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Current generation by deep-water breaking waves
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We examine the partitioning of the energy transferred to the water column by deep-
water wave breaking; in this case between the turbulent and mean flow. It is found
that more than 95 % of the energy lost by the wave field is dissipated in the first four
wave periods after the breaking event. The remaining energy is in the coherent vortex
generated by breaking. A scaling argument shows that the ratio between the energy
in this breaking generated mean current and the total energy lost from the wave field
to the water column due to breaking scales as (hk)1/2, where hk is the local slope
at breaking. This model is examined using direct numerical simulations of breaking
waves solving the full two-phase air–water Navier–Stokes equations, as well as the
limited available laboratory data, and good agreement is found for strong breaking
waves.
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1. Introduction

The flow induced by deep-water wave breaking is characterized by the generation
of turbulence and a coherent vortex associated with the mean flow. In the case of
quasi-two-dimensional breaking, it is a line vortex ending at the lateral boundaries of
the flow (Rapp & Melville 1990; Melville, Veron & White 2002; Pizzo & Melville
2013). For three-dimensional deep-water breaking, it is a half-vortex ring with dipolar
vorticity at the surface (Peregrine 1999). Vortex rings are defined by their integral
properties (Linden & Turner 2001), so that we can connect the circulation in this
breaking-induced half-ring vortex with the hydrodynamical impulse necessary to
generate it (Lamb 1932). By connecting this impulse with the momentum flux (and
subsequently the energy) lost from the wave field due to breaking, we can describe the
energy in the mean flow vortex in terms of the characteristic variables of the breaking
wave and obtain a simple model for the ratio of the energy in the breaking-induced
current to the total energy lost by breaking. That is the focus of this paper.

Breaking waves transfer momentum and energy from the quasi-irrotational surface
wave field to the rotational underlying currents (Phillips 1977; Melville 1996). A
better understanding of this process is crucial for an improved description of air–sea
interaction, especially for coupled ocean–atmosphere models (Cavaleri, Fox-Kemper
& Hemer 2012). Breaking waves, however, are two-phase turbulent flows, making
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detailed theoretical analysis very difficult. Therefore, numerical and laboratory studies
are invaluable for gaining knowledge about these processes. Based on fundamental
fluid dynamics and experiments, simple scaling models can be developed and are
useful for understanding the physics of the observed integral properties of the
breaking-induced flow.

Drazen, Melville & Lenain (2008) studied the breaking strength parameter b,
associated with the energy dissipation rate per unit length of breaking crest εl (see
also Duncan 1981; Phillips 1985) and based on an inertial scaling model for plunging
breaking waves, they found

εl = b
ρc5

g
; b= β(hk)5/2, (1.1a,b)

with ρ the density of water, c the phase velocity, h the height of the wave at breaking,
k the wavenumber and β an order-one scaling constant. The first relationship in (1.1)
was proposed by Duncan (1981, see also Phillips 1985), but b was taken to be a
constant. Drazen et al. (2008) then extended this relationship to account for the
dependence of b on the local slope at breaking.

Based on this work, Romero, Melville & Kleiss (2012) compared the model
given in (1.1) with existing laboratory data by equating b with the maximum slope
(according to linear theory) at breaking, S, along with a threshold for breaking S0;
that is, b = β(S − S0)

5/2. (Note, Drazen et al. (2008, figure 15) found (hk) ≈ S to
within the scatter of the data.) Excellent agreement with the existing laboratory data
was found, with b ranging over three orders of magnitude, which included both
gently spilling and plunging breaking waves (Drazen et al. 2008, see also Romero
et al. 2012, Grare et al. 2013). The agreement of the model with measurements
of the dissipation of gently spilling breaking waves was surprising, as the scaling
argument used to derive the model was based on the geometry of a plunging breaking
wave. This prompted Deike, Popinet & Melville (2015) to numerically examine the
energy dissipation rate of gravity–capillary waves using a direct numerical simulation
of the two-phase Navier–Stokes equations. They found that the model continued to
agree with the data, even for waves that were dissipating energy mostly through the
formation of parasitic capillary waves (see also Melville & Fedorov 2015).

