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Abstract  The objective of this paper is to perform a theoretically justified parameterization of the dissipation function for 
wind waves in the spectral form. To solve the problem, the similarity method was used: similarity statements are formulated; 
dimensionless characteristics of the system are introduced; and general phenomenological representation of the dissipation 
function for wind waves DIS(S) is constructed. The only additional assumption is that this presentation is valid in a local 
approximation in the wave spectrum S. Physical analysis of the general representation allows us to reduce the dissipation 
function to the form DIS(S)∝ S2. The further systematic formulation of the final representation of phenomenological function 
DIS(S) is performed by joining numerous previous results of the author. The physical meaning of the accepted parameteri-
zation parameters is analysed, and the correspondence of the parameterization with the new experimental facts found in this 
field for the last 5-10 years is shown. The previous numerical results are presented that illustrate a successful application of 
the constructed dissipation function. A regular theoretical justification of the revealed phenomenological representation of 
DIS(S) is based on the well-known Hasselmann’s approach[1]. This theory was modified by the system of postulates resulting 
in the dissipation mechanism realized due to turbulence in the upper water layer. Physically it means the eddy viscosity 
mechanism of wind wave dissipation. The final theoretical representation of the dissipation function corresponds to the 
phenomenological formulation: DIS(S)∝  S2. This fact provides the physical justification of the phenomenological approach 
proposed. 

Keywords  Wind-wave, Spectra, Numerical Model, Source Function, Evolution Mechanism, Wind-wave Dissipation, 
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1. Introduction and Pose of the Problem 
Wind-sea is a stochastic hydrodynamic phenomenon 

taking place at the air-sea interface, in vicinity of which 
shear currents, waves, and turbulent motions take place. This 
multi-scale feature of motions provides for reasonable dif-
ficulties in solving the problem of wind wave dynamics 
description. Nevertheless, for a century and a half history of 
studying a physics of wind waves, a lot of points have gotten 
their solutions.  

In particular, it is well established[2,3] that on the scales of 
hundreds of dominant wave lengths and periods, description 
of stochastic and non-stationary wave field is realized in 
terms of two-dimensional energy spectrum ( , ; , )S t Sσ θ ≡x , 
spread in space x and time t (here σ and θ is the frequency 
and propagation direction of wave component, respectively, 
corresponding to the wave vector k(σ,θ)). In the case of deep 
water and neglecting a surface currents impact, the wave 
spectrum evolution is described by the following transport 
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equation1 
dS F NL IN DIS
dt

= ≡ + −           (1.1) 

The left-hand side of (1.1) defines mathematics of a wind- 
sea model, which is not discussed here. But the left-hand side, 
called as source function (SF) F, contains physics of a model. 
In the frame of a certain series of assumptions, it is used to 
distinguish three main constituents of SF – three parts of the 
united evolution mechanism for wind waves: 
·  The rate of conservative nonlinear energy transfer 

through a wave spectrum, NL , (“nonlinear-term”);  
· The rate of energy transfer from wind to waves, IN , 

(“input-term”);  
·  The rate of wave energy loss, DIS , (“dissipation- 

term”).  
A physical sense of equation (1.1) is evident: it is the en-

ergy conservation law applied to each of wave spectral 
components. Therefore, in principle, it can be postulated and 
written as an initial phenomenological equation. Neverthe-
less, a certain procedure exists, allowing derivation of this 
equation form a system of the basic hydrodynamic equations 
and specification a spectral representation for each term in 

                                                             
1 More general representation of evolution equation (1.1) is not discussed here 
due to brevity description of well-known statements. 
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the right-hand side of (1.1).  
In the case of an ideal and incompressible fluid in deep 

water, the system mentioned can be written in the kind[2,3] 

( , )( , ) z t
d P t
dt ηρ ρ == −∇ − +3 x
u g f x

 ,         (1.2) 

( ) 0∇ =3 u


,                  (1.3) 

( , )
( )z z t

u
tη

η η
=

∂
= + ∇
∂ 2x

u


,           (1.4) 

0z zu =−∞ = .               (1.5) 
where the following designations are used: ( , )z tρ  is the 
fluid density; ( , , ) ( , , )x y zz t u u u=u x is the velocity field; 

( , , )P z tx  is the atmospheric pressure; g  is the acceleration 
due to gravity; ( , , )f z tx  is the external forcing (surface 
tension, wind stress and so on); ),( txη  is the surface eleva-
tion field; ),( yx=x  is the horizontal coordinates vector; z
is the vertical coordinate up-directed; 2 ( / , / )x y∇ = ∂ ∂ ∂ ∂



 is 
the horizontal gradient vector; ( , / )z∇ = ∇ ∂ ∂3 2

 

 is the full 
gradient, and the full time-derivative operator is defined as 

( )3(...) / / (...)d dt t= ∂ ∂ + ∇u


.  
Due to nonlinearity of the problem, a numerical solution 

of system (1.2)-(1.5) is even of great difficulties, to say 
nothing about analytical solutions. Nevertheless, to present 
time evolution mechanisms NL and IN have certain and 
widely recognized spectral representations, NL(S) and IN(S), 
which are derived from equations (1.2)-(1.5) (for references, 
see[2-4]). However, such a kind representation DIS(S) is 
absent for the dissipation mechanism. This fact has several 
important causes, the main of which are the following. 

In the theoretical aspect, the general cause is provided by 
the fact that numerous physical processes resulting in the 
wave energy dissipation are related to different kinds of 
instabilities, including disruption of the air-sea interface 
surface (wave breaking, white capping, air-bubble intrusion, 
and others). All these processes form a specific multi-scale 
or, more exactly, cascade mechanism of wave dissipation. In 
this cascade, some “fast” events (mainly, wave breaking) 
play a role of primary process generating different kinds of 
small-scale motions. But the actual, “slow” dissipation of 
wave spectral components takes place on the background of 
these motions (as far as the spectrum is defined on a large 
time scale, only). In such a case, application of the standard 
equations, for example (1.2)-(1.5), requires their essential 
modification and a proper mathematical method of their 
solution, and this does cause the main theoretical problems 
(for example, see[1]. These problems result in the fact that 
the widely recognized and theoretically justified model for 
the wave energy dissipation mechanism does not exist.  

Despite a presence of numerous theoretical papers, for 
example, statistical estimations in Longuet-Higgins[5], 
Battjes and Janssen[6], direct derivations in Hasselmann[1], 
dimensional considerations in Phillips[7], Polnikov[8], 
Zaslavskii[9], Donelan[10], and numerical simulations in 
Chalikov and Sheinin[11], Zakharov et al.[12], a sufficiently 
convincing solution of this point was not found. Unfortu-
nately, this issue is rarely discussed in scientific literature 
from a general and physical point of view. This fact slows 

down the construction of justified formulation for a spectral 
representation of dissipation function DIS(S). This paper is 
dedicated to accelerate solution of the point. 

2. General Ideas and Objectives of the 
Work 

The most important and even the key factor complicating 
the solution of the problem is the fact that any experimental 
investigations of the wave dissipation processes are princi-
pally restricted. This occurs due to the existence of numerous, 
poorly observed and therefore hardly measurable processes 
taking place on the background of visible dissipation wave 
processes (mainly, wave breaking). Non-controlled instabil-
ity of shear and orbital currents (on the background of sto-
chastic waves) and permanent generation of turbulence both 
in the upper water layer and in the air layer nearby the in-
terface can be attributed to the class of poorly observed 
processes. 

Besides, the wave dissipation occurs on the background of 
permanent energy exchange between wind and waves (IN- 
mechanism) and immeasurable nonlinear energy transfer 
between waves (NL-mechanism). Therefore, the previous 
statement about the strong restriction of possibilities for 
experimental studying the whole package of wind-wave 
dissipation mechanisms becomes much more justified and, 
in our opinion, quite convincing.  

