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Abstract

Climate Data Records (CDRs) of Essential Climate Variables (ECVs) derived

from satellite instruments help to characterize the main components of the

Earth system, to identify the state and evolution of geophysical processes,

and to constrain the budgets of key cycles of water, carbon and energy.

The European Space Agency’s (ESA) Climate Change Initiative (CCI) of the

European Space Agency (ESA)  coordinates the derivation of CDRs for 21

GCOS ECVs as defined by the Global Climate Observing System (GCOS) in

23 projects. Here we argue that convenient and coherent use of multiple

ECVs for Earth system science needs consistency between different CDRs

on  three  levels:  consistency  in  format  and  metadata  to  facilitate  their

synergetic use (technical level); consistency in assumptions and auxiliary

datasets to minimize incompatibilities between datasets (retrieval level);

and  consistency  of  each  ECV  with  its  estimated  true  values  within  its

uncertainties (scientific level).  

Assessing  and  achieving  consistency  across  the  three  levels  is  a

challenging task and requires coordination between different observational

communities,  which is facilitated within the CCI programme. This  paper

study  defines  consistency  for  the  three  levels  above  in  the  context  of

satellite-based CDRs and analyses t. The inter-dependencies of CCI CDRs

for  Earth  system  science  applications  are  analysed  to  identify  where

consistency  considerations  are  most  important.  The  study  also

summarizses  measures  taken  in  CCI  to  ensure  consistency  on  the

technical level, and illustrates difficulties in and intrinsic value of achieving

consistency on the retrieval and scientific levels. It concludes by assessing
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the current  status  of  consistency between CCI  CDRs and future  efforts

needed to improve it.
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1. Introduction

The  Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment

Report  (IPCC,  2013)  states  that  mankind  and the  biosphere  face great

threats due to the rapidly changing climate. To support political decisions

on  climate  change  mitigation  and  adaptation,  and  to  quantify  the

implications for economic loss and damage, the United Nations Framework

Convention on Climate Change  (UNFCCC) requires systematic monitoring

of  the  global  climate  system (e.g.,  Doherty  et  al.  2009).  In  particular,

systematic monitoring is important in assessing progress on the aims of

the Paris Agreement. The main tools at hand to predict the extent and

impacts of  climate change on local  to global  scales and understand its

causes are a combination of global and regional climate and Earth system

models  (GCMs,  RCMs  and  ESMs),  reanalysis  systems,  and  systematic

observations.  Systematic observations for  all  Earth system sub-domains

(atmosphere, land, ocean, biosphere, and cryosphere) are indispensable to

increase  our  understanding  of  both  processes  and  the  global  carbon,

energy, and water cycles in an integrated way.

To promote systematic climate monitoring, the Global Climate Observing

System  (GCOS)  was  established  in  1992  by  the  World  Meteorological

Organization (WMO), Intergovernmental Oceanographic Commission (IOC),

United Nations Environment Programme (UNEP), and International Council

for  Science  (ICSU),  as  an  international,  inter-agency,  interdisciplinary

framework.  GCOS  aims  at  sustained  “provision  of  reliable  physical,

chemical and biological observations and data records for the total climate

system  –  across  the  atmospheric,  oceanic  and  terrestrial  domains,

including  hydrological  and  carbon  cycles  and  the  cryosphere”  (GCOS,
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2016).  This  led  to  GCOS  establishing  a  set  of  currently  54  “Essential

Climate Variables” or ECVs (Bojinski et al. 2014), key physical variables

which must be observed in a sustained and consistent manner to enable

detection of climate trends and provide data suitable for climate model

evaluation and climate change attribution. 

Complementary  to  relatively  sparse  airborne  and  ground-based

measurements  and  inventory  data,  satellite  observations  are  of  ever-

growing  importance  for  evaluating,  initializing  and  parameterizing

geophysical processes represented in models. This growing importance is

due to the increasing  satellite  global coverage of satellite data  (in space

and time) and the increasing diversity of relevant observables provided by

advances in satellite sensor technologies. Satellite observations provide a

significant contribution to the observation network andfor 21 out of the 54

GCOS ECVs are currently  addressed within the Climate Change Initiative

(CCI) of the European Space Agency (ESA)., Ssome of  which  these ECVs

(e.g.  the Earth  Radiation  Budget)  are  exclusively  derived from satellite

measurements, reflecting their unique contribution  of satellite data  to a

sustained  and  systematic  observation  system.  Some  ECVs,  including

above-ground biomass or column atmospheric concentration of CO2 and

CH4,  can  be  retrieved  from  dedicated  spaceborne  sensors  with  global

coverage  but  with  lower  accuracy  or  resolution  (though  much  better

coverage) than in situ measurements. Other ECVs, such as soil carbon or

ocean interior temperature, cannot be directly observed from space. 

Studies of the Earth system require combined analysis of datasets of many

variables.  Since  these  are  derived  from  different  processing  systems

sources  (satellite-,  ground-,  air-  and  model-based) and  processing
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systems,  one  underlying  precondition  of  any  such  analysis  is  that  the

datasets are  consistent.  With this we intuitively mean that the fact that

they have been derivedThis means that their independent retrievally does

not  introduce  contradictions  between  them.  Possible  reasons  for

inconsistencies include the use of different auxiliary datasets and masks,

the  use  of  simplifications  in  corrections  and  retrieval  algorithms,  and

differences in sampling and gridding. These may lead to inconsistencies of

among  the  datasets  and  of  any  analysis  based  on  them.  One  could

consider as oneFor example for a single variable, a time series of a single

variable  built from independent  subsequent  parts  (e.g. different satellite

sensors)  may  have a significantexhibit ‘jumps’ between the parts, which

spoils any trend analysis. As another example for multiple variables  one

could  think  ofis using  different  glacier  masks, which  may  result  in

assigning  different  surface  properties  (e.g.  glacier,  water,  rock  or

vegetation) to the same pixel in land cover masks, leading to interpreting

the same pixel one time in terms of its glacier properties and another time

in terms of vegetation properties; such double analysis could disrupthighly

variable budget calculations of related exchange processes. Despite of the

importance of consistency, many open questions remain, ranging from a

clear  definition  of  consistency  for  single  and  multiple  variables, to

systematically assessing consistency between the many data records used

and produced.  With this  paper  we present an approach developed in the

ESA Climate Change Initiative (CCI).

Over  the  past  ten  years,  several  space  agencies  (including  ESA,

EUMETSAT,  NASA,  and  NOAA)  have  emphasised  the  generation  and

delivery  of  satellite-based  CDRs.  Hollmann  et  al.  (2013)  describe  the
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related  efforts  of  the  European  Space  Agency  (ESA) in  this  endeavour

through its the Climate Change Initiative (CCI). CCI leverages and harvests

the long-term satellite archives available from Europe, and enhances these

records  with  observations  from  other  space  agencies.  In  addition,  CCI

extends  its  newly  established  CDRs  with  the  most  recent  satellite

instruments to guarantee continuation into the future. During its first six

years (2011-2017), CCI implemented 14 projects, each targeting provision

of CDRs for one (or two) ECVs; in 2018, the CCI was expanded to include

nine additional ECVs, as shown in Figure 1-1.

Together  with  the  Copernicus  Climate  Change  Service  (C3S)  and

contributions  from EUMETSAT  through  its  Satellite  Application  Facilities

(SAFs) such as the Climate Monitoring SAF (Schulz et al., 2009), the NOAA

Climate Data Record programme (https://www.ncdc.noaa.gov/cdr, Bates et

al.  2016),  and  the  NASA  Measures  pProgramme

(https://earthdata.nasa.gov/measures),  about  1000  different  satellite-

based  CDRs  for  GCOS ECVs  and  further  variables  are  available  or  will

become available in the near future. An overview of these CDRs is given in

the  ECV inventory  (https://climatemonitoring.info/ecvinventory),  recently

established  by  the  Working  Group  Climate  from CEOS/CGMS.  The  ECV

inventory  clearly  documents  that,  for  most  ECVs,  multiple  estimates

already exist. This is the basis for a regular gap analysis conducted by the

CEOS Coordination Group on Meteorological Satellites (CGMS, WGClimate,

2018) to define future satellite development needs. 

