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ABSTRACT

The interaction between the Coriolis force and the Stokes drift associated with ocean surface

waves leads to a vertical transport of momentum, which can beexpressed as a force on the

mean momentum equation in the direction along wave crests. We investigate how this

Coriolis–Stokes forcingaffects the mean current profile in a wind-driven mixed layer, using

simple models, results from large eddy simulations and observational data.

The effects of the Coriolis–Stokes forcing on the mean current profile is examined by

re-appraising analytical solutions to the Ekman model thatinclude the Coriolis–Stokes

forcing. Turbulent momentum transfer is modelled using an eddy viscosity model, first with

a constant viscosity, and second with a linearly varying eddy viscosity. Although the

Coriolis–Stokes forcing penetrates only a small fraction of the depth of the wind-driven

layer for parameter values typical of the ocean, the analytical solutions show how the current

profile is substantially changed through the whole depth of the wind-driven layer. We show

how, for this oceanic regime, the Coriolis–Stokes forcing supports a fraction of the applied

wind stress, changing the boundary condition on the wind-driven component of the flow, and

hence changing the current profile through all depths.

The analytical solution with the linearly varying eddy viscosity is shown to reproduce

reasonably well the effects of the Coriolis–Stokes forcingon the current profile computed

from large eddy simulations, which resolve the three-dimensional overturning motions

associated with the turbulent Langmuir circulations in thewind-driven layer. Finally, the

analytical solution with the Coriolis–Stokes forcing is shown to agree reasonably well with

current profiles from historical observational data and certainly agrees much better than the
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standard Ekman model. This finding provides compelling evidence that the Coriolis–Stokes

forcing is an important mechanism in controlling the dynamics of the upper ocean.
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1. Introduction

The fully-developed wind-driven current in the upper oceanis usually assumed to be a

formed from a balance between Coriolis force and the divergence of vertical momentum

transfer by turbulence stresses, as originally analysed byEkman (see e.g. Mellor 1996).

Wunsch (1996) has noted however, that at least in 1996 when hewas writing, there was no

observational evidence to support directly the Ekman model.

The oceanic wind-driven current profile is difficult to observe because the velocities are

small and of similar magnitude to the velocities associatedwith inertial oscillations and

surface wave motions. Nevertheless, observations suggestthree features of the wind-driven

current profile that need to be addressed. Firstly, the surface current lies at an angle of

between 10o and 45o to the surface wind stress (Huang 1979). Secondly, at a depthbetween

5m and 20m the current is deflected by approximately 75o to the wind stress (Price and

Sundermeyer 1999). Thirdly, the current speed is rapidly attenuated with depth. The Ekman

model cannot explain all these observed features (Lewis andBelcher 2003).

The difficulties in observation due to similarity in magnitude between the current speed and

the speeds associated with other physical processes also suggests that other processes may

be dynamically important. Surface waves are a ubiquitous feature of the ocean surface. The

leading order water motions associated with the surface waves are periodic and do not affect

the time-averaged, mean, current profile. Surface waves also produce, however, a mean

Lagrangian transport in their direction of propagation, the Stokes drift (Phillips 1977),

3



whose vertical variation is

us = Use
2kz, Us = (ak)2c, (1)

for wave amplitudea, wavenumberk, wave phase speedc and depthz that is zero at the

mean sea level and decreasing downwards. The significance isthat, in an inviscid fluid, lines

of vorticity move with fluid parcels, and so the Stokes drift tilts and stretches initially

vertical vorticity into the horizontal plane. In the ocean mixed layer there are two sources of

vertical vorticity: vorticity from three-dimensional turbulent motions within the mixed layer,

and planetary vorticity. Distortion of turbulent vorticity by Stokes drift is at the heart of

models for Langmuir circulations (Leibovich 1983; Teixeira & Belcher 2002). The

interaction of the Stokes drift with planetary vorticity isthe subject of this paper.

The effects of Stokes drift in a rotating frame was first considered by Ursell (1950), Pollard

(1970) and Hasselmann (1970) who showed that, for an inviscid ocean, there can be no net

mass transport associated with the Stokes drift. Subsequently, also using a Lagrangian

description, Weber (1983a,b) showed how including viscosity, no matter how small, actually

yields a non-zero net mass transport. However, Hasselmann (1970) did show that the

interaction between the planetary vorticity and the Stokesdrift yields a force on the Eulerian

momentum balance, namelyf × us. We refer to this forcing as theCoriolis–Stokes forcing.

