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The Two-Scale Radar Wave Probe and 

SAR Imagery of the Ocean 

WILLIAM J. PLANT AND WILLIAM C. KELLER 

U.S. Naval Research Laboratory, Washington, D.C. 20375 

A two-scale formulation of oceanic backscatter of microwave radiation, which has previously been 
applied to the dual-frequency scatterometer, is applied here to the two-scale radar wave probe and SAR 
imagery of the ocean. A two-scale radar wave probe is a microwave system which coherently detects signals 
scattered from a very small patch of the ocean surface. It is shown that a SAR image may be described as a 
convolution of the AM part of the output of a two-scale wave probe with the power spectrum of the FM 
part of the output. Thus SAR images are not faithful reproductions of cross-section variations over the 
surface. Distortions occur as a result of variable surface velocities. Examples of this distortion are derived 
from two-scale wave probe data taken in the Gulf of Mexico. Application of a focusing correction does not 
remove the distortion from the simulated image of a nearly sinusoidal, azimuth-traveling wave. Large V/R o 
ratios minimize the distortion, however. 

1. INTRODUCTION 

The observation of wave-like patterns in synthetic aperture 
radar (SAR) imagery of the ocean and the successful deploy- 
ment of SAR aboard SEASAT have created considerable in- 

terest in the mechanisms by which SAR images the ocean. The 
principal feature of the ocean which complicates its imagery by 
SAR is its temporal variability. Larson et al. [1976] suggested 
that a distributed scatterer model was more applicable to SAR 
imagery of the ocean than a point target model and showed 
that scatterer motion, in particular, gradients of scatterer veloc- 
ity, may affect the imagery. Since that time, several authors 
have addressed SAR imagery of the ocean using both point 
target and distributed scatterer models [Jain, 1978; Swift and 
Wilson, 1979; Alpers and Rufenach, 1979; Valenzuela, 1980; 
Harger, 1980; Shuchman et al., 1981; Rufenach and Alpers, 
1981; Raney, 1981; Jain, 1981; Alpers, 1982]. The results of 
these efforts have not always been consistent; attempts to check 
their predictions against experiment are still underway [Go- 
nzalez et al., 1979; Beal, 1979; McLeish et al., 1980; Shuchman, 
1981; Alpers et al., 1981; Beal et al., 1983]. 

One convenient instrument with which SAR imagery of the 
ocean could be compared is the two-scale radar wave probe 
[Wright et al., 1980]. This instrument is simply a coherent 
microwave radar, CW or pulsed, which illuminates portions of 
the ocean surface that are small in comparison with dominant 
surface wavelengths. Several times in the past, notably during 
the West Coast and MARSEN experiments, such systems have 
been operated from stationary platforms while SAR overflights 
were in progress. However, comparison between the outputs of 
the two systems has not yet been achieved partly because of the 
incompletely understood relationship between the two. The 
aim of this paper is to lay the foundation for comparison of 
two-scale wave probe and SAR data. It will be shown that the 
two systems are not simply related through the modulation 
transfer function [Wright et al., 1980] as has been assumed by 
some authors. Rather, both the AM and the FM detected 
signals from two-scale wave probes are relevant to SAR ima- 
gery of the ocean. 

An attempt will be made in this paper to hold mathematical 
obfuscation to a minimum. To this end, a rather simple model 
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of a SAR system will be employed which neglects many techni- 
cal complications that are quite important in actual SAR pro- 
cessing. For instance, the fact that most SARs transmit chirped 
pulses will be disregarded and only the essential fact of high 
range resolution will be included in the formulation. Similarly, 
sampling effects will be neglected to simplify the concept. Such 
effects may easily be appended to the present formulation by 
using the mehtods of Harger's [1970] book. The reader is also 
referred to Tomiyasu's [1978] review of the subject. 

In view of the fact that it is extremely difficult, if not impossi- 
ble, to construct an exact mathematical model of the fluctu- 
ating ocean surface, we shall rely on a two-scale model. The 
structure of each scale will be represented only formally, and 
experimental data will be used to provide the dependence of 
each scale on space and time. Thus, for instance, the formu- 
lation does not restrict the class of large-scale structures to a 
few simple sinusoidal surface waves as has frequently been the 
case in the past. In principle, the large-scale structure need not 
even be wave-like. 

Throughout this paper we assume that the radar antennas 
are directed at angles far enough away from nadir and grazing 
incidence that the composite surface model is applicable 
[Wright, 1968; Bass et al., 1968]. In section 2, output from a 
two-scale wave probe is modeled by using a formulation pre- 
viously applied to the dual-frequency scatterometer [Plant, 
1977; Plant and Schuler, 1980]. Some examples of field data 
taken with a two-scale wave probe are presented. In section 3 
we apply this same formulation to SAR imagery of the ocean to 
show the relationship between SAR and two-scale wave probe 
outputs. In section 4, simulations of SAR images, using data 
from a two-scale radar wave probe, are presented. Finally, 
section 5 summarizes the results of this work. 

