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Abstract. We derive scaling laws for the steady spectrum of wind excited waves, neglecting surface tension
and taking air and water as inviscid, an approximation valid at large wind speed. Independently of the
wind speed, there exists an unique (small) dimensionless parameter ε , the ratio of the mass densities of
the two fluids (air and water). The smallness of ε allows to derive some important average properties of the
wave system. The average square slope of the waves is, as observed, a small but not very small quantity,
because it is of order |ln(ε2)|−1 . This supports the often used assumption of small nonlinearity in the
wave-wave interaction. We introduce an equation to be satisfied by the two-point correlation of the height
fluctuations. Lastly we reconsider the formation of swell, that is the relationship between the randomness
of waves and the observation of quasi monochromatic water waves.
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1 Statement of the problem, scaling laws for
wind excited waves

As ourselves, Pierre Coullet, our good friend, is a dedi-
cated lover of the sea, in his case the Mediterranean. In
this Festshrift we thought appropriate to write something
on the never ending motion of the waves excited by the
wind and doing all sorts of nonlinear things, as we explain
below.

Wave turbulence makes a problem interesting both
from the point of view of fundamental science and because
of its obvious connections with real life phenomena playing
a significant role in many human endeavors. After many
scientists, we consider below the following problem: a con-
stant wind blowing on the horizontal surface of an infinite
Ocean (in the three dimensions), and exciting a system
of random fluctuating waves that reach, after transients,
a turbulent steady state, the ”fully developed sea” of the
oceanographic literature [1]. One studies statistical prop-
erties like the variance of the surface slope. This has been
thought about for many years [2] - [3], mainly by using
the weak interaction approximation, based on the (unex-
plained to the best of our knowledge) observation that the
slope of waves is small on average. Below we approach this
problem by using simple scaling ideas relying on a small
parameter, the ratio of the mass density of the air ρair to
the mass density of water ρw. Let ε = ρair

ρw
be this small

ratio, about 10−3. Assuming incompressibility, (and ne-

glecting, for the moment, surface tension and viscosity),
the data with a physical dimension are the acceleration
of gravity g and the (uniform) wind speed U . As shown
by Newton, one can make out of these two quantities a

length, λ = U2

g and a time, τ = λ
U = U

g . Here we shall use

λ and τ as units of space and time, that leads to a system
of equations without the physical parameters g, U [4].

Consider the fluctuations δh(x, t) of the surface eleva-
tion which depends on space, i.e. on the horizontal coor-
dinates x (boldface are for vectors in the Euclidean geo-
metrical space), and on time t. From the data, the only
scaling parameters are the length λ and the time τ . The
fluctuations δh(x, t) may then be written as

δh(x, t) = λδH(
x

λ
,
t

τ
), (1)

where δH is an universal stochastic function depending
only on the dimensionless parameter ε, with capital let-
ters for scaled quantities. We expect δh(x, t) to scale like
λ, and to change with respect to space and time with the
typical scales λ, and τ , eventually times factors depending
on ε only. More precisely we expect that the typical length
scale for the horizontal dependence is λ without factor de-
pending on ε, at least for ε small, because the typical wave-
length of the unstable fluctuations is of order λ. This is in
qualitative agreement with the observation that, the larger
the wind speed the larger is the average wave-length, as
reported for instance in [2]. Note that, if this average wave-
length were much less than λ (i.e. if the surface were flat
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at the scale λ), this system would be unstable against fluc-
tuations at wave-length of order λ, which is impossible in
a statistically steady state. Moreover this kind of assump-
tion is fully consistent with the Pierson-Moskowitz spec-
trum where the peak wave period is of order τ although
the amplitude, written in units of λ, is multiplied by a
small numerical prefactor of order 10−2 explained below
by a non-trivial dependence of the average wave-amplitude
on ε [5]. Indeed the wave-height should scale like f(ε)λ,
the f(.) function tending to zero when its argument tend
to zero: without such a factor, i.e. if f(0) were not zero,
the waves would have a finite amplitude in absence of
wind, which is against common sense, because there are
no waves if no instability feeds the wave system. Therefore
the ”scaled” stochastic function δH(X, T ), where X = x

λ

and T = t
τ , is proportional to a (reducing) factor f(ε).

We shall prove that f(ε) is logarithmic with respect to
ε. Assuming invariance under translation in space and
time, the pair correlation SδH(X, T ;X + Y, T + T ′) =<
δH(X, T )δH(X + Y, T + T ′) > is a function of (Y, T ′)
and of ε only. This does not mean that it is isotropic,
as one expects the direction of the wind to induce such
anisotropy.