Madsen (1978) and Huang (1979) showed that this Coriolis–Stokes forcing acts in

combination with the Coriolis force and the divergence of vertical momentum transfer by

turbulent stresses, thereby changing the usual Ekman balance in the wind-driven mixed

layer and the current profiles. Later studies have developedthe theory for more sophisticated
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representations of the turbulent stress (Jenkins 1986, 1987), for finite depths (Xu and Bowen

1994), and for the role of Langmuir circulations (Gnanadesikan and Weller 1995). More

recently McWilliams and Restrepo (1999) have shown that thedepth integrated transport

associated with the Coriolis–Stokes forcing can be comparable with the transport associated

with the wind-forced Ekman transport, which suggests that the Coriolis–Stokes forcing is a

signficant force in the upper ocean. Further evidence will begiven here. A number of

questions remain however.

Firstly, can the Coriolis–Stokes forcing, which penetrates only into shallow depths, affect

the current profiles through its whole depth? If so then by what physical mechanism? Here

we address these questions in section 3 by re-appraising theanalytical solution for the

current profile when the turbulent stress is parameterised simply. This analysis also then

shows the parameters that control the magnitude of the changes to the current profile by the

Coriolis–Stokes forcing.

Secondly, what evidence is there that the role of the Coriolis–Stokes forcing is real and

measurable? This question is addressed here in two ways. Firstly, in section 4 the results of

the simple models are compared with current profiles computed from large eddy simulations

of the wind-driven ocean mixed layer that account for the effects of the Stokes drift. And

secondly, in section 5 the results of the simple model are compared with recent observations

of the wind-driven ocean mixed layer. We begin in section 2 with an interpretation of the

Coriolis–Stokes forcing.

2. Stokes drift in a rotating frame
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The Coriolis–Stokes forcing,f × us, is a forcing by the surface waves on the mean flow.

This term can be understood in two ways. First an intuitive interpretation. Vortex tubes are

carried in the flow with fluid elements, and hence are transported by the Stokes drift. Since

the Stokes drift varies with depth, vorticity that is initially vertical is tilted and stretched into

the horizontal. There are several sources of this initiallyvertical vorticity. For example,

random vorticity fluctuations associated with turbulence in the mixed layer have vertical

components and when tilted and stretched these lead to elongated vortices in the streamwise

direction, namely Langmuir circulations (Teixeira and Belcher 2002). Additionally, the

planetary vorticity has a vertical component and hence can also interact with the Stokes

drift, leading to the Coriolis–Stokes forcing,f × us.

Alternatively, thef × us forcing can be interpreted as the divergence of a wave-induced

stress that arises through modification by Coriolis acceleration of the orbital motions

associated with the surface wave. The Eulerian velocity is decomposed into a

rapidly-varying wave component,̃u, and a mean component,ū. In a rotating ocean, the

plane of the orbital motions associated with the surface wave is tilted in the along wave crest

direction by the Coriolis acceleration, as shown schematically in Fig. 1.

[Figure 1 about here.]

This tilting introduces an along wave crest component into the Eulerian velocity field

associated with the wave, namelyṽ. This component is correlated with the vertical

component,̃w, and hence yields a non-zero wave-induced stress,ρṽw̃, when averaged over

many wave cycles. As shown by Hasselmann (1970), the force associated with the
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divergence of this wave-induced stress can be expressed as

−ρ
∂

∂z
ṽw̃ = −ρ|f × us|, (2)

acting in the direction along wave crests. Hence the Eulerian motions in the upper part of

the wind-forced mixed layer are subject to af × us forcing arising from the interaction of

the Coriolis acceleration with the Stokes drift associatedwith the surface waves. It is the

effect of this Coriolis–Stokes forcing on mean current vertical profiles that is the focus of

this paper.

3. Structure of the mean current profile in the Ekman–Stokes layer

When the Coriolis–Stokes forcing is introduced into the dynamics of the wind-driven mixed

layer the structure of the mean current profile changes resulting in theEkman-Stokes layer.

Simple models are used to show how this forcing, which for parameters typical of the ocean

acts only in a small upper fraction of the mixed layer, changes the currents over the whole

depth of the layer.

