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[1] In recent years, particular efforts have been made to derive wind fields over the
oceans from synthetic aperture radar (SAR) images. In contrast with the scatterometer, the
SAR has a higher spatial resolution and therefore has the potential to provide higher
resolution wind information. Since there are at least two geophysical parameters (wind
speed and wind direction) modulating the single SAR backscatter measurements, the
inversion of wind fields from SAR observations has an inherent problem of
underdetermination. Moreover, this modulation is highly nonlinear, further complicating
the inversion. Lorenc [1986] presented a general statistical approach to solve inversion
problems (including underdetermined problems) in meteorological analysis. We propose a
SAR wind retrieval method based on this general approach. This simplified method
combines the SAR information with some background information coming from high-
resolution limited area model to retrieve the most probable wind vector, assuming that all
sources of information contain errors and that these are well characterized. We then
evaluate two different SAR wind retrieval methods. The first one is commonly used by the
SAR community and is based on a combination of a wind streak detection algorithm (wind
direction retrieval) and a C band model inversion (wind speed retrieval). The second one is
the new method we propose, based on the general statistical approach. We show the
potential problems and limitations of using any of these methods and show how the
second method can potentially contribute to a significant improvement in SAR wind
retrieval. The new method prepares the ground for the assimilation of SAR data in high-
resolution numerical weather prediction models. INDEX TERMS: 3220 Mathematical

Geophysics: Nonlinear dynamics; 3260 Mathematical Geophysics: Inverse theory; 3329 Meteorology and

Atmospheric Dynamics: Mesoscale meteorology; 3360 Meteorology and Atmospheric Dynamics: Remote

sensing; KEYWORDS: SAR, inversion theory, nonlinearity, underdetermination problem, mesoscale winds

1. Introduction

[2] The synthetic aperture radar (SAR) backscatter inten-
sities (s�) and their statistical properties contain quantitative
information about the state of the sea surface roughness.
This, in turn, can be used to derive estimates of the
integrated mixture of processes and features in the upper
ocean and in the atmospheric boundary layer [Alpers, 1995;
Johannessen et al., 1991]. Moreover, from the form and the
location of the roughness pattern, one can, in the majority of
cases, determine unambiguously whether it arises from
predominantly oceanic or atmospheric processes and fea-
tures [Johannessen et al., 1996; Alpers et al., 1998].
[3] C band SAR images of the sea surface usually

manifest expressions of atmospheric phenomena occurring
in the marine boundary layer. Most common among these
phenomena are boundary layer rolls, atmospheric convec-

tive cells, atmospheric internal gravity waves, tropical rain
cells, katabatic wind flows, and meteorological fronts. This
has recently been documented in a series of papers pub-
lished in the special section on Advances in oceanography
and sea ice research using ERS observations (J. Geophys.
Res., 103(C4), pp. 7753–8213, 1998) (hereinafter referred
to as JGR98) and in an issue of the Earth Observation
Quarterly (59, 1998) (hereinafter referred to as EOQ98).
[4] Although much work has been done on the forward

modeling of estimating the radar backscatter modulations
from the geophysical parameters, there are fewer reports on
inverse modeling to estimate geophysical parameters from
the s� modulations. The main reason for this comes from
the fact that several geophysical phenomena are causing
radar backscatter variations. Thus single backscatter meas-
urements over the ocean may not be uniquely related to a
particular geophysical condition (underdetermination prob-
lem). In addition, the relationship between s� and geo-
physical parameters is ambiguous and nonlinear, further
complicating the inversion.
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[5] Scatterometer observations over the ocean provide
direct estimates of the global wind vector field with a spatial
sampling of 25 km and accuracy of 3 m s�1 in the wind
vector [Stoffelen and Anderson, 1992]. In contrast, the SAR
achieves a finer spatial resolution and therefore has the
potential to provide wind field information with much more
spatial detail. This can be important in a number of
applications, such as in semienclosed seas, in straits, along
marginal ice zones, and in coastal regions, where scatter-
ometer measurements are contaminated by backscatter from
land and ice and the wind vector fields are often recognized
to be highly variable [Johannessen et al., 1991]. In such
regions, wind field estimates retrieved from SAR images
would be very desirable.
[6] Local wind fields, such as land-sea breezes and

katabatic wind flows, strongly affect the microclimate in
coastal regions. They determine, to a large extent, the
advection and dispersion of pollutants in the atmosphere
and coastal waters (by generation of local wind driven
currents). Since most of the world’s population lives in
coastal areas and most pollutants are released into the
environment near coasts, the study of these local winds is
also of great relevance for environmental purposes.
[7] The optimum way to extract information from SAR

images is to combine them with in situ measurements and/or
mesoscale numerical models [McNider and Pielke, 1984;
Gudiksen et al., 1992]. However, in situ measurements, i.e.,
buoys, are often too coarse and far in distance from SAR
acquisitions [Fetterer et al., 1998], leading to uncertainties
or errors in the results. In contrast, the collocations with
mesoscale numerical weather prediction (NWP) model data
can be precisely performed both in space and time. How-
ever, generally, the resolution of these mesoscale models is
too coarse, primarily due to lack of observations. Never-
theless, the atmospheric boundary layer conditions, includ-
ing the wind vector field derived from NWP models, may
be combined with SAR observations at fine spatial reso-
lution to more fully determine and characterize the detailed
conditions of the atmosphere–ocean boundary layer.
[8] In this paper we will therefore investigate how the use

of SAR data can improve the quantitative description of the
mesoscale wind field in coastal regions. In so doing, we will
examine several SAR wind retrieval methods with the aim
of obtaining the optimum wind field retrieval based on
integrated use of SAR and high-resolution limited area
model (HIRLAM) data.
[9] The data used in this study are presented in section 2.

Some of the current SAR wind retrieval algorithms are
discussed in section 3, together with a generalized inverse
method using Bayesian probability analysis. In section 4
an examination of two different SAR wind retrieval meth-
ods is performed. Finally, the conclusions are presented in
section 5.