In this section we assume that a steady solution of the
wave equation is reached, where the forcing by the wind
balances the dissipation by wave-breaking. Our scaling ap-
proach does not require any detailed knowledge of the
spectrum structure, as derived from cascade arguments
describing the nonlinear transfert of invariants across the
spectrum [6].

Let us now comment on the neglect of the viscosity
of air and of water, and of the surface tension σ. The
latter introduces a new length scale, the capillary length

λc =
√

σ
gρw

. Even though surface tension of real sea-

water is a highly variable quantity, the capillary length is
somewhere between one centimeter and one millimeter, far
smaller than the length scales we are concerned with. This
does not mean however that its effects are negligible: sur-
face tension could regularize the instabilities at the short-
est scales, which otherwise could lead to the development
of cone-like singularities on the free surface [7], while white
caps are observed instead. Here we are interested on large
scale phenomena only, then capillarity effects are not con-
sidered, and the capillary length scale will be taken as zero.
We consider high wind velocity regime, more precisely the
regime above the onset of wave-breaking [8] which occurs
for U10 around 7m/s, (U10 is the wind speed measured 10
meters above the sea surface), where gravity becomes the
only governing parameter of wind-wave interaction. At in-
ferior wind velocities, surface tension may either dominate
gravity everywhere or just make impossible the steepening
leading to wave breaking [9]. Similar statements could be
made about the effect of viscosity: if the Reynolds number
is large, viscosity is relevant at very small scales that can
be taken as simply zero.

Let us now make a remark about the air/sea interac-
tion: the air flow above the sea surface is highly turbulent
and one expects the formation of a Prandtl logarithmic
layer there. The scaling parameter of such a Prandtl layer

is a flux of horizontal momentum per unit area of the sur-
face. Compared to our scaling via the wind speed, this
introduces logarithmic corrections that are, most likely,
hardly detectable. However this scaling via a flux of mo-
mentum, as compared to scaling via the wind speed, is
not completely without consequences. Actually this flux
should be the same in the water below the surface, with
an horizontal momentum of the same order of magnitude
as the aerial flux. The flux of horizontal momentum scales
like ρu2 for a fluid of density ρ and speed u, therefore
the average horizontal speed underwater is of order of
U
√
ε (U wind speed), for example a wind speed of 60

km/h should generate an underwater current of about 1.9
km/h. This prediction fully agrees with the observations,
usea/U10 = 0.032 [10] where U10 is the wind speed mea-
sured at 10m over the sea surface. This makes what is
called the ”3 per cent rule”, i.e. that the surface current
is approximately 3 per cent of the wind speed.

For wind-excited waves we consider wave-breaking as
the dominant mechanism for dissipation. As this is a strongly
dissipative and fully nonlinear process, it could look im-
possible a priori to estimate the power lost per unit area
by wave-breaking, given for instance the pair correlation
of the fluctuations of height. This pair correlation assumes
implicitely a smooth wave propagation, namely a single-
valued δh(x, y, t) and a non self-crossing surface, although
wave-breaking is a complex nonlinear process, requiring to
account for physical effects like surface tension and viscos-
ity and to cope with a multivalued δh(x, y, t). Neverthe-
less wave-breaking of dominant waves (with a wave-length
near the peak of the spectrum) should be a relatively rare
event, as we shall explain. Let us precise that we may
also include in the breaking process the micro-breakers, or
small white caps, whose density increases with the wind
speed, and saturates at U10 around 20m/s. In this regime,
all waves have a white cap on their crest, whatever is
their wave-length. Nevertheless, in the stationary state,
the crest length of breaking waves remains a small frac-
tion of the total crest length. Those white caps may re-
place the formation of conical or wedge-like singularity [7]
of the inviscid equations. Note that white caps appear also
after the breaking of very long waves. Here we focus on
the energy dissipation due to wave-breaking of all waves.

Let us estimate the probability of such a process. In
a single wave-breaking event, the average lost energy Wbr

scales as ρwU
2λ2σδh, i.e. the energy corresponding to a

”typical” volume, λ2σδh of a wave having an horizontal
surface λ2, a height σδh, and propagating at velocity U
(which is of order of the velocity reached by long waves,
the peak waves, before breaking). By comparison, the ki-
netic energy of the wind in the same volume, is smaller by
a factor ε. The balance of power may be obtained in the
steady regime by taking the frequency of wave-breaking
of order ε, since in this case the power lost per unit area is
of the same order as the input from the wind, εWbr/λ

2τ .

The result of these considerations is that, at a given
time, the area covered by wave-breaking events is of order
ε times the total area, independently on the wind speed.
Note that this is not the proportion of area covered by
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foam, much bigger than the area covered by wave-breaking
events in high wind conditions, because of the spreading
of the foam by the wind, and because of the small white
caps.