Since  this  large  set  of  CDRs  are  is  processed  in  many  independent

systems, one needs to ascertain their consistency. In this paper study we

present  a  concept  developed  in  CCI  to  define  and  assess  consistency
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between multiple satellite-based ECVs. Based on this, any pair or group of

CDRs  can  be  assessed  with  regard  to  their  consistency.  Such  an

assessment allows to identify  and quantify remaining inconsistencies in

the light of given CDR uncertainties and the relevant physical principles

(our understanding of “the truth”). One key application of having assessed

consistency  areconsistency are closure studies where multiple CDRs are

used together. This paper only briefly initiates a discussion of examples of

closure studies which themselves would  need each a full publication and

thus go far beyond this paper.

In the next Section 2 we provides types of inconsistencies and develops a

definition  of  consistency,  followed  by  a  brief  analysis  of  CCI  ECVs  and

consistency needs in Section 3. Section 4 provides several examples to

illustrate different aspects of testing or achieving consistency, including

the impact of inconsistencies and the status of CCI-related closure studies.

Section  5  presents  a  discussion  of  the  main  findings  and  identifies

remaining consistency gaps.
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2. Consistency in Earth system monitoring

2.1 Background on the terminology

Consistency  is  normally  understood  as  “agreement”,  “compatibility”  or

“not contradictory”. This captures the required characteristics and possible

tests needed to ensure a set of  CDRs is consistent. In a strict physical

sense, consistency can be understood as fulfilling a conservation balance

equation (of mass or energy) or exhibiting a correlation in time or space

between  two  data  records  as  expected  by  a  physical  theory.  In  the

practice of CDR production also simple category errors occur which mean

result in severe inconsistencies (e.g. for one pixel land cover assigns bare

soil, while biomass gives a non-zero carbon mass to it).

Immler et al. (2010) defined consistency between measurements of the

GCOS Reference Upper Air Network (GRUAN) as “when the independent

measurements  agree  to  within  their  individual  uncertainties”,  which

requires  knowledge  of  their  uncertainties.  This  definition  applies  to

different measurements of the same variable, but in the wider context of

Earth  sSystem  mMonitoring,  a  definition  of  consistency across  multiple

ECVs is also needed so that they can meaningfully be used together to

study climate change. 

Several  types  of  inconsistency  between  different  data  records  can  be

recognised: 

- Single-ECV  inconsistencies  (of  the  same  quantity)  and  multi-ECV

inconsistencies (between several variables)
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- Inconsistencies due to differences of auxiliary data used in retrievals

(e.g., input climatologies or other CDRs), if the dependence to this

auxiliary data is significant and the auxiliary data used differ

- Inconsistencies due to differences in applied masks (e.g. land-sea,

snow, glacier, clouds, shadows), if the dependence to this auxiliary

data is significant and the auxiliary data used differ

- Inhomogeneities in time series (e.g. due to biases or degradation in

the data obtained from a sequence of different input data records,

e.g. satellite instruments)

- Inconsistencies  due  to  labelling  slightly  different  variables  as  the

same retrieved  quantity  (e.g.  due to  wavelength-dependencies  of

retrieved information) 

- Inconsistencies  due  to  sampling  differences  (measurement  time,

frequency,  geographical  coverage  during  gridding),  if  amalgated

merged into a single product

Many of these inconsistencies are linked to the statistical properties of the

raw data used to create a CDR, when for practical reasons simplifications

and  aggregations  cannot  be  avoided.  Inconsistencies  between  multiple

variables  can  only  be  assessed  in  the  light  of  some physical  principle

connecting them. The principle can be simple (e.g. if the land cover says

bare soil and the biomass product provides a biomass value, something is

wrong), or a more complex model may be needed to supply the physical

principle.

2.2 Levels of consistency
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To clarify order the discussion, we consider three complementary levels of

consistency: 

(1)Consistency  on  the  technical  level:   Harmonised  data  format  and

metadata  description  to  ease  acquisition  and  combined  usage  of

multiple CDRs; 

(2)Consistency on the retrieval level:   Use of the same assumptions (e.g.

land-sea mask) and auxiliary datasets where they may have large

impact in retrievals to minimize contradictions between datasets; 

(3)Consistency  on  the  scientific  level:   Agreement  of  the  relevant

characteristics  of  each CDR (e.g.,  patterns,  variability,  trends,  …)

with a reference (represented by a physical equation, a model or a

fiducial  reference).  For  multiple  ECVs  this  requires  agreement  of

relations between them based on physical understanding and within

their combined uncertainties. 

(1)  While consistency on a  technical level is easy to define and needs

limited scientific insight, it is often a resource-consuming barrier hindering

data  use.  This  has  led  the  Earth  observation  community  to  seriously

address this area in recent years (e.g.,  by adopting common metadata

standards  following  the  climate  and  forecast  (CF)  convention  and  the

obs4MIPs data format guidelines). We therefore summarize here that in

particular, the CCI programme has  adopted existing solutions (and when

needed developed new ones) that facilitate combined satellite-based CDR

use. The level of technical harmonization achieved in CCI is a major step

towards enabling cross-ECV climate studies. It includes a harmonized data

format  (netCDF,  with  a  few  exceptions  where  a  different  standard  is

needed  for  a  particular  community,  e.g.  shapefiles  for  glaciers)  and  a
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common  metadata  convention  (CCI  data  standards  (ESA,  2019))  which

follow  the  CF  convention  (http://cfconventions.org).  This  includes

additional  cross-ECV  standardized  metadata  attributes,  using  common

vocabularies for index terms and harmonized variable names, as well as a

harmonized / interoperable data access portal with common catalogue and

data services to simplify multi-variable data search and download within

the  CCI  portfolio  (http://cci.esa.int/data).  Furthermore,  the  underlying

documentation of algorithms and datasets in CCI has been harmonized to

some extent, as in other initiatives such as the SAF network or NOAA CDR

programme. This  information  helps  users  to  quickly  understand  each

dataset  and  its  strengths,  weaknesses  and  limitations.   In  addition,  a

toolbox  (https://climatetoolbox.io)  is  provided  to  help  with  harmonized

data pre-processing, analysis and visualisation.

(2)  On the  retrieval  level,  consistency aims at  using  the  same (or  a

similar)  observation  strategy  (same  or  similar  satellite  sensors,

frequencies, etc.), masks, climatologies or ancillary datasets for the same

variable  in  different  retrieval  algorithms.  Frequently  used  ancillary

datasets include land-sea, sea ice, snow cover, and glacier masks, since

many retrieval algorithms behave differently over different surface types.

Other  datasets  commonly  needed  across  many  variables  are

meteorological fields (e.g., from reanalysis) and cloud masks, since many

retrievals  in  the  visible  to  thermal  spectral  range  need  to  avoid

contamination by (typically very bright or cold) clouds. A related aspect of

consistency  for  some  ECVs  is  to  achieve  consistent  (within  scientific

understanding)  data  fields  across  borders  in  space  (horizontally  and

vertically)  and in  time,  in  cases where data from different  sources are
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used. For example, a dust plume should not have a steep gradient at a

land-sea  border,  while  true  land-sea  contrasts,  e.g.  of  surface

temperature, should be preserved. An additional level of auxiliary dataset

inconsistency occurs when one variable is needed as a correction term in

retrieving another variable. Here, understanding differences between the

two datasets for the same variable (but auxiliary in one ECV and the main

output  in the other)  is  crucial,  so that an erroneous assumption in the

correction applied to one ECV does not introduce a bias against the other.