2. SAR and HIRLAM Data

[10] The second European Remote Sensing Satellite
(ERS-2) carries a SAR that operates at a radar frequency
of 5.3 GHz (C band), transmits and receives the radar
signals at vertical polarization, and has a right-looking
antenna that illuminates the Earth’s surface at a mean
incidence angle of 23�. A set of 15 SAR images that were

acquired from January 1997 to October 1997 by the ERS-2
over the southern North Sea coastal regions were selected,
representing various wind conditions (onshore, offshore,
along-shore, low, medium, and high). The ERS-2 SAR
images presented in this paper are precision images (PRI)
provided by the European Space Agency (ESA) [Grabak
and Laur, 1995]. All SAR acquisition times are between
1000 and 1100 UTC. The selected SAR images are listed in
Table 1.
[11] HIRLAM V55, a high-resolution (55 km) mesoscale

NWP model, is run operationally at the Royal Dutch
Meteorological Institute (KNMI). It has the capability of
running a nested very high resolution (VHR) model with a
5-km resolution, which is able to simulate and generate
specific mesoscale atmospheric weather phenomena, such
as land-sea breezes [De Bruijn, 1997]. This model yields as
output, among other things, the wind field at 10 m height
above the sea surface, which can be compared to or
combined with the near-surface wind information inferred
from the SAR images.
[12] Both the V55 and the VHR models have a rotated

regular latitude-longitude grid with the South Pole at (30�S,
180�E) and are encoded on an Arakawa C grid [Mesinger
and Arakawa, 1976], meaning that wind vector components
(u and v) and temperature (T ) are staggered in the horizon-
tal. In the vertical plane a hybrid p-s coordinate system is
used that is nonorthogonal and terrain following. In total,
there are 31 vertical levels, six of them in the atmospheric
boundary layer, below a height of 2000 m. The lowest level
is above 100 m. In order to provide the 10-m-level wind
field in the model output, extrapolations from the lowest
100-m level are performed using a boundary layer model
that takes into account the stratification. Both a fourth-order
explicit linear diffusion and a Eulerian advection scheme are
used as default in the models. The analysis is performed on
the V55 model. The nested model does not have its own
analysis scheme and receives its initial information from the
coarse mesh model. There are no specific physical param-
eterization schemes for the VHR model. A complete
description of these schemes is given by Gustafsson [1991].

Table 1. Selected ERS-2 PRI Single Aperture Radar (SAR)

Images

Orbit Frame Acquisition
Date

Acquisition Time,
UTC

Wind Conditionsa

9381 2529 4 Feb. 1997 1048:56 H/Off
9567 2511 17 Feb. 1997 1040:04 M/Along
9610 2547 20 Feb. 1997 1046:20 M/Off
10297 2511 9 April 1997 1037:13 L/Along
10569 2547 28 April 1997 1040:34 M/On
10984 2511 27 May 1997 1028:37 M/On
11428 2511 27 June 1997 1054:30 H/Along
11614 2547 10 July 1997 1046:23 L/Along
12072 2547 11 Aug. 1997 1040:37 L/Off
12301 2511 27 Aug. 1997 1037:14 L/Off
12430 2511 5 Sept. 1997 1054:28 M/Off
12487 2511 9 Sept. 1997 1028:35 H/On
12530 2511 12 Sept. 1997 1034:19 M/Along
12931 2511 10 Oct. 1997 1054:29 H/Off
12988 2511 14 Oct. 1997 1028:37 L/On

aL, low winds (<7 m s�1); M, medium winds (7 m s�1 < v < 13 m s�1);
H, high winds (>13 m s�1); On, onshore winds; Off, offshore winds; Along,
alongshore winds.
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[13] The integration area of the VHR model is fixed for
all simulations and is large enough to avoid boundary
effects in the areas where the SAR images have been
acquired. The forecast files contain a large number of
atmospheric fields (wind, temperature, humidity, etc.) at
several levels, from which only the wind field at 10 m high
above the sea surface is picked up.
[14] In order to collocate the HIRLAM output product to

the calibrated SAR (including analog to digital converter
power loss correction) image at a standard size of 80 �
95 km, we define a wind cell in the SAR image as an area of
5 � 5 km only covered by ocean (no land or ice ‘‘con-
tamination’’). In a pure ocean calibrated SAR image, there
are a total of 304 (16 � 19) wind cells. Next, the HIRLAM
output product is spatially interpolated to the actual coor-
dinates of the wind cells. Finally, as HIRLAM forecasts are
provided on an hourly basis, the HIRLAM outputs are
linearly interpolated to the actual acquisition time of the
SAR image.

3. Wind Retrieval

3.1. Introduction

[15] In recent years several algorithms have been devel-
oped and applied for SAR wind retrievals. Common among
these are the CMOD-4 [Stoffelen and Andersen, 1992;
Johannessen et al., 1994] or the CMOD-Ifremer [Institut
Français de Recherche pour l’Exploitation de la Mer, 1996]
inversion, the SAR wind direction algorithm (SWDA)
[Wackerman et al., 1996; Vachon and Dowson, 1996;
Fetterer et al., 1998], and the SAR wind algorithm (SWA)
[Chapron et al., 1995, Kerbaol et al., 1998], which are all
empirically based methods. A comprehensive presentation
of these methods is given in JGR98 and EOQ98 and by
Fetterer et al. [1998].
[16] In the C band models, s� is a nonlinear function of

wind speed (exponential) and wind direction (harmonic).
For the ERS-1 scatterometer (whose data are used to
develop the C band models), three s� values are available
at each node, allowing a solution of the CMOD-4 inversion
to be obtained after taking account of the nonlinearity
[Stoffelen and Anderson, 1997b]. In contrast, inversion of
a single SAR s� measurement is more difficult, as the
sensitivity depends on the (unknown) true surface wind
vector. One is therefore usually facing ambiguities and a
problem of underdetermination.
[17] A limitation of the SWDA is that the spatial

resolution of the wind direction information is derived
from 25-km averages within the SAR image. Hence, at
scales smaller than this, no wind direction information is
available. In turn, all the s� variability is incorrectly
assigned to wind speed variability, by ignoring potential
wind direction variability at these scales. Another problem
of the SWDA is the 180� ambiguity in the wind direction
determination, which is due to the fact that the wind streak
reflects the orientation of the wind but not its sense of
direction.
[18] A limitation of the SWA is that the longer waves

used to determine the smearing in the SAR image spectrum
are not fully coupled to local wind variations. In addition, as
the wind waves and swell starts to feel the bottom top-
ography as they move into shallow water, their period

remains constant, but their propagation direction changes
and the phase speed decreases. In turn, their wavelength
decreases as well [Pond and Pickard, 1978]. This leads to
an underestimation of the SWA wind retrievals. Similar
difficulties arise for offshore winds, in particular in shallow
water, as the fetch and depth-limited waters affect the
growth of the wave spectrum. As, for a given wind speed,
it never reaches the spectrum for fully developed seas, the
SWA retrieval will underestimate the wind speed. Since the
present study is focused on shallow water regions (mostly
100 m depth or below), the wind field retrieval based on the
SWA algorithm has been discarded.
[19] We have chosen to apply SWDA and CMOD-4

inversion for further examination of the limitations
addressed above. The algorithms are therefore briefly intro-
duced below.
3.1.1. SAR wind direction algorithm
[20] The SWDA is used to extract the wind direction