Let us now estimate the ε-dependence of the magni-
tude of wave fluctuations. Given the statistics of the wave
fluctuations, and because wave-breaking is a rare event,
it depends on the probability of large fluctuations. Those
large fluctuations are rare because of the smallness of ε.
Said otherwise, the scaling laws for the magnitude of the
fluctuations have to be amended in order to take into ac-
count this smallness: otherwise, if the magnitude of the
fluctuations was such that the typical wave-length and
wave-height were both λ, the probability of occurence of
wave breaking would be of order one too, although we
argued it is of order ε. Therefore the amplitude of the
wave must be small compared to λ, to make exceptional
the nonlinear evolution towards wave-breaking. This im-
plies that, predominantly, the wave system is described by
the linear approximation of the wave equations. There-
fore, at a given location, and according to an idea that
have been stated by Planck for the classical (Rayleigh)
part of the black-body spectrum, the fluctuations of the
free surface are predominantly Gaussian because they are
made of a linear superposition of waves with a continu-
ous distribution of frequencies. In this respect it is worth
recalling what was stated by Hasselmann (under equation
4.31 in [3]). He wrote ” the interaction will also destroy
the initial Gaussian property of the sea, (but) it follows
from our derivation...that the influence of the latter pro-
cess (of destruction of Gaussianity by wave interaction)
on energy transfer is negligible”. This is certainly correct,
under the conditions of validity of the weak turbulence
approximation, which needs, as we shall show, the exis-
tence of a small physical parameter, the ratio of the mass
densities. In the original work of Hasselmann, this was not
necessary because he dealt with an initial value problem
of wave dynamics without input and loss term but with
an amplitude small by assumption. This weak amplitude
approximation becomes problematic when input (of the
wind) and loss (by wave-breaking) is included, with a loss
of control a priori of the wave amplitude, unless a small
parameter is included. It is also possible that the wave-
interaction brings some long range phase coherence of the
waves making invalid the assumption of Gaussian waves,
see section 2.

The most interesting quantity from the point of view of
wave-breaking is not so much the amplitude of the wave,
but its slope. Being related linearly to δh(x, y, t) it has
also a Gaussian distribution. Therefore the gradient of
the height along x, the wind direction, i.e. the derivative
∂δh
∂x = δh,x, has a probability distribution

P(δh,x) =
1

(2π)1/2σx
e
−
δh2,x

2σ2x , (2)

where σ2
x is the variance of the slope along the x di-

rection (σx > 0).
Wave-breaking is a nonlinear phenomenon [7] charac-

terized by a free surface becoming first vertical and then

overturning. Before this happens, the slope has to reach
values of order one. Indeed such a phenomenon is not de-
scribed by the linear approximation for wave propagation,
since it assumes the height to be a single valued smooth
function of the horizontal coordinates. Nevertheless we
may assume that, before a wave locally overturns, its slope
gets to finite (non-small) values that are at the border of
applicability of the linear approximation. Assuming that
the waves propagate predominantly in the wind direction,
the probability of overturning may be approximated by
the area under the tail of the density P(δh,x),

Pbr = 2

∫ ∞
α

P(δh,x)d(δh,x) = 2erfc(
α√
2σx

), (3)

where α is a parameter of order unity defining the limit
slope (above which the wave breaking occurs with a finite

probability), and erfc(z) = z√
π

∫∞
z
e−ς

2

dς. In the limit of

large z, erfc(z) ' exp(−z2)
z
√
π

. According to the arguments

presented before, the probability Pbr must be of order ε to
ensure the balance between energy input and dissipation
by wave-breaking. In the limit ε << σx << α, this gives

σx ∼
α√

2 ln(1/ε)
, (4)

which is of order ∼ 0.1 for the case of wind-waves, if one
takes α = 1.

This dependence is quite weak, in agreement with the
observation that the slope is small on average, but not
very small [11]. In this respect the density of breaking
events is far more sensitive to the smallness of ε than the
wave amplitude itself. Indeed it seems difficult to change
ε, so the prediction of an ε dependence of the probability
of wave-breaking is hard to test. However one may think
to a value of ε close to 1, with water and oil for instance
(E.J. Wesfreid private communication), which would then
yield a wave system where breaking is almost everywhere,
a clearcut prediction of the present theory. Along the same
line of thinking, the dependence of wave-breaking on the
spectral power in a transcendental way could explain how
wave-breaking seems to depend critically on the history
of the wind-sea interaction. This would be because even
a small change in σx in the course of the evolution of
the wave system changes by factors of order 1, if not
larger, the value of the exponential giving the probabil-
ity of wave-breaking. In particular this could explain why
”young seas” (in a growing wind) show far more wave-
breaking events than established ones, and why swell, i.e.
sea states found by relaxation without wind of a steady
wave state, show almost no wave-breaking.