As one example, the use of Aerosol Optical Depth (AOD) profiles and water

vapour content for atmospheric correction can lead to inconsistencies in

the  retrieval  of  surface  reflectances  that  are  themselves  inputs  to

classification and detection algorithms.

(3)  There  is  no  sharp  border  between  retrieval  and  scientific

consistency.  Ultimately,  scientific  level  consistency  deals  with  the

similarity in CDR properties relevant for processes and geophysical cycles.

All data records of a single ECV if obtained from different sources need to

be consistent within their uncertainties and within sampling differences.

Most importantly, systematic biases between datasets need to be avoided

as  they  may lead  to  errors  when evaluating  model  performance  (e.g.,

Waugh and Eyring, 2009). This applies to different combinations such as

one  variable  /  multiple  sensors,  one  sensor  /  multiple  algorithms,  or

satellite / model / in situ data and can sometimes be assessed visually (by

looking  at  maps,  time  series  or  trends  to  see  similar  patterns)  or

mathematically by quantifying bias, noise and correlation.  Finally,  when

several datasets of different variables are included in a physical model or

budget  equation,  multi-variable  consistency  needs  to  distinguish
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uncertainties  of  calculated  closure  budgets  due  to  propagated  input

uncertainties from those due to real physical process imbalances or net

effects.

A particular element within the CCI programme is the CCI Climate Model

User Group, which independently analyses the quality of CCI CDRs, and

particularly  cross-ECV  consistency,  in  a  climate  modelling  context.

Assessing and achieving consistency is important for meaningful  use of

multiple  ECVs  but  is  challenging  because  of  the  many  links  and

dependencies between variables, as discussed in Section 3.
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3. Consistency needs for CCI Earth System Climate Data Records

In this section we first assess the needs for consistency between CCI ECVs

on the  retrieval  level.  Retrievals  of  geophysical  variables  from satellite

observations aim to produce high quality CDRs by constraining the (often

under-determined) inversion equations as well good as possible. Typically,

the measurements exploited have high sensitivity to the target variable,

but they may also be subject to perturbations from other variables. In such

cases, the inversion needs to either co-retrieve these additional variables

or  use auxiliary  datasets to describe their  spatio-temporal  distributions.

Also  Moreover,  often  different  retrieval  algorithms  are  optimal  over

different  domains  surface  types  as  their  reflectance or  spectral

characteristics  are  highly  variable  (e.g.  over  dark  water  or  over  bright

land). The use of different approaches for obtaining the same variable in

different  retrieval  algorithms  is  one  possible  source  of  inconsistency

between CDRs. 

All CDRs have to pass validation against external reference datasets (e.g.

from ground-based stations)  to quantify  their  accuracy.  CCI  insists  that

CDRs be accompanied by proper uncertainty characterisation (using error

propagation or uncertainty characterization during validation) within their

data files (Merchant et al., 2017), so that uncertainties can be assessed

when  using  the  datasets.  However,  since  reference  data  can  have

temporal  or  spatial  representativeness  issues  and  different  validation

methods  also  have  their  inconsistencies,  unexplored  uncertainties  may

remain  (for  the  retrieved  values  themselves  and  for  the  estimated

uncertainties). 
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Validation and error propagation implicitly  quantify inconsistencies from

using imperfect auxiliary  datasets and retrieval  simplifications to within

uncertainties.  However,  prove  of  consistency  needs  to  explicitly  test

together the CDRs considered. Table 3-1 above the diagonal summarizes

links between ECVs generated and analysed by CCI with regard to their

retrieval consistency. We identify the need for retrieval consistency, i.e.,

where  either  one  or  both  retrievals  rely  on  consistent  co-retrieved  or

auxiliary  variables.  We  indicate  links  identified  only  within  CCI,  while

recognising that there are other variables, algorithms or sensors for which

these may not apply.

In order to understand which the needs for consistency between CCI ECVs

on the scientific levelCDRs may need to be scientifically consistent with

each other, we briefly recall  the relevance of each ECV for the energy,

water and carbon cycles. The term ‘cycle’ describes movement of matter

or  energy  through  the  Earth  system involving  different  processes  and

transformations  between  physical  or  chemical  states.  Figure  3-1  is  an

overview  of  the  main  Earth  system  cycles  and  lists  the  available  or

upcoming  ESA  CCI  CDRs  that  contribute  to  their  characterisation.  For

simplicity, we attribute each CDR only to the cycle in which it plays the

most important role. Practically all ECVs contribute to the energy cycle,

either  directly  through  radiation  interaction  or  through  mass-attached

energy transport in the water or carbon cycle. Studies of sub-elements of

these main cycles may also be relevant (e.g. physical processes such as

emission,  transport,  deposition  or  radiation  interactions,  chemical

transformations,  also  regional  limitations,  such  as  ice-free  conditions)

which may only require consistency between a reduced set of ECVs. 
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Carbon cycle: Human activity, through fossil fuel burning and land cover

change, has significantly affected the natural balance of the carbon cycle

with wide-ranging consequences including global  warming, air pollution,

and ocean acidification. Monitoring changes in the carbon cycle is crucial

to defining limits  for CO2 emissions to keep global  warming to below a

given temperature threshold. 

CCI  CDRs  help  by  quantifying  the  amount  of  carbon  stored  in  the

atmosphere, oceans and terrestrial biosphere and of the fluxes between

these reservoirs. The land biosphere and the ocean currently each take up

approximately 25% of the emitted CO2, i.e., together approximately 50%

of  the  human  emissions  (Le  Quére  et  al.,  2018). The  ocean  uptake

depends  on  sea-surface  temperature  (SST)  and  ocean  photosynthetic

activity  (monitored  using  ocean  colour  observations).  CCI  CDRs  also

constrain carbon fluxes from the land biosphere (e.g. Reuter, et al., 2017)

including  land  use  change and  biomass  burning,  together  with  direct

estimates of above-ground biomass. Other CCI CDRs of importance to the

carbon  cycle  are  snow  cover  (which  affects  the  duration  and  start  of

photosynthetic processes in boreal forests; Pulliainen et al., 2017), similar

to the impact of sea ice on marine photosynthesis in high latitudes, soil

moisture  (which  affects  land-atmosphere  CO2  fluxes),  and  permafrost

(which  contains  frozen  carbon  stores  with  about  twice  the  mass  of

atmospheric  carbon),  and  sea  surface  salinity  that,  together  with  SST,

determines  CO2 solubility,  with  a  particularly  important  impact  in  rainy

regions and which can serve as a proxy for sea water alkalinity (see a

review in Vinogradova et al., 2019).
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Water cycle: Climate change is predicted to lead to changes in the water

cycle, affecting available water resources through changes in precipitation

patterns, snow and glacier melt, and increasing demand for water (Arnell

et al., 2013). Changes in the water cycle are also associated with extreme

events such as floods and droughts. Melting of glaciers and mass loss of

ice  sheets  is  theare  main drivers of  sea  level  change,  which  has  far-

reaching consequences on livelihoods in continental coastal areas and on

ocean islands (IPCC,  2014).  Characterising the natural  local  to regional

variability and long-term trends of high and low frequency changes in the

water  cycle  is  therefore  crucial  to  help  implementing  adaptation  and

mitigation measures (Hegerl et al., 2013). 