The equations governing the mean, steady-state, ageostrophic current are given by

ρf ẑ × (u + us) =
∂τ

∂z
, (3)

whereρ is the density andτ is the turbulent stress. This flow satisfies the following

boundary conditions. Firstly, at the sea surfacez = 0, a constant wind stress,τ0, is applied
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in thex-direction:

τ0 = ρu2

∗
x̂, (4)

whereu∗ is the friction velocity. Secondly, at large depths, the turbulent stress and

ageostrophic velocity tend to zero:

u → 0; τ → 0 as z → −∞. (5)

In this section the stress,τ , is parameterised with a simple gradient transfer eddy-viscosity

model, namely

τ = ρκm
∂u

∂z
, (6)

whereκm is the eddy-viscosity.

There are two important depth scales in this problem. Firstly, there is the Stokes depth scale,

δs, which scales as the depth of penetration of the Stokes drift, us, and thef × us forcing.

Secondly, there is the Ekman depth scale,δe, over which motion is influenced by the Earth’s

rotation. These are given by

δs =
1

2k
; δe =

√
2κm

f
. (7)

In the real ocean mixed layerδe (approximately50m) is much greater thanδs

(approximately5m). In this section we investigate solutions to (3) by (a) considering the

depth integrated transport, then by considering solutionsfor (b) a constant eddy-viscosity

κm and (c) a linearly varying eddy-viscosityκm.
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a. Transport in the Ekman–Stokes layer

The depth-integrated transport gives a first indication of the relative magnitude of the wave

forcing compared to the wind forcing. The transport is defined by

T =

∫
0

−∞

u dz, Ts =

∫
0

−∞

us dz = Usδs. (8)

Integration of (3) and rearranging gives

T + Ts = − ẑ × τ0

fρ
. (9)

We define the Ekman-Stokes number,Es (c.f. McWilliams and Restrepo 1999), to be a

measure of the wave-forced transport compared to the wind-forced transport, namely

Es =
wave-induced transport
wind-induced transport

=
|Ts|

|ẑ × τ0ρf | =
Usδs

Ueδe

, (10)

whereUe is the velocity scaling for the pure Ekman current, which is defined by the

transport relation (8) and givesUeδe = u2
∗
/f .

As a guide, we can expressEs in terms of the10m wind speedU10 (McWilliams and

Restrepo 1999; Kenyon 1969). Kenyon (1969) fitted wave spectra data to deduce

coefficients for an empirical formula ofus, based on the Pierson and Moskowitz (1964) fully

developed sea model, as a function of wind speed at19.5m. McWilliams and Restrepo

(1999) used this to calculateEs (implicitly approximating the19.5m wind speed to beU10).

Here, assuming a log profile for the wind speed, we present a corrected expression forEs as
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a function ofU10 that is given by

Es = 0.39
fU10

cD

(
1 +

c
1/2

D ln 1.95

κ

)3

, (11)

wherecD is the atmospheric drag coefficient defined byτ0 = ρacDU2
10, with air density

ρa = 1.2 kg m−3. The expression forcD is taken from Garratt (1992, equation 4.24),

cD = (0.75 + 0.067U10) × 10−3. (12)

Fig. 2 shows howEs increases with wind speed for 4 different latitudes. For example, at a

latitude of50◦N, Es(U10 = 12 ms−1) = 0.4 suggesting that the wave-induced transport can

be a significant fraction of the wind-induced transport. This finding motivates analysis of the

effects of the Coriolis–Stokes forcing on the current profile in the Ekman–Stokes layer,

which is considered next.

[Figure 2 about here.]

b. Current profile with a constant eddy-viscosity

Just as for the classical Ekman layer, many of the characteristics of the current in the

Ekman–Stokes layer are shown in the solution to the dynamical equations with a constant

eddy viscosityκm. This problem was first considered by Madsen (1978) and Huang(1979).

Here we re-appraise the solution by writing it in a form that highlights how the shallow wave

process can change the current profile over the whole depth ofthe Ekman–Stokes layer.

The solution in this case is obtained by recasting the momentum equation (3) into complex
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notation, whereu = ui + vj is re-expressed asU = u + iv. The solution to (3) can be

written as

U = Ue + Ues + Us, (13)

where

Ue = (1 − i)Ueexp

{
(1 + i)

z

δe

}
, (14)

Ues = (1 − i)Ueexp
{

(1 + i)
z

δe

}(
1

2

Us/δs

Ue/δe

1

(1 + i1

2

δ2
e

δ2
s

)

)
, (15)

Us = − Us

(1 + i1

2

δ2
e

δ2
s

)
exp

{
z

δs

}
. (16)

HereUe is the pure Ekman solution and would be the only solution if the wave-induced

affects were not included. However, the Stokes-Coriolis forcing introduces two new terms

into the solution. Firstly, there is a Stokes component of the current,Us. This part of the

solution is forced directly by the Coriolis–Stokes force; mathematically it arises as a

particular integral solution to the Coriolis–Stokes forcing. The Stokes component of the

current decays over the Stokes depth scale,δs. (The Stokes component of the currentUs is

the dynamical response to the Coriolis–Stokes forcing and should not be confused with the

Stokes drift,us). Secondly, there is an Ekman-Stokes component of the current,Ues.