Let us sketch now a more quantitative approach. As
has been shown since a rather long time [3], small non
linearities yield a kinetic equation for wave turbulence.
In this theory the interaction between waves of various
wavenumber and frequencies yields a kind of Boltzmann-
like theory. In the Hasselmann-expansion, written with re-
spect to the elevation amplitude as small parameter, the
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nonlinear interaction between the waves appear as a se-
ries involving successively four, five, etc. wave-interactions
[12]. Actually the relation (4) proves that the ratio be-
tween the five- and four wave-interaction terms is always
small. Therefore, using our scalings, and the variance of
the slope as small parameter, we infer that formally the
Hasselmann-expansion can be continued order by order
(even for non small waves), at the price of fastly growing
complexity. There is no reason that this expansion be-
comes ill-defined at any finite order. This does not mean
however that, even by including the kinetic terms at all or-
ders, all the physics is captured. This is the phenomenon of
expansion beyond all orders [13]. Indeed the occurence of
wave-breaking depends on effects transcendentally small
with respect to the expansion parameter, here (ln(1/ε))−1/2.
The ”standard” way of getting such transcendentally small
terms is by looking at the general large order term in the
expansion, getting its leading order part and then sum-
ming the largest terms of each order, something perhaps
doable, but surely very cumbersome in the present case.

Let us now include in a qualitative sense the dissipa-
tion due to wave-breaking, in the light of the above esti-
mations summarized in equations (3)-(4). Using the scales
variables, the steady state spectrum N(K) of the surface
elevation, which is the spatial Fourier transform of the sin-
gle time correlation function < δH(X, T )δH(X+Y, T ) >,
writes

N(K) =
1

(2π)2

∫
dYeiY·K < δH(X, T )δH(X+Y, T ) > ,

(5)
where K = kλ. From now on we use mostly the spectral
density of wave action,

N (K) =
N(K)

Ω(K)
, (6)

where Ω(K) =
√
K = τ

√
gk. In real variables the action

spectrum has dimension [L]4[T ] (with [L] length scale and
[T ] times), and obeys the stationary Hasselmann’s equa-
tion [3],

Snl[N (K)] + Sin[N (K)] + Sdiss[N (K)] = 0. (7)

In equation (7) the term Snl represents the exchange by
nonlinear interaction between waves, Sin the input by the
wind, and Sdiss for the dissipation by whitecaps and wave-
breaking of dominant waves.

When the non linear transfer across the spectrum is by
four-wave interaction, the dominant effect at small ampli-
tudes, Snl writes

Snl[N (K)] =

∫
dK1dK2dK3|T (K,K1,K2,K3)|2 ×

δ(K + K1 −K2 −K3)δ(Ω +Ω1 −Ω2 −Ω3)×
N (K1)N (K2)N (K3)N (K)×(

1

N (K1)
+

1

N (K)
− 1

N (K2)
− 1

N (K3)

)
, (8)

where δ(.) is the Dirac distribution. The transition ma-
trix T (.) has a rather complex explicit form [14]-[6], and
is equal to K3 times a numerical function of the ratios
K/Ki, with i = 1, 2, 3, and of the angles between the four
vectors (K,K1,K2,K3). Moreover Ωi = τ

√
gki .

In equation (7), the input from the wind is given by
the rate of instability times the spectral density of wave
action, namely by Sin[N (K)] = εN (K)Kx, where Kx is
the Cartesian component of (K) along the wind. This sim-
ple approximation could be refined by multiplication by
a function G(K) representing the detailed dependence of
the rate of instability as a function of the wave number
of the waves. We just take G = 1 to make the exposition
simpler.

An essential point of our formulation is that the input
is small, proportional to ε, in the dimensionless variables.
This smallness is a consequence of the scaling laws, it not
assumed from the beginning. Moreover this term is pro-
portional to Kx to represent the angular dependence of
the growth rate of the Kelvin-Helmholtz instability, and
it is also proportional to the intensity of the fluctuations
because this is a linear instability.