CCI  helps  to  quantify  the  global  water  cycle  over  land  and  ocean  by

providing  CDRs  related  to  the  reservoirs  within  the  water  cycle  (lake

levels, sea level,  sea ice, ice sheets, glaciers, soil  moisture, and snow),

atmospheric  water  vapour  content  (water  vapour),  and  clouds  and

aerosols (which impact on cloud properties and lifetime and ultimately can

change  radiation  and  precipitation).  From  these,  processes  such  as

precipitation and runoff that transfer water between the various reservoirs

may be inferred. CCI delivers additional relevant parameters such as sea

surface  salinity  (related  to  precipitation,  evaporation and  runoff),  sea

surface  temperature  (SST,  determining  evaporation),  land  cover  and

biomass (both linked to evapotranspiration). 

Energy cycle:  The Earth’s energy cycle is driven by incoming shortwave

radiation from the sun and is balanced by outgoing short- and long-wave

radiation. Water vapour transports energy from the surface to the upper

troposphere  (via  latent  heat)  and  clouds  interact  with  radiation  (Allan,
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2012). Both processes connect the energy cycle to the water cycle. Land

and ocean surface temperatures play a key role in determining surface

energy  budgets,  and  hence  the  temperature  profiles  of  the  lower

atmosphere and soil (Crago and Qualls, 2014). The sea state affects the

drag and hence momentum transfer  over the ocean,  thereby having a

considerable impact on both synoptic scale weather and climate (Konmen

et al., 1998; Smedman et al., 2003) , as well as the depth of the surface

mixed-layer  in  the  ocean,  which  in  turn  has  implications  for  marine

photosynthesis.  Together  with  temperature,  salinity  determines the

density of sea water, and hence the depth of the surface mixed layer; in

regions with large freshwater input  related to  river runoff, ice melting or

rain,  sea surface salinity helps the formation and maintenance of a thin

surface  mixed  layer, the  so-called  barrier  layer,  with  strong  impact  on

ocean-atmosphere exchanges (see a review in Vinogradova et al., 2019).

Increases in aerosol and greenhouse gases since pre-industrial times have

altered  the  global  radiation  budget  and  thereby  affected  the  Earth’s

energy cycle.

CCI helps to constrain the global energy cycle by providing CDRs for SST

and land surface temperature (LST), land and sea ice, as well  as snow

cover, sea level (which is affected i. a.e.g. by the ocean heat content and

land ice melt), sea state, clouds, water vapour, ozone, greenhouse gases

and aerosols that help determine the vertical temperature structure of the

atmosphere. Finally, the biosphere may also be considered a part of the

energy cycle since it converts solar energy into chemically-stored energy

(organic matter). In the oceans, a significant portion of the organic matter

sinks out of the surface layers, exporting the energy to the deep ocean.

19

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431



The relevant time scales range from less than a day to geological time

scales:  crude  oil  and  natural  gas  that  we  burn  today  for  our  energy

requirements had their  origin millions of  years ago in marine plankton,

whereas coal and methane are derived from terrestrial plants. 

Table  3-1  summarizes  below  the  diagonal  the  need  for  scientific

consistency because two variables are linked by Earth system processes

or geophysical cycles.
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4. Assessing and achieving consistency

This section gives examples of what has been done within or related to CCI

to assess and assure single and multiple-ECV consistency of its CDRs. The

selected examples illustrate different aspects of consistency, and different

ways  of  checking  and  using  consistency.  References  to  the  detailed

studies are provided where available.

4.1 Examples of retrieval consistency  

Example 1: Consistency between CDRs of one physical variable 

across a land-sea border

Surface temperature (which consists of four different CDRs for land (LST),

sea surface (SST), ice (IST) and lake surface water (LSWT) temperatures)

requires  consideration  of  several  aspects  to  ensure  consistency  both

within  each  CDR  and  between  them:  temperature  retrieval  algorithm

consistency,  a  common  approach  to  uncertainty  representation  and

propagation,  use  of  a  common  land-sea  mask  (and  sea-ice  mask),

consistency  in  cloud  detection,  and  consistency  in  aerosol  correction.

Within  each  CDR  the  primary  challenge  is  to  incorporate  data  from

multiple sensors into single CDRs. This may result in applying retrieval and

cloud algorithms which perform well for all sensors rather than algorithms

which  are  optimized  for  some  sensors  (e.g.  with  different  channel

configurations). Across domains the challenge is even greater, since the

best algorithms over land are poorer over the sea or lakes, due to the

different contributions of surface emissivity and atmospheric attenuation

to the signal. Potential discontinuities are naturally more evident at the
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domain margins, which can be particularly sensitive to differences in the

identification of the land-sea boundary. An example is shown in Figure 4-1,

which illustrates that optimal cloud masking in the retrievals for LST and

SST (choosing different optimal algorithms) has led to discontinuities in the

coverage  of  valid  temperature  observations  at  the  land-sea  border.

Consistency in the land-sea mask, and in cloud and aerosol detection, is a

challenge across many other ECVs which may require different treatment

depending on the magnitude of sensitivity to those perturbations. 

Example 2: Consistency of glacier outlines with other glacier 

variables and ECVs

For  the  glaciers  ECV,  consistency  among  its  main  variables  (glacier

outlines, elevation change and velocity) and with other ECVs is a major

issue. The most important is spatial consistency, i.e., the exact agreement

of  locations  between  the  glacier  outlines  and  the  other  glacier  ECV

variables and other ECVs. Temporal consistency is also of high importance

for elevation change and velocity within the ECV and to a lesser extent

across ECVs. Finally, methodological consistency is a major issue as visual

interpretation of satellite images is required in the post-processing stage

to manually correct debris-covered glaciers. This is not standardized and

cannot rely on consistent terminology in different glacier inventories. 

Glacier  outlines  are  derived  from  high  resolution  satellite  imagery

(typically 10 to 30 m) or aerial photography (typically 0.2 to 2 m) using

semi-automated  mapping  techniques  or  manual  on-screen  digitization

(Paul et al. 2015). In most regions, glacier extents change slowly (0.1% to

1% area loss per year) so that updated values are typically required after a
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decade. Both the high resolution and the slow update cycle make global

maps of glacier cover highly suitable for cross-ECV applications, as other

ECVs are only available at a much coarser spatial resolution (hundreds of

meters to tens of kilometres) or change much more quickly.  

The location of glaciers serves as an important input or auxiliary dataset

for several other ECVs: for clouds and LST to choose the correct retrieval

algorithms;  for  land  cover  as  an  independent  validation  source  for  its

“permanent  ice”  and  “snow”  classes;  for  permafrost  and  lakes  as  a

reciprocal mask (these can only occur in places not covered by glaciers).

When glaciers shrink, areas of permafrost or pro-glacial lakes are expected

to  increase.  Similarly,  regions  identified  as  glacier-covered  cannot

simultaneously be covered by sea ice or ice sheets. Regions with snow

cover include in most cases also coverage by glaciers, apart from in the

late summer where bare ice appears when the snow line is higher than the

lowest glacier elevation. The end of summer snowline (or snow cover) on a

glacier can also be used as a proxy for its mass balance (e.g., Rabatel et

al. 2013). For this application a good temporal match of glacier outlines

and snow cover  data  is  highly  beneficial.  Finally,  the  area  covered  by

glaciers is used to derive their contribution to sea level when combined

with regional estimates of glacier mass balance (e.g., Zemp et al. 2019).

For all of the above, spatial consistency only plays a critical role when the

datasets have about the same spatial resolution (e.g., snow cover or high-

resolution land cover). Otherwise the glacier cover will always be located

within the larger pixels  of other ECVs and might then also be used for

validation (e.g., land cover) rather than as a spatial mask.

