) has singular inverse square-
root behaviour at t = ±1 (i.e. at the ends of the plate). We simply replace Hs,a by
Hs,a

∞ in the above for infinite depth.
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3. Approximation and numerical method

In this section we initially suppress the superscript ‘s,a’ from the various quantities.
As in I, we approximate the unknown function q by writing

q ≈ q̃ =
2N∑
n=1

anun (3.1)

in terms of the set of functions {un}, n = 0, 1, . . . , which are real and satisfy

(un, 1) = 0, n = 1, . . . , 2N, (3.2)

ensuring that the approximation to q satisfies (2.19). Also, u0 is chosen such that
(u0, 1) 	= 0. The set of real coefficients {an}, n = 1, . . . , 2N , and the value of ψC are
determined by solving

(Kq̃ − ψC , um) = 0, m = 0, 1, 2, . . . , 2N,

a process which characterizes Galerkin’s method. Substitution of (3.1) therefore
results in the system of real equations

2N∑
n=1

anKmn = 0, m = 1, 2, . . . , 2N, (3.3)

on account of (3.2) with the m = 0 equation giving

2N∑
n=1

anK0n = (u0, 1)ψC , (3.4)

which determines ψC in terms of the coefficients {an} defined by (3.3). Here, we have
written

Kmn = (Kun, um). (3.5)

Numerical approximations to trapped-wave solutions are provided by the non-trivial
solutions to (3.3), which must also satisfy the supplementary condition (2.21). After
use of the approximation (3.1), this condition becomes

S ≡
2N∑
n=1

an(un, f) = 0. (3.6)

The set of functions, {un}, introduced in I are unchanged. Thus, for submerged
cylinders having a smooth boundary, the Fourier series is appropriate;

u2n(θ) = cos nθ, u2n−1(θ) = sin nθ, for n = 1, 2, . . . , (3.7)

and u0 = 1
2 , each function being continuous, real, periodic and satisfying (3.2) for

n � 1 as required. If the submerged obstacle is a thin plate, weighted orthogonal
Chebychev polynomials are used, to account for the singularity at the ends of the
plate. Thus,

un(t) = (1 − t2)−1/2Tn(t), −1 < t < 1, n = 0, 1, 2, . . . , (3.8)

such that (u0, 1) = π while satisfying (3.2) for n � 1.
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We give brief details about the procedure needed to compute Kmn in (3.5), firstly
in the case of finite depth and described for a cylinder with non-zero cross-section.
From (3.5) and the definition of the integral operator in (2.18) with (2.13) we have

Ks,a
mn = K(w)

mn + K(e)
mn ± 1

2kh
(F s

nF a
m + F a

nF s
m) ∓

∞∑
r=1

GnrGmr

2knh
,

where the superscript ‘s’ (respectively, ‘a’) refers to the upper (respectively, lower)
sign. Here, F s,a

n = (un, f s,a),

Gnr =
∫ 2π

0
un(θ)χr(Y (θ))e(−krX(θ)) dθ,

which, since kr ∼ rπ as r → ∞, tend to zero rapidly as r increases, while

K(w)
mn =

1
2kh

∫ 2π

0
um(θ0)χ0(Y (θ0))

∫ 2π

0
un(θ)χ0(Y (θ)) sin k|X(θ) − X(θ0)| dθ dθ0

(3.9)
and

K(e)
mn =

∫ 2π

0
um(θ0)

∫ 2π

0
un(θ)

∞∑
r=1

χr(Y (θ))χr(Y (θ0))
2krh

e−kr|X(θ)−X(θ0)| dθ dθ0.

(3.10)
Finally, the factors F s,a

n are precisely those needed for computing S. Suppressing
superscripts ‘s’ and ‘a’, (3.6) is

S ≡
2N∑
n=1

anFn = 0. (3.11)

In (3.10), K
(e)
mn is precisely the same as in I, eqn (4.10) and its computation is

described in detail in I. There are no difficulties in computing other terms needed
for Ks,a

mn.
In infinite depth, there are no numerical difficulties in addition to those already

discussed in I. The kernel, Hs,a
∞ can be treated numerically by dividing into four

parts, such that
Ks,a

mn = K(s)
mn + K(r)

mn ± (K(s′)
mn + K(r′)

mn )

where K
(s)
mn and K

(r)
mn are precisely those defined in I, eqn (5.7), and

K(s′)
mn = − 1

2π

∫ 2π

0
um(θ0)

∫ 2π

0
un(θ) log(r2r3) dθ dθ0,

K(r′)
mn = − 1

π

∫ 2π

0
um(θ0)

∫ 2π

0
un(θ)

×
[
−
∫ ∞

0

e−ν(Y (θ)+Y (θ0))

K − ν
cos ν(X(θ) + X(θ0)) dν

]
dθ dθ0.