The energy loss by wave-breaking is equal to b′PbrN (K)
because it is proportional to the small probability of this
process, and it should be proportional to the spectrum it-
self to get rid of any possibility of negative spectrum. The
numerical factor b′ is discussed below. Using the expres-
sion (3), with σ2

x =
∫

dKK2
xN(K), the balance equation

(7) leads to the following integral equation for the surface
elevation spectrum in steady situations,

Snl[N (K)] +

(
εKx −

1

αb
σxe
−α2/2σ2

x

)
N (k) = 0, (9)

The constant b = 1√
2b′

is the duration of the break-

ing process, of order unity in units of τ . There are two
unknown parameters, α and b. Contrary to similar equa-
tions in the literature [6], the breaking-wave loss term in
equation (9) is not proportional to some (arbitrary) power
of the amplitude of the fluctuations, but depends transcen-
dentally on this amplitude. Here the loss term reflect the
wave-breaking process, whereas wave-breaking is absent at
any order in the expansion of the kinetic equations in pow-
ers of the amplitude. Although g and U have been scaled
out, the small dimensionless parameter ε remains. The
integral equation (9) yields the scaling laws for the am-
plitude of the fluctuations by noticing that the first term
has ”conservation laws”, it is zero when integrated over
K times various functions of this wave-number, a familiar
property of Boltzmann and Boltzmann-like equations,∫

dKF (K)Snl[N (K)] = 0 (10)

with F (K) = 1, K, and Ω(K) . Therefore one finds
three relations to be satisfied by the steady spectrum :∫

dKF (K)

(
εKx −

1

αb
σxe
−α2/2σ2

x

)
N (K) = 0, (11)
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This yields the same scaling relation as derived before,
if one assumes that the integration over K and the multi-
plication by F (.) change the scaling in the same way in the
two terms of equation (11), the one representing the input
by the instability (proportional to εkxU) and the one rep-
resenting the loss by wave-breaking, proportional to the
exponential. Notice too that, thanks to the prefactor σx
in the dissipation part, the dissipation becomes more ef-
ficient as the amplitude of the spectrum grows, ensuring
the decay of the large frequency modes.

Equation (9) together with the conservation relations
(10)-(11) summarize the main results of this section. In
the above analysis we propose a statistical description of
the stationary state of wind-driven seas, leaving inten-
tionally aside the dynamical evolution of the water waves
under the effect of wind. The reason is that the dynamical
Hasselmann equation

∂N
∂τ

= Snl[N (K)] + Sin[N (K)] + Sdiss[N (K)], (12)

may become invalid. As discussed below this may occur
if a finite time singularity occurs, leading to a singular
spectrum with a Dirac distribution peak.

2 Smoothness of solutions of Hassemann’s
equations and the swell problem

We discuss the swell formation, namely the relaxation
of the wave system after the wind has stopped blowing.
We question whether the evolution of turbulent surface
waves with initial spectrum N0(k), with peak frequency
ω0 =

√
gk0, is well described by using the dynamical Has-

selmann’s equation (HE) written as

∂N
∂τ

= Snl[N (K)], (13)

where the kinetic operator Snl is given by equation (8),
and the scaled variables are τ = ω0t, and K = k/k0.

The HE equation yields a seemingly well defined way
of predicting the behavior of system of water waves (in-
cluding under the destabilizing action of the wind). Below
we argue that this view can be challenged: because of the
possible loss of regularity of its solution, HE may become
mathematically ill-posed. This is related, although in a
somewhat indirect way, to some of the assumptions be-
hind HE. In the first part of this paper we have shown
that the variance of the slope is small as a result of the
smallness of ε, the ratio of mass densities of air to wa-
ter. It follows that the nonlinearity, measured by the wave
steepness ak0 ∼ σx (a being the standard deviation of
the wave-height a =< δh2 >1/2 and k0 the peak wave-
number), is also small

ak0 << 1, (14)

typically about 0.1 in rough sea conditions. However there
is another assumption needed for deriving HE from the ba-
sic fluid equations, namely the one of waves with random

phases. This cannot be true always: it is manifestly not
correct for a set of purely monochromatic waves, having
a spectral width ∆k (the width of the peak near its cen-
ter k0) equal to zero. More generally, the waves cannot be
considered anymore with random phases [15] if the rela-
tive spectral width ∆k

k0
is smaller than or of the same order

of magnitude as the nonlinearity, see the paragraph below
equation (18). Therefore the validity of HE requires that
the relative spectral width ∆k

k0
is noticeably larger than

the wave steepness,

∆k

k0
> ak0. (15)

While the inequality (15) is often considered as valid (in
rough sea conditions, the relative spectral width is about
0.4), it may fails either because of particular initial con-
ditions or because after some time, eventually after a fi-
nite time, the wave spectrum becomes narrowly centered
around a value k0. Something quite similar happens in the
kinetic theory of Bose gases: at low energy, the momen-
tum distribution becomes singular after a finite time [16]
with a width tending to zero.