2. Two-SCALE RADAR WAVE PROBE 

The theory of first-order Bragg scattering from slightly rough 
surfaces was first developed by Rice [-1951]. His results for 
backscatter were put into a somewhat more tractable form by 
Peake [1959] and by Wright [1966] from whose work one may 
obtain the following form for the magnitude of an electro- 
magnetic field backscattered from a slightly rough surface: 

•f t •2koRo t E(t) = B f,.(x', y )e' g(Oo)7(x, y', t) 

ß ei2•o• , cos 0o dx' dy' (1) 

9776 



PLANT AND KELLER: Two-SCALE RADAR PROBE 9777 

Fig. la 

Z t 

yt 

Fig. lb 

Fig. 1. (a) Geometry of slightly-rough-surface scattering. (b) Geome- 
try of composite-surface scattering. 

The coordinate system is defined in Figure la. In this equation, 
B is a function of transmitted frequency and polarization, 
which may be considered constant for our purposes; fL is an 
illumination function defining the footprint on the surface; 7 is 
the variable surface height; ko is the transmitted wave number; 
Ro is the distance from the antenna to the mean surface at the 
center of the footprint; 0o is the grazing angle; and g(0o) is a 
function of grazing angle and the electromagnetic properties of 
water, which is given for both polarizations by Wright [1966]. 
Primes on the position coordinates indicate that they are mea- 
sured in a frame of reference in which the antenna is stationary. 

Equation (1) says that the backscattered signal is primarily 
due to the Fourier component of the surface whose wave 
number equals the Bragg wave number, 2ko cos 0 o. This equa- 
tion is applicable only so long as surface slope is small and 7 is 
much less than the microwavelength. The first condition is 
rather well satisfied by the ocean surface but the second is not. 
Hence, Wright [1968] and Bass et al. [1968] developed a 
composite surface, or two-scale, model of the scattering in 
which the surface height is partitioned into a large-scale dis- 

placement 7L(x', y', t) and a small-scale displacement 7s'(X', y', t) 
(Figure lb). They assumed that over any patch of the surface 
that is large in comparision with small-scale lengths but small 
when compared with large-scale lengths the scattering could be 
modeled as first-order Bragg scattering from the small-scale 
structure (i.e., they made a tangent plane approximation). Thus, 
the effect of 7• is to change R, to tilt the surface, and to advect 
the small-scale structure both vertically and horizontally. If 
7t, << Y'- Yo, where Yo = Ro cos 0 o, expansion of the range to 
any point in the footprint now yields, 

R _-' Ro - 7L sin 00 + (y'- Yo) cos 0o 

+ Ix '2 + (y'- yo) 2 sin 20]/2R o 

which differs from that for a slightly rough surface by the term 
involving 7t•. The terms involving x '2 and (y' - y0) 2, the Fresnel 
terms, are normally absorbed byfc(x', y'), so, we have 

E(t) = B fL(x', y )g ( )7s ( , Y', t) 

ß e-i2t•ø•-sinøøe i2t•øy'cøsOø dx' dy' (2) 

where 0 is a local grazing angle and the exponentials involving 
Ro and Yo are now included in B. 

The function g'(O) differs from g(00) in (1) since 0 varies with 
position in the footprint. Thus, the effect of large-scale surface 
tilt is to introduce an effective amplitude modulation of the 
small-scale structure through g'(O). In addition to this, small- 
scale structure is known to be amplitude modulated by veloci- 
ties associated with large-scale structure. We model all these 
amplitude-modulating influences by a function h(x', y', t), which 
has scale lengths characteristic of the large-scale structure. 
Thus, we have 

E(t) = B f • fL(X', y')h(x', y', t) 
ß e-i21•øY•'sinøøTs(X' , y', t)e i21•øcøsOø dx' dy' (3) 

Here, 7s differs from the true small-scale displacement 7s' in that 
the amplitude-modulating influence of the large-scale structure 
has been removed. Thus, the mean square value of 7s is the 
same everywhere on the surface. Influence of the large-scale 
structure on the frequency content of 7s' remains in 7s, however. 
This influence is expressed by the relationship between the 
frequency of a wave advected by a current as measured in 
frames of reference which are stationary and moving at the 
current velocity. Thus, the frequency f of a small-scale wave 
measured in the antenna's frame of reference is 

f= fo + k. U(x', y', t)/2r• (4) 

where k is the small wave number, U is the large-Scale surface 
velocity, and fo is the frequency of the small-scale wave in a 
frame of reference moving with the current. Both 7s and h are 
random functions and, to a good approximation, are un- 
correlated; we shall also assume that they are statistically inde- 
pendent. We mention in passing that if 7t• is not sufficiently 
small when compared with (y'-Yo), then f•(x', y') may also 
contain modulations due to the large-scale structure. In prac- 
tice, these modulations are small and can be included in h(x', y', 
t) so thatf• need not be considered time dependent. 