information from linear, low-frequency expressions
detected in the SAR image. These are usually associated
with wind rows or wind streaks, which are manifestations of
roll vortices in the planetary boundary layer (PBL) [Brown,
1990; LeMone, 1973]. The rolls are approximately aligned
with the surface wind. Roll vortices in the PBL are counter-
rotating helical circulations that are superimposed on the
dominant wind field. They are most pronounced during
unstable conditions [Wackerman et al., 1996], although
Etling and Brown [1993] reported the presence of wind
rolls in stable conditions, as well. The SWDAwas proposed
by Fetterer et al. [1998] and looks for these linear expres-
sions in the Fourier domain of the SAR image at a spatial
resolution of 25 km to determine wind direction. Subse-
quently, SAR wind speed is usually retrieved at smaller
resolution.
3.1.2. C band model inversion
[21] The CMOD-4 model was originally developed for

the ERS-1 scatterometer [Stoffelen and Anderson, 1993],
but it has also been shown to give reasonable estimates of
wind speed when applied to ERS SAR images [Johannes-
sen et al., 1994]. The model is based on the backscatter
from the rough ocean surface for moderate incidence angles
(20�–60�), which is dominated by resonant Bragg scatter-
ing [Valenzuela, 1978]. Additionally, Rayleigh scattering
and specular reflection may contribute to the backscatter.
[22] The CMOD-4 model provides s� values as a func-

tion of relative wind direction j (j = 0� for a wind blowing
towards the radar), wind speed v, and incidence angle q. The
relationship can be expressed as

s0 ¼ B0 1þ B1 cos fð Þ þ B2 cos 2fð Þ½ �1:6: ð1Þ

[23] The coefficients B0, B1, and B2 depend on the local
incidence angle of the radar beam and the wind speed. The
model is tuned to the real (‘‘true’’) wind at 10-m height
and the ERS-1 scatterometer s�. CMOD-4 describes the
coherence of the forebeam, aftbeam, and midbeam back-
scatter measurement (the so-called cone surface) within
	0.1 dB. Wind retrieval based on CMOD-4 [Stoffelen and
Anderson, 1997a] results in an accuracy of 3 m s�1 vector
root-mean-square (RMS) when applied to scatterometer
data [Stoffelen, 1998]. Other relevant references here
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include work by Korsbakken et al. [1998] and Lehner et al.
[1998].
[24] In order to derive the wind field in a SAR PRI image

from a C band model inversion, comprehensive calibration
of the radar backscatter value s� is required [Scoon et al.,
1996]. The calibration procedure performed in this study is
given by Laur et al. [1998].
3.1.3. Problem of underdetermination
[25] Besides the limitations of the different algorithms

presented in section 3.1, there is a very important problem
inherent in SAR s� observations. Both wind speed and wind
direction information are present at the same time and
cannot be properly discriminated. As discussed previously,
this underdetermination problem is obviously present in the
wind vector retrieval algorithms, such as CMOD-4. More-
over, it directly affects the quality of the retrievals of the
algorithms, which only derive one wind component, such as
SWA or SWDA.
[26] A methodology that combines some of these algo-

rithms with some additional information, i.e., NWP models
or buoy data, may be the solution to this inherent problem in
SAR wind retrieval. In order to be successful, the method
should take into account the spatial and accuracy character-
istics and limitations of the observations and of the addi-
tional data used to combine them in an optimal way.
[27] In section 3.2 we consider an alternative approach by

which the problem of underdetermination can be solved in a
statistical way. The general statistical approach used by
Lorenc [1986] to solve inversion problems (including
underdetermined problems) in meteorological analysis is
first briefly reviewed, followed by a discussion of its
potential use for SAR wind field retrievals.

3.2. General Approach

[28] The idea is to combine the SAR information, i.e., s�
and/or wind streaks, with some background information,
i.e., NWP models and/or buoy data, to retrieve the most
probable wind vector, assuming that all sources of infor-
mation contain errors and that these are well characterized,
including their spatial correlation. This approach is used
more generally in meteorological analysis. Lorenc [1986]
proceeded from a completely general Bayesian analysis
equation, expressed in terms of multidimensional probabil-
ity distribution functions, through a fairly standard set of
assumptions, to a variational equation for the ‘‘best’’
analysis.
[29] In order to get the best analysis, we first need to

know the relationship between the model state x and the
observations y. We assume that this can be represented by
an explicit operator kn such that

y ¼ kn xð Þ ð2Þ

is the best estimate of y for a given x. The operator kn is the
so-called forward model, and the subscript n reminds us that
it might be nonlinear. The analysis problem is thus to find
the best estimate of x that inverts equation (2) for a given
observation y, allowing for observation errors and other
prior information.
[30] Bayes’ theorem states that the posterior probability

of an event A occurring, given that event B is known to have
occurred, is proportional to the prior probability of A,

multiplied by the probability of B occurring given that A
is known to have occurred,

P AjBð Þ / P BjAð ÞP Að Þ: ð3Þ

[31] This is applicable to the inverse analysis problem. If
A is the event true state (xt) and B is the event observations
(yo), then equation (3) can be rewritten as

P xtjyoð Þ / P yojxtð ÞP xtð Þ: ð4Þ

[32] Equation (4) defines an Nx-dimensional probability
distribution function (PDF), which we shall call Pa(x),
specifying all we know about the analysis. The best
estimate of the state xa can be the mean of Pa(x) or the
maximum of Pa(x); these are, respectively, the minimum
variance and the maximum likelihood estimates of xa. For
a complete solution to the generalized problem, we need to
know also the accuracy of xa; this information is also
contained in Pa(x).
[33] The prior probability P(xt) contains our knowledge

about the state x before the observations are taken. This can
be written as the deviations from (or errors of) some
background xb,

P xtð Þ ¼ Pb x� xbð Þ: ð5Þ

[34] The posterior probability P(yo|xt) contains the uncer-
tainty in the observation, and the forward model and can be
written as

P yojxtð Þ ¼ Pof yo � kn xð Þð Þ

¼
Z

Po yt � yoð Þ � Pf yt � kn xð Þð Þ � dyt; ð6Þ

where yt are the true observation values, Po represents the
random observational errors, and Pf represents the forward
model errors. Therefore, assuming that Pb and Pof are
independent, i.e., that background errors and observational
errors are uncorrelated, equation (4) becomes

Pa xð Þ / Pof yo � kn xð Þð Þ � Pb x� xbð Þ: ð7Þ

[35] We now need to specify the PDFs Pb, Po, and Pf. A
common assumption, which simplifies the solution, is that
errors are Gaussian, i.e., that the PDFs are multidimen-
sional Gaussian functions. In this case, equation (7) can be
written as