If one excepts the practically impossible exact mod-
elization of the wave equations with many interacting waves,
the approximation opposite to HE relying on a weak non-
linearity is the NLS or envelop equation, that we shall
discuss now. This approach assumes that the waves are
weakly nonlinear and narrow-banded,

∆k

k0
∼ ak0 << 1. (16)

The outcome is an envelope equation. In this theory the
wave height is written like

δh(x, t) =
1

2

(
Ψ(x, t)ei(ω0t−k0·x)) + cc

)
, (17)

and the envelope equation is the equation of motion of the
complex amplitude Ψ varying slowly in time and space, the
variation rate in space and time being of the same order as
the nonlinear interaction. For water waves this amplitude
equation is of the mixed type, focusing in the direction
perpendicular to the wave speed and defocusing parallel
to the wave direction. It reads explicitely

i√
gk0

(
∂Ψ

∂t
+

√
g

2k
3/2
0

k0 · ∇Ψ

)
=

1

8k20

(
∂2Ψ

∂x2
− 2

∂2Ψ

∂y2

)
− k20

2
|Ψ |2Ψ, (18)

The second term on the left-hand side of equation (18)

describes the advection with the group velocity vg =
√
g

2
√
k0

.

This amplitude equation is a direct consequence of the
classical Stokes calculation of the first nonlinear correction
to frequency -wavelength relation, ω(k) =

√
gk(1 + |Ψ |2

2 ).
Note that the condition of validity of the Hasselmann’s
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equation can be derived from the envelope equation (18)

which introduces the length scale L ∼
√

1
K4

0 |Ψ0|2 defining

the range of correlation length, given the amplitude of the
waves, where one cannot consider anymore the waves as
having random phases. Therefore the condition required
for Hasselmann’s kinetic theory to be valid is ∆k > 1/L,
or equation (15).

Consider the stability of an uniform solution of this
equation, Ψ = a exp(− i

2 (k0a)2ωt), with ω =
√
gk0. Mak-

ing a small perturbation in amplitude and phase, the so-
lution becomes

Ψ = a(1 + r)exp(− i
2

(k0a)2ωt) + iφ,

and assuming that the small quantities r and φ vary like
ei(−Ωt+qxx+qyy) , one finds

(Ω − qxvg)2 = D(2δω +D), (19)

where δω = ω(k0a)2 is positive, and D =
vg
4k0

(2q2y − q2x).

The relation (19) shows that the homogeneous solution of
the equation (18) is unstable if D < 0 and 2δω > |D|,
this is the well-known Benjamin-Feir (BF) instability [17]
of monochromatic water waves of small, but finite, ampli-
tude. The direction of the unstable modulation (qx, qy) is
within the angular domain ±35 degrees of qx, with maxi-
mum growth rate on the hyperbola

q2x − 2q2y = 4k20(k0a)2, (20)

of the (qx, qy) plane.
We amphizise that the BF instability does not show

up in Hasselmann’s kinetic theory because HE involves the
frequency-wave number relation of linear waves only. How-
ever the envelop equation (18) cannot be correct anymore
for long time modelization of the wave dynamics, Because
of the BF instability. Various ideas have been suggested
to change the equation in order to stabilize the large wave
numbers domain [18]. However this is rather questionable
because the envelope theory is no more valid in this range
of wave numbers, then such changes are inconsistent with
the long wave approximation. In these works the range of
wave numbers where stabilization occurs is k ∼ k0 and/or
k > k0, precisely where the separation between carrier
wave and modulation is blurred, although it is necessary
for the validity of the envelope theory.

Physically one expects that the BF instability will trans-
fer the energy of the carrier waves to sideband waves from
where (in the spectral space) it will spread by a mecha-
nism described by HE-like theory. Therefore we suggest
that the correct theory for water wave dynamics should
mix together Hasselmann’s kinetic theory and the envelope
theory, a question that we shall deal with now.

There is a mathematically related problem in the ki-
netic theory of Bose-Einstein condensates: one may either
describe the quantum gas by means of the Boltzmann-
Nordheim kinetic theory or by using the Gross-Pitaevskii
equation, the latter looking like the amplitude equation
(18).