Next, we recall that a coherent vortex characterizes the wave breaking induced
ensemble-averaged velocity field in quasi two-dimensional focusing wave breaking
laboratory experiments (Rapp & Melville 1990; Melville et al. 2002). This vortex
is the mean flow induced by breaking and it is observed to be robust, lasting more
than 50 wave periods after the breaking event (Rapp & Melville 1990; Melville et al.
2002; Pizzo & Melville 2013). This led Sullivan, McWilliams & Melville (2004,
see also Sullivan, McWilliams & Melville 2007) to parameterize the bulk effects
of a breaking wave on the ensemble-averaged flow by an impulsive body force. By
performing a direct numerical simulation of the Navier–Stokes equations for the fluid
response to this body force model, they were able to reproduce the characteristic flow
observed in the laboratory.

Pizzo & Melville (2013) used similar arguments to those of Drazen et al. (2008) to
propose a scaling model for the circulation, Γ , induced by both plunging and spilling
breaking waves. They found

Γ = γ0
(hk)3/2c3

g
, (1.2)
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with γ0 an order-one scaling constant. The model was shown to be in agreement
with the limited available laboratory data. We will further examine this relationship
numerically in this paper. Finally, the arguments in their paper also served to clarify
the agreement that was found by Romero et al. (2012, see also Grare et al. 2013,
Deike et al. 2015) for the scaling of b for both plunging and spilling breaking waves.

The paper is organized as follows. Section 2 discusses the dynamics of the breaking
event and we derive the scaling model for the energy remaining in the vortex induced
by breaking. Section 3 examines this model through direct numerical simulations of
the two-phase Navier–Stokes equations. Section 4 presents the conclusions and
implications.

2. The impulse and energy in the post-breaking mean flow
In this section we examine the impulse and energy needed to generate the half-ring

vortex induced by breaking, and compare this to the momentum and energy flux lost
from the wave field by the breaking event. This will yield a scaling model for the
amount of energy remaining in the mean flow after a breaking event.

The basic methodology follows laboratory experiments on dispersive focusing
breaking waves (Rapp & Melville 1990), where a control volume analysis is
performed. These integrals make it possible to exploit the linearity of the wave
field, which is valid far from the breaking region, to deduce integral properties of the
flow induced by breaking. These properties can then be easily measured in numerical
and laboratory experiments, using only the geometry of the free surface.

2.1. Properties of the flow induced by wave breaking
Consider a unidirectional wave group that propagates in the x direction, with y
denoting the transverse direction and z pointed upwards. Our system is governed by
the Navier–Stokes equation,

∂u
∂t
+ u · ∇u=− 1

ρ
∇p+ ν∇2u+ g, (2.1)

where g=−gẑ (ẑ denotes the unit vector in the vertical direction) is the acceleration
due to gravity, ρ the density of water and ν the fluid viscosity.

A conspicuous feature of the focusing wave packets sketched in figure 1 is that
there is a natural separation between the waves and the breaking-induced flow. We
will exploit this fact by forming integral relationships for the properties of the waves
and the induced flow that obey simple sum relationships. That is, the waves rapidly
propagate out of the region of breaking, so that we assume there is no subsequent
interaction between them and the induced flow. Furthermore, we assume that any
permanent exchange of momentum and energy from the wave field to the water
column is confined to the region of breaking.

First, we consider the energy balance. To this end, we take the inner product of u
with (2.1) and integrate over a control volume V and time T0. The control volume
V (with a boundary denoted as A) is chosen so that all of the effects that we are
describing, due to breaking, occur well within this domain. In particular, we integrate
over a depth (−∞, η) and a horizontal domain (x1, x2). The horizontal domain is
chosen so that the wave field is linear at the locations x1 and x2, and the transverse
direction has a range from (−Λ/2, Λ/2), where Λ is the scale of the wave in the
transverse direction. Note, the dispersive focusing laboratory experiments discussed in
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FIGURE 1. A schematic of the focusing wave groups considered in this paper, from Rapp
& Melville (1990). The incident wave group, I, focuses at F, radiating, R, and transmitting,
T , waves away from this region. In the area of breaking, currents, C, and turbulence will
be generated. Far upstream and downstream of the breaking region, (x1, x2) respectively,
the waves are approximately linear.

this paper are quasi two-dimensional, which corresponds to Λ→∞. Furthermore, the
(turbulent and mean) flow generated by breaking are bound to this region and do not
transport integral quantities out of this volume.

Therefore, we find (Phillips 1977; Mei 1989; Rapp & Melville 1990)∫
V

1
2
ρ(uiui)|t=T0

t=0 dV +
∫ T0

0

∫
A

(
1
2
ρuiui + p+ ρgz

)∣∣∣∣x2

x1

u dA dt

=
∫ T0

0

∫
V
ρε dV dt, (2.2)

where n is a unit vector normal to the surface A, ε is the rate of dissipation and
Einstein summation over repeated indices is employed.