Equation (3) has been successfully employed in the past to 
explain backscattered sea return to dual-frequency scatterome- 
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ters [Plant, 1977; Plant and Schuler, 1980]. Here we apply it to 
backscattered sea return to a two-scale radar wave probe that 
is stationary on earth. Thus we let both dimensions of the 
footprint be small in comparison with large-scale structure but 
large when compared with small-scale structure. To indicate 
this special case, we change the notation of fL to rs. The field 
E(t), then, is parametrically dependent on the coordinates (Xo, 
Yo) of the center of the illuminated spot. We may approximate 
the integral in (3) by replacing h by its mean value over the 
illuminated area to get 

E(t) = Bh(xo, Yo, t) •f rs(x, y) 
ß e-i2køTt'sinøøYs(X , y, t)e i2køy½øsøø dx dy (5) 

We have dropped the primes in this equation since primed and 
unprimed coordinates are identical in this case. 

Consider now the power spectrum P(f) of the field E(t) 
computed during a time interval centered at t = to. We have 

P(f) = B2 •ø•o•fT(t)•-h(xo, Yo, t)ei2kø•L f f fs(X, y) 
- 2ko7t. sin0o• IX t)½ i2køycøsOø i2nft 12 ß e ,s• , Y, dx dy]e- dt (6) 

where fT(t) is a temporal window function of width T and P(f) 
is parametrically dependent on x o, Yo, and to. Assuming that all 
functions are well behaved at infinity, we may carry out the 
squaring operation to get 

P(f) = n2•lh(xo, Yo, to)12• ••f n(q, p, to) 
ß e-i2•ø"øSøøe i2•œ• dq dp dr (7) 

where R is the small-scale autocoherence function, the angle 
brackets represent the time integral over the window T, and we 
have made use of the statistical independence of h and Ys. In 
obtaining this equation, we have assumed that the small-scale 
autocoherence function, 

R(q, p, r)= •f •e-i2kø[7I'-7I'*lsinOøys(X , y, t) 
ß 7s*(X + q, y + p, t + r)•lfs(X, y)l 2 dx dy (8) 

falls to zero sufficiently rapidly as p, q, or r increases that the 
values of these variables can be approximated by zero in the 
large-scale function h. In (8) 7t. is evaluated at (x, y, t), while ,,,•* 
is evaluated at (x + q, y + p, t + r). 

The assumption that R(q, p, t) falls to zero for values of its 
argument which are much smaller than large-scale wavelength 
or period parameters is based on an accumulation of experi- 
mental evidence over many yearsß A large amount of data exists 
to indicate that Doppler spectra of microwave sea return have 
widths from a few tens of Hertz to a few hundred Hertz depend- 
ing on frequency [see, for instance, Valenzuela and Laing, 
1970]. Since the inverse of these frequencies yield decorrelation 
times, these measurements imply decorrelation times of 10-100 
ms, much smaller than dominant wave periods. Figure 3 below 
also confirms this fact. Pidgeon [1967] showed that spatial 
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Fig. 2. Relative power backscattered to an X band, two-scale, 
radar wave probe as a function of time. The grazing angle was 45 ø, and 
a 2.5 m x 3.3 m spot was illuminated on the surface. The data have 
been low-pass filtered at 0.5 Hz. 

decorrelation of backscattered sea return at low angles occurs 
when illuminated areas are separated by more than their width. 
He used widths down to 15 m, so his results imply a spatial 
decorrelation length for the small-scale structure that is smaller 
than this value. Furthermore, video measurements in the Gulf 
of Mexico by Gotwols and lrani [1980] indicate that 1.5 Hz 
waves decorrelate in a distance of 1-2 m. The trend of their data 

indicates that this number decreases with increasing wave fre- 
quency. Finally, the output of a dual-frequency scatterometer is 
well explained on the basis of rapid temporal and spatial decor- 
relation of small wave structure [Alpers and Hasselmann, 1978; 
Plant and Schuler, 1980]. 

Let us define the power spectrum of the small-scale structure 
Ys to be 

½(f) = f f • R(q, p, z)e-i2køpcøsøøe i2nfr dp dq dr (9) 
If the length T of the temporal window fT is small, this function 
is parametrically dependent on x0, Yo, and to through ,,,• and 
the dependence off on these parameters as given by (4). Using 
(9), we may write (7) in the form 

P(f) = B2(Ih(xo, Yo, to)J2}½(f) (10) 

We see that ([hl 2} is proportional to the integral of P(f) over 
small-scale frequencies (i.e., to the power or cross-section fluc- 
tuations introduced in the backscattered signal by the large- 
scale structure). Plant and Schuler [1980] have related (Ihl2>, 
which they called H, to the modulation transfer function and 
long wave slope for the case where the horizontal antenna 
direction is parallel to the wave propagation direction. If large- 
scale homogeneity exists, {Ih[2> must become independent of 
Xo, Yo, and to for long time windows T, but will be parametri- 
cally dependent on Xo, Yo, and to for short time windows. 