Hasselmann’s kinetic equation has similarities and dif-
ferences with the Boltzmann-Nordheim kinetic equation
for Bosons. We shall take advantage of this to gain some
insight on the behavior of its solutions. First, like the Bose
gas, the wave dynamics has invariants like mass, energy
and momentum. There is nevertheless a rather deep differ-
ence coming from the H-theorem. Hasselmann’s equation
has a Liapunov function, the entropy (in the sense of the
”H” function of Boltzmann kinetic theory)

H =

∫
dk ln(1/Nk). (21)

This function can only increase under the dynamics de-
fined by Hasselmann’s equation. It can increase to infin-
ity: take for instance a Boltzmann like distribution Nk =
e−βω(k) the integral defining the entropy diverges alge-
braically, although the total energy converges. Therefore it
is reasonable to assume that a solution with finite entropy
could always evolve toward a solution of larger entropy
and ultimately of infinite entropy, like the Boltzmann dis-
tribution that is not pathological at all ! Therefore, for
this class of problem with an infinite number of degrees
of freedom per unit area, the most likely result of an evo-
lution at time infinity is toward a solution of infinite en-
tropy. This makes a deep difference with the situation of
a gas at finitenumber density where the integral defining
the entropy is of the form

Hgas =

∫
dq
√
q[(1 + nq) ln(1 + nq)− nq lnnq]

which converges for the Boltzmann distribution.
Because of the logarithm of the probability density in

the definition of the entropy in equation (21), this diverg-
ing entropy is realized for distributions spreading as widely
as possible in the momentum space. This spreading pro-
cess does not stop as time goes on, but continues indefi-
nitely (at least for Hasselmann’s equation), according to
the ideas of [4].

Another significant property of the kinetic equation
for Bosons is the occurence of finite time singularities that
generate, although in a rather complex way, a condensate,
namely a momentum distribution with a Dirac delta peak.
Before the singularity time the momentum distribution
shows a self similar behavior with powers of time which
can be understood as a nonlinear eigenvalue problem. Af-
ter the singularity the relevant solution of the Boltmann-
Nordheim kinetic equation becomes a set of coupled equa-
tions for a smooth momentum distribution and the am-
plitude of the Dirac part. This momentum distribution
reads

n(k, t) = n0(t)δ(k− k0) + ñ(k, t), (22)

where ñ(k, t) is the smooth part of the momentum dis-
tribution. The solution of this set of coupled dynamical
equations for n0(t) of the condensate and ñ(k, t) tends
at time infinity toward the Bose-Einstein equilibrium dis-
tribution. This assumes that the condensate part is ho-
mogeneous in space, something that is not true in an in-
finitely extended system because the phase coherence so
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implied takes an infinite time to settle. Because of this
non uniform phase, the dynamics of the condensate must
be described by a more complex equation than the one for
n0(t), it must be described by a modified Gross-Pitaevskii
equation, so that the evolution of the condensate and the
smooth momentum distribution is described by coupling
the Gross-Pitaevskii equation for the condensate with the
kinetic equation for the smooth part of the momentum
distribution. This coupling adds an inelastic term to the
Gross-Pitaevskii equation that is itself given by an integral
quadratic with respect to the smooth momentum distri-
bution.

The analogy between the Boson case and the water
waves is as follows: there is in both cases an ”envelop”
like equation, Gross-Pitaevskii for Bosons and the mixed
NLS equation (18) for waves. The gas of thermal par-
ticles is described by the Boltzmann-Nordheim equation
for Bosons and by Hasselmann’s equation for waves. In
both cases there is a need to couple the two equations.
For water waves this is because the BF instability requires
a coupling to random waves (those with large wavenum-
bers), although the HE may require a regularization after
a finite time singularity.

No finite time singularity of the solution of Hassel-
mann’s equation has yet been found, to the best of our
knowledge. It does not mean that it does not exist, but
it does not prove the opposite. The numerical problem is
noticeably more difficult for HE than for the Boltzmann-
Nordheim kinetic equation because a finite time singular-
ity cannot occur at zero number for gravity waves (al-
though in the Bose gas the value of the momentum where
the singularity appears first can always be set to zero by
a suitable Galilean transform). Indeed in the HE the coef-
ficient of wave interaction |T |2 tends rapidly to zero when
the peak wavenumber KP decreases ( like K3

PK
3 for a

four-wave interaction between two peak waves and two
background waves[6]). Therefore the basic mechanism for
the finite time singularity is not there at zero momentum:
an accumulation of waves near zero wave number does not
make grow the kinetic term, because at the same time the
interaction decays rather quickly at zero momenta. The
same does not happen for the Boson case, where the in-
teraction does not depend on the momenta.

The situation is different for a possible collapse of the
waves at a non zero momentum k0, because the relevant
interaction coefficient will be T with its four vectors at
about the same finite value k0, a non zero constant. How-
ever the local problem in wave-number space will remain
non isotropic because the frequencies near k = k0 will
have to expanded like

ω(k) = ω(k0)

(
1 +

q · k0

k20
+
q2x − 2q2y
k20

+ ..