Pa xð Þ / exp � 1

2
fyo � kn xð ÞgT Oþ Fð Þ�1fyo � kn xð Þg

�

� 1

2
x� xbð ÞTB�1 x� xbð Þ�; ð8Þ

where O, F, and B are the covariance matrices of Pb, Po, and
Pf, respectively.
[36] Assuming Gaussian errors, both the minimum var-

iance and the maximum likelihood estimates are identical.
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For the maximum likelihood estimate, we wish to maximize
Pa, which is equivalent to minimizing -ln(Pa),

J ¼ fyo � kn xð ÞgT Oþ Fð Þ�1fyo � kn xð Þg

þ x� xbð ÞTB�1 x� xbð Þ; ð9Þ

where J is the so-called cost function and the first and
second terms on the right-hand side of equation (9) refer to
observation and background terms, respectively.
[37] In case of a nonlinear forward model (Kn) or in case

of nonlinear error properties, for example, the error magni-
tude depending on the value of the true observation, the
maximum likelihood solution may have some unwanted
features, such as biases [see e.g., Stoffelen and Anderson,
1997a]. In these cases it is important to carefully investigate
whether the best estimate comes from a minimum variance,
a maximum likelihood, or an unbiased analysis objective
function [Stoffelen, 2000].
3.2.1. SAR application
[38] For SAR, yo can contain s�, wind direction from

wind streaks, or other derived parameters (see section 4); kn
can be the C band model, the SWDA, or other SAR wind
retrieval algorithm (see section 4); xb can be a NWP wind
field or buoy wind data; and x is the wind field at 10-m
height. The matrices O + F and B can be diagonal, in which
case the global minimization problem is just a sum of local
minimization problems. In meteorological analyses, B is
constructed generally from so-called spatial structure func-
tions that provide the spatial error correlation of the back-
ground field. Since the observational network is generally
rather sparse, the typical correlation length used for wind
parameters is 250 km. Except in specific cases of katabatic
flow, land breeze, etc. that may provide a well-determined
physical forcing, the sparsity of the observation network is
also a problem for high-resolution models, such as HIR-
LAM VHR. Therefore, generally, over a SAR scene the
NWP output will be quite smooth.
[39] Also, the O matrix may contain correlation. A good

example is the case where SAR image wind streaks are used
for wind direction determination (see section 4). A spatial
context of 25 km is used for this [Fetterer et al., 1998], and
if the wind state from SAR at, let’s say, 5-km resolution is
sought, then the contribution from the wind streak obser-
vations is spatially correlated.
[40] For SAR, several existing wind retrieval methods

can be described by the above formalism. Generally, further
simplifying assumptions have to be made, such as B ! 1
or O + F = I (identity).

4. Evaluation of Two SAR Wind Retrieval
Methods

[41] In this section we evaluate the outcome of two
different SAR wind retrieval methods. The first one is based
on a commonly used combination of the SWDA and C band
models, whereas the second one is the new method based on
the generalized inverse approach addressed in section 3.2.
This new method, called the statistical wind retrieval
approach (SWRA), combines the SAR-derived wind infor-
mation with the VHR output to determine the optimum

wind vector, using a simplified set of assumptions. Unlike
the other methods, this method takes into account the
relative quality of the observations (SAR) and the back-
ground information (VHR).

4.1. SWDA +++ C Band Method

[42] In this section we explore a common way of deriving
wind vectors based on a combination of one of the C band
models and the SWDA, with the additional help of the VHR
HIRLAM wind direction information.
4.1.1. Methodology
[43] As described by Fetterer et al. [1998], the SWDA is

used to retrieve the wind direction from the streak features
in the SAR image, which are approximately aligned in the
direction of the surface wind. As emphasized in section 3.1,
the retrieval method only provides an estimate of the wind
streak direction, and therefore a 180� ambiguity remains. In
contrast with Fetterer et al. [1998], who use buoy data to
provide the additional information needed to solve this
ambiguity, we use the VHR model; that is, the direction
value closest to that given by the VHR is selected.
[44] The SWDA provides wind direction information in

25-km grid cells. In order to retrieve a wind vector of 5-km
resolution (VHR model resolution), the 25-km cells are
subdivided into 5-km wind cells, assuming a constant and
error-free wind direction within the 25-km area. The
CMOD-4 is then used to retrieve the wind speed at each
wind cell based on the s�, the incidence angle, and the
SWDA wind direction information. We computed wind
speed in an area of 3 � 3-25 km grid cells at 5-km
resolution.
[45] As noted in section 3.2, the SAR wind retrieval

methods can be described by the general approach, while
varying the set of assumptions. Therefore, this alternative
method can also be described following the general
approach, but with a very strong set of assumptions, notably,
no errors and no background term in the cost function.
4.1.2. Validation procedure
[46] Although the quantitative validation is done with the

VHR model wind information as a reference, a method
based on an optimum combination of both VHR and C band
models is also used to qualitatively analyze some specific
cases. In so doing, one can alternatively retrieve the wind
speed or the wind direction from the C band model, using
the VHR wind direction or wind speed products as input. In
the latter case, when wind direction is retrieved, four
ambiguities are generally found from which the closest to
the VHR direction is selected. The RMS difference of the
retrieved wind vector component compared to the VHR
component can then be estimated.

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

vi � vtið Þ2

N

vuuut
; ð10Þ

where vi and vi
t correspond to the wind vector component

for a particular wind cell provided by the C band and the
VHR models, respectively, and where N is the number of
wind cells in the SAR image.
[47] The method, described by Portabella [1998], uses

variations around the input VHR values to look for the
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minimum RMS. In the case of wind speed retrievals, the
variations are performed in the VHR wind direction, look-
ing for a minimum RMS in wind speed; similarly, in the
case of wind direction retrievals, the variations are per-
formed in the VHR speed field, looking for a minimum
RMS in wind direction. These two fields are based on the
independent sensitivities to direction @s�

@�

� 	
f
and speed

ð@s�@f Þ� changes, respectively (where f is wind speed and �
is wind direction). As the VHR wind fields are smooth, the
method therefore assumes that all the variability captured in
the SAR image is assigned to either the wind speed
component (for wind speed retrievals) or the wind direction
component (for wind direction retrievals).
4.1.3. Validation
[48] The combination of wind streak detection and C

band models is widely used to quantify wind field in SAR
images. Fetterer et al. [1998] obtained a RMS difference
(compared to buoy data) of 2 m s�1 in wind speed and 37�
in wind direction using this combined method in a total of
61 ERS-1 SAR PRI images.
[49] In this section we will focus our attention on the

potential use of this method and its weaknesses, rather than
performing a full validation. For this purpose, we have
chosen two SAR images out of the set of 15. These images
present clearly visible wind streaks. Figures 1a and 2a show
the SAR image, Figures 1b and 2b show the corresponding
VHR wind field, Figures 1c and 2c show the CMOD-4
retrieved speeds at fixed (or VHR shifted) directions,
Figures 1d and 2d show the CMOD-4 retrieved directions
at fixed (or VHR shifted) speeds, and Figures 1e and 2e
show the SWDA + CMOD-4 wind field for the two SAR
scenes. The validation results are summarized in Table 2.
4.1.3.1. Case 1
[50] The VHR model predicted a mean speed of 6.2 m

s�1 and a mean direction of 206.6�. The SWDA derived
mean direction field is 231.9� with a RMS difference
(compared to the VHR direction field) of 27.9�. Figure 1a
shows the wind streak pattern (straight white lines) and the
wind fronts (curved white lines) in the SAR image. Exam-
ining the wind direction field in Figure 1e, it is clearly
discernible that the SWDA successfully detected the wind
streaks in the image, except for the lower right corner where
there is no clear pattern of wind streaks. There is a bias of
25.3� toward crosswind of the retrieved directions compared
to the VHR directions (see Figures 1b and 1e), suggesting
that the wind streaks may not be perfectly aligned with the
true wind direction. Wackerman et al. [1996] and Alpers
and Brummer [1994] reported that the wind streaks are
aligned in a direction slightly to the right or to the left of the
true direction. This bias depends on the roll generation
mechanisms (dynamic or convective instabilities), the
strength of the PBL stratification, and the vertical velocity
profile of the PBL [Gerling, 1986]. Note the unrealistic
wind direction block structure in Figure 1e, with wind speed
jumps associated with the arbitrary shift in wind direction.
This is caused by the fact that the resolutions of the wind
speed and wind direction determination do not match.
[51] The CMOD-4 derived mean wind speed field is 5.1

m s�1 with a RMS difference of 1.7 m s�1. It is discernible
from Figure 1e that in the areas where the wind direction
estimates are biased toward crosswind compared to VHR
directions (Figure 1b), wind speed estimates are high

compared to VHR speeds. This documents, as expected,
that C band model errors are directly affected by the errors
in the direction estimation; that is, a direction bias toward
crosswind will produce an overestimation of C band wind
speeds, and a bias toward upwind or downwind will
produce underestimation in the C band speeds.
[52] Despite this bias, the wind speed field retrieved from

the C band model suggests the presence of wind fronts,
which are not detected by the VHR model. The upper right
corner of Figure 1e corresponds to the higher wind speed
part of the front (	8 m s�1). In the lower left corner of
Figure 1e there is also an increase of the wind speed,
suggesting the presence of a second, somewhat weaker
front. This is also the case for the retrieved wind speeds
at fixed directions in Figure 1c, where the fronts can be seen
as a wind speed change. In comparison, the retrieved wind
direction at fixed speed (Figure 1d) also shows the wind
front, but by a change in wind direction. According to the
wind streak information, Figure 1c is more realistic than
Figure 1d, although it is likely that both retrieval methods
contain errors due to the strict assumptions of s� variability
as either wind speed or wind direction variations.
4.1.3.2. Case 2
[53] The VHR model predicted a mean speed of 12.6 m

s�1 and a mean direction of 322.9�. The SWDA mean
direction field is 323.9� and the RMS difference is 16.5�.
Figure 2a shows the wind streaks (straight lines) in the SAR
image. Although there is no significant bias in this case, the
image presents some variability in the wind direction. In
particular, the wind streaks are changing direction in the
right part of the image (straight black lines), suggesting the
presence of a wind front (curved black line), which is not
predicted by the VHR model. To the left of the front, the
wind streak directions are biased 	15� toward upwind
when compared to the VHR directions (see Figures 2b
and 2e). This is due to the fact that the precision of the
SWDA is affected by the sampling of the SAR scene in the
Fourier domain. Fetterer et al. [1998] reported that the
precision of the direction estimate decreases as the location
of the peak gets closer to the origin of the Fourier domain.
In particular, for wind streaks with a spacing from 4.5 to 6
km, an angle precision up to 27� was reported. In the lower
left corner of the SAR image (Figure 2a) the wind streak
spacing is 4.5 km, leading to a discretization of 27� in the
wind streak direction determination. Note again the arbi-
trary blocked structure of the wind field.
[54] The CMOD-4 derived mean speed field is 10.7 m

s�1, and the RMS is 2.8 m s�1. The relatively high RMS
value indicates a significant variability due to the presence
of the wind front. The wind direction field in the right part
of the wind front (Figure 2e) is slightly biased toward
crosswind compared to the C band retrieved directions at
fixed speeds in Figure 2d. On the other hand, the C band
retrieved speeds at fixed directions in Figure 2c decrease at
right side of the front. Therefore the increase in wind speed
to the right of the front (2–3 m s�1 higher than the left part)
in Figure 2e is mainly due to a misalignment of the wind
streaks with respect to the true direction field. In the lower
left corner of the image (Figure 2e) the speeds are higher
than in the surrounding 25-km wind direction grid cells.
This is caused by the error in the wind direction estimation
due to the streak spacing. This error is biasing the direction
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Figure 1. (a) Calibrated SAR image 12301 + 2511. (b) VHR wind field. (c) CMOD-4 speeds from
VHR directions shifted 35�. (d) CMOD-4 directions from VHR speeds shifted �1.5 m s�1. (e) CMOD-4
speeds from SWDA directions. (f ) SWRA wind field.
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Figure 2. (a) Calibrated SAR image 12530 + 2511. (b) VHR wind field. (c) CMOD-4 speeds from
VHR directions shifted�15�. (d) CMOD-4 directions from VHR speeds shifted�1.5 m s�1. (e) CMOD-4
speeds from SWDA directions. (f) SWRA wind field.
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toward crosswind in this particular 25-km cell, which in
turn produces higher C band retrieved wind speeds than in
the surrounding 25-km cells.
[55] In contrast to the previous image (case 1), the

retrieved directions at fixed speeds (Figure 2d) are more
realistic than the retrieved speeds at fixed directions
(Figure 2c), according to the wind streak information.
4.1.3.3. Summary of all cases
[56] In summary, in the set of 15 SAR images, only four

contained clear wind streaks and were therefore used to
examine the combined SWDA + C band method. The two
cases not shown present similar problems to the two cases
discussed above, although there is slightly better agreement
with the VHR, as no fronts are present in the scenes. This
retrieval method is able to detect some atmospheric phe-
nomena, like wind fronts, which are not predicted by the
VHR model. However, the accuracy of the SWDA
decreases with the wind streak spacing, and, indeed, the
wind streaks show some misalignment with the true wind
direction. The C band model errors are directly affected by
the errors in the direction estimation. Because of the low
resolution of the direction retrievals, all the variability in the
25-km cells is assumed to be in the speed component, which
is obviously incorrect. Finally, the direction of the local
wind is not always detected, hence limiting the full use of
the method. We further investigate these cases in section 4.2.
[57] (Note that in this analysis we have used the ‘‘peak’’