In practice, {Ih[ 2) is more easily determined for short T by 
squaring E(t) and filtering out small-scale frequencies. Figure 2 
is an example of these large-scale power fluctuations obtained 
with a two-scale, CW, X band wave probe operated in the Gulf 
of Mexico. The data were taken on December 4, 1978, from an 
offshore tower, stage I, operated by the Naval Coastal Systems 
Center. The tower is located 12 miles from the Florida coast in 

32 m of water. Wind speed, measured 22 m above the mean 
surface level, was 11.5 m/s, and the microwave antenna, moun- 
ted 20 m above mean water level, was pointed into the wind. 
Air temperature was 24.0øC, while water temperature was 
22.4øC. The antenna was set at a 45 ø grazing angle, vertical 



PLANT AND KELLER: TWO-SCALE RADAR PROBE 9779 

I I I I I 
-300 -200 -100 0 100 200 

FREQUENCY, f (Hz) 

0.5 sec 

I 
3OO 

Fig. 3. Power spectrum of the clipped signal from an X band, 
two-scale, radar wave probe verses time. Each trace is the power 
spectrum of a 0.5-s time record as a function of frequency. Successively 
lower traces correspond to successively later 0.5-s time intervals. The 
same data were used to produce Figures 2 and 3; t = 0 in Figure 2 
corresponds to the top trace here. 

polarization was used, and the surface area illuminated was 
approximately 2.5 by 3.3 m. The return signal has been squared 
and low-pass filtered at 0.5 Hz. The vertical scale is relative 
since absolute power was not measured. 

Since all large-scale amplitude variation in E(t) is contained 
in h, we may observe a signal proportional to ½ by clipping E(t) 
and computing the power spectrum over times T intermediate 
between small- and large-scale times. Figure 3 shows the results 
of such operations for the same data that was used to produce 
Figure 2. The individual sweeps shown in Figure 3 are power 
spectra of the clipped signal computed in successive 0.5 s time 
intervals. The influence of variable, large-scale surface velocities 
on small-scale frequencies is clearly seen in the shift of the mean 
spectral frequency with time. Note that the bandwidths of these 
spectra imply decorrelation times of about 10-20 ms. Figures 2 
and 3 are synchronized with t = 0 in Figure 2 corresponding to 
the top sweep in Figure 3. Later times are lower sweeps in 
Figure 3. Once again, vertical scales represent only relative 
intensities. 

Figures 2 and 3 illustrate the reason for calling this type of 
system a two-scale wave probe. The function (Ihl2) is primarily 
due to amplitude modulation of the small-scale structure 
[Wright et al., 1980]. Thus information on small-scale waves is 
contained in this function. On the other hand, the mean fre- 
quency of any spectrum ½(f) is determined by large-scale ve- 
locities as given by (4). Thus computing ½(f) in successive short 
time intervals yields large-scale surface velocity as a function of 
time [Plant et al., 1978]. 

3. SAR IMAGERY OF THE OCEAN 

We now apply (3) to SAR imagery of the ocean. The geome- 
try of the situation is illustrated in Figure 4. The antenna is 
carried in an aircraft or spacecraft moving with speed V in the x 
direction. The antenna footprint is large when compared with 
large-scale structure in the x direction but small when com- 

pared with large-scale lengths in the y directionß Because of the 
platform motion, scatterers that are stationary in the earth- 
fixed frame of reference exhibit a Doppler shift in the antenna's 
frame of reference over portions of the footprint which do not 
coincide with the y axis. This effect is included in (3) through 
the Fresnel terms that were abosrbed infL(x', y'). To write (3) in 
a frame of reference fixed on earth, we must let 

yl _.y 

x'= x- Vt (10) 

where unprimed variables are measured in the earth-fixed refer- 
ence frame. Then, the Fresnel term involving x '2 becomes 

eit•ox,2/Ro = eit•o{x2 - 2vxt + V2t2)/Ro (11) 

Absorbing the x 2 term in ft:, (3) written in the earth-fixed 
reference frame is 

E(t) = Be ikøv•'•/Rø f • f•(x, y, t)h(x, y, t) 
ß e-i2koTt. sinOoys(X ' y, t)e i2køycøsOø 

ß e -i2køVxt/Rø dx dy (12) 

where f• is now time-dependent because the footprint sweeps 
across the ocean surface. This function produces an effective 
time window of width L/V where L is the distance illuminated 
in the x direction. This is just the time during which any point 
of the surface is illuminated by the moving footprint. Below we 
shall impose a second time window of width T centered at to 
during SAR processing. Typically, 

T < L/V (13) 

so that the larger window is irrelevant in most casesß Thus we 
shall let t = to when evaluatingf• in the following development. 

Now, the large spatial extent off• in the x direction can be 
represented as a sum of small footprints fs with s = 1 to N. 
Then, coordinates at the center of the sth footprint are 
(Xs - Vto, Yo) and 

N 

E(t) = Be inøv•t•/aø • h(xs, Yo, t) 
$=1 

--/ 

Fig. 4. Geometry of SAR scattering. 
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ß •• f•(x, y)e-i2køv'sinøøys(x, y, t) 
ß ei2koycosOoe - i2koVxt/Ro dx dy (14) 

where h(%, Yo, t) refers to the mean value of this large-scale 
quantity over the small footprintß 

SAR processing consists essentially of multiplying E(t) by a 
focusing term exp (-iat2), Fourier transforming, and taking the 
magnitude squaredß The result is a SAR image l(xo, Yo) of the 
scene which is given by 

l(xo, Yo)= B2 fr(t)h(%, Yo, t) 
S = I or) 

•f i2ko7•sinOo X f•(x, y)e- 7•( , Y, 

. ei2•oy•o•Ooei2•oV(xo-xU/eo dx dy dt (15) 

where we have set 

a = ko V2/Ro (16) 

Here we have represented the frequency of the Fourier trans- 
form by ko Vxo/Ron since this frequency determines the x coor- 
dinate in the SAR image of a stationary object. Once again,fr is 
a time window of width T. 