Now, at times t = 0 and t = T0, there are no waves or turbulence (following
laboratory experiments (Rapp & Melville 1990; Melville et al. 2002; Drazen &
Melville 2009) where we have assumed that the remaining energy, several wave
periods after breaking, is contained entirely in the mean vortex flow) in the volume V .
Therefore, we find (uiui)|t=T0

t=0 = u(T0) · u(T0) with u denoting the mean flow current.
Furthermore, as the flow induced by breaking is confined to the interior of V , the
flux term will be solely due to the waves. Finally, we average over the wave period T
(we denote this average by angled brackets), and conclude

Ec +D+1F = 0, (2.3)

where Ec is the (averaged) energy in the mean flow, defined as

Ec =
〈∫

V

1
2
ρu · u dV

〉
, (2.4)

while 1F = F(x2)− F(x1) is the long time integrated change in energy flux, given
by

F =
〈∫ T0

0

∫ η

−∞

∫ Λ/2

−Λ/2

(
p+ 1

2
ρ(∇φ)2 + ρgz

)
φx dz dy dt

〉
, (2.5)
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and the dissipation D is given by

D=
〈∫ T0

0

∫
V
ρε dV dt

〉
. (2.6)

In this paper we will examine the ratio of Ec and |1F |, which will serve to compare
the energy in the mean flow to the total energy lost by the wave packet. In order to
do so, we must quantify the energy in the mean flow as a function of the variables
characterizing the breaking wave field.

To this end, we next perform a control volume analysis of the momentum budget.
Analogous to our energy budget, we integrate the x-component of equation (2.1) over
the region V , and over a duration T0, to find〈∫

V
ρu(T0) dV

〉
+1S = 0, (2.7)

where 1S = S(x2) − S(x1) is the long time integrated momentum flux (or radiation
stress), and is given by

S =
〈∫ T0

0

∫ η

−∞

∫ Λ/2

−Λ/2
(ρu2 + p) dz dy dt

〉
. (2.8)

Recall, the velocity u remaining in V at time T0 is solely due to the mean flow
induced by breaking, i.e. u = u. The second term in (2.7) is due to changes in the
momentum flux of the wave groups, and has a simple solution for linear waves
(Longuet-Higgins & Stewart 1964; Phillips 1977). Note, this quantity is in general
non-zero for wave groups, unlike the wave momentum (Longuet-Higgins & Stewart
1964; McIntyre 1981).

Next, based on the laboratory experiments, we assume that the momentum flux lost
by the wave field goes entirely into the mean flow. That is, although some of the
momentum lost from the wave field due to breaking will propagate away from the
region in the form of surface waves, Rapp & Melville (1990) found that the energy in
these radiated waves was much less than the total energy lost by breaking. Therefore,
for now we ignore this effect.

Our integral momentum balance becomes〈∫
V
ρu dV

〉
= |1S|. (2.9)

Now, as these waves are linear at locations x1 and x2, we can easily compute the
integrals given in terms of the wave energy. From Longuet-Higgins & Stewart (1964),
we have S(xi) = F(xi)/2cgi where the group velocity cg = ω/2k for ω the angular
frequency and k the wavenumber. Following Drazen et al. (2008, see also Pizzo &
Melville (2016)), we assume that cg ≡ cg(x2) = cg(x1)(1 + O(S)), where we recall
S is the linear prediction of the maximum slope at breaking. This was found to
be experimentally true to within 5 %–10 % (see § 3.1.1 Tian, Perlin & Choi 2011).
Therefore, we have |1S|= |1F |/2cg, from which we arrive at our integral momentum
balance 〈∫

V
ρu dV

〉
= 1

2
|1F |

cg
. (2.10)

To make further progress, we now constrain the form of the flow induced by breaking.
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2.2. A model for the mean flow induced by breaking
Consider the impulse associated with the vorticity induced by breaking, Ω = ∇ × u.
The hydrodynamic impulse, I, sometimes referred to as Kelvin’s impulse (Lamb 1932;
Bühler 2007), is defined as

I= 1
2
ρ

〈∫
V

x×Ω dV
〉
. (2.11)

Note, unlike the momentum of the fluid, the impulse is well defined, as it does
not contain the surface integral pressure terms which are not absolutely convergent
(Batchelor 1967; Saffman 1992; Bühler 2007).

The rate of change of the impulse is given by

dI
dt
=
∫

V
B dV, (2.12)

where B is an impulsive force necessary to instantaneously generate the prescribed
flow from rest.