The computation of K
(r)
mn and K

(r′)
mn is aided by the expansion of the principal-value

integral described in Yu & Ursell (1961) and written explicitly in eqn (5.4) in I for
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Table 1. A selection of numerical results found by C. M. Linton (1998, personal
communication) for trapped waves supported by a pair of submerged horizontal plates

d/a Ka c/a

0.05 0.393 1.621
0.1 0.620 1.590
0.1 0.618 6.707
0.15 0.717 1.717
0.2 0.379 4.115
0.2 0.701 2.008
0.2 0.671 6.816

the former of these two elements. There is no difficulty computing either of these
elements, nor K

(s′)
mn ; the only element over which care needs to be taken is K

(s)
mn, and

this process is described in detail in § 5 of I.
All integrals are computed numerically using ten-point Gauss–Legendre quadra-

ture with 100 evaluations of the integrand. This is usually sufficient to claim eight-
figure accuracy in the various elements being computed.

4. Results

At the end of § 1 it was mentioned briefly that trapped-wave results have already
been obtained for thin submerged horizontal plates by C. M. Linton (1998, personal
communication) using the hypersingular integral equation approach of Parsons &
Martin (1994). However, Linton’s method did not establish conclusive numerical
evidence for the existence of trapped waves, since they correspond to a single point
at which two numerically generated curves met one another tangentially only for
precise geometrical configurations. Numerical inaccuracies meant that the curves
never actually touched, but got closer as the numerical scheme increased in accuracy.
A selection of Linton’s results are given in table 1. These results have been confirmed
using the present method.

The submerged obstacles used in the present paper were given in I. We use a pair
of elliptical cylinders and a pair of flat inclined plates, the obstacle in x > 0 described
parametrically by

(i) elliptical cylinder: X(θ) = c + a sin θ, Y (θ) = d + b cos θ, 0 � θ < 2π,

(ii) flat inclined plate: X(t) = c + at cos δ, Y (t) = d + a(1 + t) sin δ, −1 � t � 1.

Clearly, we must have c/a > 1 for there to be a gap between the submerged pair of
obstacles.

We now describe the method for determining trapped waves, which we base on the
method used by Evans & Porter (1998) for a similar problem where trapped modes
embedded in the continuous spectrum were determined for a circular cylinder in a
waveguide.

We are required to seek non-trivial solutions of (3.3) which simultaneously satisfy
(3.6). The procedure we adopt is as follows. For a particular chosen pair of submerged
obstacles of fixed dimensions, the non-trivial solutions of (3.3) are determined by
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Figure 2. Curves of λ(K) = 0 and S̃ = 0 in (Ka, c/a) parameter space for a pair
of thin horizontal flat plates in infinite depth with a/d = 5.

locating zeros of the real eigenvalues of the matrix K of elements Kmn in (3.5).
Provided a suitable set of parameters is chosen, this procedure results in a curve
of the variation of non-dimensional frequency Ka as a function of the spacing c/a
on which (3.3) has non-trivial solutions. This curve is labelled as λ(K) = 0 in the
example shown in figure 2. A second curve generated independently of this first
curve is labelled S̃ = 0 in figure 2 and represents the vanishing of the real quantity
S̃, defined to be

S̃ =
2N∑
n=1

ãn(un, fn).

Here, ãn, n = 1, . . . , 2N , are elements of the eigenvector corresponding to the smallest
(real) eigenvalue of the matrix K. At the point where the two curves cross, the value
of the smallest eigenvalue is zero and so an = ãn. Therefore the point of intersection of
the two curves corresponds to a trapped wave and its location in (Ka, c/a) space gives
the precise frequency and spacing at which the trapped wave occurs. The procedure
described above is numerically robust, since the curves are computed independently
of one another and lack of accuracy in the approximation and/or numerical rounding
errors do not result in the crossing point being lost.

In figure 2, curves of λ(K) = 0 and S̃ = 0 are shown for a pair of submerged
plates of length a/d = 5 in a fluid of infinite depth. The precise crossing point is
at (Ka, c/a) = (0.701 378, 2.007 460) in close agreement with values computed by
Linton in table 1.

