
€ H. 0. MISC. 15,921

VISUAL WAVE OBSERVATIONS

BY

WILLARD J. PIERSON, JR.

Department of Meteorology and Oceanography

New York University

March 1956

Published under the authority of the Secretary of the Navy
U. S. Navy Hydrographic Office

Washington, D. C.

Price 35 cents



ABSTRACT
Visual wave observations will always be needed to supplement instru-

mental records. Ordinary visual observations are not adequate for

estimation of the spectral components of the short-crested surface

waves, but by the use of more precise visual observations utilizing

all the waves passing a point, it is possible to determine the wave

characteristics.

The most important observed wave characteristic is wave height. The

theory of a wave rernrH
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FOREWORD

The Hydrographic Office recently published a new wave forecasting

manual, H. O. Pub. No. 603, prepared by Professor Pierson and his

colleagues at New York University under contract with Project AROWA.
To supplement this manual the Hydrographic Office herewith presents

"Visual Wave Observations," also by Professor Pierson, as an ex-

planation of the methods for obtaining wave observations in a manner
compatible with the spectral forecasting technique.

Wave records are of two major types. Those obtained from wave
staffs, pressure recorders, and other mechanical devices are accurate

and reproducible, but they are also expensive and limited in number.
Visual wave observations are subject to error, but they are readily

obtained from shipboard as often as desired. In spite of the errors
inherent in subjective estimates of wave characteristics, several

important types of data can be secured from visual wave observations

which can aid in wave forecasting. This report outlines the theory
underlying visual wave observations and indicates the data that can
be secured from them.

The Hydrographic Office is actively engaged in the development
and operational testing of methods of wave forecasting. In order to

increase the usefulness of the operational wave forecasts being issued
by this Office, it is necessary to obtain more frequent and accurate
synoptic wave reports. It is hoped that this report, which indicates

how improved visual observations can be obtained, will encourage
observers aboard ships to make observations in the method outlined.

H. H. MARABLE
Captain U. S. Navy
Hydrographer
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I. INTRODUCTION

Sea waves are irregular, confused, and sometimes mountainous.

They are short-crested in that a given crest can be followed by-

eye along the crest for at most a distance of three or four times

the distance between successive crests. Even the apparently more
regular swell is still irregular in that there are considerable lengths

of time during which the swell is very low in height. Swell is also

short- crested, although swell crests are longer than sea wave crests.

The visual observation of such an irregular pattern is a difficult

and complicated procedure which needs to be described and interpreted

precisely.

The main purpose of this paper is to describe wave irregularity

and to present techniques for the visual observation of wave heights,

"periods," "wave lengths," and "speeds." These techniques will make
the values obtained by observation more useful because they will

be more precise. A second purpose of this paper is to give the theo-

retical justification for the procedures given in the wave forecasting

manual prepared by Pierson, Neumann, and James (1955).

Visual height observations will never be as precise as instrumental
observations of adequate duration as made by the various wave- pole

techniques which have been developed for both deep and shallow water.

The data obtained by the Hydrographic Office with instruments developed
by the Beach Erosion Board will yield information which could never
be obtained visually. However, visual observations will always be
needed to supplement instrumental observations.

II. THEORETICAL AND PRACTICAL ASPECTS OF WAVE HEIGHT
OBSERVATIONS

A. Techniques for Wave Height Observation

The mathematical representation of ocean waves as a short-crested
Gaussian sea surface, as proposed by Pierson (1952, 1954), appears to

represent the sea surface and its mathematical properties in a realistic

way. This paper will be based on the results of this theory, but the

practical aspects of the problem will be emphasized instead of the

theoretical aspects.

Consider figure 1. It shows the irregular pattern of the sea surface
as observed from an aircraft flying at a height of about 4,000 feet.

One way to observe the wave heights would be to estimate or measure
the crest- to- trough heights of the highest part of each short- crested





wave by stereophotography. That is, a dominant wave could be selected

in the stereo pair, and it could be followed along the crest until its

highest part was found. The crest- to- trough height would then be

found at this point. A large number of such observations could be

made. The average of these values would then give some sort of

average height.