method to retrieve wind directions. This method simply
finds the position with the highest value and assumes that
this represents a peak in the spectrum due to wind streaks.
Direction is assumed to be normal to the peak direction.
However, Fetterer et al. [1998] also used a more sophisti-
cated method to look for the wind direction in the Fourier
domain. This second method is called the ‘‘cigar-shaped’’
method and assumes that the wind direction is manifested in
the spectrum as a smear of energy in the crosswind
direction. This method was reported to be very useful, as
it was able to detect not only wind streaks, but also other
manifestations of the local wind. Surfactant streaks (at low
wind speed), blowing foam and water from breaking waves
(at high wind speed), and ellipticity of atmospheric con-
vective cells will give rise to image expressions that are
aligned with the local surface wind direction. This, in turn,
will generate smears in the ‘‘cigar-shaped’’ spectrum. Fet-
terer et al. [1998] detected smears in the spectrum in all 61
ERS-1 SAR images examined.

4.2. Statistical Wind Retrieval Approach

[58] As explained in section 3.2, the method derived from
the general approach will depend on the set of assumptions
we make. Here we present a simplified statistical method
consisting of combining SAR data and VHR wind to
retrieve an optimum wind vector. In contrast with
section 4.1, this method assumes that both the SAR obser-

vations (including the retrieval algorithms) and the VHR
model output contain errors.
4.2.1. Methodology
[59] The method uses a C band model function as

forward model to relate the SAR measured (and calibrated)
backscatter to the wind state and uses the VHR wind field as
background information.
[60] Therefore equation (9) can be written as

J ¼ fs�m � CMOD vð ÞgT Oþ Fð Þ�1fs�m � CMOD vð Þg

þ v� vHð ÞTB�1 v� vHð Þ; ð11Þ

where sm� are the backscatter measurements, CMOD is the
C band model function, vH is the HIRLAM VHR wind
field, and v is the wind field estimate.
[61] For simplicity, we assume that there is no spatial

correlation (O + F and B are diagonal matrices), and
therefore the global minimization problem can be treated
as a sum of local minimization problems. In other words, we
can minimize the cost function J for every 5-km wind cell,
instead of minimizing the entire SAR scene. Therefore, for
every wind cell, the cost function we have to minimize is

J ¼ s�m � s�

�s


 �2

þ vH � v

�v

� 2

; ð12Þ

where s� is the backscatter value computed by applying the
C-band model with the wind vector estimate v and incidence
angle q corresponding to that particular wind cell [s� =
CMOD(v)q]; �s and �v are the Gaussian error Standard
Deviations (SDE) from the O and B matrices respectively.
For simplicity, the forward model has been considered
perfect (F = 0).
[62] Assuming that the wind vector component errors are

independent, equation (12) can be written as

J ¼ s�m � s�

�s


 �2

þ uH � u

�u

� 2

þ vH � v

�v

� 2

; ð13Þ

where u and v are the wind vector components. In order to
simplify the discussion of the results, the first term on the
right-hand side (in the cost function) of equation (13) will
be referred to as the SAR term and the second and third
terms on the right-hand side of equation (13) together will
be referred to as the VHR term. Following the maximum
likelihood estimate method described in section 3.2, the
optimum wind vector estimate for any given wind cell will
therefore correspond to a minimum in the cost function of
equation (13).
[63] The SWRA is based on a scanning approach. Awide

range of wind vector values (step size of 0.25 m s�1 in both
u and v components) around the VHR wind vector value for
a particular wind cell are used as ‘‘trial’’ winds in the cost
function. Each simulated trial wind (u, v) is inverted (using
the C band model functions) to provide a simulated trial
radar backscatter (s�). The simulated trial wind vector (ui,
vi) that minimizes the cost function J is considered the
optimum wind vector for that particular wind cell. Figure 3
shows a conceptual illustration of the SWRA. The solid
arrow represents the VHR wind vector for a particular wind

Table 2. Validation SWDA + CMOD-4

SAR Scene

Very High
Resolution HIRLAM

Mean Speed,
m s�1/Direction, �

Root-Mean-
Square in

Speed, m s�1/
Direction, �

Bias in
Speed, m s�1/
Direction, �

Case 1 6.2/206.6 1.7/27.9 �1.1/25.3
Case 2 12.6/322.9 2.8/16.5 �1.9/1
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cell, and circles around the arrow represent the VHR
probability distribution of being the true wind (each circle
is a probability ‘‘isoline,’’ with probability increasing with
isoline thickness). The ellipses around the axis origin are the
SAR wind retrieval probability isolines (the spacing
between isolines may vary with wind direction due to the
different model sensitivities), and the squared grid of dotted
lines represents the simulated trial winds where the SWRA
is computed. The dashed arrow represents the optimum
wind vector, which is given by the minimum value of the
cost function (maximum probability).
[64] The Gaussian error stochastic differential equations

are chosen following Stoffelen and Anderson [1997a]. They
reported that choosing a �s proportional to the trial back-
scatter while looking for a minimum in the cost function
leads to a first-order error due to the high nonlinearity in the
cost function gradient. Therefore �s will be proportional to
the radar backscatter measurement and not to the trial
backscatter. As we are looking for the �s in the averaged
backscatter over a 5 � 5 km wind cell, this value should be
closely associated with the variability in the backscatter
measurement (instrument error plus geophysical error) from
0 to 5 km (subcell variability). The subcell averaged mean
SDE for all 15 of the set of SAR images is 7.8% [see
Portabella, 1998] and is used as the proportionality con-
stant; that is, �s = 0.078 sm�.
[65] �u and �v represent the error of HIRLAM at 5-km

resolution. At present, no attempt has been made at calcu-
lating these errors, and since HIRLAM is close to the
European Centre for Medium-Range Weather Forecasts
(ECMWF) model, we use the ECMWF errors instead.
Stoffelen [1996] reported a large-scale (250 km) error
variance in both ECMWF wind components (u, v) of
	1 m2 s�2. Stoffelen and Anderson [1997a] use a climato-
logical wind spectrum to estimate the small-scale variability.

They find that the computed variabilities are consistent with
differences between measurement systems with different
resolution, i.e., buoys, scatterometer, and ECMWF model.
Using their climatological spectrum, we estimate the vari-
ability between 5 and 250 km to be 2.0 m2 s�2, leading to a
final total error variance of 3 m2 s�2 in both wind compo-
nents. Therefore �u = � v =

ffiffiffi
3

p
m s�1.