A demonstration of the accuracy of the results is given in table 2, where two
examples are chosen to test the method: a pair of thin horizontal plates of length
a/d = 10 in infinite depth and a pair of long thin elliptical cylinders, again of
length a/d = 10, and with width b/a = 0.02 and submergence depth d/h = 10.
These two examples use sets of functions un defined by (3.8) and (3.7), respectively.
Convergence for the thin horizontal plate is excellent with six-figure accuracy in
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values of Ka and spacing, c/a, being reached with only ten terms in the expansion.
The example involving the thin elliptical cylinders requires a truncation size of 16 to
reach a similar accuracy due to the fact that Fourier series are being used to model
large localized peaks in tangential velocities at the two high-curvature ends of the
cylinder cross-section. Notice that the results for the horizontal plate with a/d = 10
are in agreement with Linton’s results in table 1. A value of 2N = 16 was used for
producing the results in the remainder of the paper.

The task of actually finding examples of submerged obstacles that support trapped
waves is not trivial. There are several parameters which can be varied and trapped
waves only exist for specific configurations at specific frequencies. To assist, we use
the results of the wide-spacing argument described in § 2. These give us approxi-
mate values of Ka and c/a for a given pair of cylinders using information from the
scattering by a single cylinder which have zeros of transmission.

To demonstrate how good the wide-spacing approximations are, notice the striking
similarity between the curves shown in parts (a) and (b) of figure 3. Figure 3a shows
approximate values K̃a and c̃/a predicted from wide spacing, while figure 3b shows
the ‘exact’ values of Ka and c/a computed for a range of submerged obstacle pairings.
Each of the curves labelled (i), (ii) and (iii) represents a family of obstacle pairing, all
in infinite depth. Thus (i) is for a horizontal plate, (ii) and (iii) for an elliptical cross-
section of aspect ratio b/a = 0.08 and 0.16, respectively. Each point on the curves
represents the values of Ka and c/a at which trapped waves exist for a particular
value of obstacle length, a/d, and the curve therefore shows the locus in (Ka, c/a)
parameter space of trapped-wave results as a/d varies.

Each curve is divided into solid and dotted sections. The point at which they meet
indicates that the minimum value of a/d has been reached on that particular curve.
In figure 3a, b, integer values of a/d are also marked against the open squares on the
curves with plus signs denoting sub-intervals of 0.1 in a/d.

For each submerged obstacle pairing, there are two sets of curves shown in fig-
ure 3a, b. Those for smaller values of c/a correspond to symmetric trapped waves,
while the set of curves to the right of the figures correspond to antisymmetric trapped
waves. By increasing the separation, further trapped waves can be found alternat-
ing between symmetric and antisymmetric modes as c/a increases. Also, the wide-
spacing results show better agreement as the separation, c/a, is increased, as might
be expected. The largest discrepancy between the wide-spacing approximation and
computed results is for smaller values of c/a. For example, while wide spacing predicts
that trapped waves exist for a/d � 4.48 in the case of a horizontal plate (curve (i)),
corresponding to plates that have zeros of transmission, the ‘exact’ results show that
there are, in fact, trapped waves for a/d � 4.32. In contrast, for the first antisym-
metric mode, trapped waves fail to exist for a/d � 4.53. Thus, although there is a
clear link between the trapped waves being investigated here and zeros of transmis-
sion for individual submerged obstacles, it has been shown that the property of total
reflection is neither necessary nor sufficient for the existence of pairs of submerged
trapping obstacles.

A similar set of results is presented in figure 4, this time showing the effect of the
depth of the fluid on the existence of trapped waves and the values of Ka and c/a for
which they occur. As in the previous example, the curves labelled (i), (ii) and (iii) are
for a flat horizontal plate, and elliptical cylinders with aspect ratios b/a = 0.08 and
0.16, respectively, and with the lengths fixed at a/d = 5. Wide-spacing results are
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Figure 3. The locus of trapped waves in (Ka, c/a) parameter space as the length a/d of the pair
of submerged ellipses is varied: (a) as predicted by wide-spacing arguments; and (b) computed
values ((i) b/a = 0 (flat plate), (ii) b/a = 0.08, (iii) b/a = 0.16). Integer values of a/d are labelled
against open squares, and the plus signs denote intervals of 0.1.

used as initial guesses, and are readily available from the computations performed
in I. The end points of the curves in figure 4 marked by open squares are results
for infinite depth and each plus sign along the curve from these points represents
an increase in depth d/h of 0.025. As before, the junction of the solid and dotted
sections of the curve indicates where d/h has reached its maximum for that particular
obstacle pairing. For example, symmetric trapped waves exist for a horizontal flat
plate provided the depth is d/h � 0.121. Also, the curves for smaller (respectively,
larger) values of c/a correspond to symmetric (respectively, antisymmetric) trapped
waves, and further symmetric and antisymmetric trapped waves also exist as the
spacing c/a increases (not shown in figure 4).
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Table 2. Convergence of numerical scheme for two cases: (i) a pair of horizontal
plates in infinite depth, and (ii) a pair of thin ellipses in finite depth

horizontal plate in infinite thin ellipse in finite depth:
depth: a/d = 10 a/d = 10, b/a = 0.02, d/h = 0.1

