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THE PARTITION OF ENERGY IN PERIODIC
IRROTATIONAL WAVES ON THE SURFACE
| OF DEEP WATER

By

GEORGE W, PLATZMAN
The University of Chicago

Introduction. In the theory of long waves, and also for infinitesi-
mal “surface’” waves, the total wave energy is hall kinetic and half
potential to a first order of approximation.! It was pointed out by
Rayleigh (1911), in proceeding by successive approximations to the
solution of the problem of oscillatory permanent waves on the swface
of deep water, that the kinetic energy exceeds the potential by an
amount proportional to a quantity of the fourth order, when quantities
of order higher than the fourth are neglected.

The exact theory of oscillatory permanent waves was formulated
and developed by Stokes (1847), who represented the solution in the
form of a Pourier expansion. In this paper are presented general
formulas for the kinetic and potential energy in terms of coefficients
in the series employed by Stokes, from which the energy may be com-
puted to whatever order these coefficients are known. A review of
the general theory is given first, together with the results of a new
method for performing the successive approximations that lead to the
coefficients in Stokes’ solution.

Review of the General Theory. The motion, two dimensional and
irvotational, is taken in the xz plane, the z-axis being horizontal and
the z-axis vertical, counted positive upward. The waves progress in
the direction of & posifive, and the progressive motion is reduced to
steady motion by imposing a uniform horizontal velocity in the direc~
tion of x negative, of magnitude equal to the wave speed ¢.  Thus, if
we denote the velocity components of the progressive motion by u, v,
then the corresponding components of the steady motion are U =
w — ¢, and w. Turther, if ¢, ¢ denofe the velocity potential and
stream function for the progressive motion, and @, Y the correspond-
ing funetions for the steady motion, then

i 8ee Lamb (1932), Art. 174, 230.
(194)
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Hence O =d -+ cx Y = ¢ -+ cz, (2)

provided the origing for the several parameters involved are properly
chosen.?

We take as the form of the solution that presented by Stokes (1880),
in which the variables are inverted, the independent variables being
$, W so that z, z are harmonic functions of these. It will prove con-
venient, in writing this solution and mn subsequent calculations, to
employ nondimensional quantities, defined as follows:

E = ka A o= kd/e A =TLdlc
L= kz w = k/c Q= Y/

where k = 2=/L, the wave length being L. The solution pertaining
to the case of deep water is then

E— A+ IA4e%inrA, (= Q-4+ Z4,e%o0srA,  (3)

the summation extending over all positive integral values of the index ».
In the steady motion the {ree surface is a streamline, which we take to
be £ = 0, while for great depths Q — — «. Thus, at the free surface?

E, = A + ZA,sinrA {o = LA, cosT A, (4)

and for great depths £ — A and € — Q.

The coeflicients A, in (3) are determined in such a manner as to
satigly the condition of uniform pressure at the free surface, which may
be written in the nondimensional form

2\? 2 o
<m> ‘{_ —._—(t"o h t\vo) - :E ’
¢/, v

where ? = U? 4+ w?; and

I , 2wt (5)
g = gl =
| g gL |

2 The symbol @ in (2) refers to the horizontal co-ordinate measured relative to the
steady motion; equations for the progressive motion may be found at any stage by
writing £ — ¢t for z.

# The subscript » will be used to identify quantities evaluated at the free gurface.
A single swmmation sign 2 will stand throughout for Z¢%1 or Zs=1.
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is the square of the ratio of the wave speed to the speed of propagation
of “infinitesimal” surface waves in deep water (g denoting the accelera-
tion of gravity). The quantity ¢, is the elevation of the mean level of

the free surface, . |
. — 2—7!‘ N

;::o - **""\/‘ t-odg-‘o = ¥ETfL,~2. (6)
2/, 2

In the method utilized by Stokes, each coefficient A, 15 expressed
ultimately as a series of powers of the leading coefficient A, = b.
This determination, which proceeds by successive approximations, has
been carried to the tenth order by Wilton (1914), whose results
(through eighth order) are shown in Table 1.4

TABLE 1. Corrricients 4, (THROUGH E1¢ETH ORDER) IN THE SERIES
A, = XA.b°. Wyere No Extay Is Maps ter CoRRESPONDING
A Is Nown

N
\ 1 2 3 4 5 6 7 8
¥
1 _] — J— J— PO —— e e e .
2 - 1 _— 1/2 | —— 29/12 | —— 1123/72
3 - — 3/2 19/12 | ——— | 1183/144
4 — — — 8/3 318/72 —— |103727/4320
5 — | — — — 1 125/24 16603/1440
6 — | — — | — e 54/5 R 5447311800
7 — | = — | — —_— ——  16807/720 —
8 — | — — — — _ 16584/315

From an inspection of Table I it 1s evident that 4, = 2A4,.b% is of
order r at least; in fact, 4,/b 1s a series of even powers of 6. No general
formula for A, is known, except for A4,, which Wilton (1914) has
shown to be A, = r2/(r — 1)!.