23

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513



Example 3: Consistency of cloud masks between two ECVs 

(aerosol and cloud properties)

Aerosols and clouds interact strongly in the atmosphere and through light

scattering  both  increase  the  radiation  observed  by  remote  sensing

instruments (though usually with different magnitudes).  The retrieval of

both  ECVs  needs  a  cloud  mask,  in  the  case  of  aerosol  to  avoid  cloud

contamination, in the case of cloud properties to ensure that a pixel truly

represents a cloud.  When aerosol  and cloud property  retrievals  for  the

same sensor are implemented as separate algorithms (as is usually the

case),  individual  pixels need to be allocated either to cloud or aerosol;

analysis  of  the  same  pixel  as  aerosol  and  as  cloud  under  the  wrong

assumption  (cloud-free  or  aerosol-free)  could  severely  degrade  the

retrievals and must be minimized. To assess if this requirement is fulfilled,

the  consistency  between independent  AATSR  cloud  masks  used  in  the

Aerosol and Cloud products was analyzed for four days in September 2008

(covering difficult scenes with high aerosol loads or complicated mixtures

of aerosol and clouds). Figure 4-2 shows, that while 21% of observations

are not used for aerosol or cloud retrievals at all, only 0.3% of them were

found to be inconsistent (i.e., they were double-analysed as clouds and as

aerosols).  Over  land  1%  of  observations  were  inconsistent  while

inconsistency was practically absent over the ocean. 

This result demonstrates (for a limited set of test days) that the different

cloud  masks  for  the  AATSR sensor  used  in  the  CCI  Aerosol  and Cloud

projects are highly consistent (in the sense that only a small fraction of

pixels is erroneously interpreted at the same time as cloud and as aerosol)

and can be used simultaneously in climate applications. It also shows that
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about  20% of  the pixels  remain unanalyzed by both aerosol  and cloud

retrieval to avoid contamination by the other ECV. Attempts have been

made to reduce this fraction of pixels in the twilight zone, but always led

also to increased fractions of contaminated / inconsistent pixels. 

4.3 Examples of scientific consistency

Example 4: Consistency of multi-sensor merged greenhouse gas 

CDRs

The GHG ECV satellite-derived data products are column-averaged dry-air

mole fractions (“vertical columns”) of carbon dioxide (XCO2) and methane

(XCH4).  Initial  versions  of  these  products  have  been  generated  in  the

framework of the GHG project (Buchwitz et al., 2015). These data products

are  input  data  for  inverse  modelling  schemes  used  to  improve  our

knowledge on the various natural  and anthropogenic  sources and sinks

(e.g.,  Reuter  et  al.,  2017,  and  references  therein).  These  applications

require  very  high  accuracy  (e.g.,  Buchwitz  et  al.,  2015)  because  even

small  spatial  or  temporal  biases  may result  in  significant  errors  in  the

derived  surface  fluxes.  Thus,  consistency  is  important  for  each  GHG

variable  with  respect  to  quality  assessments  (e.g.,  using  a  common

validation reference for all products), and between individual datasets for

their merging into a multi-sensor CDR covering the entire time period as

consistently as possible. To achieve this temporal consistency, a merging

algorithm (EMMA,  Reuter  et  al.,  2013)  corrects  for  potential  remaining

obvious  inconsistencies,  e.g.,  by performing  an offset  correction  to  the

ensemble members to avoid jumps in the merged time series. Figure 4-3

shows globally averaged monthly mean XCO2 computed from the merged
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product  covering  2003-2017  (thick  red  line).  As  can  be  seen,  XCO2

increases nearly linearly with time, primarily due to fossil fuel burning, and

shows a seasonal cycle primarily attributable to the regular uptake and

release of CO2 by vegetation due to photosynthesis and respiration. From

mid-2009  onwards  this  product  is  based  on  an  ensemble  of

SCIAMACHY/Envisat  (until  April  2012)  and  several  TANSO-FTS/GOSAT

individual  sensor  products  (Reuter  et  al.,  2013;  Buchwitz  et  al.,  2015,

2018b), which are shown as thin grey lines. No remaining inconsistency is

visible in Figure 4-3  (but see also Buchwitz et al., 2018b, for a detailed

analysis of this time series with respect to the CO2 growth rate).

Example 5: Consistent trends of homogenized records of the same

variable (water vapour)

Within the GEWEX Water Vapour Assessment (G-VAP,  see  http://gewex-

vap.org/ for details) the majority of long-term water vapour data records

were and are characterized to describe their  strength and weaknesses.

Among others,  total  column water  vapour  (TCWV) data  and associated

trend estimates have been inter-compared and their degree of temporal

homogeneity has been assessed. Schröder et al. (2016, 2019) concluded

that  the  trend  estimates  are  generally  significantly  different  and  that

several  data  records  do  not  exhibit  agreement  with  the  physical

expectation  from  the  Clausius-Clapeyron  equation  using  data  over  the

global  ice-free ocean.  After  homogenisation  of  the different TCWV data

records,  better  agreement  with  theoretical  expectations,  and  thus

consistency, was achieved (Schröder et al., 2019). Here, a new analysis

was also applied to trend estimates and associated results are shown in
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Figure  4-4.  The  diversity  in  trend  estimates  is  largely  reduced  after

homogenisation, i.e., all trend estimates are closer to the Hamburg Ocean

Atmosphere  Parameters  and  Fluxes  from  Satellite  data  (HOAPS)  trend

estimate (HOAPS was used for computing anomaly differences as basis for

break  point  detection).  Consequently,  G-VAP recommends  that  satellite

observations  should  be  carefully  recalibrated  and  inter-calibrated  to

improve retrieval, assimilation and aggregation schemes (Schröder et al.,

2016, 2019). Accordingly, the improvement of retrieval and aggregation

schemes is an ongoing effort within CCI projects.

Example 6: Consistency of wave height trends and sea ice 

concentration

It is well established that sea ice extent in the Arctic has been decreasing

since 1992 (e.g. Cavalieri and Parkinson, 2012). A larger ocean area is now

open to the atmosphere and intuitively one would expect that sea states

are becoming enhanced, with increased wave heights (Wang et al., 2015;

Stopa et al., 2016). The consistency of the multi-year time series between

sea  state  parameters  and  sea  ice  is  assessed  in  Stopa  et  al.  (2016)

through  use  of  sea  ice  concentrations,  numerical  models  and  satellite

altimetry. Daily sea ice concentrations produced from the Special Sensor

Microwave Imager (SSM/I) by IFREMER (Ezraty et al., 2007) were used to

define  open  ocean  versus  sea  ice  conditions.  The  15%  concentration

defines the presence of  sea ice at 12.5 km resolution within the Arctic

Ocean. For the period 1992-2014, the SSM/I ice concentrations are used

along with wind vectors from the Climate Forecast System Reanalysis to

reproduce  the  wave  field  through  the  numerical  wave  model,
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WAVEWATCH3  (WW3,  Tolman  et  al.,  2014).  WW3  includes  wave-ice

interaction  through  an  under-ice  parameterization  of  wave  dissipation

(Stopa et al., 2016). 

In Figure 4-5 we show the trends of the significant wave height (Hs) from

altimetry (denoted ALT, Queffeulou and Croize-Fillon 2015) and from the

co-located model data from WW3 (denoted WW3 CoLoc). Qualitatively the

regional patterns match between the two datasets, despite the stronger

trends in the altimeters. The altimeter confidence interval encompasses

the  model  results,  so  statistically  they  are  equivalent.  Since  WW3

accurately predicts Hs (RMSE < 0.35 m relative to ALT), we can conclude

that the 23-year trends from the model using SSM/I ice concentrations and

Hs satellite altimetry are consistent with the truth and each other.  This

convergence of data and model suggests that all three to some degree

reflect  the  truth.  Remaining  significant  differences  between  the  plots

indicate the need for further improvement to reduce the inconsistencies.

Accordingly  this  methodology  can  be  used  to  indirectly  assess  the

consistency  of  the  model  with  other  complementary  remotely-sensed

parameters (e.g., wind, sea ice and wave parameters).