︷ ︸︸ ︷ ︷ ︸︸ ︷

2N Ka c/a Ka c/a

2 0.643 847 1.727 608 — —
4 0.619 802 1.593 672 0.541 138 1.506 397
6 0.619 874 1.589 583 0.573 134 1.241 194
8 0.619 874 1.589 577 0.526 908 1.291 444

10 0.619 873 1.589 578 0.526 695 1.284 989
12 0.526 295 1.285 454
14 0.526 298 1.285 420
16 0.526 298 1.285 420
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(ii)
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Figure 4. The locus of trapped waves in (Ka, c/a) parameter space as the depth d/h of the fluid
is varied for a pair of submerged ellipses length a/d = 5: (i) b/a = 0 (flat plate), (ii) b/a = 0.08,
(iii) b/a = 0.16. Infinite-depth results are marked with open circles and intervals of 0.025 in d/h
are marked by plus signs.

Finally, in figure 5 curves show the variation of Ka and c/a at which trapped
waves occur with the angle of inclination, δ, for a flat plate of length (i) a/d = 5,
(ii) a/d = 7.5 and (iii) a/d = 10. As in the previous two examples, use is made of
the computations performed in I to provide approximations to trapped waves using
the wide-spacing expressions of § 2. The endpoints of each curve (open circles) are
for δ = 0◦ and each plus sign marked along the curve represents an increase of 1◦ up
to the point at which solid and dotted sections of the curve meet, at which point the
trapped wave ceases to exist. Figure 5 shows that longer plates can be inclined at
a greater angle before the trapped wave ceases to exist, although the values of Ka
and c/a at which this happens are similar for all three plate lengths considered.
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Figure 5. The locus of trapped waves in (Ka, c/a) parameter space as the angle of inclination, δ,
of a pair of flat plates in infinite depth for plate lengths: (i) a/d = 5, (ii) a/d = 7.5, (iii) a/d = 10.
Points δ = 0◦ results are marked with open circles and intervals of 1◦ in δ are marked by plus
signs.

5. Conclusions

The methods introduced in Porter (2002) (referred to in the text as I) for the scat-
tering of waves by submerged cylinders has been used to investigate trapped waves
above pairs of submerged cylinders. The motivation for seeking these trapped modes
has come from the fact that there are a number of families of submerged obstacle for
which zeros of transmission exist at particular frequencies. A wide-spacing approx-
imation to wave trapping argues that two such obstacles, arranged symmetrically
about a vertical plane and placed far enough apart, will trap a wave of this fre-
quency between the obstacles, as the wave makes permanent reflections from each
obstacle. However, small evanescent effects will always need to be included and so
a full formulation of the problem is developed based on the methods in I. Trapped
waves are shown to correspond to two real conditions being met simultaneously.
These are shown numerically to correspond to the point at which two numerically
generated curves intersect one another. The existence of trapped waves is convincing,
since the existence of the crossing point is unaltered by either numerical rounding
errors or the accuracy of the approximation used. The Galerkin method used in I has
been adapted for the case here and equally impressive numerical results have been
reported. Using this method a variety of wave-trapping configurations have been
found.

Simon & Ursell (1984) showed that if submerged obstacles are contained entirely
within two straight lines drawn at 45◦ to the vertical from a single point on the free
surface, then no trapped waves could exist. In this paper we have provided examples
of trapped waves supported by totally submerged obstacles. For each configuration
two straight lines symmetrical about the vertical can be drawn from a point on the
free surface enclosing the trapping structure for which the angle, α, of the lines with
respect to the vertical is a minimum. It is interesting to see how close this angle can be
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made to the figure of 45◦ derived in Simon & Ursell (1984). Although only a limited
set of results has been considered in this paper, the smallest angle beneath which
the entire trapping structure can be contained is approximately α = 83.3◦, found for
a symmetric pair of inclined plates of length a/d = 10 and inclined at an angle of
δ = 5.7◦ to the horizontal. It is quite possible that with further experimentation, the
figure of 83.3◦ could be reduced further.

The author thanks C. M. Linton for giving permission to reproduce his results for trapping by
submerged horizontal plates.
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