Therefore, the impulse of a given vorticity field can be related to the net force
exerted to create it. This allows us to invert the vortex ring problem, and find the
impulse, and then the energy, needed to generate this vortical flow from rest, to be
compared with the total energy lost by breaking. In particular, we will exploit the
relationship between the impulse needed to generate the post-breaking vorticity field
and the momentum flux lost by the wave field due to breaking (see also Bühler 2014,
§ 12.4.2).

However, in order to make progress in solving for this integral I, we must constrain
the form of the breaking-induced vorticity of the mean flow, i.e. Ω , which we will
now do.

Recall, Pizzo & Melville (2013) found that the evolution of the circulation, Γ , of
the breaking-induced mean flow can be modelled as

dΓ
dt
=
∮
C
B · d`, (2.13)

where

Γ =
∮
C

u · d`. (2.14)

Here, C is a material contour moving with the mean flow and we recall from above
that B is a parametrization of the breaking-induced body force, responsible for the
generation of the mean flow.

There is some choice in how to parameterize the forcing due to breaking, as it
is unclear how the final momentum flux of the packet varies as a function of its
characteristic initial parameters. Following the laboratory and numerical studies, Pizzo
& Melville (2013) sought a function B that was compact in space and time, had an
asymmetry between the x and transverse (y) direction and was also symmetric about
this transverse direction.

Based on these constraints, the authors chose to model B using a thin, impulsively
forced half-elliptical disc of semi-major axis A and semi-minor axis B being forced
from rest to a speed U along its axis of symmetry, that is in the x-direction, as shown
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FIGURE 2. A sketch of the bulk scale effects of deep-water breaking on the water column.
We assume that breaking acts like a thin impulsively forced disc of semi-major axis A and
semi-minor axis B, being forced from rest to a speed U along the x direction. The disc is
then assumed to dissolve, with the flow rolling up where it is strongest, that is along its
perimeter, leaving a persistent vortex ring that characterizes the ensemble-averaged post-
breaking flow.

in figure 2. The disc is assumed to dissolve (Taylor 1953), leaving an elliptical vortex
ring, whose properties can be easily related to those of the forced disc.

Dhanak & Bernardinis (1981, Appendix A, see also Pizzo & Melville 2013) found
that the impulse, I, of the elliptical disc can be related to the kinetic energy, T, of the
generated vortex ring by (cf. (2.11)) I= 2TU−1. This is also consistent with the study
of Linden & Turner (2001). We assume this kinetic energy of the disk T is equivalent
to the kinetic energy of the mean flow current Ec.

From (2.10), we can relate the impulse in the mean flow currents to the momentum
flux lost by the wave field, and associate this with the impulse needed to generate the
mean flow vortex. That is, we find

I ≡
∫

V
ρu dV = |1F |

2cg
. (2.15)

This allows us to rewrite the kinetic energy of the mean flow as

T= U|1F |
4cg

= Γ

8B
|1F |

cg
, (2.16)

where we have substituted in the formula for the circulation of the elliptical vortex
ring found by Dhanak & Bernardinis (1981), i.e. Γ = 2UB.

Finally, we define the central focus of our study. Namely, we consider the ratio of
the energy in the breaking-induced vortex to the total energy lost due to breaking,
which we define as Rc, and is given by

Rc ≡ Ec

|1F | =
T
|1F | =

Γ

8B
|1F |

cg|1F | =
Γ

4Bc
, (2.17)

where the phase velocity is given by c = ω/k = 2cg for linear deep-water surface
gravity waves.

From Rapp & Melville (1990, see their figure 34), and the scaling arguments of
Pizzo & Melville (2013), the depth to which the fluid is mixed, i.e. B, scales with h,
which together with (1.2) implies that

Rc = χ(hk)1/2, (2.18)

where χ is a constant. We will now examine this quantity using direct numerical
simulations of breaking waves.
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3. Direct numerical simulations of breaking waves
3.1. Numerical experiment

To corroborate our scaling model, we now perform direct numerical simulations (DNS)
of the two-dimensional Navier–Stokes equations in a two-phase fluid (air and water)
accounting for surface tension and viscous effects using the open source solver Gerris
(Popinet 2003, 2009), based on a quad/octree adaptive spatial discretization, multilevel
Poisson solver. The interface between the high density liquid (water) and the low
density gas (air) is reconstructed by a volume of fluid (VOF) method. This solver
has been successfully used in various multiphase problems such as atomization (Fuster
et al. 2009), the growth of instabilities at the interface (Fuster et al. 2013), capillary
wave turbulence (Deike et al. 2014) and two- and three-dimensional wave breaking
(Fuster et al. 2009; Deike et al. 2015; Deike, Melville & Popinet 2016).