Example 7: Using a model to test the consistency of different 

satellite data records 

In  the  lower  stratosphere,  water  vapour  is  known  to  broadly  follow

variations  in  tropical  tropopause  temperatures.  This  is  due  to  the

dehydration  of  air  masses at  the tropical  cold  point  tropopause during

their slow ascent into the stratosphere. The strength and seasonality in

this  process  is  dictated  by  the  strength  of  the  stratospheric  general
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circulation (e.g., Fueglistaler et al., 2009). The strong physical dependency

of lower stratospheric water vapour on tropical tropopause temperatures

can be exploited to test the consistency between climate data records of

temperature and stratospheric water vapour as highlighted by Hegglin et

al.  (2014).  This  study  proposed  a  new  merging  method  that  uses  a

chemistry-climate model  as transfer  function  between different satellite

instrument records to create a CDR. The methodology allows for the bias

between  instruments  to  be  determined  throughout  the  instrument’s

lifetime and not only for the overlap period (when old instruments may

show  first  signs  of  degradation),  hence  improving  characterization  of

systematic  differences  (or  biases)  between  datasets.  By  using  the

correlation between the newly merged stratospheric water vapour record

and the zonal mean temperature from ERA-interim, it was shown that the

new merging method led to physically more consistent results than the

traditional  one  based  on  bias-correction  of  instruments  during  overlap

periods. Figure 4-6 shows the time series of a prototype version of the CCI

stratospheric  water  vapour  CDR  merged  using  the  methodology

introduced  by  Hegglin  et  al.  (2014)  in  comparison  with  zonal  mean

temperatures from ERA5 (left panel). The relatively high correlation (right

panel) suggests that the two variables are physically consistent. 

Example 8: ENSO consistency across multiple ECVs 

The El  Niño Southern Oscillation  (ENSO) is  the most important  coupled

ocean-atmosphere  phenomenon  affecting  global  climate  variability  on

seasonal to inter-annual time scales. It is an irregular periodical variation

(time scale of 2-7 years), that can be measured by various indices, e.g.
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sea  surface  temperature  anomalies  in  the  tropical  Pacific  Ocean.  The

relatively short timescale, large amplitude and multiple ECVs affected by

ENSO makes it an ideal natural candidate for investigating consistency of

different CCI satellite data records with this phenomenon. We compare the

ENSO variability in sea surface temperatures (SST), sea level heights (SL),

Sea  Surface  Salinity  (SSS),  Ocean  Colour  chlorophyll-a  (Chlor_a),  high

cloud cover (CFChigh), Soil moisture (CCI SM), burned area (fire), 550 nm

aerosol optical depth (AOD550) and TCWV (from HOAPS). For SST and SL

we calculate monthly means from daily data, for the other ECVs we use

pre-calculated  monthly  mean  fields.  All  variables  are  interpolated  to  a

common 1° grid, de-seasonalised by removing the corresponding monthly

mean value  and normalised by  dividing  by  the standard deviations  for

their respective available time period.

Figure 4-7 shows the variability across the tropical Pacific Ocean for the

ECVs in time-longitude anomaly cross sections. The ocean (SST, SL, Sea

Surface  Salinity,  Chlor_a)  and  atmosphere  (CFChigh,  TCWV)  ECV  time

series show consistent spatio-temporal co-variability for the Niño3.4 region

(5°S-5°N, 190°E-240°E) as expected, with correlation coefficients of 0.87

(SST and SL), 0.82 (SST and CFChigh) and 0.84 (SST and TCWV). The SST

and  SL  have  their  largest  variability  in  the  Niño3.4  region,  while  the

variability for the CFChigh and TCWV peak further west (~180°E), except

for  the  strong  El  Niño  years  1982/83,  1997/98  and  2015/16  when the

atmospheric anomalies extended further east similarly to the SST and SL

anomalies. Sea Surface Salinity and Ocean Colour are anti-correlated with

SST with values -0.63 and -0.68, respectively, as expected from a reduced

upwelling. For fire, aerosol and soil moisture, which are affected indirectly
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by  El  Niño  from  dry  conditions  and  wild  fires  over  Indonesia,  the

correlation  coefficient  between  the  SST  Niño3.4  time  series  and  their

Indonesia time series (10°S-10°N, 100°E-150°E) are lower with values of -

0.57 (soil moisture), 0.49 (fire) and 0.52 (AOD550). However, for certain El

Niño3.4 years, e.g. 1997, 2007 and 2015 there are clear indicators of co-

variability between them and CCI SST (Fig 4-7g). In conclusion, based on

their  consistency ascertained through (anti-)correlations as expected by

our  scientific  understanding  of  the  ENSO  phenomenon  these  nine

independently derived satellite ECVs can be used to further investigate the

observed ENSO phenomena, the direct and remote linkages, as well  as

evaluate and constrain the ENSO representation in climate models.

4.3 Outlook: Status of closure studies  

Several examples of closure / budget studies of partial geophysical cycles

within  the  CCI  programme demonstrate  the  usefulness  of  CCI  (and

additional other) CDRs that are consistent at all three levels. For example,

closure of the carbon budget is still an outstanding scientific challenge (Le

Quéré  et  al.  2018).  Different  CCI  products  provide  direct  and  indirect

constraints  on  carbon  fluxes  that  help  to  improve  the  consistency  of

carbon  budgets:  CCI  greenhouse  gas  products  are  used  to  inform

atmospheric inversions. Top down inversion results can be complemented

by other ECVs to attribute diagnosed fluxes to different components such

as  biomass  and  soil  carbon  changes,  fire  emissions  (CCI  products  on

burned area and fire size) and land use change emissions (land cover CCI

products). 
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Another example is the regional  closure of the water budget, based on

multiple satellite ECVs which demonstrates that the water budget can be

closed within less than 10% at a continental annual time scale. However,

at monthly time scales, its residuals and uncertainty estimates are larger

(about 20%; Rodell et al., 2015). These uncertainties in the water budget

closure can be reduced by introducing additional constraints, e.g. by using

multiple  CDRs  with  different  uncertainties  of  a  single  variable  or  by

additionally  forcing  closure  of  the  atmosphere  and  ocean  terms.

Uncertainties in existing CDRs need to be further reduced and new CDRs

of  other  key variables  (most  importantly,  river  discharge and irrigation

water use) need to be included or developed to reach the 5% closure error

targeted by GCOS (GCOS, 2016). 

The global mean sea level budget closure has also been assessed within

the CCI programme by comparing the sum of changes in ocean thermal

expansion, land ice melt and liquid water storage on continents with the

total observed sea level change. All these components can be estimated

globally from satellite altimetry with an accuracy of about 10% on different

time  scales  (e.g.,  The  WCRP  sea  level  budget  group,  2018).  These

observations enable closure of the trend in the sea level budget with an

uncertainty of ±0.3 mm/yr over the last 25 years. The sea level budget

involves additional variables from the global water budget (through land

ice  and  liquid  water  components)  and  from  the  global  energy  budget

(through thermal expansion directly related to global ocean heat content;

Meyssignac et al. 2019) and thus connects the energy and water budgets.