Additional difficulty for measurements execution arises 
when it needs getting information about the wave energy 
dissipation rate in a spectral representation, i.e. representa-
tion of dissipation in a form of its distribution through wave 
spectrum components DIS(S(σ,θ)) rather than in a form of 
integral loss over a whole wave spectrum.  

One can find a confirmation of the previous statement in 
the analysis of new, the most advanced experimental data 
regarding to wind wave dissipation features, found for the 
last 5-10 years. These results are represented in a rather 
comprehensive form in papers of Australian scientists 
(Banner and Young[13], Banner and Tian[14], Babanin et 
al.[15], Young and Babanin[16], Babanin and Westhuysen 
[17]) and in the comprehensive overview by Babanin[18]. 
The results mentioned above are substantially supplemented 
by the findings of American and French colleagues (for 
example, see references in[10-21] and [25], respectively.  

First of all, it is seen from this literature that the over-
whelming majority of experimental works, regarding to the 
wave dissipation, are mainly restricted by the research of 
wave breaking processes. Secondly, even the most certain 
result in this field, reported in[16] and presented in Fig. 1, 
does not answer the question about the nature and intensity 
of the wind-wave dissipation process.  

Indeed, the so called “difference” between the wave 
spectra measured “before” and “after” breaking, shown in 
Fig.1, provides evidence that the energy of wave component 
corresponding to the spectrum peak is not lost totally. It is 
most likely that it is randomly distributed among other wave 
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components. We do not dwell on a detailed analysis of this 
data (which is described in Appendix A). We only note that 
the result shown here emphasizes the validity of the above 
statement about the restriction of the experimental possibili-
ties in research of the nature of wave dissipation. 

 
Figure 1.  Top panel: Mean power spectrum of incipient-breaking (solid 
line) and post-breaking (dashed line) waves. Bottom panel: Ratio of the 
spectra shown in top panel (following to [16]) 

Nevertheless, despite of the difficulties enumerated, it this 
direction there is a remarkable series of theoretical and ex-
perimental results. Moreover, these results are for a long 
time used with one or another level of success in numerous 
wind waves numerical models of the form (1.1): WAM [22], 
WAVEWATCH (WW)[23], and others[24,25]. Herewith, 
the dissipation functions DIS(S) used in these numerical 
models are poorly justified physically, in opposite to the 
relatively well developed and widely recognized parame-
terizations of NL and IN mechanisms.  

In particular, the parameterizations of DIS(S) in the form 
of quasi-linear spectral function 

DIS(S)= ( )int S S⋅ ,             (2.1) 
where ( )int S  is the some kind integral function of S, is 
widely used in such world-wide spread models as WAM, 
WW, and SWAN[17]. But it has a semi-phenomenological 
origin. The latter means that form (2.1) is constructed on the 
basis of general physical considerations which are not di-
rectly and unambiguously related to the measurements and 
fundamental physical equations. Therefore, the parameteri-
zations DIS(S) mentioned above are often and reasonably 
criticized from one or other viewpoints[2-4].  

According to the aforesaid, the necessity of more logical 
and theoretically justified description of wind-wave energy 
dissipation processes in the spectral representation is still 
needed.  

In addition, we note that for a long time there is an idea to 
construct the dissipation model basing on the statement that 
the surface-wave energy losses can occur due to the turbulent 
viscosity provided by the interaction of waves with the tur-

bulence in the upper water layer[26]. It can be written in the 
form 

DIS(S)=νTk2S,              (2.2) 
where νT(S) is the effective turbulent viscosity of the upper 
water layer, depending on the wave spectrum S. This idea 
was formally realized in several versions 25 years ago in[27] 
where some essential modelling preferences of the proposed 
representations of DIS(S) were demonstrated. Later, this idea 
was developed by the author up to a semi-phenomenological 
theory. Unfortunately, the results were published partially 
[28], whilst the main derivations were retained in a manu-
script of the author's doctoral dissertation[29]. Many years 
later, the author has sophisticated the final phenomenologi-
cal result[4] and verified them successfully by means of their 
implementation in the mathematical shells of the world-wide 
known models mentioned above: WAM[30,31]. Neverthe-
less, the turbulent viscosity model is not widely recognized 
yet, as far as its full and regular justification does not exist. 
On the other hand, some experimental results in the field of 
studying the wave-induced turbulence have already ap-
peared[20,32,33] and this fact stimulates our efforts in this 
field. 

The issue of convincing justification of the spectral rep-
resentation for wind-wave dissipation mechanism due to 
turbulence viscosity was many times discussed with A. Ba-
banin, who is one of the leading investigators in this field. 
These discussions precisely stimulated the appearance of this 
paper. It is dedicated to gain the general understanding of the 
problem and definiteness in its solution. This is the main 
objective of the present work that has several constituents.  

The first of the objectives is generalization of the point of 
view on the problem. With this in mind, the author per-
formed a critical analysis of the most important approaches 
to the problem (theoretical works[5-12], and experimental 
researches[13-17]. This analysis showed that clear and 
physically well justified models of the wind-wave dissipa-
tion mechanism do not exist yet. In our mind, the failure of 
all previous attempts was provided by the wrong choice of 
the theoretical approaches used. For this reason, as an al-
ternative to the present approaches, here we have tried to 
apply the full-scaled similarity method widely used in sta-
tistical hydromechanics.  

The similarity approach, formulated in subsection 3a, al-
lows us to construct the most general spectral form for 
phenomenological function DIS(S) in the local representa-
tion in S, which, under some assumptions, is given as  

DIS(S) = 21fun S⋅ .              (2.3) 
The detailed specification of unknown function 1fun  is 

presented in subsection 3b. As far as this particular form was 
repeatedly used by the author earlier (for references, see[34], 
the corresponding numerical evidence is presented in sub-
section 3c, demonstrating the preferences of the proposed 
representation for DIS(S) with respect to the versions of 
DIS(S) used in WAM and WW models (see Fig. 2 and Tab. 1 
in subsection 3c).  

The second, and rather self-contained constituent of our 
objective is the construction of theoretical justification of the 
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found phenomenological representation, DIS(S) ∝  S2 (sec-
tion 4). The goal of this part of work is to find such physical 
mechanism that supports the mentioned dependence DIS(S). 
The mathematical approach described in[1] and the idea of 
the turbulent viscosity, as the main mechanism of wave 
energy losses, were applied to solve the problem. Eventually, 
the physical model of wind wave energy losses corre-
sponding to form DIS(S) ∝  S2 was constructed on the basis 
of equations system (1.2)-(1.5). It is our opinion that this part 
of the work gives a convincing proof that the turbulent vis-
cosity can be considered as the most general dissipation 
mechanism for wind waves represented in the spectral form. 

The final overview for application of the results obtained 
is given in conclusive section 5.  

3. Construction of Function ( , , , )DIS W Sσ θ  
by Means of Similarity Method 

Keeping in mind a multi-scale and stochastic feature of 
processes taking place at the air-sea interface, we state that 
the most effective method for solving the task posed is the 
similarity method (or method of dimensions consideration) 
widely used in different divisions of statistical hydrome-
chanics[35].  

In our case, the essence of similarity consists in the fact 
that dissipation rate ( , , , )DIS W Sσ θ  realizing in the spectral 
domain, ( ,σ θ ), is provided by local wind W and local wave 
spectrum intensity S( ,σ θ ). To the benefit of this statement 
the fact testifies that, in the case of stationary and homoge-
neous wind, the spectrum “tale” (S( ,σ θ ) at 2 pσ σ> ) has the 
fixed shape named as equilibrium spectrum ( , )eqS σ θ [1,2]. 
Moreover, it is widely recognized (see the same references) 
that formation of an equilibrium shape for a spectrum tale is 
stipulated by the balance between input and dissipation rates 
of the kind 

𝐼𝐼𝐼𝐼(σ,𝑊𝑊, 𝑆𝑆eq)  −  𝐷𝐷𝐼𝐼𝑆𝑆(σ,𝑊𝑊, 𝑆𝑆eq) ≈ 0     (3.1) 
(as far as |NL|<< |IN|,| DIS|). According to ratio (3.1), one 
should expect a local feature of the dissipation function, by 
analogy to feature of the input one. The latter means that 
there are no integrated (cumulative) spectral terms in repre-
sentation of function DIS(S). 