As in section 2, we now carry out the squaring operation 
assuming that the small-scale autocoherence function is a 
narrow function of lag variables so that these variables may be 
ignored in the large-scale quantity h. The result is 

l(xo, Yo)= B2 • (Ih(%, Yo, to)l 2) If•(x, y)l 2 

ß (e -i2kø(yt•-yt'*)sinOøv (x t)7s* tsx , Y, 

(x + q, y + p, t + r)e -i2køV(t+r)q/Rø) 

ß e-2•ø"øSøøe i2•øV(xø-x)•/Rø dx dy dp dq dr (17) 

where the summation was taken outside of the square due to 
the rapid decay of the small-scale autocoherence function with 
q, p, and z. Here, to is the time at the center of the temporal 
interval over which the Fourier transform is taken. Since time is 

related to the x dimension through the platform velocity, we 
may write, 

to = Xo /V (18) 

Consider now the transform variable of q. Call it k,, where 

2ko V(t + z) 
kx = (19) 

Ro 

Since r is small, the maximum value of V(t + r)/R o is approxi- 
mately VT/Ro. Typically, this is sufficiently small that 

k x << 2k o cos 0 o (20) 

for grazing angles away from nadirß Thus we may let k,, = 0 
with little error. In fact, similar approximations for k,, are 
inherent in (1). 

A similar argument shows that the term 

ei[2koV(xo - x)/Ro]r 

must vary slowly over x so that we may let x = Xs in the 
exponent. Then we have 

N 

l(xo, Yo)= B2 Y'• (Ih(xs, Yo)12)•P(Xo- xs) (21) 

where 

½(Xo - p, 
ß e-i2køa•øSøøe it2&øV(xø-x*)/Røl• d p dq dr (22) 

with R given by (8). This is precisely the same as ½ defined in 
section 2 for the two-scale wave probe if 

f= koV(xo - Xs) (23) 
•R o 

Equation (21) is strictly correct only iff• is sufficiently narrow 
in the x direction that the resolution is determined by the 
temporal window rather than by the width offs. in this limit, 
the sum in (21) becomes an integral and the equation may be 
written somewhat more perspicuously, 

l(xo, Yo) = •x• ft•(xs)(Ih(xs, Yo)12)•P(Xo - Xs) dxs (24) 
where A% corresponds to the very narrow width offs in the x 
direction. Note that f•(xs) is centered at Xo and is parametrically 
dependent on Yo. Similarly, ½(Xo - xs) depends on Xo and Yo in 
addition to its dependence on Xo - 

Equations (23) and (24) are the connection which we have 
sought between a SAR image and the output of a two-scale 
wave probe. To see their significance, suppose that the scene 
being imaged is independent of time (i.e., h and ?s vary only 
spatially). Then the integral over r in (22) for sufficiently long 
temporal windows T yields 

½(Xo - x)oc 6(Xo - x3 (25) 

Thus, (24) yields 

l(xo, Yo)oc (Ih(xo, Yo)l 2 ) (26) 

and the SAR image is a faithful representation of surface cross 
section. Azimuthal resolution of the SAR may be found in this 
case by using (23) which implies that 

2VAx 
A f- (27) 

2Ro 

where 2 = 2•/ko is the microwavelength. But Af = T-• so the 
SAR resolution in the x direction is given for stationary targets 
by 

2Ro 
Ax - 2TV (28) 

as usual [Hatget, 1970]. 
Evaluation of the integral in (24) may be represented sche- 

matically for this case as shown in Figure 5. The r5 function is 
shown at various values of Xo in the skewed, falling-raster 
display at the top of the figure. The function <lhl2> is shown as 
a function of x s just below the raster display. The integral 
consists of multiplying the r5 function trace, which is offset by a 
amount Xo, point by point with the trace of <lhl2> and inte- 
grating over x s. This yields l(xo, Yo) for that particular value of 
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ß x s 

X S 

• (Xo - Xs) 

h(xs, YO) 2 

• l(xo, Yo) 
Xo 

Fig. 5. Pictorial illustration of the convolution of (24) for the case 
of stationary scatterers. Arrows represent points where Xs = Xo. The 
image I is a reproduction of cross-section variation, <lhl2>. 

Xo. As shown in (26) and the bottom of Figure 5, if Xo is varied, 
the result is just reproduction of <lhl2>. 