The height h of the wave (elevation of crest above trough) 1s given by

kh = Clerest) — C(trough)
where & = 2¢/L. Since A = 0 at a crest and = at a trough, we find
from (4), for the ratio of height to length,

h

1
f::?(ﬂl"}’fla_;_}la“i“ - )J

4 The origin for A is conventionally taken to eoincide with a trough, and with this
convention the A4,-coefficlents arve found to be alternately positive and negative.
However, we here place this origin at a erest, so that the A,~coefficients are all positive.

&
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or, writing wh/L = ka

ka = 441 "{'“ fi.g + 4"'15 + . s (7)
where ¢ = /2 is the wave emplitude.

The expansion (3) represents the solution of the wave problem for
all waves whose height is less than that of the highest wave. Michell
(1893) gave an exact theory for the highest wave, which Stokes had
shown to have pointed crests, the front and rear slopes of the profile
meeting there at an angle of 120 degrees. According to Michell’s
analysis the ratio of height to length for the highest wave is 0.142
approximately, or nearly 1/7. Havelock (1918}, by an elegant exten-
sion of Michell’s method, obtained an expansion that represents the
solution of the oscillatory wave problem for all waves up to and in-
cluding the highest, thus bringing into harmony the results of Stokes
and those of Michell. Further, he found, for the highest wave, the
ratio of height to length h/L = 0.1418 and the value of the parameter
in Stokes’ solution b = 0.2919.

In the method of approximation employed by Stokes, the dimension-
less quantity u is obtained as a series of even powers’ of b,

s T 220 61T
B TR T

The convergence of this series is not rapid for values of b corresponding
to waves close to the highest wave. Michell found for the highest
wave g = 1.200.

By defining a quantity ¢ according to

po= 14 g

it is possible to perform the sueccessive approximations leading to the
A -coefficients in such a manner that each A, is expressed ultlm ately ag
a series of powers of §. The result of such a determination (which is
not more laborious than that of Stokes) is shown in Table I1.

i The value 7427/48 given by Wilton for the coeflicient of b8 is erroncous.
¢ Table I and Table I may be shown to be in-agreement by expressing 8 in terms of
b and converting the f-series into b-series.
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TABLE II. Corrricients A, {Turovan icnmi ORDER) IN THE SERIES
A, = 34,6~ Waerr No Bty Is Maps tHe CORRESPONDING
A Is Nowu

\S 1 2 3 4 5 6 7 8
.
141 | — 174 | — | 118/96] - |--040/384
ol — | %1 | — |-3 +13/3 —~1051/144
3| — | — 48| — | —181/24) —— |7T41/576 | -
gl — | — ] — |48 —1031/72 41724574320
51— | — | — | — 125024 —— | -24B11/720] e
sl — | — | | — -54/5 e | - 14964771800
2 | I R R +-16807/720
gl — 1 = | — +16384/315

It is to be noted particularly that each of the B-series in Table Il is an
alternating series, and therefore each may be expected to converge
more rapidly than the corresponding b-series in Table L.

The relation between 8 and b may be found by equating the expres-
sions Tor Ay in the two tables,

b— o 7 o1 113 5 949 gL
! 96 © 384 7
or reverting,
] b+7b3%7696r+6439b7%
- 4 96 128 '
Similarly, by applying (7) for the wave amplitude,
Ba = f - B b B b gt
ba = G — — e T
5" 32" 5760
or, writing o = ka, and reverting,
1 3 1543
b =0+ —aof 4 —a — al
4 32 5760

Since ke2fg = u. = 1 + §%, we find the following series for the wave
speed,
Czwi(i+02+io4+laﬁﬂ%os ) (8)
kN 2 4 45 )
The quantity o = =h/L = ka is the product of wave number and wave
amplitude (one-half wave height). Since the maximum value of ifL,
corresponding to the highest wave, is 0.1418, the maximum value of
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a1s 0.4455. Tor this value the successive partial sums of the series in
(8) are 1.000, 1.198, 1.218, 1.220, 1.219, . . . ., the proper value being
1.200 for the highest wave. Although the convergence of (8) Is not
very strong for the highest wave, the error in neglecting terms of order
higher than the second, that is, the error in the approximate formula

¢= e =Lt e,

]\‘3 ]b
is less than two per cent for waves of arbitrary height.