All these circumstances give basis for application of the 
dimensions consideration method for postulating an initial 
kind of function ( , , , )DIS W Sσ θ . Herewith, the physical 
nature of wave energy loss is quite unessential, as far as this 
approach has a phenomenological feature. The former will 
be needed at the stage of theoretical justification of the 
phenomenological result found by the similarity method. In 
this section, solution of the task posed is represented in the 
frame of full-scale similarity method for the first time. 

3.1. Phenomenological Construction of the General Kind 
of ( , , )DIS W Sσ  

The parameters of the task solved (and the system con-

sidered) are as follows: the wave spectrum, ( , )S σ θ , the peak 
frequency of the spectrum, 

pσ , the steepness of waves at the 
current frequency, ( )ε σ , the phase speed of wave crests, 
which is of the order of /p pc g σ= , the local wind speed, W , 
and the gravity acceleration, g. Thus, in the task posed one 
can form a long series of dimensionless parameters:  

· The dimensionless spectrum, 
 5 2 2ˆ( ) ( , ) / ( )S S gσ σ σ θ ε σ= ≡ ,      (3.2а) 

· The dimensionless current frequency, 
ˆ / pσ σ σ= ,                (3.2b) 

· The dimensionless phase speed of crests (or the wave 
age, А)  

ˆ /p pA c c W= = ,              (3.2c) 

· The dimensionless wind 
 ˆ /W W gσ= ,              (3.2d) 

and so on. To reach the aim posed, it needs to choose a 
combination of these parameters, providing for the general 
phenomenological representation of function ( , , )DIS W Sσ . 

Let us write presentation for ( , , )DIS W Sσ  in the kind 
ˆ ˆ( , , ) ( , ) ( , , , ,..)DIS W S const S S W Aσ σ σ θ ε= ⋅ ⋅Φ    (3.3) 

where ˆ ˆ( , , , ,..)S W A εΦ  is the sought function of a whole ag-
gregate of parameters mentioned above. With no account of 
the angular dependence of DIS, clarification of which is still 
not under consideration, expression (3.3) can be accepted as 
the most general representation of function ( , , )DIS W Sσ . 
With the aim of finding the most simple form of function 

(...)Φ  among a multitude of its specifications, farther we 
will put one or another restraint to the representation of 

(...)Φ . 
First of all, assuming that the dissipation function is the 

regular, growing, and local function of spectrum S, with no 
restriction of generality one can represent function (...)Φ  as 
a series to powers in spectrum of the following kind 

ˆˆˆ(...) ( , , , ) n
n

n
A W Sα σ εΦ =∑ .          (3.4) 

Now, take into account that a value of dimensionless spec-
trum Ŝ  given by ratio (3.2а), in accordance with well rec-
ognized empirical data, is a small parameter of the system, 
having the order of Phillips’ constant pα  [2], i.e. 

ˆ 0.01 1pS α≅ ≅ << .              (3.5) 

In such a case, it immediately follows from (3.4) that rep-
resentation for (...)Φ  can be restricted by several first terms 
of series (3.4), having a real physical sense.  

Second, let us specify the meaning of really essential 
terms of series (3.4). To this end, it needs to attract the well- 
known conception about equilibrium spectrum ( , )eqS σ θ  
realizing in the tail domain of the spectrum, defined by the 
ratio  

ˆ (2 2.5)σ > ÷ .               (3.6) 
The commonly recognized condition of existence of such a 
spectrum is the balance between input and dissipation 
mechanisms, given by equation (2.1). In turn, the commonly 
recognized representation for input function ( , )IN W S  has 
the kind of linear in spectrum function [2,3] 
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( , )IN W S  = ( , , )β σ θ W σ S (σ, θ).      (3.7) 
Coefficient (...)β  in the right-hand side of (3.7) is the so 
called wave-growing increment depending on the parameters 
mentioned above. Specification of function (...)β  is still not 
principal, as it is sufficient to accept that analytical repre-
sentation of (...)β  is fully defined[2,3].  

In this case, it immediately follows from formula (1.1) for 
the source function that the mathematically similar, linear in 
spectrum S summands of IN(S) and DIS(S) terms can be 
united to a single summand of SF. The final non-dimensional 
coefficient of united summand linear in S can be treated as 
“the effective” increment (...)β . (This can be done with no 
loss of physical sense of SF terms). It is just this increment 
which is commonly used in the input function IN. This cir-
cumstance allows us to exclude the linear in spectrum 
summand of series (3.4) for the representation of function 
DIS(S). Consequently, the only term of series (3.4), which 
has certain physical sense, is the summand with the second 
power in spectrum S. As a result, with no loss for physical 
sense of SF, the general representation for dissipation func-
tion (3.4) is reduced to the form 

1
6 2

1 2

ˆˆˆ( , , ) ( , ) ( , , , )

( , )ˆˆ ˆ( , , , )

DIS W S S A W S
SA W

g

σ σ σ θ α σ ε

σ σ θα σ ε

= ⋅

=                     
         (3.8) 

Representation (3.8) specifies fully the spectral dependence 
for function DIS(S), and the rest ambiguity in DIS is reduced 
to the new unknown function 1ˆ (...)α  independent of S. 

Thus, the problem of spectral representation of dissipation 
function is solved in the frame of phenomenological ap-
proach under assumption that this function is local in wave 
spectrum, i.e. there are no integral (cumulative) spectral 
terms. As it was shown above, in this representation there is 
not place neither for the linear in spectrum term (due to its 
mathematical similarity to the input term), nor for the terms 
having powers in spectrum higher than the second one (due 
to their negligibility). 

3.2. Specification of function ( , , )DIS Sσ W   

Farther specification of the dissipation function is defined 
by the specification of the kind of auxiliary function 

1
ˆˆ( , , , )A Wα σ ε . It is realized by the following way.  

First of all, let us write the condition of the equilibrium 
spectrum existence in the kind  

[ ] 0≈− = eqSSDISIN              (3.9) 

where it is implied that condition (3.9) is valid in domain 
(3.6), only. Substitution of (3.7) and (3.8) into (3.9) leads, in 
fact, to equation for spectrum shape ( , )eqS σ θ , solution of 
which has the kind2 

2 5

1

( , , )( , ) ˆˆ( , , , )eqS g
A W

β σ θσ θ σ
α σ ε

−=
W         (3.10) 

According to (3.10), specification of 1
ˆˆ( , , , )A Wα σ ε  is un-

equivocally defined by putting the form of equilibrium 

                                                             
2 By the way, this is the key algebraic advantage of the quadratic form for DIS(S). 

spectrum ( , )eqS σ θ . So, this form is a constructive element of 
the model under derivations, together with the kind of rep-
resentation for wave growth increment (...)β . 

Combining the known models proposed by Phillips[36] 
and Toba[37], for the equilibrium spectrum shape one can 
get the following united kind 

2 5 ˆ( , ) ( ) n
eqS const n g Wσ θ σ −= ⋅ ⋅     (3.11) 

allowing variability of power n  for the dimensionless 
wind in a wide range of magnitudes. Herewith, value n = 1 
corresponds to Toba’s spectrum, whilst n = 0 does to Phil-
lips’ one. 