As in Deike et al. (2015, 2016), we use nonlinear waves, based on a truncated
Stokes expansion, of wavelength λ, as initial conditions to study wave breaking. Note,
this method of generating breaking waves is different from the dispersive focusing
technique used in the laboratory. This becomes manifest in the value of the breaking
threshold. Indeed, as discussed in Deike et al. (2015, 2016), the critical slope for wave
breaking changes when a steep Stokes wave is used instead of a dispersive focusing
packet or a packet undergoing modulational instability. In the present case, a slope of
0.32 corresponds to an incipient breaking wave, which has total dissipation less than
a spilling breaker of the same slope obtained by a dispersive wave focusing technique
in the laboratory.

In order to simulate the laboratory experiments, the waves must be able to propagate
freely after breaking without interfering with the flow created during the breaking
event. Thus we consider a two-dimensional (2-D) rectangular numerical domain, with
dimension L = 8λ in the horizontal propagation direction and l = λ in the vertical
direction. The mean water level is set at η = 0, so that the water depth is d = λ/2.
Boundary conditions are periodic in x, but as we will see the main wave never reaches
the end of the numerical domain for times necessary to resolve the properties under
investigation. The top and bottom walls are free slip (at z = ±d = λ/2). The total
simulation time corresponds to 8T , where T = 2π/ω is the wave period and ω the
linear angular frequency of the input wave form.

A third-order expansion, based on Stokes waves, is used for the interface η(x, t)
which together with the velocity potential φ(x, z, t) in the water constitute the initial
conditions at the left of the numerical domain, for x ∈ [λ/2 : 3λ/2] and in the rest
of the domain, the interface and the velocity are set to 0 by applying a smooth
windowing. All cases discussed in this work are single breaking events.

The physical properties of the two phases are those of air and water, and this
manifests itself through the density and viscosity ratios. The Bond number is defined
as Bo = 1ρg/(γ k2), with 1ρ the density difference between the two fluids, and γ

is the surface tension, so that Bo gives the ratio between gravity and surface tension
forces. The Reynolds number in the water is Re= cλ/ν, where c=√g/k is the linear
gravity wave phase speed and ν is the kinematic viscosity of the water, which is set
to Re= 40 000. This choice is related to spatial resolution constraints, but should not
affect the results regarding the wave dissipation, since we are at a sufficiently high
Reynolds number (Deike et al. 2015, 2016) to capture the phenomena in question.
We choose Bo= 200 to obtain plunging breakers at high initial wave slope and also
to be able to correctly resolve surface tension effects.
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We define the characteristic slope to be S = ak, with a the initial wave amplitude
and k = 2π/λ the wavenumber. S varies from 0.35 to 0.65, i.e. from non-breaking
waves to strongly plunging waves (Deike et al. 2015). Note slopes higher than the
limiting slope for the full Stokes wave solution can be defined as we are generating
our conditions based on a third-order Stokes expansion. It is useful to recall that the
slope at breaking is proportional to the initial wave slope in this configuration (Deike
et al. 2015, 2016), which is consistent with the laboratory findings of the analogous
relationship for focusing packets (Drazen et al. 2008).

Adaptive mesh refinement is used to accurately solve for the interface and the
vortex structures, with a mesh size of dx = dy = λ/512, with adaptive criteria on
the vorticity and the interface. This configuration allows accurate solutions for
the dissipative scales and surface tension effects, as shown by previous two- and
three-dimensional simulations (Deike et al. 2015, 2016). As discussed in Deike et al.
(2015, 2016), this resolution is enough to have full convergence of the DNS and
the results presented here are not sensitive to the mesh size. This is achieved thanks
to the adaptive methods on the interface and vorticity, and to our choice of Bond
number and Reynolds number. Choosing Bo = 200 and Re = 40 000 permits us to
fully resolve the viscous boundary layer and associated dissipative processes, as well
as the surface tension effects, without the use of any subgrid model. Moreover, Deike
et al. (2015, 2016) showed that this value of the Reynolds number is high enough
to reproduce the dissipative properties that were observed in the laboratory results;
and Deike et al. (2015) showed that the dissipation for breaking waves of slopes
S> 0.35 is not sensitive to the Bond number for Bo> 100. This validates our choice
of physical parameters and mesh grid size for the present study.