4.2.2. Results
[66] Table 3 shows the averaged variability in both wind

components (the wind direction variability is given in
equivalent meters per second) for all the VHR, SWRA,
and C band retrieved wind fields. The latter is computed by
using a VHR wind speed (direction) as input to retrieve the
wind direction (speed) with the C band model.
[67] The variability in the C band retrieved winds fields

is, as expected, much higher than the variability in the VHR
wind fields, due to the impact of short-scale atmospheric
phenomena that are not included in the VHR model. The
fact that the VHR model does not have its own analysis
scheme, that it receives its initial information from the V55
model, and that there are no specific parameterization
schemes for the VHR model makes the VHR effective
resolution closer to 55 km than to 5 km.
[68] Similarly, Table 3 show low variability in the SWRA

wind directions, comparable to the variability in the VHR
wind fields and much lower than the variability in the C
band models retrieved wind directions. On the other hand,
the variability in the SWRAwind speeds is between the low
variability of the VHR speeds and the higher variability of
the C band retrieved speeds. For small-scale turbulence, as
depicted in SAR images, one may expect the same amount
of variability along and perpendicular to the mean flow (i.e.,
in the speed and direction components). VHR contains the
large scales (	100 km), and the SAR term is effective in
adding smaller scale (5 km) variability when a discrepancy
occurs. This variability is added to the component with
largest sensitivity in the C band model, i.e., generally, the
speed component.
[69] Figure 1f shows the SWRAwind field for case 1. As

discussed in section 4.1.3, Figure 1a shows a SAR image
where there are two fronts, which are not predicted by the
VHR model (Figure 1b). Figure 1f shows the wind speed
change originated by this wind front (upper right and lower
left corners). The SWRAwind speeds are between the VHR
speeds (Figure 1b) and the CMOD-4 retrieved speeds
(Figure 1c), although much closer to the latter, which is
also detecting the wind fronts. This is an example where the
SWRA has successfully combined both SAR and VHR
speed information.
[70] Figure 2f shows the SWRAwind field for case 2. As

discussed in section 4.1.3, Figure 2a shows a SAR image
where there is a direction change (straight lines) originated
by a wind front (curved line), which is not predicted by the

Figure 3. Conceptual illustration of statistical wind vector
approach.

Table 3. Averaged Standard Deviation (STD) Comparisons

Wind Component VHR
Averaged
STD

SWRA
Averaged
STD

CMOD-4
Averaged
STD

Speed, m s�1 0.55 0.75 1
Direction, m s�1a 0.45 0.45 1.65

aDirection values are given in equivalent meters per second.
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VHR model (Figure 2b). This wind direction change, which
is clearly reflected in the C band retrieved directions (Figure
2d), is not detected by the SWRA (Figure 2f). This is an
example where the SWRA has failed to combine both SAR
and VHR direction information. The ad hoc assumption that
all observed s� variations are caused by wind direction
(Figure 2d) seems to work better here than considering wind
speed and direction sensitivities properly (Figure 2f).
[71] Table 4 shows the ratio of sensitivity of C band

model functions to speed and to direction changes,

@s�

@f


 �
� @s�

@�


 �
f

;

,

and the SWRA bias (with respect to VHR) and variability in
speed and direction for these two cases. At the speed and
direction ranges of the VHR wind field, the sensitivity to
speed changes is 2.5 (case 1) and 1.8 (case 2) times larger
than the sensitivity to direction changes. As a consequence,
the variability is mainly added to the wind speed
component, and the bias in wind direction is small
compared to the bias in wind speed in both cases (see
Table 4). Moreover, the results of the SWRA, not just for
these two cases but for the entire set of SAR images, show
small variability in the wind direction compared to the wind
speed field (see Table 3). Similarly, the overall results of the
SWRA show little bias in the wind direction field (mean
absolute value of 0.6 equivalent meters per second)
compared to the bias in the wind speed field (mean value
of �1.5 m s�1). The bias in wind direction is very small in
low wind speed cases and especially in the upwind,
downwind and crosswind cases. This is, again, because
the sensitivity to direction changes is in general too low, and
therefore the SAR term has a very broad minimum. The
broader the minimum in the SAR term is, the closer the
SWRA direction will be to the minimum in the VHR term,
which in turn is the VHR direction. This is reasonable, as no
‘‘new’’ information from SAR is provided. As a conse-
quence, wind direction is less well determined than wind
speed and thus more uncertain.
[72] In summary, it seems that the SWRA is successfully

combining the SAR and the VHR speed information. In
comparison, it is systematically adding less variability to the
wind direction, biasing the results toward the VHR direction
information, since the SAR radar backscatter is generally
most sensitive to wind speed variations.
[73] Using the information on wind streaks, one may

conclude that the backscatter variability in Figure 2a is
caused by the wind direction rather than by the wind speed
changes. In order to improve the SWRA performance, an
additional wind streak term may be added after investiga-
tion of its weight (additional terms in matrix O + F) as a
measure of the quality of the SAR-derived wind direction.
Improved wind direction determination will result in
improved wind speed retrieval. Furthermore, in meteoro-
logical analysis, spatial correlation patterns (matrix B) are
used to prescribe the amount of rotation and divergence in
the analyzed field. We anticipate that the dominating rota-
tional part would constrain the solution of the SWRA in the
appropriate direction. However, we did not test this.

4.2.3. Error analysis
[74] In SWRA it is assumed that SAR s� variability may

be due to speed and direction changes. The relative quality
of VHR and SAR data is weighted in the analysis, taking
into account the information content of the data. Nonethe-
less, nonlinearities in the C band model functions and
inaccuracies in the cost function weights (�s2, �u2, and
�v2) introduce errors in the wind vector estimation. As
described in section 3.2, the best retrieval method (mini-
mum variance, maximum likelihood, and no bias) will
depend on the errors induced by the nonlinearity of the
forward model.
[75] In order to estimate nonlinearity errors in the SWRA,

the following error analysis is performed. Using a true wind
vector (ut, vt), we apply the C band model function to get a
true radar backscatter st� at a mean incidence angle of 23�.
Then, we add the Gaussian noise corresponding to the
values of �u, �v, and �s discussed in section 4.2.1 to
generate the VHR wind vectors vH

i = (ut
i, vt

i) and the
backscatter measurements sm�

i. For each pair [vH
i, sm�

i], we
compute an SWRA wind vector (see section 4.2.1). Finally,
we compute the bias of SWRA winds with respect to the
true wind in speed and direction components.
[76] This procedure is performed for different true wind