At regional  scale,  uncertainties in the observed components of  the sea
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level budget are considerably larger (few tens of percent) and need to be

further reduced to reach the regional GCOS target.
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5. Summary, discussion and conclusions

Climate Data Records (CDRs) of Essential Climate Variables (ECVs) derived

from satellite  instruments  provide  essential  information  to  monitor  the

state of the Earth system. A key requirement for these CDRs to be useful

for  Earth  system science is  that  the  CDRs  should  beare internally  and

mutually consistent. The ESA CCI programme provides a set of CDRs for 21

GCOS ECVs in a common framework, and from the outset has invested

heavily in establishing their consistency, as presented in this study. Using

a three-level definition of consistency, a basis is presented for checking if

two  or  more  CDRs  are  consistent  with  each  other  and  possibly  with

reference data.  On the technical  level,  straightforward data access and

usage, including availability of comprehensive documentation and product

user guides is needed. On the retrieval level, one needs to limit differences

of masks, auxiliary datasets, or fields of the same variables in separate

processing  chains  to  avoid  disagreements.  On  the  scientific  level,

consistency of  multiple  ECVs means judging their  relevant  correlations,

patterns, periodicity, trends, etc. (for a given variable, process or cycle) in

the light of underlying geophysical processes (e.g. by jointly confronting

them with a model). Finding inconsistencies in one or more ECV datasets

(i.e.  finding  patterns  whose  disagreements  exceed  underlying

uncertainties  and/or  contradict  physical  principles  or  a  well-founded

model) often indicates errors in a dataset or model whose resolution can

lead to new scientific understanding.

This study provides a summary of the technical consistency of CCI CDRs

(common format  and  metadata  standards,  common portal,  harmonized
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documentation,  common  uncertainty  reporting)  and  illustrates  different

aspects of retrieval and scientific consistency using eight examples. On

the  retrieval  level,  these  examples  include  the  CDRs  for  surface

temperature, aerosol and clouds, and glaciers to illustrate the importance

of  using consistent sea-land or  cloud masks or  glacier  outlines.  On the

scientific level, these examples include the CDRs of greenhouse gases and

total  column  water  vapour  to  illustrate  the  importance  of  using  bias-

corrected instrument time series for data merging and trend analyses, and

the CDRs of sea-ice and stratospheric water vapour to show the value of

using  known  physical  relationships  with  other  variables  to  test  the

agreement  of  datasets  with  models.  In  addition,  the  effects  of  a

geophysical phenomenon (ENSO) on the time evolution of different Earth

system variables is used to investigate the consistency of a range of CDRs

via their correlations. We also provide a brief high level analysis of the

inter-dependencies of CCI ECVs at the retrieval and scientific levels (see

Ttable 3-1) to understand where consistency is needed and thus needs to

be checked.

An  open  issue  regarding  technical  consistency  and  standards  is

harmonization  across  programmes  and  communities.  Here, the  CCI

programme has made an important step by adopting the netCDF format,

with the CF and ACDD conventions (the de facto standard in the modelling

community) for its gridded satellite data records. The Climate Data Store

(CDS)  of  the  Copernicus  Climate  Change  Service  (C3S)  is  also  based

largely  on  CCI  standards.  Moreover,  such  common  standards  are  a

prerequisite  for  the  use  of  automatedic data  services  for  accessing
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multiple data sources with little manual interaction, hence facilitates use

of the data and scientific studies across multiple ECVs. 

When discussing consistency, datasets from sources other than satellite

data (e.g.  Earth system models)  are often required to comprehensively

study  an  Earth  system cycle,  and  their  uncertainties  also  need  to  be

considered, together with uncertainties in simplified or estimated budget

equations. It is well understood that establishing consistency between two

or more variables requires targeted analysis and a lot remains to be done

in this area. To this end, Table 5-1 provides an assessment of the current

state  of  affairs  regarding  consistency  between  the  CCI  CDRs.  This

assessment  is  based  on  the  combined  scientific  expertise  of  the  CCI

community;  it  is  not  meant  to  be  exhaustive  but  is  intended as  initial

guidance for use of multiple ECV CDRs or for defining priorities in further

consistency  analysis.  For  each  pair  of  CDRs  the  consistency  status  is

indicated as either:  “no evident need to consider consistency” (empty),

“further  studies  needed” (X),  “consistency explicitly  ensured by shared

processing  or  co-retrieving”  (*),  or  “studies  already  performed”,

referenced to Ttable A-2 with the underlying publication or technical report

(characterized  as  “theoretical”  (t),  “exemplary  /  partial”  (e)  or

“comprehensive” (c)). This assessment is based on the combined scientific

expertise of the CCI community; it is not meant to be exhaustive but is

intended as initial guidance for use of multiple ECV CDRs or for defining

priorities in further consistency analysis.
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8. Appendix

Table A-1: Information on the datasets used for figure 4-7: versions, DOIs

and  references.  The  correlations  between  the  SST  Niño3.4  region

(averaged 5°S to 5°N, 190°E to 240°E) time series and the other ECVS’s

Niño3.4 time series (and for SM, BA and AOD time series with Indonesia

(averaged 10°S to 10°N, 100°E to 150°E) are given in the right column.

ECV Dataset version, time period used, DOI, references: Correlation of Niño3.4 
SST with

SST ESA SST CCI ATSR and/or AVHRR product version v2.1, 1982-2016
DOI: n/a
Merchant et al 2019

Niño3.4 SST: 1.00

SL SL_cci data v2.0, 1993-2015
DOI: 10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612 
Legeais et al 2018 and Quartly et al 2017

Niño3.4 SL: 0.87

SSSSea 
Surface 
Salinity 
(SSS)

SEASURFACESALINITY_CCI_DATA v1.6, 2010-20172018
DOI: n/a

Niño3.4 SSS: -0.63

Chlor_a CCI Chlor_a v3.1 (4km_GEO_PML), 1998-2017
DOI: n/a
Sathyendranath et al 2012

Niño3.4Chlor_a: -0.68

CFChigh Cloud_cci AVHRR-PMv3, 1982-2016 
DOI: n/a
Stengel et al 2019

Niño3.4 CFChigh: 0.82

TCWV HOAPS 4, 1988-2015
DOI:10.5676/EUM_SAF_CM/HOAPS/V002 
Andersson et al., 2017, data from 2015 as beta version of HOAPS 4

Niño3.4 TCWV: 0.84

Fire FireCCI51, 2001-2017
DOI:   dx.doi.org/10.5285/3628cb2fdba443588155e15dee8e5352  
Chuvieco, E. et al (2019)

Indonesia Fire:  0.49

 

AOD550 CCI ATSR-2/AATSR Swansea v4.1, 1997-2011
https://esgf-node.llnl.gov/search/obs4mips/obs4mips.SU.ATSR2-
AATSR.od550aer.mon.v20160922 |eridanus.eoc.dlr.de
Bevan, S., et al.,  2012;  North, P., et al.,  1999; Popp, et al.,
2016

Indonesia AOD550: 0.52

SM ESA CCI SM merged v04.5, 1991-2018
DOI: n/a 
Dorigo et al. 2017, Gruber et al. 2019

Indonesia SM: -0.57
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Table  A-2: Publications  or  technical  reports  (available  from  ESA  CCI
programmeprogram) behind entries on done consistency studies in table
5-1.
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Table captions

Table 3-1: Links between ECVs on the retrieval (above the diagonal) and 
scientific (below the diagonal) level which need to be consistent if used 
together. Weak linkages are indicated in brackets. Cycles are indicated 
with the following acronyms: C=carbon cycle, W=water cycle, E=energy 
cycle. Processes are indicated with the following acronyms: r=radiation 
interaction, d=deposition, e=emission / evaporation, t=transport, 
c=chemical transformation, mtf=melting / thawing / freezing, i=ecosystem
interaction, a=air sea fluxes of carbon and water, m=mask.