Similarly, when a wave observer looks out over the sea surface, he

tends to look at the highest part of each of the short- crested waves
within his field of view. His eye skips about over the sea surface,

and thus the values recorded are similar to the values described

above.

The theory of the distribution of the values obtained in the observation

of the highest part of each of the short- crested waves in the field

of view of the observer has not yet been solved. The theoretical proba-

bility distribution of such heights is unknown, and it appears that it

will remain unknown until some fundamental problems in time series

are solved.

If the theoretical properties of an observed set of values are unknown,
the observations are for all intents and purposes useless. To report

that the average height of the waves as observed by this technique

is so many feet does not permit an estimate of the higher waves or

of their frequency of occurrence.

Most observations of wave heights at sea do not even possess the

property of being the average of the highest part of each short- crested
wave in the field of view of the observer. They are even cruder
estimates of the "significant" height as made by looking out over the

sea surface and guessing as to a characteristic height of the waves.
Such estimates are unreliable because they depend subjectively on
the observer and on the type of ship from which the observations
are being made since the scale of the waves relative to the size of

the ship influences the observer's choice of the characteristic height.

From the above discussion, it would appear that either just looking
at the waves and assigning a characteristic height or just writing
down a few heights of waves scattered about over the sea surface
and computing the average is not an adequate method of visual ob-
servation. Knowledge of the wave height distribution, of the errors
inherent in the sample size, and of source of observer error must
be developed theoretically in order to make the interpretation of

observed wave heights reliable.



Consider the observation of the heights of all waves that pass a fixed

point. Such an observation could be made instrumentally by a wave- pole

recorder, or it could be made just as easily by an observer if he

knew that this was the correct procedure. Some of the theoretical

properties of such a series of observations are known, and therefore

their accuracy can be determined. The theory which is to be given is

therefore based on the observation of the heights of all waves which
pass a fixed point of observation. Once the distribution of the heights

of all waves is known, it then becomes possible to omit the observation
of some waves in a precisely defined way and still obtain reliable

results.

The theory can be extended to cover the properties of the heights

of all waves that pass (or are passed) by a moving point. Thus a point

fixed in azimuth and distance relative to a moving ship can be used
just as well as a stationary point.

The heights of the waves that pass a fixed point are lower than the

heights of the highest part of each short- crested wave since the side

of a short- crested wave can pass the point and the highest part can
pass at a distance from the point of observation. Since these heights

are the same as would be encountered by a ship under way, they are
also of practical importance.

B. The Theory of A Wave Record

An ocean wave record is a sample from a quasi- stationary Gaussian
process which is completely described by its energy spectrum. Much is

known about the theory of such Gaussian processes since they have been
studied extensively in electronics and in communication theory by Rice
(1944), Wiener (1949), and Tukey (1949).

1. The Envelope

There are a number of ways to define the envelope of a wave
record. For one way that is used, it can be shown that the envelope will

touch each crest of the wave record only if the wave spectrum is

narrow, and that the envelope is always distributed according to equation

(1) as discussed below. For another way that is used, the envelope is

defined to touch each horizontal part of the record, but then the

probability distribution of the envelope reflects ripples and other minor
(for this application) irregularities and only reduces to equation (1) for

narrow spectra.*

Personal communication, R. A. Wooding; see also "Wind Generated
Gravity Waves" by W. J. Pierson, Jr. (1954).



2. The Amplitudes

If the spectrum of the waves is narrow, the probability distribution

of the amplitudes is known (Rice, 1944). As in figure 2, a sufficient

number of amplitudes read from the record will have a known proba-

bility distribution function. If the spectrum is wide, the distribution

is unknown. However, it would appear from the theoretical results

of Neumann (1953) that even a fully developed sea wave record will

be approximately distributed in amplitudes according to this known
distribution.