As a result, substitution of (3.11) into (3.10) gives the 
following solution 

1
ˆ ˆˆ ˆ( , , , ) ( ) ( , , ) ( , , ) / n

dis MA W C n A Wα σ ε φ σ ε β σ θ= W   (3.12) 
where the fitting coefficient, ( )disC n , depending on the ex-
cepted form for ( , )eqS σ θ , is shown explicitly, and the new 
dimensionless function, ˆ( , , )Aφ σ ε , is extracted, which is not 
defined yet.  

It should be mentioned here that due to a possible change 
the sign of increment ( , , )β σ θ W  (for swell components or 
low frequency components of spectrum, overtaking the local 
wind), the factor ( , , )Mβ σ θ W  in (3.12) should be taken in 
the form of simple modification for increment ( , , )β σ θ W  

( , , ) max[ , ( , , )]M Lβ σ θ β β σ θ=W W      (3.13) 

Here, the standard designation max[a, b] means a choice of 
maximum among values under the brackets. This modifica-
tion is needed to secure a proper sign for the dissipation 
function. The positive constant, Lβ , is the so call “back-
ground” value of factor Mβ , defined during the model fitting 
process (see subsection 3.4 below) 

Expressions (3.12-3.13) finalize, in fact, the part of 
specification of dissipation function DIS(…) regarding to its 
dependences both on spectrum S and local wind W. This fact 
ensures independence of function ˆ( , , )Aφ σ ε  of S and W. 
Moreover, in the domain given by (3.5), it is quite acceptable 
the following asymptotic ˆ( , , ) 1Aφ σ ε ≈ , as far as the proper 
representation for DIS(…)describes fully the formation of 
known empirical tale of wave spectrum. 

In the vicinity of the spectrum peak, i.e. in the domain 
given by the ratio ˆ0.5 2σ< < , the specification of DIS(…), 
resulting from the kind of function ˆ( , , )Aφ σ ε , needs attrac-
tion of new empirical information and phenomenological 
hypothesis regarding to behaviour of function DIS(…) in this 
domain. It was proposed earlier [28,4] in the following final 
form  

1ˆ ˆ ˆ ˆ( , , ) ( , , ) max 0, (1 ( , , )w wA c Tσφ σ ε φ θ θ σ σ θ θ σ− = = −   (3.14) 

with the angular function 

[ ]2ˆ ˆ( , , ) 1 4sin ( ) max 1, 1 cos( )
2

w
w wT

θ θ
θ θ σ σ θ θ

− = + − − 
 

  (3.15) 

where cσ  is the additional parameter of the dissipation 
model, wθ  is the local wind direction, and the standard 
designation max[a, b] means the choice of maximum among 
values under the brackets. It should be especially mentioned 
here the two-mode angular representation (3.15), well cor-
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responding to the recent empirical results[16] regarding to 
angular distribution of DIS (for details, see Appendix A).  

Thus, formulas (3.8) and (3.12)-(3.15) finalize totally the 
proposed phenomenological parameterization of the dissi-
pation function. As it has turned later, this parameterization 
reflects (and does not contradict to) the most reliable of 
modern empirical data[16], excluding the effects of cumu-
lative and threshold features of DIS(S), discussed in details in 
Appendix A. 

3.3. Physical Meaning of the Parameters and       
Effectiveness of Phenomenological Function 

( , , )DIS Sσ W   

Moving the theoretical justification of the proposed spec-
tral representation, DIS(S) ∝  S2, to the after-following 
separate consideration (section 4), let us give here the short 
description of meaning of the parameters introduced above, 
and show some evidence of new parameterization preference 
with respect to the analogues used in WAM and WW. 

First of all, note that in the dissipation parameterization 
proposed above there are only four free varying values: disC , 

Lβ , cσ , and n . 
The meaning of the fitting coefficient disC  is evident: it 

regulates the dissipation intensity. This parameter is inevi-
table in any model that has the SF represented in the additive 
form (1.1). Moreover, disC  is the most actively varied in the 
course of fitting the model given by the wave spectrum 
evolution equation of the form (1.1).  

Parameter n is the next in importance. Its meaning is 
evident also: it is responsible for the shape of an “expected” 
equilibrium spectrum, which is provided by the numerical 
model. Value n  = 1 supports the Toba’s equilibrium spec-
trum, 4( )eqS Wgσ σ −∝ , whilst value n = 0 does the Phillips’ 

spectrum, 2 5( )eqS gσ σ −∝ . Consequently, by means of 
varying the value of n , users of the model are free to choose 
the expected shape of numerical equilibrium spectrum. 
Hereof, by the way, it follows that the falling law “-4” of the 
spectrum tale (i.e. 4( )S σ σ −∝ ) is easily realized with no 
account of nonlinear term NL (in opposite to the reasons 
discussed in[7], and[38]. So, the proposed approach gives an 
additional freedom for physical treating the Toba’s spectrum 
formation.  

Side by side with n , parameter cσ  is the element of fine 
fitting the calculating spectrum shape. It allows varying the 
dissipation intensity in the spectral peak domain and, at some 
extent, the dissipation intensity in the spectrum-tale domain. 
In fact, existence of this coefficient corresponds to the em-
pirical data[16] that dissipation intensity at the spectrum tale 
is defined by the intensity of the dominant waves breaking. 
For example, our simulations show[30,31] that varying cσ  
allows, at some extent, to change the mean frequency, mσ , 
which is one of the integrated characteristics of the spectrum, 
given by the ratio  

( , ) / ( , )m S d d S d dσ σ σ θ σ θ σ θ σ θ= ∫∫ ∫∫      (3.16) 

Relationship between pσ  and mσ  is important as one of 

the “checked” magnitudes analysed in the course of nu-
merical model verification [34]. By the way, this relationship 
is defined by a choice of parameter n, as well. 

Finally, several words about parameter Lβ . In the light of 
the said above for explanation of formula (3.14), this pa-
rameter is used to regulate the dissipation intensity during 
the processes of rapid change of wind velocity vector W 
(turning or going down), corresponding to the transition of 
wind components to a swell. For such components, the value 
of increment ( , , )β σ θ W  undergoes the rapid decrease re-
sulting in diminishing the intensity of wave breaking. 
Herewith, a certain extent of the background turbulence in 
the upper water layer is still retained what ensures a re-
markable attenuation of the wind-wave components that 
became the swell. Together with the wave generation proc-
ess, this attenuation permits waves to turn faster to the new 
wind direction (see detailed simulations in Polnikov 2005). 
These situations are poorly described by the models with the 
traditional dissipation functions (WAM and WW), where the 
background dissipation is simply absent. The choice of the 
order of value Lβ  is defined by the empirical and numerical 
simulation results [4, 11]. 

In conclusion we note that phenomenological function of 
dissipation angular distribution ( , , )wT σ θ θ  of kind (3.15) 
(which is totally made “by hands” still in[28], corresponds 
rather well to the empirical data[16] described in Appendix 
A. 

Dwell now on the preferences of new dissipation function, 
realized during numerical modelling of wind waves. First of 
all, we note that the only possibility to proof these prefer-
ences is the procedure of comparative verification. Such kind 
verification was performed in papers[30,31,34] where the 
models WAM and WW were accepted as the reference ones. 
The comparative verification procedure was performed for 
the integrated characteristics of wave field: the significant 
wave height HS, and the mean period Tm, only. They were 
calculated both with the original version of the models 
mentioned and with their modifications made by replacing 
the corresponding SF in the both models (for details, see 
references).  

Note that in the both cases, modification of SF is related to 
the change of all three terms. Herewith, the change of terms 
NL and IN does not practically change the physics of SF, 
whilst the change of DIS, in opposite, does it radically. 
Variation of the models modification, realized by means of a 
consecutive and separate change of the SF-terms, permitted 
us to find that all principal differences in accuracy of wave- 
field calculations are caused by the change of the DIS-term 
[31].  