Note, we find that for the breaking waves modelled in this paper, the energy
dissipated in the water column dominates (i.e. is more than 96 % of the total energy
lost by the wave field, in all tested cases) the energy dissipated in the air. This is
consistent with the fact that the density of the water is several orders of magnitude
larger than that of the air and agrees with laboratory studies on air flow over breaking
waves (Banner & Melville 1976; Veron, Saxena & Misra 2007; Belden & Techet
2011).

A typical DNS evolution of a breaking wave, with S= 0.55, is shown in figure 3.
The wave propagates from the left to the right before undergoing strongly nonlinear
behaviour leading to breaking. A jet is formed at the front of the wave that
subsequently impacts the water surface. The time of the breaking event, or impact
with the surface, tb, occurs between t/T = 0.5 and t/T = 1, as in Deike et al. (2015,
2016), while the jet impacts the free surface at approximately xb= x/λ≈ 2.5. Figure 3
shows that the breaking event generates turbulent motion and strong vortical structures
in the water in the area bounded by x ∈ [2.5 : 3.5]λ. This defines the breaking area.
After breaking, the waves are transmitted and radiated from the breaking region,
subsequently rendering the free surface as a rigid lid in this area, which is consistent
with the laboratory studies and figure 1. However, the breaking-induced current,
characterized by the vortex, is still present in the breaking region several periods
after tb.

Here, we focus on post-breaking flow properties and the resulting vorticity, and its
associated circulation, as well as the kinetic energy flux of the current in the breaking
area, for long times after the waves have propagated away.

As was discussed above, the generated vortical structure has been observed
experimentally and was found to be a coherent vortex by Rapp & Melville (1990),
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(a)

(b)

(c)

(d)

(e)

( f )

1 3–1–3–5–7 5 7 9

FIGURE 3. Time evolution of a plunging breaker with the vorticity field Ω∗ =Ω/ω at
different time steps. The wave starts at the left of the numerical domain, propagates to
the right and breaks after half a period of propagation. The waves then propagate out of
the region where breaking occurred, leaving an active vorticity field that characterizes the
post-breaking flow. The initial conditions were chosen such that S = 0.55, Re = 4 × 104,
Bo= 200.

Melville et al. (2002), which was described in more detail by Pizzo & Melville
(2013). Figure 4 shows a close up of this area several periods after breaking. A
coherent vortex is indeed observed and remains stable, slowly moving towards the
right of the numerical domain. Its intensity slowly decreases due to viscous dissipation,
consistent with Melville et al. (2002). Recall, Ω∗ is the vorticity field normalized by
the characteristic angular frequency ω, in the y direction.

3.2. Energy dissipated by breaking, circulation and mean currents
We now calculate the integral properties of the breaking waves for various slopes S.
To begin, we compute the energy flux F , i.e. equation (2.5), by relating this to the
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1 3–1–3–5–7 5 7 9

(a)

(b)

FIGURE 4. The normalized vorticity field Ω∗ remaining in the region after a plunging
breaker, and after the remaining waves have propagated away. The post-breaking flow
is characterized by a compact region of vorticity, outside of which the flow is largely
irrotational. Re= 4× 104, Bo= 200 and S= 0.5.

energy density, E, through linear theory (far upstream and downstream of the breaking
event), where

E=
〈∫ T0

0

1
2
ρgη2 dt

〉
. (3.1)

That is, the energy flux at a given location is then F(x)= cgE(x) where cg= (1/2)c is
the group velocity of the wave and c is the phase speed. As defined in § 2, the change
in energy flux due to breaking is then given by 1F = cg1E. Note, following the
laboratory experiments of Drazen et al. (2008), this relation assumes that the group
velocity is approximately equal before and after breaking (see also Pizzo & Melville
2016). The dissipated energy flux per unit length of breaking crest εl is then given
by εl = |1F |/τb, where τb is the active breaking time and in these experiments it is
found that τb ≈ T which is consistent with other laboratory (Drazen et al. 2008) and
numerical studies (Deike et al. 2015, 2016).