Importantly, this term decays over the Ekman depth scale,δe, and so changes the current

profile through the whole depth of the layer. This part of the solution arises to ensure that

the solution satisfies the wind-stress boundary condition imposed at the sea surface. That is,

the Stokes component of the solution carries some of the windstress supplied at the surface,

hence the stress carried by the Ekman-type components of thesolution changes to satisfy the

boundary condition. In this sense the effect of the waves is to change the boundary condition
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on the Ekman current.

The decomposition of the solution (14)-(16) is shown in a hodograph and as depth profiles

in Fig. 3. The thick lines represent the full solution, the thin solid lines represent the Ekman

component, the dashed lines denote the Ekman-Stokes component and the dotted-dashed

lines denote the Stokes current component. Notice how the Ekman-Stokes component of the

solution penetrates through the whole depth of the wind-driven layer, whereas the Stokes

component of the solution penetrates only the upper fraction of the layer. The wave-induced

effect is to further rotate the current vectors, as comparedwith the pure Ekman solution.

[Figure 3 about here.]

Here we are particularly interested in the Ekman-Stokes term, as this has the same depth

structure as the pure Ekman term and so penetrates the whole depth of the layer. So consider

the ratio,R, of the Ekman-Stokes current to the pure Ekman current, which is given by

R =
|Ues|
|Ue|

=
1

2

Us/δs

Ue/δe

∣∣∣∣
1

1 + i1

2

δ2
e

δ2
s

∣∣∣∣. (17)

There are two limiting cases.

Firstly, consider the case whenδe � δs, so that the Stokes component of the current decays

rapidly within the upper portion of the Ekman–Stokes layer.This is the limit that is typical

of the real ocean mixed layer. In this case|1 + i1

2
δ2
e/δ

2
s | ≈ 1

2
δ2
e/δ

2
s , so that

R ≈ Usδs

Ueδe
= Es. (18)
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Hence, whenδe � δs, the ratio of the Ekman-Stokes to Ekman component of the current is

the ratio of the wave-induced transport to wind-induced transport,Es. That is, in this case,

the wave-driven transport is carried by the Ekman-Stokes part of the solution, and is carried

over the Ekman depth.

Secondly, consider the case whenδe � δs. This limit of a thin Ekman boundary layer with a

deeper Stokes layer might be generated in a laminar Ekman–Stokes layer when the viscosity

is small, such as might be produced in a laboratory experiment. In the ocean this regime

might represent swell propagation over a shallow wind-driven layer. In this case

|1 + i1

2
δ2
e/δ

2
s | ≈ 1 so that

R =
1

2

Us/δs

Ue/δe
, (19)

which is a scaling for a ratio of the gradients of the Stokes tothe Ekman components. To

understand the physics behind this balance, consider the surface stress boundary condition

for the flow (4) and (6), which can be rewritten as

∂U
∂z

=
u2
∗

κm

= 2
Ue

δe

at z = 0. (20)

Equation (14) shows that the pure Ekman current shear satisfies this boundary condition.

Hence the Ekman-Stokes component,Ues, of the solution is required to give a surface shear

that is equal and opposite to the shear in the Stokes component, Us, of the current. When

δe � δs the magnitude of the Stokes contribution in (16) is at its greatest. Hence, the

gradient of the Stokes current shear isUs/δs. RewritingR as the ratio of the Ekman-Stokes

component’s gradient,Us/δs, to the Ekman component’s gradient (20) we recover (19).
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Note, however, that in this regime smallR does not necessarily imply thatEs must be small

sinceR = 0.5Es(δe/δs)
2. For example, takingf = 1 × 10−4 s−1, a smaller eddy viscosity

coefficientκm = 1 × 10−3 m2 s−1, u∗ = 6.1 × 10−3 ms−1 anda = 1.3m and

k = 0.042m−1, such thatδs = 11.9m > δe = 4.5m, thenR = 0.10 andEs = 1.5.

c. Linearly varying eddy-viscosity

A more quantitatively accurate model for the turbulent Ekman–Stokes layer can be

constructed with an eddy-viscosity that varies linearly with depth, so that

κm(z) = −κu∗z = κu∗z+, (21)

whenz < 0 andκ = 0.4 is the von Karman constant, andz+ = −z.