Konetic Energy.  The kinetic energv of the progressiwe motion in one
aqy &

wave length is
1 el
e = 5 pj f(u2 -+ w?) dudz,

the integration extending from 2 = 0 to L (crest to crest) and through
the entire depth of fluid (p denoting the fluid density, supposed uni-
form). However, it follows directly from (1) that w?* +w? =9 (&, ¢)/
d(x, z), and hence

1 1
e =-2—pf/ch{>d¢ :Epf{([)d@'

The line integral may be written in terms of dimensionless quantities,

252 ,
—¢ = f Aw,
oct |
and evaluated as follows.

Equations {2) in nondimensional form,

A=x+E, Q=0+,

together with (3}, show that
A= — XA sinr A, w = — ZA,e% cosrA .

It 13 evident that A becomes vanishingly small at great depths
{(Q— — «) and vanishes everywhere along the lateral boundaries of
the region of integration, that is, along A =0 and A = 2z. There
remains in the line integral only a contribution along the free surface
(L2 = 0), where

ho = — A, sin T A, we = — 24, cosrA,

the limits of integration being A = 0 and A = 2r.



200 Jowrnal of Marine Research VI, 3

Proceeding in this way 1t is easily found that?
2k*

where €, is the elevation of the mean level of the wave profile.  Making
use of (5) we have finally

213
—— = pUrAS7
nof _
expanding the right-hand member as a -series,
2k3 : @* 4 (; 251 ()
¢ = (3% — — 0 — — @5 — — S
ety 144

Potentral Energy. The potential energy of the wave in one wave

length 1s
1 L
v o= — (2. —z )z,
5 pgf 2, —Z,)

or reducing to nondimensional quantities,

———-wvx—wf (L = 20 — 20"
n,pj

In terms of the 4,-coefficients €, is given by (6). The evaluation of
(.2 18 somewhat more laborious but after some reduction 1s found to
give'

(=2XA2+ 2Zrd A4, .
. =p+0
Thus, for the potential energy,

k3

1
= XA, - D244 4, — — (XA
oy =140 2

expanding the right-hand member as a {-series,

2k3 G o 5 iy 257 g (10)
pom= B2 Bt e B e e B
Ty l 6 144
Partition of Energy. The difference between kinetic and potential
energy may be expressed as a §-series® by subtracting (10) from (9).:

7 This result may be obtained directly through an application of the mementum
theorem developed by Starr (1947).
8 We make use of the identily 2Zvd 4,4, = ZXrd 4,4, The summation ex-
{(re=1p—qi) r=1+q
tends over all posilive integral values of p and ¢.
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2k
— (e — v} =

1 1
Tol 2

2

i

e —
v

b gy (D)
24 144

This result corroborates the computations of Rayleigh (1911), who
found that the series for ¢ — v starts with a term of the fourth order.
Dividing (11} by (10) we obtain a series giving the ratio of e — v to v,

e — v

1 11 31
=B B —
v 2 24 32

This may be developed as an a-series by means of the series preceding
(8); thus,

LN SRS SR A B 2
v o2 a S T Tt T o

where « is the amplitude parameter ka. The maximum value of a,
corresponding to the highest wave, is 0.4455, for which the successive
convergents of (12) are, in per cent, 9.93, 10.92, 11.37, 11.59, . . . .
Although the convergence is not very rapid, it appears that the maxi-
mum value of (e — v)/v is approximately 4.

Water of Limited Depth.,  The foregoing considerations are applicable
without alteration when the depth of water is limited, provided only
that appropriate coefficients in the Fourier expansions are employed.
Stokes (1880) has carried the successive approximations (leading to
the A,-coefficients) through the third order in this case, but so far as
the writer is aware, these computations have not been extended sub-
sequently. Further, there does not exist in the literature, to the
writer’s knowledge, an analysis of the highest waves of permanent
type when the depth of water is limited, corresponding to the analysis
given by Michell for deep water. For these reasons it has not scemed
worthwhile to extend the energy computations to the case of limited
depth.
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* A tenth-order term is included in (11) even though such terms are not present in
(9 and (10). This is possible without extending Table II, because the tenth-order
term in (11) is independent of terms higher than the eighth order in the A,-coefcients.
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SUMMARY

Periodic irrotational waves of permanent type on the surface of deep
water are studied for the purpose of analyzing the partition of total
wave energy into kinetic and potential. Employing Stokes’ repre-
sentation of the solution of the wave problem, successive coefficients
in the Fourier expansion are computed to the eighth order in terms of
0 = V1 — p, where p = 2=¢?/gL is the square of the ratio of the wave
speed to the speed of propagation of infinitesimal surface waves. An
approximate frequency equation is given, which may be written
w =1+ (zh/L)? (where h is the height of the wave) and which is in
error by not more than two per cent for all waves including the highest,.

The kinetic energy e and potential energy v are expressed as power
series in @, the determination in each case being carried to the eighth
order. A @-seriesis then derived for the ratio (¢ — »)/v, from which it
15 shown that the maximum value of this ratio, corresponding to the
highest wave, 1s approximately 4.
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