Consider, however, the case of oceanic imagery where both h 
and 7s vary with time. If we assume all large-scale structure to 
be due to surface waves with a sharp spectrum, then we may 
infer ½(Xo - Xs) from ½(f) as shown in Figure 3. The top part of 
Figure 6 shows a schematic representation of ½(f) similar to 
that of Figure 3 except that now we consider successively lower 
traces to be at different positions Xs. Then (22) requires that we 
evaluate ½(f) along the line given by (23) in order to obtain 
•(Xo- Xs). Three such diagonal lines, corresponding to three 
different values of Xo, are shown in the top part of Figure 6. We 
obtain ½(Xo- Xs) from the value of ½(f) at intersections of 
diagonal and horizontal lines. For instance, the middle diago- 
nal line crosses the seventh horizontal line from the bottom at 

f = 0. Thus this point corresponds to Xo - Xs and this diagonal 
line yields the seventh horizontal line from the bottom in the 
central part of the figure. Note that ½(Xo- Xs) is zero where 
Xo- Xs on the horizontal line because ½(f) was zero at the 
diagonal-horizontal intersection in the top part of the figure. 
Similarly, the region on this horizontal line where ½(Xo - Xs) is 
not zero and Xs < Xo arises due to the diagonal line cutting 
through regions where ½(f) -• 0 in the upper part of this figure. 

The function ½(Xo - Xs) is represented in the central part of 
Figure 6 for various Xo values in a skewed, falling-raster display 
similar to that used to depict 6(Xo - Xs) in Figure 5. Indeed, if 
½(f) = 6(f-fo) then ½(Xo - Xs)= 6(Xo - Xs) as before. It is 
½(Xo- Xs) which is now convolved with (Ihl2> as •5(Xs- Xo) 
was in Figure 5 to produce the SAR image of the ocean shown 
at the bottom of the figure. Note that ½(Xo- Xs)is not always 
centered at Xs = Xo, nor is it of constant width. In fact, the slope 
of the f versus Xs line depends on V/Ro and, for small V/Ro, 
may intersect ½(f) at several different values of Xs. (Note the 
lowest diagonal line.) Thus, ½(Xo - Xs) is not necessarily local- 
ized near Xo for large surface velocities or small V/R o ratios. 
The distortion of ½(f) to obtain ½(Xo - Xs) is a direct result of 
large-scale current gradients on the ocean surface; in the case of 
ocean waves these current gradients are the orbital velocity 
gradients. Steady currents would only displace ½(x o - Xs) from 
Xs = Xo by a constant amount and would not affect its shape. 

Distortions of the image thus occur as a result of large-scale 
current gradients as indicated in Figure 6. Larson et al. [1976] 

have noted that this distortion makes it possible for an SAR to 
image current gradients even if <lhl2> is constant. The size of 
this effect, of course, depends on the magnitude of the gradients. 
Figure 3 indicates that ½(f) at X band may be displaced from 
zero by as much as 100 Hz by ocean surface waves. For 
V/Ro = 0.01 and ko = 2 cm -•, appropriate for an X band 
radar, (23) yields a position displacement of about 150 m for 
f = 100 Hz. Clearly, this is a nonnegligible effect. Note that the 
maximum frequency shift is proportional to ko, so the position 
displacement will be independent of radar frequency. Azi- 
muthal resolution in this case is still determined from (27) 
where A f is the width ½(f) of Figure 6 and Ax is the width of 
½(Xo - Xs). Now, however, ½(Xo - Xs)is not necessarily narrow, 
of constant width, or single peaked. 

To relate this formulation to previous work on SAR imagery 
of ocean waves, let us consider for the moment the case where a 
single sinusoidal wave exists on the surface. Thus, large-scale 
surface height is 

cos (K- x - fit) (29) 

and the line-of-sight velocity observed by the radar wave probe 
is 

v(x, y, t) = f•A(sin 2 0 o tanh 2 Kd 

+ cos 2 •b cos 2 0o) •/2 cos (K- x - fit + •bt•) (3O) 

where 

4•D =tan-•(tanh Kd tan 0o.) (31) COS 

K is long-wave number, fl is its frequency, d is water depth, and 
•b is the angle between K and the horizontal antenna-look 
direction. Then, (Ihle> will be given by 

(Ih(x, y, t)l 2) = Poll + m(KA) cos (K. x - fit + (/)m)] (32) 

=o 

•(f) 

koV(x 0 - xs) 

• 'n'Ro 
• ,/N •xo 

X$ •(x o - x s) 

• Ih(x•, vo)l 2 
X S 

• i(xo ' Yo ) 
,.X 0 

Fig. 6. Pictorial illustration of the convolution of (24) for the case 
of oceanic scattering. ½(x o -Xs) is obtained by evaluating ½(f) at 
intersections of horizontal and diagonal lines in the top part of the 
figure. Arrows represent points where x s = x o. The image I is no longer 
a reproduction of cross-section variation, (Ihl2). 
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where rn is the magnitude of the modulation transfer function 
including both tilt and hydrodynamic modulation, •b., is its 
phase, and P0 is the mean scattered power. 