The momentum equations then reduce to

∂

∂ζ

(
ζ
∂U
∂ζ

)
− ζU = ζus, (22)

whereζ2 = i 4f
κu∗

z+. The particular solution is obtained by the method of variation of

parameters, giving (following Madsen 1977; Lewis and Belcher 2003)

U =

{
2u∗

κ
+ 4i

∫ ẑ+

0

I0(
√

8it)ûs(t) dt

}
K0(ζ) + 4iI0(ζ)

∫
∞

ẑ+

K0(
√

8it)ûs(t) dt, (23)

whereI0 andK0 are modified Bessel functions (Abramowitz and Stegun 1972),

ẑ+ = z+/δe, δe = 2κu∗/f, and ûs(t) = Us exp (−tδe/δs).

14



In the limits thatδe/δs � 1 and|z| � δs, the solution simplifies to

U ≈ 2u∗

κ

{
1 − i

Usδs

Ueδe

}
K0(ζ). (24)

Hence the ratioR (17) of the Ekman-Stokes component to the wind-driven Ekman

component is again given byEs, the ratio of wave- to wind-induced transports. This is in

agreement with the value found with the constant eddy-viscosity case. This agreement is no

accident. In this limit ofδe/δs � 1, the Stokes response (the last term in (23)) to thef × us

forcing is negligible (as is the corresponding contribution to the net transport). Hence the

wave-induced Eulerian transport, which has to equal−Ts by the integral constraint (9),

must be carried by the Ekman-Stokes component of the solution. HenceR = Es. The

significance, is that in this limit ofδe/δs � 1, which is the limit appropriate for much of the

ocean mixed layer, the Eulerian transport associated with thef × us forcing is carried

through the same depth as the wind-driven Ekman solution. And we have shown here that

this result must follow through independently of the eddy-viscosity model used to compute

the turbulent stress.

d. Effective boundary condition for a shallow wave forcing

Above it was shown how in the limit ofδe/δs � 1, when the Ekman–Stokes layer is deep

compared to the depth of the Coriolis-Stokes forcing,f ×us, the effect of the forcing on the

current profile reduces to a canonical form. We now develop anargument to show how this

can be understood as the Coriolis-Stokes forcing changing the boundary condition on the

wind-driven layer.
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Recall that the Coriolis-Stokes forcing arises from a stress caused by the motions associated

with the surface wave, see (2). Hence the momentum equation governing the wind-driven

layer can be written

ρf ẑ × u =
∂τtot

∂z
, (25)

where the total stress,τtot is the sum of the turbulent stressτ and a wave-induced stress,

associated with a wave train propagating in the direction ofus. In the limit of δe/δs � 1, the

wave-induced stress tends to zero beneath the surface and hence the Ekman–Stokes layer can

be modelled using standard Ekman theory (25) subject to the following boundary conditions

τtot = ρu2

∗
(τ̂0 − ẑ × ûsEs) on z = 0, u → 0 asz → −∞, (26)

for arbitrary wind and wave directions (with hats denoting unit vectors). This finding may

have implications for representation of the Coriolis–Stokes term in ocean general circulation

models. These models do not typically have sufficient vertical resolution to compute the

flow within the upper part of the mixed layer where the Coriolis–Stokes force acts. The

present analysis shows that the effect of this forcing on themixed layer can be represented

by changing the boundary condition on the standard Ekman equations.

4. Large eddy simulation of the Ekman–Stokes layer

We have developed simple models for the wind-driven mixed layer that show how the

Coriolis–Stokes force changes the mean current profile through all depths. These models

represented the turbulent stress associated with three-dimensional overturning turbulent

motions through simple eddy-viscosity models. These turbulent motions are represented
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more faithfully through large eddy simulation (hereafter LES), where the fully nonlinear

equations of motion are integrated forward in time with sufficient resolution to compute

explicitly the large-scale turbulent motions. The small-scale turbulence is parameterised. In

this section the mean current profiles are computed by an LES model of the turbulent

Ekman–Stokes layer.