Table 5-1: Consistency analysis status between pairs of CCI ECVs: 
intrinsically assured (*), study needed (X), study done (c = 
comprehensive, e = exemplary, t = theoretical) - empty fields indicate 
that no study is needed, this link cannot be studied (e. g. due to 
resolution) or the link is considered weak. Numbered references for 
conducted studies are provided in the appendix (Table A-2).
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Tables

Table 3-1: Links between ECVs on the retrieval (above the diagonal) and
scientific (below the diagonal) level which need to be consistent if used
together.  Weak linkages are indicated in brackets.  Cycles are indicated
with the following acronyms: C=carbon cycle, W=water cycle, E=energy
cycle.  Processes are indicated with the following acronyms: r=radiation
interaction,  d=deposition,  e=emission  /  evaporation,  t=transport,
c=chemical transformation, mtf=melting / thawing / freezing, i=ecosystem
interaction, a=air sea fluxes of carbon and water, m=mask.
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Table  5-1: Consistency  analysis  status  between  pairs  of  CCI  ECVs:
intrinsically  assured  (*),  study  needed  (X),  study  done  (c  =
comprehensive,  e = exemplary,  t  = theoretical)  -  empty fields indicate
that  no  study  is  needed,  this  link  cannot  be  studied  (e.  g.  due  to
resolution)  or  the  link  is  considered  weak.  Numbered  references  for
conducted studies are provided in the appendix (Table A-2).
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Figure captions

Figure 1-1: Temporal coverage of CDRs for ECVs analysed by CCI. Filled
bars indicate CDRs available in 2019, outlined bars CDRs that are planned
within the ongoing phase of the CCI programmeprogram.

Figure 3-1: The ECVs covered by ESA CCI CDRs, ordered according to the
key Earth system cycle (energy,  carbon,  water)  they help characterise.
The cycles are inter-linked, and the energy cycle encompasses most of the
water and carbon cycles since energy is stored and transported in water
and matter, at least on transient timescales.

Figure 4-1: Discontinuities in coverage of surface temperature fields (LST
and SST from SLSTR on Sentinel-3A) across a land-sea boundary due to
different cloud clearing approaches over land and sea.

Figure  4-2:  Consistency  overview  between  Aerosol_cci  (Swansea
University) and Cloud_cci (FAME-C) AATSR cloud masks for observations of
four selected days in September 2008. No cloud/no cloud and cloud/cloud
situations  are  solely  analysed  as  aerosol  or  clouds  in  Aerosol_cci  and
Cloud_cci, respectively.  No cloud/cloud situations are wrongly analysed as
aerosols and clouds, while cloud/no cloud situations are not analysed at
all.

Figure 4-3:  Time series of  monthly mean globally  averaged XCO2 (red
thick line) based on merging individual ensemble members (grey lines),
extended  with  2018  preliminary  Copernicus  Atmosphere  Monitoring
Service (CAMS) near-real-time product (red diamonds) (Heymann, et al.,
2015).

Figure 4-4:  Trend estimates computed after (green) and before (black)
homogenisation for all long-term TCWV data records available from the G-
VAP data archive (Schröder et al.,  2018). Trend estimates are sorted in
ascending order without homogenisation. The grey horizontal line marks a
trend of 0 kg/m2/decade (updated from Schröder et al., 2019).

Figure 4-5: Trends of monthly averaged significant wave height Hs data
sets with the Mann–Kendall test (thatched areas) from satellite altimetry
(left: ALT), and co-located model WW3 hindcast (right: CoLoc) both given
in cm year−1.

Figure 4-6:  The left panel shows the co-variation between a prototype
version of the stratospheric water vapour CDR H2O (produced within the
Water_Vapour_cci) and ERA5 monthly zonal mean temperatures T at 100
hPa. The right panel shows the correlation between the two datasets.

Figure 4-7: Zonal month-longitude cross sections (averaged 5°S and 5°N)
for  150°E to  280°E normalized  indices  of  a)  SST  CCI  analysis  v2.1,  b)
SL_cci data v2.0, c) SSS cci v1.6, d) Chlor_a cci v3.1, e) Cloud_cci AVHRR-
PMv3 CFChigh, f) HOAPS 4 TCWV. All ECVs are plotted for their respective
full  year  availability  and  normalized  by  their  respective  longitudinal
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varying standard deviations. The black lines in the Hovmöller plots show
the Niño3.4 box. g) Time series of Niño3.4 CCI SST and Indonesia CCI SM
v04.5,  FireCCI51,  and AOD550 (ATSR-2/AATSR Swansea v4.1).  The time
series are normalized by their respective standard deviation.  Information
on the used datasets is provided in Table A-1 in the Appendix.

53

1318

1319

1320

1321

1322



Figures

Figure 1-1: Temporal coverage of CDRs for ECVs analysed by CCI. Filled
bars indicate CDRs available in 2019, outlined bars CDRs that are planned
within the ongoing phase of the CCI programmeprogram.  For Sea Surface
Salinity, the bar should be filled from 2010 to October 2018. 
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Figure 3-1: The ECVs covered by ESA CCI CDRs, ordered according to the
key Earth system cycle (energy,  carbon,  water)  they help characterise.
The cycles are inter-linked, and the energy cycle encompasses most of the
water and carbon cycles since energy is stored and transported in water
and matter, at least on transient timescales.  Salinity should be replaced
by Sea Surface Salinity
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Figure 4-1: Discontinuities in coverage of surface temperature fields (LST
and SST from SLSTR on Sentinel-3A) across a land-sea boundary due to
different cloud clearing approaches over land and sea. 
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Figure  4-2:  Consistency  overview  between  Aerosol_cci  (Swansea
University) and Cloud_cci (FAME-C) AATSR cloud masks for observations of
four selected days in September 2008. No cloud/no cloud and cloud/cloud
situations  are  solely  analysed  as  aerosol  or  clouds  in  Aerosol_cci  and
Cloud_cci, respectively.  No cloud/cloud situations are wrongly analysed as
aerosols and clouds, while cloud/no cloud situations are not analysed at
all.
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Figure 4-3:  Time series of  monthly mean globally  averaged XCO2 (red
thick line) based on merging individual ensemble members (grey lines),
extended  with  2018  preliminary  Copernicus  Atmosphere  Monitoring
Service (CAMS)  near-real-time product (red diamonds) (Heymann, et al.,
2015).
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Figure 4-4:  Trend estimates computed after (green) and before (black)
homogenisation for all long-term TCWV data records available from the G-
VAP data archive (Schröder et al.,  2018). Trend estimates are sorted in
ascending order without homogenisation. The grey horizontal line marks a
trend of 0 kg/m2/decade (updated from Schröder et al., 2019).
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Figure 4-5: Trends of monthly averaged significant wave height Hs data
sets with the Mann–Kendall test (thatched areas) from satellite altimetry
(left: ALT), and co-located model WW3 hindcast (right: CoLoc) both given
in cm year−1.
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Figure 4-6:  The left panel shows the co-variation between a prototype
version of the stratospheric water vapour CDR H2O (produced within the
Water_Vapour_cci) and ERA5 monthly zonal mean temperatures T at 100
hPa. The right panel shows the correlation between the two datasets.    

-2 -1 0 1 2
T [K]

-1.0

-0.5

0.0

0.5

1.0

1.5

H
2O

 [
p
p
m

v]

R=0.58

61

1365

1366
1367
1368
1369



Figure 4-7: Zonal month-longitude cross sections (averaged 5°S and 5°N)
for  150°E to  280°E normalized  indices  of  a)  SST  CCI  analysis  v2.1,  b)
SL_cci data v2.0, c) SSS Sea Surface Salinity cci v1.6, d) Chlor_a cci v3.1,
e) Cloud_cci AVHRR-PMv3 CFChigh, f) HOAPS 4 TCWV. All ECVs are plotted
for their respective full year availability and normalized by their respective
longitudinal varying standard deviations. The black lines in the Hovmöller
plots  show  the  Niño3.4 box.  g)  Time  series  of  Niño3.4  CCI  SST  and
Indonesia CCI SM v04.5, FireCCI51, and AOD550 (ATSR-2/AATSR Swansea
v4.1).  The  time  series  are  normalized  by  their respective  standard
deviation.  Information on the used datasets is provided in Table A-1 in the
Appendix. 
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