If the width of •(f) is narrow enough to be considered a 5 
function, then we may write for this case 

•(f) = 5(f -- kov(Xs, Yo, t)/rO (33) 

Thus, using (23), •(x0 - Xs) is given by 

•Ro( R o (34) 

where we have assumed that 

<< 1 (35) 
W max 

Note that this is simply the condition that the slope Idf/dxsl of 
the diagonal lines in Figure 6 is greater than the maximum rate 
of change of the center of ½(f) with Xs (i.e., that ½(f) is appreci- 
able at only one intersection of horizontal and diagonal lines). 
It is also the linearity condition given by Alpers et al. [1981] 
under which SAR images are linearly related to long ocean 
wave height. We may obtain this linear relationship by substi- 
tuting (32) and (34) into (24) and assuming that fL(Xs) is very 
broad: 

l(xo, Yo)= • 
B2Po•Ro 
AxsKoV {1 + [RotlKA cos qbx(sin 2 0o tanh 2 Kd 
+ cos 2 •b cos 2 0o)•/2/V] {sin (K. Xo - flto + 

+ mKA cos K. x o - flto + qb.•)} (36) 

where to is given by (18) and •b,, is the angle between x 0 and K. 
This expression agrees with the result of Alpers et al.; the 
second term is their velocity-bunching expression. 

If xo/V is substituted into (36) for t 0, we see that the wave- 
length of the wave in the image will be 

Kimag e = (K cos •bx - fl/V)d•, + K sin qbxd•, (37) 

where d,, and tiy are unit vectors. Thus, for •b,, < 90 ø, the wave 
number of the image wave is smaller than that of the surface 
wave and the propagation direction is rotated toward the range 
direction. This agrees with results of previous authors [Val- 
enzuela, 1980; Harger, 1980]. 

So far we have considered only the case where the focusing 
procedure used during SAR processing was adjusted for 
stationary targets. One focusing adjustment that can be made 
during processing is to vary the parameter 'a' from the value 
given by (16). Optically, this is accomplished by varying the 
position of a lens along the optical bench. Formally, this adjust- 
ment amounts to a multiplication of 7s by a quadratic ex- 
ponential term; that is, to making the following substitution in 
previous equations for l(x0, Y0): 

where 

7s--} e- i'•'"27s (38) 

2koVAV 
Aa = • (39) 

Ro 

In the simulation of SAR imagery from two-scale radar wave 
probe data, this change is accomplished simply by multiplying 
the clipped signal by exp (- iAat2). 

o 0.75 

m 0.50 

Z I I 
0.25 0.50 

• .8 

.z_•' 1.2 

• 0.6 
0.25 0.50 

FREQUENCY (Hz) 

Fig. 7. (a) Normalized power spectrum of (Ihl 2) for the radar wave 
probe data used in SAR image simulation. (b) Power spectrum of wave 
heights obtained from the FM part of the radar wave probe output 
used in simulation. 

4. SIMULATED SAR IMAGERY 

To apply (24) in a strictly correct manner to the simulation of 
SAR imagery, one would need an array of two-scale probes 
spaced along the x and y axes. Since this is impractical, we shall 
assume in this section that the ocean wave spectrum is suf- 
ficiently narrow that we can infer the wave spatial distribution 
from the time record. This approximation should be rather 
good for times up to the inverse of the width of the wave height 
spectrum. 

Data used in the following simulation were obtained on 
November 30, 1978, by using the X band radar wave probe in 
the Gulf of Mexico. Antenna parameters were as described in 
section 2. In the present case, however, the antenna-look direc- 
tion made an angle of 85 ø with the wind and wave direction. 
Wind speed was 5.6 m/s, air temperature was 19.6øC, and water 
temperature was 21.7øC. Figure 7a shows the spectrum of the 
backscattered power received by the system (i.e., the power 
spectrum of (Ihl2)). Figure 7b shows the wave height spectrum 
obtained from the FM part of the received signal. Previous 
studies have shown this to correspond well to spectra produced 
by point probes [Plant et al., 1983']. From these two spectra, we 
infer that variations in received power follow the surface wave 
slope fairly well in this case. The peak frequency of 0.14 Hz 
corresponds to a dominant wavelength of 80 m. 

The simulation procedure was implemented on our labora- 
tory computer, a Digital Equipment Corporation MNC11-CA 
containing an LSI 11/23 processor and 256 kilobytes of 
memory. The program assumed that three dominant wave- 
lengths were contained in the SAR footprint in the azimuthal 
direction. Variation of this number up to 12 dominant wave- 
lengths did not affect the image. Integration time, V/R ratios, 
and A V, the focusing parameter, were all variable. Raw radar 
wave probe data beat down to audio frequencies were digitized, 
squared, and averaged over the integration time to obtain 
(Ih(xs)12>. To obtain ½(f), the raw data were first clipped then 
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Fig. 8. Relative cross section (Ih12> and simulated SAR images I 
versus position for various V/R o ratios. T -- 1/8 s, A V = 0. Vertical 
scales are linear. 

multiplied by the quadratic exponential term involving Aa. 
Power spectra of this time record over times equal to the 
integration time were computed and used to obtain •(Xo - Xs) 
as illustrated in Figure 6. The distance between the discrete Xs 
values was taken to be the dominant wave phase speed times 
the integration time. Finally, l(xo, Yo) was computed by inte- 
grating the product of <lh(xs)12> and ½(Xo- Xs) over all Xs 
values within the SAR footprint. In these computations it was 
assumed that the platform velocity was large when compared 
with the wave phase speed. Only single-look processing may be 
simulated by this method. 