In all the mentioned papers, it was shown for a great data 
base that the change of DIS-term resulting in increasing the 
simulation accuracy for significant wave height sH  on 
15-20% and for mean period mT  up to 50% (see in[31]. 

For more convincingness, we plot here the time history 
( )sH t  (Fig. 2) which illustrates that the change of SF (the 

model NEW) results in better description of the extreme 
wave-heights and their sequential attenuation. Such attenua-
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tion is evidently related to the change of the local wind at the 
point under consideration, and these situations are better 
described by our DIS-term.  

Here we have no place (and necessity) for a full analysis of 
the comparison method and for demonstrating more details, 
which can be found in[30,31,34]. At the moment it is im-
portant to emphasize only the fact of remarkable increasing 
of simulations accuracy what is achieved simply by changing 
the physical content of the source functions used in WAM 
and WW. Herewith, the key item of this changing is the 
dissipation term, detailed study of which is the main aim of 
this work. 

 
Figure 2.  The time history of significant wave height ( )sH t  at the location 
point of buoy 41001 in the North Atlantic for the period January 2006: 1- 
buoy observations, 2 – results of modelling with the model WW, 3 – results 
of modelling with the modified model WW[31] 

For completeness of the problem solution, it is left to 
consider the point of physical justification the quadratic 
dependence, 2( )DIS S S∝ , resulting in the mentioned posi-
tive results of verification. 

4. Theoretical Justification of Form 
2( )DIS S S∝ . the Eddy Viscosity Model 

4.1. Reynolds Stresses and the Main Fundamentals of the 
Model 

The main fundamental of the proposed model states that, 
on the scales of validity the evolution equation for wind 
waves in the spectral form, the central and most general 
cause of the wind-wave energy dissipation is the turbulence 
of the upper water layer. Herewith, the specification of the 
processes producing the turbulence is insignificant.  

It is evident that a reasonable part of the turbulence in-
tensity is provided by the wave breaking processes. Though, 
it is also clear that a multitude of accompanying processes 
(mentioned earlier in section 1) generates a cascade of cha-
otic motions with no determined scales, i.e. the turbulence 
motions. In our mind, these motions make the main contri-
bution to the wind-wave dissipation. In other words, the 
proposed theoretical approach is based on the accounting all 
dissipative processes resulting in the turbulence production 
in the upper water layer. 

According to the said, without any restriction of generality, 

the field of currents ( , )tu x  can be written in a wavy water 
layer in the form of two constituents 

'( , ) ( , ) ( , )wt t t= +u x u x u x .          (4.1) 
The first summand in the right-hand side (farther, the r.h.s.) 
of (4.1), wu , we treat as the potential motion attributed to the 
wind waves, whilst the second summand, 'u , is treated as 
the turbulent constituent of full currents field, totally un-
correlated with wu  in the statistical sense. Herewith, it is 
important to note that a corresponding representation for the 
elevation field ( , )tη x  in not necessary, if one accepts the 
Hasselmann’s statement about “weakness in mean” for 
processes of the water surface ruptures[1].  

Now, substituting representation (4.1) into initial equation 
(1.2) (with no external forces) and into (1.4), by means of 
averaging over turbulent scales we get the following system 
(subindex w is omitted) 

' '

,3
i ji i

j i
j jj j

u uu u
u g

t x x
δ

∂ < >∂ ∂
+ = − −

∂ ∂ ∂∑ ∑      (4.2) 

3
1,2

i
i i

u u
t x
η η

=

∂ ∂
+ =

∂ ∂∑ .             (4.3) 

Here, the tensor form of equations is used; the mean wave 
variables are denoted by the bar in above (farther, the bar will 
be omitted for simplicity); and brackets <...> are the symbol 
of averaging over the turbulent scales. Due to nonlinearity of 
the system, a new term is appearing in the r.h.s. of (4.2): 

' '
i j

i
j j

u u
P

x
∂ < >

≡
∂∑ .            (4.4) 

Physical meaning of the term P is the forcing which results in 
the wave motion dissipation [1]. 

Numerator ' '
i j iju u τ< >≡  in expression (4.4) is the 

well-known magnitude called the Reynolds stress tensor[35] 
written here in the normalization to the water density. 
Methods of parameterization for ijτ  are also rather well 
developed. Therefore, to construct the theory, it needs to 
specify ijτ  in terms of the large-scale, i.e. wave motion 
variables, η  and u, and to ascribe to this specification a 
certain physical content. After this, with the aim of getting 
the final result, one can use the mathematics of[1]. 

To reach the aim posed, let us accept a series of additional 
fundamentals. Firstly, following to[1], we accept the fun-
damental about “weakness of distortions in mean”. It allows 
us to retain the common meaning for the wave profile, 

( , )tη x , and potential wave motion, u(x,t), and to introduce 
any derivatives for these variables. Secondly, we suppose 
that the magnitude of nonlinear stresses ijτ  does essentially 
exceed the weak dynamic nonlinearity of the system, de-
scribed by the second terms in the l.h.s. of (4.2) and (4.3). 
Hereby, we postulate the fundamental of the “strong” tur-
bulence. Thus, system (4.2), (4.3) takes the following kind  

,3 ( , )i
i i

u
g P

t
δ η

∂
+ = −

∂
u ,            (4.5) 

3u
t
η∂
=

∂
.                  (4.6) 
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4.2. Phenomenological Closure of Reynolds Stress 
Now, we formulate the main grounds of our concept for 

the procedure of the Reynolds stress closure, the aim of 
which is to express the turbulent characteristic ijτ  via wave 
variables η  and u.  

To do this, we remind the version of such closure, con-
sisting in using the well-known Prandtl’s conception of 
random mixing length λ′ [35]. In the simplest case of 
near-wall turbulence, the Prandtl’s approach results in the 
Reynolds stress closure in the form of quadratic function in 
the velocity field  

3 3

3 3

( / ) ( / )

( / )( / )
ij i i j j

i j i j

u x u x
u x u x

τ λ λ

λ λ

′ ′=< ∂ ∂ ∂ ∂ >

′ ′=< > ∂ ∂ ∂ ∂    
        (4.7) 

In our case, besides of the velocity field instability, the tur-
bulence is provided by the variability of the interface surface. 
Therefore, representation (4.7) should be properly general-
ized. As a certain result of this generalization, the distortion 
forcing ( , )iP η− u  can be represented, for example, by the 
following quadratic function of wave variables u and η 

[ ]3

3

( , ) { ( / ) ( / )

( / ) ( / ) }

i i i i i
j j

j j j i

P u x x
x

u x x

η λ υ η

λ υ η

∂ ′ ′− =< ∂ ∂ + ∂ ∂ ×
∂

′ ′ × ∂ ∂ + ∂ ∂ > 

∑u  (4.8) 

where the random values iυ′  have the meaning of mixing 
velocities.  

Here it is important to note that we do not know real 
processes of the turbulence formation in the upper water 
layer. Therefore, there is no sense to construct any more 
complicated and specified approximation for distortion Р via 
physical variables u and η, as it was done in the previous 
papers by the author[28,29]. It is essential only that repre-
sentation (4.8) retains the following main features of the 
problem: nonlinearity of the distortion forcing Р in the wave 
variables, and dependence Р on the gradients on both veloc-
ity field u(x,z,t) and elevation field ( , )tη x . As it will be 
shown below, the nonlinear feature of the distortion forcing 
gives sufficient grounds for finding the general kind of the 
spectral representation for DIS(S). 