Figure 5(a) shows the breaking parameter b as a function of the slope S in the
DNS and in available laboratory data. The breaking parameter b as a function of the
slope S in the present DNS is found in good agreement with previous experimental
results and the semi-empirical model of Drazen et al. (2008, see also Grare et al.
(2013)) and Romero et al. (2012) for strong breaking waves, as in our previous
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DM
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DM
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MVW

(a)

(b)

(c)

FIGURE 5. In all three plots, (s) are DNS data. (a) Breaking parameter b as a function of
the initial wave slope S. Solid line: semi-empirical formulation based on scaling argument,
b= 0.4(S− 0.08)5/2 (Romero et al. 2012). Blue symbols are experimental data; triangles
and diamonds are from Drazen et al. (2008), cross and circle are from Banner & Peirson
(2007) and squares are from Grare et al. (2013). The differences between experiments
and DNS at lower values of S come from differences in initiating wave breaking. (b)
Circulation generated by the breaking event Γ (normalized by c3/g) as a function of
S. Solid line is the model from Pizzo & Melville (2013) fitted to experimental data,
Γ g/c3= γ0(S− S0)

3/2, where γ0= 0.98 and S0= 0.08. Blue closed circles are from Rapp &
Melville (1990), the right triangle is from Melville et al. (2002) and the square is from
Drazen & Melville (2009). (c) Ratio of the energy flux in the current (created by the
breaking event) and the dissipated energy flux due to the breaking wave, Rc. Blue closed
circles (RM): laboratory data from Rapp & Melville (1990); closed blue square (DM) is
a data point from Drazen & Melville (2009). Solid line is Rc = Ec/|1F| = χ(S − S0)

1/2

based on the model presented in § 2, equation (2.18) and including an empirical threshold
slope, equation (3.2), with S0 = 0.08 and χ = 0.06 the best fit to the data.
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numerical work (Deike et al. 2015, 2016). The difference in the dissipation between
experiments and DNS for S between 0.35 and 0.4 is most likely related to the
route to breaking, i.e. how the initial conditions are chosen. Indeed, as discussed
in Deike et al. (2015, 2016), the critical slope for wave breaking changes when
a steep Stokes wave is used instead of a dispersive focusing packet or a packet
undergoing modulational instability. In the present case, a slope of 0.32 corresponds
to an incipient breaking wave, which has total dissipation less than a spilling breaker
of the same slope obtained by a dispersive wave focusing technique in the laboratory.
Note, other numerical studies have examined the dissipation due to breaking waves
and have found results compatible with the one presented here and in Deike et al.
(2015, 2016) (see the two-dimensional DNS of Iafrati 2011), and the two- and
three-dimensional large eddy simulation (LES) of Derakhti & Kirby (2014), Lubin &
Glockner (2015), and Derakhti & Kirby (2016).

The integrated vorticity and the kinetic energy flux over the breaking area are
approximately constant with time, slowly decreasing due to viscous dissipative
effects, which is consistent with the laboratory studies of Melville et al. (2002). The
circulation Γ given by (2.14), is averaged over two wave periods, starting four wave
periods after the breaking event when the waves have propagated out of the region
of breaking. The error bars on Γ in the DNS are representative of its sensitivity to
the area and time of integration.

Figure 5(b) shows Γ as a function of the wave slope, compared to the limited
available laboratory data and the corresponding scaling from Pizzo & Melville (2013)
for the circulation, Γ = γ0(S − S0)

3/2, where γ0 is an order-one constant and S0
is the threshold for breaking. The experimental data presented in figure 5(b) are
from the laboratory studies of Rapp (1986), Rapp & Melville (1990), Melville et al.
(2002), Drazen & Melville (2009), who computed either explicitly the circulation or
provided the measurements of the velocity fields. This is discussed in detail in Pizzo
& Melville (2013). The constant γ0 = 0.98 was found by a best fit with the data
presented in Pizzo & Melville (2013) and shown by the blue circles in 5(b), while
S0 = 0.08 is the threshold that best fits multiple laboratory studies, as discussed in
Romero et al. (2012). Good agreement is found between the model for Γ and the
available experimental data and the numerical results for large values of S. This is
consistent with the findings of Deike et al. (2015, 2016) for the energy dissipation
rate, where as mentioned above it is noticed that the different breaking generation
methods between the laboratory and the numerical experiments are manifest in the
breaking threshold parameter S0.