Following Skyllingstad and Denbo (1995) and McWilliams et al. (1997), we perform LES of

the wave filtered Craik-Leibovich equations to account for wave-length averaged effects of

surface waves. With this procedure the momentum equation becomes

Du

Dt
+ f × (u + us) = −∇π + us × ω + SGS. (27)

Hereu is the wave-averaged Eulerian velocity,f = f ẑ is the Coriolis parameter,̂z is the

upward unit vector,ω = ∇×u is the local vorticity vector andD/Dt = ∂/∂t + u · ∇ is the

material derivative. The subgrid scale processes (denotedSGS) are parameterised using a

standard Smagorinsky model. Finally,π is the generalised pressure given by

π =
p

ρ0

+
1

2
(|u + us|2 − |u|2). (28)

We consider the simplest problem when the density is prescribed to be constant with depth.

The governing equations then contain the Coriolis–Stokes forcing,f × us, and also the

vortex force, us × ω, which represents the straining of the vorticity associated with resolved

mean and turbulent motions by the Stokes drift. This latter term gives rise to Langmuir

circulations (Leibovich 1983), which lead to enhanced vertical mixing. The LES with the
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vortex force yields a turbulent boundary layer with elongated Langmuir vortices on a range

of scales, whose dynamics are described in Skyllingstad andDenbo (1995), McWilliams

et al. (1997) and Teixeira and Belcher (2003). Here we focus on the mean current profiles

produced by the LES.

The equations are integrated numerically using a code basedon the atmospheric boundary

layer code BLASIUS (Wood and Mason 1993), which has been adjusted to include the two

wave forcing terms. The code is run in LES mode (Brown et al. 2001) using a Smagorinsky

subgrid model. For further model details refer to Wood et al.(1998). The domain is periodic

and isotropic in the horizontal directions spanning120m with a resolution of3m. In the

vertical direction 200 grid points span90m with a resolution of0.46m. This is similar to the

3m × 3m × 0.6m resolution used by McWilliams et al. (1997), which is vertically uniform.

Our model also has a uniform vertical resolution except in the upper1m where we use a

stretched grid over 4 levels. The most significant difference between our simulations are

those of McWilliams et al. (1997) is in the stratification. Inthe McWilliams et al. (1997)

study, the upper33m is neutrally buoyant and the rest is stably statified. We simplify the

study by making the whole domain neutrally buoyant. At the surface a constant wind-stress

is applied in thex-direction such that atz = −z0,

κm
∂u

∂z
= u2

∗
; κm

∂v

∂z
= 0 (29)

whereκm is the mixing-length eddy viscosity, which parameterises the stress very near the

surface,u∗ is the friction velocity, andz0 is the roughness length. At the lower boundary a

no-flow condition is imposed. The code was checked by performing a simulation with the
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parameters of McWilliams et al. (1997). Results for the meanflow and turbulence statistics

from our simulation (not shown) are in good agreement with McWilliams et al. (1997).

A total of 16 simulations have been performed for a range ofk andUs wave parameters.

Each of the simulations hadu∗ = 6.1 × 10−3 ms−1 (corresponding to a10m atmospheric

wind speed,U10 ≈ 5 ms−1), f = 1 × 10−4 s−1 andz0 = 0.1m. The wave parameters are

k = 0.02625, 0.0525, 0.105, 0.210m−1, which yields wavelengthλ = 240, 120, 60, 30m,

and a surface Stokes drift ofUs = 0, 0.017, 0.034, 0.068, 0.271 ms−1. Each run is integrated

to 90 000s (including an inertial spin up time ofO(1/f) ∼ 104 s). Starting at5000s, mean

flow and turbulent statistics are computed from instantaneous horizontal averages that are

taken approximately every10s.

a. LES results and comparison with eddy-viscosity closure model

The mean current profiles obtained from the LES are now compared with the simple

eddy-viscosity closure model discussed in section 3c. Fig.4 shows solutions from four

simulations, all withk = 0.0525m−1 (λ = 120m) but with increasing wave amplitudes, and

hence increasingUs. (SinceEs ∝ Us/2k, increasingk has the same qualitative effect as

decreasingUs).

[Figure 4 about here.]

The upper panels show hodographs of the locus of the current vector as the depth increases.

The middle panels show corresponding profiles of mean along-wind velocity,ū against

depth. The lower panels show the corresponding mean across-wind velocity,v̄, against

depth. In each panel the thicker solid line is the LES data, the thinner sold line is the
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solution from the model with linearly-varying eddy-viscosity closure and the dashed line is

LES data from a run without wave forcing (that is the pure Ekman solution).