)
, (23)

where x is the coordinate along k0 and y is perpendicular
to it, although q = k−k0 is the small variation of k near
the collapse value k0. The correction to ω(k) linear with
respect to q does not contribute to the argument of the
Dirac distribution term (on frequencies) in Hasselmann’s
kinetic operator because it cancels automatically by the

momentum condition, although the second order correc-
tion cannot be transformed into a condition for the mod-
ulus of q only. Therefore, even for q small, Hasselmann’s
kinetic operator near a non zero k0 remains anisotropic so
that an eventual finite time singularity cannot be analyzed
the same way as the one of the Boltzmann-Nordheim ki-
netic operator by using its Carleman reduction to isotropic
momentum distributions. In other words a collapse of the
spectrum at a non zero momentum k0 could exist for wa-
ter waves but its numerical observation requires to solve
a triple integral in the HE equation, whereas a double
integral is enough to describe the collapse for bosons.

Let us assume that some solutions of HE have a finite
time singularity at non zero wave number, presumably
the typical situation of wind-driven waves which have no
isotropic spectrum. The obvious question now is what hap-
pens beyond the singularity. Actually one has to change
theory even before the exact singularity. As discussed above,
once the width ∆k of the peak near the singularity of
the momentum distribution becomes less than ak2 (see
equation (15)) one has to consider, instead of the stan-
dard HE, a set of evolution equations coupling the enve-
lope equation and the kinetic operator, as done in [19]
for the Bose condensation. It seems reasonable to assume
that, as for the kinetic equation for Bosons, the right set
of equations describing the evolution near the singular-
ity and beyond, couples an envelope equation having an
inelastic term depending on the continuous momentum
distribution with a kinetic equation having a new term
proportional to the modulus square of the solution of the
modified envelope equation. The envelope will continue
to show the Benjamin-Feir instability, but in a restricted
range of wave numbers because the phase of the envelop
enters in a non trivial way into the coupling between the
smooth momentum distribution and the envelope.

The occurrence of swell, that is of long waves after a
wind storm, could be explained by this mechanism of finite
time singularity of solutions of HE, as it is reported that
swell is made of quasi-monochromatic waves, exactly what
is described by the envelop theory. In the model suggested,
the growth of this singular part of the spectrum would
result from the nonlinear interaction of random waves,
something that could look somewhat counter intuitive.

As a side remark, notice that distributions with a fixed
value of the wave number along a given direction and an
arbitrary value of the momentum perpendicular to this
direction, say along the y axis, are stable against the evo-
lution by Hasselmann’s equation. Such a distribution has
the form n(k) = n0δ(kx − kx,0)f(ky) where f(.) is an
a priori continuous function of its argument. This set of
functions is stable under the action of the non linear col-
lision operator because when all vectors (k1,k2,k3) have
the same component kx,0 along x, then k has also kx,0 as
x-component as soon as the relation

k = k1 + k2 − k3,

is satisfied.
The function f(ky) is the solution of a nonlinear inte-

gral equation derived from the Hasselmann’s kinetic op-
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erator by putting singular distributions of the type just
considered.

3 Conclusion

To summarize, using the existence of a small physical pa-
rameter in the wind-sea interaction, the ratio of the mass
densities of the two fluids, we have derived scaling laws
for observable quantities like the mean square slope of the
sea surface. This gives a basis for the derivation of the
Hasselmannn-type equation for the spectrum, that would
be valid not only for the case of weakly nonlinear turbu-
lence, where it is generally addressed, but even for storms
with for very large wind velocities. We propose a fully ex-
plicit mathematical model, equation (9), for the steady
spectrum of surface elevation perturbed by a constant
wind. This is valid for large wind speeds, where dissipation
is mostly due to wave-breaking.

Furthermore we have considered the smoothness of so-
lutions of Hasselmann’s equation (13) without wind and
without wave breaking, this being pertinent for the for-
mation of swell. Based on the mathematically related sit-
uation of the kinetic theory for Bosons, we looked at the
possibility of a finite time singularity of the equation of
evolution of the distribution in momentum space. If this
scenario is correct, the basis of the wave-turbulence equa-
tions needs to be revised, and a way would have to be
found to extend the time evolution beyond the singularity
time, something that has been already done for the kinetic
theory of Bosons. In particular this requires to use beyond
the singularity a set of dynamical equations coupling the
kinetic wave equations and the envelope of coherent waves.
Notice also that the property of superfluidity could have
an equivalent in wave dynamics: once condensation has
occurred, namely after the singularity of HE, the ”con-
densate”, namely the monochromatic wave is rigid in the
sense that its phase tends to become homogeneous (with
a wavevector k0) and does not change under the interac-
tion with the random wave part of the spectrum. Indeed
all this remains to be confronted with experimental results
although the solution of the spectral equation remains to
be studied in details in the limit ε small.
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