4.3. General Kind of the Problem Solution in the Spectral 
Representation 

In the case of deep water, the full system of equations to be 
solved includes dynamic equations (4.5), (4.6), written at the 
interface surface ( , )tη x , and equations (1.4), (1.5) valid in a 
whole volume of fluid. The proper system of equations, 
written in the potential motion approximation, has the kind 

ˆ( , )g Pη ηΦ + = − Φ ,            (4.9) 

z
η ∂Φ
=
∂



,               (4.10) 

2

2 0
i ix

ϕ∂
=

∂∑  and 0zz
ϕ

=−∞
∂

=
∂

.       (4.11) 

Here, the distortion function 1
3

ˆ( , ) ( ) [ ( , )]P Pη η−Φ = ∇ u


 repre-
sents the certain modification of function (4.8), induced by 
the procedure of transition to the scalar potential of velocity 

field, ( , , )z tϕ x  whilst ( , ( ), )tϕ ηΦ ≡ x x  is the potential at 
the elevation surface. 

Farther, the variables are to be written in the form of the 
Fourier-Stiltjes decomposition in the wave vector space (see 
details in[1,38]) 

( , ) exp[ ( )] ( )t const i t dη η= ⋅ ∫ k
k

x kx k ; 

( , , ) exp[ ( )] ( ) ( )z t const i f z t dϕ ϕ= ⋅ ∫ k
k

x kx k   (4.12) 

where k is the wave vector, and f(z) is the vertical structure 
function of the potential, to be found from two equations 
(4.11). In our case, f(z)=exp(-kz). After substitution of rep-
resentations (4.12) into (4.9)-(4.11), equations (4.11) result 
in the mentioned structure function f(z), and two other 
equations get the kind 

( , )g Pη ηΦ + = − Φk k k k k
 ,         (4.13) 

kη = Φk k .               (4.14) 
Here, 1 ˆ( , ) [ ( , )]P F Pη η−Φ ≡ Φk k k , and the operator F-1 means 
the inverse Fourier transform applied to function ˆ( , )P η Φ . 
The latter procedure is commonly used in the course of 
transition to the final equations written for the Fourier 
components, ηk  and Φk  (for details, see [38,39]).  

Here we should especially note that the inverse Fourier 
transform procedure needs a calculation of integrals of the 
kind 

1 2 1 2 1 21 2
1 2

exp( ) ( , )exp( )exp( )i jd i i i d dλ λ φ η η
 
 ′ ′− < >
  

∫ ∫ ∫ k k
k k k

x kx k k k x k x k k  (4.15) 

which are typical in the nonlinear theory for waves [38,39]. 
In the traditional theory, the form (4.15) gets the final ex-
pressions with the three-wave resonances. These resonances 
are defined by the factor 1 2( )δ ± ±k k k  under the sign of the 
final integral, which is provided by the analytical integration 
in (4.15) on dx. But in our case, such resonances can result in 
the cumulative terms in the dissipation function, which are 
not desirable (see discussion in section 5). 

To avoid appearing the cumulative terms in the final result, 
we use the principal difference between our expression (4.15) 
and the analogous one appearing in the traditional (conser-
vative) nonlinear theory. In our case, this difference consists 
in the fact that the turbulent-scale averaging operator, given 
by the brackets <…>, takes place under the integral in (4.15). 
This fact allows us to accept the following hypothesis: the 
random multipliers of the closure (4.8), standing under the 
averaging brackets in (4.15) (alike i jλ λ′ ′

 
and analogous 

ones), due to their random small-scale feature, provide a 
radical rearrangement of the phase (exponential) multipliers 
in the integrand of (4.15), resulting in the non-resonance 
feature of interaction between wave and turbulence. This 
hypothesis simply means a postulating the following rule for 
statistical averaging in the integrals of kind (4.15): 

1 2 1 2 1 21 2
1 2

1 2 1 21 2
1 2

exp( ) ( , )exp( )exp( )

( , , )

i jd i i i d d

L d d

λ λ φ η η

η η

 
 ′ ′− < > =
  

=

∫ ∫ ∫

∫ ∫

k k
k k k

k k
k k

x kx k k k x k x k k

k k k k k

(4.16) 

where 1 2( , , )L k k k  is the regular function of its arguments. 
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Acceptance of this hypothesis allows avoiding the reso-
nance (cumulative) forms in the final expression for 
nonlinear terms (4.15) and consider distortion forcing 

( , )P η Φk k k  in equation (4.13) as a regular quadratic form of 
Fourier variables ηk  and ηk , alike in (4.16). In such case, 
the system (4.13), (4.14) is reduced to the standard equation 
for an oscillator with a weak and regular disturbance (see 
analogues in [1, 38]) 

( , )gk kPη η η η+ = −k k k k k  .          (4.17) 
The solution of equation (4.17) can be found in the spectral 
form by means of the method described in (Hasselmann 
1974), which is very close to the standard method of the 
weak turbulence, presented for the first time in[38] and in 
more details in[39]. 

Moving the explanation algebra to Appendix B, here we 
only note that the quadratic form of distortion function 

( , )P η ηk k k  leads to the solution of (4.17) of the kind 

2

( , , ) ( , ) [ ( )]
N

n n
n

DIS S F Sσ α σ
=

= ∑k k k ,        (4.18) 

where [ ( )]nF S k  is the functional to n-th power in the wave 
spectrum S(k). As seen, expression (4.18) is fully equivalent 
to the functional representation of DIS(S) in initial formulas 
(3.3)-(3.4) of the phenomenological similarity method. This 
equivalence of the spectral representations for dissipation 
function ( )DIS S  in both approaches finalizes the sought 
theoretical justification of the similarity method used (for 
details, see Appendix B). 

In conclusion of this section, we should especially note 
that the main fundamental of the eddy viscosity model, re-
sulting in (4.18), is nothing else the nonlinear closure for 
Reynolds stress of kind (4.8) (or any other quadratic form), 
accepted above. Consequently, both result (4.18) and the 
results of section 3 have the proper physical justification. 
These results make a basis of the proposed model of the 
wave-energy losses due to the eddy viscosity of the upper 
water layer. 

5. Conclusions 
In conclusion of the paper, we resume shortly the main 

fundamentals of the proposed model for wind-wave dissipa-
tion, the range its applicability, and prospective for its further 
elaboration. 

Firstly, about fundamentals. An explicit functional form 
for the dissipation term of SF can be found in the frame of the 
phenomenological similarity method (section 3). But the 
physical justification of the initial formulas of the similarity 
method, (3.2)-(3.4), heeds attraction of the basic hydrody-
namic equations. This aim is reached in the frame of the 
proposed eddy viscosity model. 

The main fundamental of the model consists in the as-
sumption that on the scales of wave-spectrum evolution 
description, i.e. hundreds of the dominant periods, the main 
physical cause of the wave-spectrum component dissipation 
is the turbulence of the upper water layer, induced by the 
whole package of dissipative processes taking place at the 

air-sea interface. It is natural that laws of the turbulence 
formation are hardly known for us. Therefore, in the course 
of the model construction, the following two important as-
sumptions are postulated: a) the nonlinear feature of the 
forcing resulting in the wave dissipation; and b) the specific 
modification of the phase structure for those Fourier- com-
ponents of wave elevation and velocity, which are involved 
in the Reynolds stress closure. Acceptance of these pre-
sumptions is stipulated by the aim of obtaining observable 
final formulas. The point of their practical applicability is to 
be justified a posteriori by means of the verification proce-
dure. Successful results of such procedure are presented in 
section 3 (Fig. 2) what, in fact, justifies all the assumptions 
accepted.  

Secondly, about the scales of applicability of the approach 
proposed and treating the role of breaking events. This issue 
can be considered on the basis of the fact that functions IN(S), 
DIS(S), and NL(S) are linear, quadratic, and cubic in the 
spectrum, respectively 3 . It is known that each power of 
spectrum in the SF-terms of equation (1.1) increases the 
temporal scales for the proper mechanism in 2ε −  times. 
Therefore, the input mechanism is the most fast one. This 
mechanism is balanced by the more slow dissipation 
mechanism what result in the equilibrium spectrum-tail 
formation in the high frequencies domain. But in the peak 
domain where IN(S) and DIS(S) have the cutting factors, the 
most slow and energy-conservative nonlinear mechanism, 
NL(S), plays the most principal role (for details, see [4, 40]). 
Thus, the issue of treating the role of very fast and strongly 
nonlinear breaking processes finds its solution based on the 
mentioned spectral consideration. 