First consider the LES solutions. Even for moderate values of the Stokes drift, for example

whena = 0.95m so thatak = 0.05 andUs = 0.034 ms−1, the LES with wave forcing is

markedly different from the pure Ekman solution without wave forcing. The effect of the

Coriolis–Stokes force is primarily to rotate the current profiles southwards, consistent with

the effective boundary condition ideas in section 3d.

Comparing the LES solutions with the solution from the modelwith linearly-increasing

eddy-viscosity we see that there is a reasonably good quantitative agreement, particularly

within the bulk of the Ekman–Stokes layer. Very close to the surface, within the layer

affected directly by the Coriolis–Stokes forcing,|z| < δs ≈ 10m, the LES shows less shear

than the solution from the closure model. It seems likely that the enhanced mixing due to the

Langmuir circulations, which are undoubtedly present in the LES, reduce the shear there.

The eddy-viscosity model has a prescribed linearly varyingeddy-viscosity, which makes no

attempt to represent these Langmuir circulations. Nevertheless, these comparisons show that

the Coriolis–Stokes forcing leads to significantly changedmean current profiles and that the

closure model represents this effect throughout the bulk ofthe mixed layer.

5. Evidence for effects of Coriolis–Stokes forcing in observational data

In this section we compare the simple analytical model, usedin the LES comparisons, with

long-term observations of the upper ocean. We will find that the observational data is

explained by the model much better when the Coriolis–Stokesforcing is included.
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Extraction of the mean wind-driven current profile from the background of wave motions,

inertial oscillations and geostrophic eddies requires sophisticated and sensitive instruments

that can be deployed for long periods. Consequently it is only relatively recently that data

sets have been collected that can be compared with models of the wind-driven current. Here

we use data described in Price and Sundermeyer (1999).

The LOTUS3 data, ’Long Term Upper Ocean Study’, (Briscoe andWeller 1984; Price et al.

1987) was collected from a surface mooring in the Western Sargasso Sea (34◦N, 70◦W)

spanning 160 days during the summer months of 1982. Vector Measuring Current Meters

and a buoy mounted meteorological mast were used to record ocean currents and wind

velocity. The data is processed by first subtracting the geostrophic velocity (the velocity at

some depth deeper than the wind penetration depth, which in this case is taken as 50m).

Secondly, since the wind direction was not steady over the 160 day period, daily averages of

wind and current were rotated such that the wind was aligned with an arbitrary north. This

daily data was then averaged over the 160 days.

The EBC data - ’Eastern Boundary Current’, is reported in Chereskin (1995). This data set

is taken from a mooring400km off the coast of North California (37◦N, 128◦W) and was

collected, over a 6 month period from April 8th to October 20th 1993, using ADCP and

buoy wind observations. The data required no rotating priorto averaging as the wind was

unidirectional over the 6-month collecting period.

Price and Sundermeyer (1999) also describe a third data set,the TPHS data, ’Transpacific

Hydrographic Section’, that was originally reported in Wijffels et al. (1994). Again this data

was processed using the same procedure as described for the LOTUS3 data (see Price and
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Sundermeyer 1999, for details). However, since the Coriolis parameter is much smaller and

the corresponding depth scales are larger (the wind penetration depth is150m) the linearly

varying eddy-viscosity and uniform density assumption break down (Lewis and Belcher

2003) and so we consider this data set no further.

Since no observations of surface waves were made with the current and wind measurements

Lewis and Belcher (2003) use empirical formulae to deduceUs andk from the observed

wind stress as a function of fetch and for a fully developed sea (FDS). They also develop a

coupled linear eddy-viscosity closure ocean-atmosphere model to deducez0 from the wind

stress. Here we take a more pragmatic approach to deduce the values of unknown

parameters. Firstly, the atmospheric component to the model is not used because the results

are not particularly sensitive toz0 provided it lies within the range10−4 m to 10−3 m.

Secondly, all the observation sites are sufficiently far from land that the waves cannot be

fetch limited and so we assume here for simplicity that the waves are fully developed and

that the peak frequencyω and the significant wave heighta are the appropriate terms in the

expression for Stokes drift (c.f. equations 6.71a-b Komen et al. 1994):

g2ρ2a2

16ρ2
au

4
∗

= 1.1 × 103,
σu∗

2πg

(
ρ

ρa

)0.5

= 5.6 × 10−3. (30)

Finally, we vary the key wave parameters,k andUs, to examine the sensitivity of the results

to the wave properties.

[Figure 5 about here.]