speeds and directions, ranging from 5 to 15 m s�1 (step size
of 5 m s�1) and from 0� to 180� (step size of 10�) (note that
the rest of the angles is not computed because of symmetry).
[77] Figure 4 shows the wind speed and direction bias

results in the SWRA. A positive bias in wind speed
component denotes an underestimation of the SWRA with
respect to the true wind speed and vice versa. Both a
positive direction bias in the 0�–90� range of true wind
directions and a negative bias in the 90�–180� range denote
a bias toward crosswind (0� is upwind). In contrast, both a
negative direction bias in the 0�–90� range and a positive
direction bias in the 90�–180� range denote an upwind/
downwind bias.
[78] The biases in wind speed component are always

positive, denoting underestimation, and have a maximum
around crosswind directions. Moreover, the underestimation
increases with decreasing wind speeds. At 5 m s�1 for near
crosswind direction it is quite a significant underestimation
(0.65 m s�1).
[79] The biases in the wind direction component are

lower than in the speed component and are mostly toward
crosswind directions. The maximum value is at low speeds
and directions ranging from 50� to 60� and from 110� to
130� (equivalent to 0.31 m s�1).
[80] These results indicate a systematic bias in the SWRA

derived wind fields toward lower wind speeds and cross-
wind directions due to effects of nonlinearity. The bias is
most significant in the speed component at low speeds and

Table 4. Validation SWRA

SAR Scene Sensitivity
Ratio

SWRA STD in
Speed, m s�1/
Direction, �a

SWRA Bias in
Speed, m s�1/
Direction, �b

Case 1 2.5 0.8/0.5 �1.7/0.6
Case 2 1.8 0.9/0.5 �1.2/�0.7
aDirection values are given in equivalent meters per second.
bDirection values are given in equivalent meters per second; bias sign

refers to clockwise (+) or counterclockwise (�) bias.
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crosswind directions. We believe that the errors are not
substantial and that the selection of the maximum likelihood
(basis of the SWRA) is appropriate. We expect that if
stronger assumptions than in SWRA (like assuming no
error, in the method presented in section 4.1.1) are used
in the SAR retrieval, then these biases will generally
increase (unless specifically controlled).

5. Conclusions

[81] The potential of combining SAR backscatter data and
HIRLAM wind information in mesoscale meteorological
studies for coastal regions is shown to be very promising.
[82] In SAR, a single s� measurement is sensitive to, at

least, two geophysical parameters, the wind speed and the
wind direction. Therefore, an underdetermination problem
occurs when retrieving winds from SAR backscatter data.
Moreover, inversion is complicated by the nonlinear rela-
tionship between the backscatter and the wind.
[83] The combination of the SAR image streak informa-

tion (SWDA) with the SAR backscatter information (C
band model) determines a solution of the problem, but does
not take account of the difference in spatial context of the
SAR s� and the wind streak information. Moreover, uncer-
tainties in wind streak determination and s� are not explic-
itly used in the wind interpretation.
[84] In addition, the following uncertainties have been

reported from the SWDA: (1) The direction of the local
wind is not detected in all the wind cases; (2) the accuracy
of the method decreases with increasing wind streak spac-
ing; and (3) the wind streaks show some misalignment
either to the right or to the left of the true wind direction.
The C band model derived wind speed errors are directly
affected by the error in the SWDA-derived direction.
[85] In contrast, the more general inversion methodology,

commonly used in meteorological analysis, can be applied
to overcome such problems of underdetermination and
nonlinearity. The statistical wind retrieval approach allows
the retrievals of an optimum wind vector from the best
combination of SAR and VHR wind information, assuming
Gaussian noise errors in both ‘‘measurement’’ sources. The

SWRA results in a compromise between SAR and VHR
information and distributes the SAR signal variability in a
predefined way between speed and direction changes,
according to their respective sensitivities.
[86] The SWRA shows promising results, although in

particular cases the wind direction may draw closely to the
VHR model output, due to relatively low SAR wind direc-
tion sensitivity. An error analysis is performed, and a system-
atic bias with respect to the true wind is found in both wind
components. The major bias is produced at low wind speeds
for crosswind directions where the SWRA underestimates
the true wind speed by 0.65 m s�1. Inaccuracies in the
estimation of the cost function weights (�s2,�u2, and�v2),
or even in the cost function specification are identified as the
main sources of error in the SWRA. Nevertheless, from a
theoretical point of view the SWRA will result in a better
wind analysis than the SWDA + CMOD-4.
[87] The validation study has been restricted to only 15

ERS-2 SAR images. Therefore further validation of the
SWDA + C band wind field retrievals from SAR images is
necessary to fully explore the impact of oceanic and
atmospheric phenomena other than wind in the retrievals,
not only at 5 km but also at higher resolutions. Fetterer et
al. [1998] conclude that SWDA has the potential to retrieve
directions at higher resolution, although this has not been
tested yet. In that sense, higher resolution NWP models like
GESIMA (1 km) or FITNAH (1.5 km) could also be more
useful for validation in some cases.
[88] Further examination of the SWRA is also needed. In

particular, more sophisticated estimation of the cost function
weights is required in order to improve the quality of the
SWRA winds. Backscatter sensitivity to wind is variable;
that is, nonlinear effects can occur in the inversion that need
to be further investigated. Information from wind streaks
may be incorporated in the SWRA after further study of
their quality and spatial representation. A higher resolution
SWDA may also help to improve the quality of the SWRA.
With respect to background information, more aspects like
spatial background error correlation could be implemented.
[89] In view of the Envisat payload, which is not includ-

ing a wind scatterometer, it is therefore attractive to improve

Figure 4. Bias in SWRA speeds (solid lines) and equivalent directions in meters per second (dashed
lines) as a function of true wind direction for true wind speeds (a) 5 m s�1, (b) 10 m s�1, and (c) 15 m s�1.
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and develop an independent SAR wind vector retrieval
method. In this context it should therefore be emphasized
that ESA recently initiated the investigation, development,
and testing of a new approach. This SAR wind field
retrieval method is based on the consideration of the time
decorrelation and phase spectra computed from interlook
processing of single-look-complex (SLC) SAR data [John-
sen et al., 1999]. With the use of this method, there is less
demand or need for auxiliary information such as that
obtained from a high-resolution atmospheric boundary layer
model or from direct wind field observations. However, it
does require the availability of SLC data, which demands
special processing techniques.
[90] Although the SWRA also works with incomplete

wind vector information, SAR independent wind vectors
could also be used in the SWRA after characterization of
their relative errors and could subsequently improve the
quality of the SWRA wind vectors. Note also that via
integrated use of SAR observations and model output
(i.e., HIRLAM) in real time, the initial wind field conditions
can be optimized, leading to further improvements in model
prediction.
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