Really, the only logically justified matching the fast wave 
breaking processes with the rather slow wave-energy dissi-
pation rate consists in the conclusion that the breaking means 
mainly the chaotic redistribution of the wave energy through 
the wave frequency band but do not the fact of wave-energy 
dissipation. Figure 1, being the direct measurement result of 
the wave-energy losses due to breaking, is the fine illustra-
tion to the said (see also text in section 1 and detailed com-
ments in Appendix A). In this aspect, the known Hassel-
mann’s hypothesis about “weakness of breaking in mean”[1] 
means, in fact, that the fast, non-conservative and nonlinear 
distortion during breaking is not directly related to a slow 
process of wave-energy losses, realized in the spectral rep-
resentation. One may fix the wave energy losses only on the 
scales of the spectrum existence, i.e. on the scale of hundreds 
of dominant periods.  

Herewith, it becomes clear that in the spectral representa-
tion for the wave dissipation mechanism, the threshold fea-
ture of the dissipation function, which is often fixed in the 
field and numerical experiments related to the study of 
separate breaking events[12,16], should be totally smoothed 
due to statistical distribution of these event in time and space.  

The said defines an applicability range for the dissipation 

                                                             
3  More details about roles of SF-terms and proper references can be found in 
[4,40] 
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model discussed here: it does not describe fast (but rare at the 
fixed point of observation) separate breaking events; rather it 
is intended to description of the wave spectrum evolution 
realized on the scales of spatial-temporal variability of the 
whole statistical ensemble for a random wave field. 

The last point is concerning a prospective of farther 
elaborating the theoretical justification of the model. Such a 
prospective is seen in the direction of specification the hy-
pothesis about a phase-structure modification for the Fou-
rier-components involved into the Reynolds stresses closure 
procedure (formula (4.16) in subsection 4.c). It is quite fea-
sible that, in truth, some kind of the phase structure is con-
served for the wave variables being under the turbulent- 
scales averaging brackets in the integral of kind (4.15). Then, 
in the course of derivation the final expression for DIS(S) of 
kind (4.18), functional [ ( )]nF S k  could have the integral 
expressions of the convolution type. This change of func-
tional kind for DIS(S) is equivalent to appearing the cumu-
lative dissipation term analogous to one proposed in[16] (see 
Appendix A). But in such a case, according to ratios (3.1) 
and (3.9), the functional form for input function IN(S) should 
be properly modified, to save the widely accepted phe-
nomenon of the equilibrium spectrum existence. Apparently, 
investigation of this point is a matter of a far future what is 
stipulated by an extraordinary complexity of verification the 
SF-terms of the cumulative type.  
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Appendix A 
Comments to results of [16]  

For completeness of the picture, describing the most im-
portant experimental results dealing with the study of 
breaking processes in waves, here we give some extractions 
from paper (Young and Babanin 2006) and our comments to 
their results. 

Basing on the result of data processing, represented in Fig. 
1, and attracting other experimental facts, the motioned 
authors have recommended the following parameterization 
of DIS(S), provided by the breaking of the dominant wave 
only4  

DIS(S)= [ ( ) ( )] ( )tha H S S Anσ σ σ σ− + 

                                                             
4 Formula (A.1) is given with minor editing changes which are not principle in 
the physical sense. 

( )[ ( ) ( )] ( )
p

thb H S q S q An q dq
σ

σ

−∫ .    (A.1) 

Here, a and b are the fitting constants; H[…] is the 
step-function given by the ratio 

0
[ ]

0 0
x if x

H x
if x

>
=  ≤

;             (A.2) 

( )thS σ  is the threshold spectrum level chosen especially; 
( )An σ  is the dimensionless function of frequency, depend-

ing on the angular spreading of the wave spectrum. The 
integrated summand in the r.h.s. of (A.1) has the meaning of 
the “cumulative” impact of the low-frequency breaking on 
intensity of the dissipation for higher frequency components.  

Results presented above can be characterized by the fol-
lowing way. 

1) Dissipation function has the threshold feature; 
2) Empirical function DIS(S) is linear in spectrum; 
3) The rate of losses in the frequency domain above the 

peak frequency σр has the cumulative feature, i.e. it is 
growing with the growth of losses at lower frequencies5. 

Among the properties enumerated above, the linear de-
pendence DIS(S) is the most essential empirical fact related 
to our aim. The threshold and cumulative features of em-
pirical function DIS(S) are interesting also, and they will be 
discussed later. 

In a whole, it needs to acknowledge the importance and 
usefulness of the found empirical behaviour of function 
DIS(S), provided by the breaking only. Herewith, in the 
frame of our statement about incompleteness of describing 
the whole package of the wave dissipation processes by the 
breaking only, the detailed assessment of the results repre-
sented is the following. 

Firstly, the result shown in Fig. 1 does hardly allow getting 
the reliable and quantitative dependences DIS(S), for the 
reason of inevitable statistical noise. Here we have two re-
marks. 

Thus, even accepting, as the basis of analysis, the upper 
plot in Fig. 1, it evidently follows from the lower plot that the 
energy of breaking wave-components located at the spectral 
peak is not fully lost, it is rather chaotically spread among the 
others spectrum components. 

Moreover, insufficient justification of the breaking-events 
separation in the wave-frequency band (see discussion of this 
point in [13-17]) leads automatically to a strong noise in the 
empirical information of the dissipation function dependence 
on frequency, DIS(σ,W,S). Therefore, it is not following by 
no way from Fig. 1 the conclusion about the cumulative 
feature of the dissipation processes, and the form given by 
the second term in (A.1) is not evident. 

Secondly. From the point of view of the statistical en-
semble meaning, which is very important for the spectrum 

                                                             
5 It is worthwhile to mention here one more empirical fact which does not 
influence on the dependence DIS(S) but relates to the angular dependence of 
dissipation intensity. This is the fact of the two-lobe profile for angular function 

( , , )wDIS σ θ θ : the dissipation intensity is growing with initial growth of difference 
between direction of wave propagation θ  

and wind direction 
wθ ,  followed by 

the intensity going down with the farther growth of (θ -
wθ ). 
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definition, it seems that one may not separate the unique 
wave ensemble in two ensembles: “before breaking” and 
“after breaking”. Such separation is the methodical incor-
rectness. 

Really, per se of the wave-field ensemble definition, in 
any realization of the stochastic field (at any certain time 
moment), there is always a certain part of the field-square 
where the breaking takes place. Therefore, one may not 
separate “by hand” the realization with the breaking from the 
realization without the breaking, despite of the fact that there 
is no breaking at the point of measurement at the moment. 
Thereby the issue of the threshold feature of DIS(S) is closed. 
There is the threshold feature for a separate breaking, but the 
threshold feature of the breaking process is absent in the 
wave ensemble (due to a statistical structure of the field 
ensemble). 

Thirdly. The breaking events are always too fast, to get 
reliable estimations of dynamics for the spectra “before 
breaking” and “after breaking”. Such estimations can be 
realized for the frequencies far exceeding peak frequency σр. 
But these frequencies cannot be separated from wave eleva-
tion records having their duration smaller several dominant 
periods: for this rather long time, the amplitudes of high 
frequency components “forget” about very fast breaking 
event (if any). It is true due to the stochastic feature of the 
wave field itself.  

Fourthly. For each, very short period of the wave breaking 
at some space point, there are much more long periods of 
previous and past state of the wave field without breaking. 
Here the Hasselmann’s postulate about “weakness of 
breaking impact”[1] on geometrical features of the interface 
surface becomes evident, as far as the wavy surface has the 
stochastic feature. By the way, just this postulate allows 
using the spectrum description for the stochastic elevations 
of the water surface. 