Fig. 5 shows hodographs of the current vector for the LOTUS3 and EBC data. The solutions

22



from the analytical model with linearly-varying eddy viscosity and accounting for the

Coriolis–Stokes force (the solid line) show strikingly good agreement with the

measurements. The results of the model when the Coriolis–Stokes force is set to zero (the

dashed line) does not agree well. Also shown is the range thatthe hodograph from the

theory can take when the wave parameters are varied. The solid shading denotes the range of

solutions from the model when the wavelength of the waves is changed by±100%. The

hatched envelope arises from changing the square of the waveamplitude, and henceUs, by

±50%. The observational data all lie within these bounds, whereas the pure Ekman solution

lies some distance outside.

We acknowledge the suggestion of Price and Sundermeyer (1999) that diurnal variation in

the depth of the layer could explain the deviation from the pure Ekman solution. As pointed

out by Lewis and Belcher (2003) this approach, however, yields a surface current whose

angle to the surface wind is outside the range of observations.

Hence the comparisons provide compelling evidence that theCoriolis–Stokes force

produces measurable changes to wind-driven current profiles.

6. Concluding Remarks

We have examined the role of the Coriolis–Stokes forcing,f × us, in shaping the mean

current profile in the wind-driven ocean mixed layer. At firstsight this force might be

thought to be small, since it involves the Stokes drift, which scales on the wave slope

squared. Estimates show that in conditions of even modest sea state the depth-integrated

transport associated with this forcing can be a considerable fraction of the depth-integrated
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wind-driven transport. This observation motivated the present more detailed examination of

the role of this forcing.

Simple analytical solutions, based on parameterising the turbulence using simple

eddy-viscosities, show how the Coriolis–Stokes forcing interacts with the Coriolis force and

the turbulent stress divergence. The resulting wind-driven current profile is characterised by

two length scales, namely the depth scale of the wind-drivenlayer,δe, and the depth of

penetration of the Coriolis–Stokes forcing,δs. In typical ocean conditionsδs � δe, and yet

the current profile is completely changed through all depths, with the current vectors rotated

further away from the direction of the wind stress. The reason is that the Coriolis–Stokes

forcing absorbs a fraction of the applied wind stress, thus changing the effective boundary

condition on the standard wind-driven Ekman solution. A corollary to this finding is that the

effects of the Coriolis–Stokes forcing can be represented simply by changing the boundary

condition on the standard equations of motion. Hence there is no need for numerical ocean

models to resolve explicitly the region affected directly by the Coriolis–Stokes forcing.

We investigated the relevance of these findings to the real ocean by comparing the results of

the simple models to large eddy simulations (LES) and observations. The LES resolve the

large-scale turbulent motions, but represent the effects of the waves through their wavelength

averaged effects only. Nevertheless, the wind and wave conditions are prescribed and

remain constant, giving clean data to compare with the simple theory. The observational

data, taken from the LOTUS3 and EBC campaigns, on the other hand, contain the

complexity of the real world, including variable wind speedand direction. Wave properties

were not measured during the observations and so were estimated here by assuming that the

waves were fully developed with respect to the local wind speed. When compared to both
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the LES and the observations the simple models that account for the Coriolis–Stokes forcing

have shown encouraging agreement. This provides perhaps the first evidence of the

signature of the Coriolis–Stokes forcing in observations.These findings suggest that future

observations of the wind-driven mixed layer also need to measure surface wave properties.

Ultimately it is the wind that provides the momentum flux to the surface wind-stress, with its

wind-driven flow, and to the surface waves, with their associated the Coriolis–Stokes

forcing. In the present paper the wind and waves have been specified separately. An

important topic for future research will therefore be to examine the partition of the

momentum flux between these two components.
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correlates with thẽw component to produce a non-zero stress. The divergence of this stress
can be written as (Hasselmann 1970)−ρf × us.

32



50
o

60
o

70
o

40
o

E
s

U10 (m/s)
0 5 10 15 20

0.8

0.6

0.4

0.2

0.0
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Figure 5: Hodograph comparisons between simple analytic model (assuming a fully de-
veloped sea) and observational measurements from (a) LOTUS3 (u∗ = 8.3 × 10−3 ms−1,
z0 = 1.6 × 10−3 m) and (b) EBC (u∗ = 9.4 × 10−3 ms−1, z0 = 1.4 × 10−3 m) data sets.
Single dash line: model withus = 0 – no wave effects. Heavy solid line: model with wave
effects. Solid shaded envelope:k (from FDS)±100%. Hatched envelope:U2

s (that isa2 from
FDS)±50%. Crosses denote observational measurements.
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