Finally, figure 5(c) shows the main result of this paper, namely the ratio of the
energy flux transferred to the current to the dissipated energy flux due to the breaking
wave, i.e. Rc. Note, following the laboratory studies of (Melville et al. 2002), and
consistent with the theoretical assumptions made in § 2, we have assumed that the
energy remaining in the region of breaking is entirely in the mean flow. Figure 5(c)
shows Rc as a function of the wave slope in the present DNS, together with the
experimental data from Rapp & Melville (1990), Drazen & Melville (2009) (note
that Melville et al. (2002) provided a measure of Γ ; however, they did not provide a
measure of Ec). The data are well described by the scaling given by (2.18), including
the breaking threshold,

Rc = χ(S− S0)
1/2, (3.2)

with χ = 0.06 and S0= 0.08 is the critical slope determined by Romero et al. (2012).
The value χ = 0.06 is the least-squares fit to the laboratory and numerical data.
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Note that there is a physical relation between Γ and Ec, and dimensionally we get
Ec ∝ ρΓ 2. This allows us to perform a consistency check on our relationship given
in (2.18). Namely, we have ensured that values of b, consistent with the laboratory
and numerical data, can be retrieved from Γ and Rc, where Rc ∝ (Γ g/c3)2/b.

We find that Rc varies from 2 % to 5 % for slopes corresponding to incipient
breaking waves to strong plunging events, in good agreement with the earlier
experimental results from Rapp & Melville (1990) as well as an additional point
from the laboratory data of Drazen & Melville (2009). Note, the number of these
measurements that is available is limited, as one must measure the kinetic energy in
the region of breaking several wave periods after the breaking event. This is why
there are far fewer measurements of this quantity versus, for example, the energy
dissipation rate per unit length of breaking crest εl. The scatter in the numerical data
comes from the difficulties in properly estimating a small difference between two
large quantities (energy flux before and after breaking) and the fact that the ratio
Rc is a small quantity. Finally the agreement with the scaling argument presented in
§ 2 is encouraging. In the next section, we discuss some of the implications of these
results.

4. Discussion

In this study we have proposed a simple model for the energy transferred from the
wave field to the mean flow by wave breaking. This serves as another study (Drazen
et al. 2008; Romero et al. 2012; Pizzo & Melville 2013; Deike et al. 2015) that
uses simple scaling arguments (with the relevant parameter being the local slope at
breaking S) to describe integral properties associated with wave breaking. That is, S,
which is known a priori and is related to the energy available to the water column
due to breaking, is the primary variable that characterizes integral properties of the
post-breaking flow field.

What is perhaps surprising is that for such a complex turbulent flow as wave
breaking, so much information can be teased out of a relatively simple vortex
dynamics model, or equivalently, that the vortex dynamics has such a constraint on
the overall dynamics of the flow. If sustained by further experimental and numerical
support, the results of this paper provide the beginnings of the answer to the question:
How is the energy lost from a wave field due to breaking distributed between currents
and turbulence? The results suggest that only a very small fraction of that energy is
available for generating currents, the rest going into local turbulence and mixing of
the near-surface waters.

Ocean currents can be generated by a variety of phenomena, including tidal forcing,
buoyancy gradients, wind drift, the irrotational wave-induced mean flow (i.e. Stokes
drift) and wave breaking. This paper has focused on the last effect, as it is believed
that wave breaking is the dominant contribution to the wind-driven currents. In
particular, for wind speeds above (6–8) m s−1, the momentum and energy from
the atmosphere are mainly transmitted through the wave field, with nearly 100 %
of these quantities being passed directly to the water column through the action of
wave breaking (Terray et al. 1996; Banner & Peirson 1998; Donelan 1998; Sullivan
et al. 2007; Sullivan & McWilliams 2009). That is, just a small amount of energy is
radiated away in the form of surface waves. We have found that most of the energy
lost locally from the wave field (at least 95 % for the waves considered in this paper)
is dissipated through turbulence, with the remainder going into the breaking-induced
mean flow.
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Phillips (1985) proposed that a statistical description of wave breaking could
be used to deduce bulk scale features of the saturation range of the surface wave
field (where, by definition, 100 % of the wind input is passed locally to the water
column), including the total energy dissipated by the wave field due to breaking. This
description relies crucially on the statistical distribution of breaking, as a function of
the variables characterizing the local ocean and atmospheric conditions. In a recent
paper, Sutherland & Melville (2013), using a scaling argument motivated by field
data, took the relevant variables to be the atmospheric friction velocity, the significant
wave height, the phase velocity of the waves at the peak of the wind–wave spectrum
and gravity. The resulting form of the probability distribution function for wave
breaking based on these variables was found to collapse the existing field data onto
a single curve.

Therefore, the framework derived in this paper could be extended, in the spirit of
Romero et al. (2012), to give a spectral statistical description of the energy transferred
to the mean flow due to wave breaking in a wind–wave model. This would also be
important for constraining global energy budgets in more sophisticated wave resolving
ocean–atmosphere models (Sullivan et al. 2007; Cavaleri et al. 2012).
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