The last two items say about the same: there is incompa-
rability of the temporal scales for events of breaking (taking 
a small part of dominant period Тр =2π/σр) and the scales of 
applicability of the spectral representation (hundreds of the 
dominant periods). 

Fifth, let us say several words about representation (A.1), 
as it is. Omitting the threshold feature discussed earlier, we 
note that formula (A.1) has no explicit factor ensuring 
“autonomic” dependence of function DIS on local wind W. 
In principal, such factor could be included into coefficients a 
and b. Herewith, due to the similarity consideration, the wind 
value could appear in DIS via the proper dimensionless pa-
rameters of the system. It means that values of a and b should 
depend on the spectrum parameters. The absence of such 
dependence in (A.1) leads to the loss of information with 
respect to one, already known from the representations for 
function DIS(S, W) already used (in WAM or WW). 

Herewith, the new information is given by the cumulative 
summand in (A.1). Though, due to importance of condition 
(3.9) for treating the equilibrium spectrum formation, exis-
tence of the cumulative summand in DIS(S) demands a re-
consideration of the spectral representation for input term 

IN(S) which has not such summand (yet). This inconsistence 
of the representations for DIS(S) and IN(S) is hardly ac-
ceptable, as far as it essentially complicates the treatment of 
the phenomenon of equilibrium spectral shape existence, the 
fact of which is empirically proved and widely recognized 
(see references in [2-3]). 

Thus, interesting experimental representation (A.1), in our 
mind, does not practically result in any advancement in the 
problem of construction a realistic parameterization of 
function DIS(σ,W,S) (but makes the latter even more diffi-
cult to treat). For this reason, it is not surprising very modest 
result of implementing formula (A.1) in testing experi-
ments[42].  

Hereby, present analysis of the results obtained on the 
basis of wave-breaking processes investigations[16] sup-
ports our earlier statement (section 2) about impossibility to 
study the whole package of real dissipative processes in 
waves by means of up-to-date experimental methods. 

Appendix B 
Specification of equation (4.17) solution 

A short version of equation (4.17) solution in the spectral 
representation is the following. Following to[1], let us in-
troduce the so called generalized variables 

0.5( )
( )

s ia s
k

η η
σ

= +k k k ,             (B.1) 

(where s = ±  and 1/2( ) ( )k gkσ = ). Then, equation (4.17) 
can be rewritten in the well-known form with the 
time-derivative of the first order [1, 38]: 

( ) ( ) ( , ) / 2s sa is k a is k P gσ σ η η+ = −k k k k k .      (B.2) 

Now, let us multiply equation (B.2) by the complex conju-
gated component sa−

k
, make the sum of the resulting equa-

tion with the initial one, and make averaging the equation 
obtained over the wave ensemble. If we use the following 
definition of the wave spectrum from Hasselmann (1974) 

2 ' '( ) ( )s sa a S s sδ<< >>= +k k k           (B.4) 

where the double brackets <<…>> means the statistical 
averaging over wave ensemble, and ( )S k  is the wave 
spectrum, we can get the following evolution equation for a 
wave spectrum  

2( , ) Im ( , )kS t P a
g
σ η η −= << >>k k k kk  .     (B.4) 

Now, making a certain specification of function ( , )P η ηk k k
 

on the basis of closure (4.8), one can get the general kind of 
dissipation function DIS(S) (4.18). 

For the reason of qualitative representation of closure 
(4.8), there is no necessity to reproduce exactly all algebraic 
computations. Nevertheless, it is important to enumerate 
here for more convincingness the following circumstances 
enabling to get the final result: 

a) The structure of the generalized variables sak  in (B.1) 
has the form of sum for the Fourier-components ηk  and ηk . 
Initial form of distortion (4.8) is the products of the same 
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sums what allows us to express the distortion via the gener-
alized variables ; 

b) Hypothesis (4.16) of the non-resonant feature for the 
wave-turbulence interactions allows the distortion forcing to 
be represented by a regular function of variables sak ; 

c) Hypothesis (4.16) can be used for any transformations 
of the integrands in the r.h.s. of equations (B.2) and (B.4) in 
the course of solution getting. 
Items b) and c) allow to perform all actions with nonlinear 
summands of distortion function ( , )P η ηk k k  without ap-
pearance any integrated convolution terms, in contrast to the 
resonant integrated terms typical in the conservative 
nonlinear theory (numerous details of such kind mathematics 
one can find in [38-41]. 

On the basis of items a)-c), for the aim of getting the 
general kind of solution, it is acceptable to write the final 
expression for ( , )P η Φk k k  in the following simple form 

1 2

1 2 1 2 1 2
,

( , ) ( , , )[ ]P T a a a aη + − − +Φ = +∑k k k k k k k
k k

k k k .     (B.5) 

Herewith, both an explicit form of factor 1 2( , , )T k k k  and 
certain specification of quadratic function in the r.h.s. of (B.5) 
are not significant. From the mathematical point of view, the 
main feature of expression (B.5) is its nonlinear representa-
tion in amplitude sak . 

Accepting (B.5), one can easily get the general kind of the 
r.h.s. of evolution equation (B.4) in the spectral form. Really, 
substitution of (B.5) into the r.h.s. of (B.4) results in the sum 
of the third statistical moments in amplitudes sak  of the kind 

1 2 3
1 2 3

s s sa a a<< >>k k k . No of these moments can be expressed 
directly via spectral function ( )S k  which is the even func-
tion to powers of the wave amplitudes. In such case, it needs 
to write and solve a proper equation for each the third mo-
ments by means of using basic equation (B.2) (for details, see 
[38-41]). 

The third moment will be expressed via a set of the fourth 
moments of the kind 1 2 3 4

1 2 3 4
s s s sa a a a<< >>k k k k  with various sets of 

superscripts. A part of these moments, for which the condi-
tion s1+s2+s4+s4 ≠ 0 is met, can be put to zero, in accor-
dance with definition (B.4). The rest forth moments are to be 
decoupled to the products of the second moments corre-
sponding to the spectrum definition. By this way the first 
non-vanishing summands appear in the r.h.s. of the wave- 
spectrum evolution equation (B.4), and they will be propor-
tional to the second power in ( )S k . 

The described procedure can be continued by means of 
writing the proper equations for some of the uncoupled 
fourth moments, leading to appearance the fifth moments. 
After this, the procedure can be repeated for the fifth mo-
ments, and so on. Finally, this continuation ensure in the r.h.s. 
of the evolution equation (B.4) the fast converging series to 
powers in spectrum ( )S k  (the reason of convergence is 
stated in section 3, ratio (3.5)). As far as the whole r.h.s. of 
the evolution equation (B.4) has the meaning of the dissipa-
tion mechanism (by origin of equation (4.17)), the solution 
described ensure the dissipation function DIS(S) in the fol-
lowing general kind 

2

( , , ) ( , ) [ ( )]
N

n n
n

DIS S F Sσ α σ
=

= ∑k k k .      (B.6) 

Here, [ ( )]nF S k  is the functional on the n-th power in the 
wave spectrum, and functions (...)nα  are the implicit factors 
of dissipation intensity. Both multiplicands under sign of 
sum in expression (B.6) are written in the most general kind. 
Their specification is to be done on principals not related to 
the point of equation (4.17) solution (alike the similarity 
method).  

The only specification can be done here, consisting in the 
local-type representation of functional [ ( )]nF S k  via powers 
of ( )S k . That is provided by the hypothesis (4.16) of non- 
resonant feature for the interactions considered. After this 
specification we have fully the same form of function DIS(S), 
which was used as the initial representation for DIS(S) in the 
similarity method (formulas (3.3), (3.4)). Thus, the theo-
retical justification of the latter is done. 
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