Figures 8-10 show the results of this simulation for several 
different combinations of parameters. In all three figures, the 
top curve shows the cross section variation along the line 
Y = Yo as inferred from the radar wave probe temporal record; 
the same 50-s time record was used in all cases. All figures 
indicate some degree of distortion in the image when compared 
with the cross-section trace. While such distortion was never 

T = 1/2 sec, V/R 0 = 0.06 

i 

AV = 0 m/s I I • 

,I ' 
278 556 

DISTANCE (m) 

Fig. 9. Relative cross section (Ihl 2) and simulated SAR images I 
versus position for various focusing parameters A V. T = 1/2 s, 
V/R o = 0.05. Vertical scales are linear. 
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Fig. 10. Relative cross section <lhl2> and simulated SAR images I 
versus position for various integration times T. V/R o = 0.01, A V = 
+ 11 m/s. Vertical scales are linear. 

completely removed, it was significantly reduced by increasing 
the ratio V/Ro. Figure 8 gives an example of this effect. The 
images formed with V/Ro = 0.05 and 0.10 more nearly reflect 
cross-section changes than does the image formed with 
V/R - 0.01. 

Variation of the focusing parameter A V produced the most 
effect when integration times were relatively long and V/Ro was 
large. Figure 9 shows the change in the image in one such case 
when A V was adjusted over a range comparable to the domi- 
nant wave phase speed. The parameters used in this case imply 
that the stationary-target resolution limit is the spot size of the 
radar wave probe and not the integration time. Thus, ideal 
conditions for simulation are not well met. Widths of the •(f) 
spectra, however, imply that the stationary-target resolution is 
not approached in this case. Thus, the simulated image should 
be rather good. 

Finally, the simulation indicates that the integration time can 
have a dramatic effect on the shape of the image. This is 
indicated in Figure 10 where the image distortion clearly de- 
pends on integration time. For instance, the peak in the 
T- 1/8-s image near 470 m is completely absent from the 
T - 1/2-s image in Figure 10. This presumably results from a 
change in •(f) over the two integration periods since (Ihl •) 
does not differ in the two cases as the top traces in Figs. 8 and 9 
show. 

5. CONCLUSION 

This work has related SAR imagery of the ocean to the 
output of two-scale radar wave probes. The relationship is 
expressed by (23) and (24); the SAR image is a convolution of 
the AM part of the radar wave probe output with the power 
spectrum of the FM part. This, of course, requires that the 
antenna of the two radar systems point in the same direction. 
Differences between image formation of oceanic scenes and 
stationary scenes result from differences in the spectrum of the 
FM part of the signal over the integration time (i.e., differences 
in ½(f)). The two cases are described following (24) and are 
illustrated in Figures 5 and 6. For stationary scenes, ½(f) is 
very narrow with a width determined by the integration time 
and centered at a constant frequency. For ocean scenes, ½(f) is 
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broad and exhibits a time-dependent mean. The broadening of 
½(f) by itself would simply degrade the azimuthal resolution of 
the image. The shifting mean frequency, however, causes distor- 
tion of the image which cannot be removed. The position of the 
center of the spectrum has been shown to be well related to the 
orbital velocity of long waves [Plant et al., 1983]. Thus, the 
distortion described here is a manifestation of the velocity 
bunching mechanism described by Alpers and Rufenach [ 1979]. 
The width of the spectrum, which in practice is variable, has not 
been satisfactorily explained to date. Degradation of SAR azi- 
muthal resolution has been attributed both to long wave accel- 
erations [Alpers and Rufenach, 1979] and to scene coherence 
times [Raney, 1980]. These are essentially explanations of the 
width of ½(f). Thus, an investigation of the bandwidth of return 
to a two-scale radar wave probe could shed light on this 
controversy. 

The formulation presented here offers a simple method of 
simulating SAR performance over the ocean. Using such simu- 
lations, variation of SAR parameters--V/Ro, T, and A V--may 
be easily accomplished by using a single record of output from 
a two-scale wave probe. To achieve all possible combinations 
of these parameters in actual SAR experiments would be an 
expensive, time-consuming procedure. Of course, even in the 
simulation, changes in environmental conditions can only be 
obtained by collecting two-scale data under a variety of con- 
ditions. Much data of this type have already been collected, 
however. Similarly, antenna look direction and grazing angle 
are set at the time the two-scale data are collected. Comparison 
of simulated images based on these data with SAR images from 
simultaneous overflights is still necessary to complete vali- 
dation of the simulation method. Such comparisons are 
planned for the near future by using MARSEN data. 
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