Given, then a wave record and a set of wave amplitude observations

which are from a long enough record, the amplitudes will be distributed

according to the law given by equation (1)

g(x)dx=^-V x2/E
dx <

X
>

for 0<x<oo,

Which means that the probability that a given amplitude, say, £ , will

have a value between x and x + dx is given by equation (1). This
probability distribution is often called the target distribution and also

the Rayleigh distribution. It is related strongly to the Chi- square

distribution.

The mean wave amplitude is found from equation ( 1) as in equation (2)

f
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(2)

The number E has the dimensions of square feet, and it represents
the sum of the squares of all of the amplitudes of the infinite number
of infinite simally high sine waves which add together to make up the

total wave record. The average amplitude of all the waves is equal to

0.886v^.

The second moment about the origin of equation (1) can also be found.

It is given by equation (3) since the integral from zero to infinity of

equation (1) is equal to one.
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Another useful function derivable from equation (1) is the cumulative

distribution function, which gives the probability that an amplitude

will be less than or equal to the value x. It is given by equation (4)

-I
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Z/E -X 2/E
F(x) = J

-^e d77=l-e (4)

From this equation, table 1 or any other percentile distribution can be

obtained.

Table 1 stops at 90 percent. One hundred percent of the waves have

amplitudes less than infinity, which is all that can be said from
equation (1) or equation (4). Theoretically, at least, a wave of very great

amplitude is always possible.

Table 1

Wave amplitude data in cumulative
ascending 10% values

10% less than 0.32v/e

20% less than 0.47,/E

30% less than 0.60./E

40% less than 0.7 lv^
50% less than 0.8371:

60% less than 0.96,/E

70% less than LIC^E
80% less than 1.27,/E

90% less than 1.52^/E

However, some very ingenious results of Longuet- Higgins (1952)

can be used to avoid this difficulty. Longuet- Higgins studied the

probability distribution of the highest wave amplitude out of N waves.

From this he calculated the average value of the highest wave out

of N waves. If a wave record containing a total of NM wave amplitudes

is broken up into M pieces of N waves each, and if the M highest



amplitudes, one for each piece, are selected and averaged, the amplitude

value is given by table 2. For a given observation of N amplitudes, the

expected value of the highest amplitude is given by table 2. The very
high waves are rare.

Table 2

Greatest wave amplitude data

Expected value

N of highest

wave amplitude

20 1.87 Jt
50 2.12 y/t

100 2.28 v/E
200 2.43 ./E

500 2.60 V£
1000 2.73./E

From the probability distribution function of the highest wave of

N waves as given by Longuet-Higgins (1952), it is also possible to

compute the most probable height, the height exceeded by 95% of the

individual observations, and the height exceeded by 5% of the individual

observations. These data are given in Pierson, Neumann, and James
(1955).

The average amplitude of the K percent highest waves, as shown by
Longuet-Higgins (1952), can be found from the appropriate truncated
modification of equation (1). The value of X, say X , such that K percent
of the waves have amplitudes greater than that value, is first found by
solving (4) as given by equation (5).

" x2k/E

or
l-e * 7

= l-U/ioo)

- x
2

/E
e k/ = k/ioo

(5
,

The result is that the probability distribution function of the K
percent highest wave amplitudes is given by equation (6).

, . . 100 2X " x /E
g(x) dx =— -jr-e dx

(for X < x < oo and zero otherwise)

(6)



In equation (6), the value of the integral is equal to one by virtue of

the fact that X is chosen by (5). Stated another way, the probability

distribution function* of the K percent highest waves is found from
equation (1) by finding that part of the area to the right of a given

point on the x axis such that it equals K percent of the total area, and

then the truncated part is amplified 100/K times so that the area under
the curve will again equal one.

The average amplitude of the one- tenth highest amplitudes is given

by 1.800 ^/e, and the average amplitude of the one- third highest

amplitudes is given by 1.416 ^/E.

3. Wave Heights

In a simple sine wave, doubling the amplitude gives the crest-

to-trough height of the wave. In an irregular wave record this is not

necessarily the case. A study of any wave record, as for example,
figure 2, shows that a succeeding trough does not necessarily go as

much below sea level as the crest it follows goes above sea level.

In a swell (or equivalently, with a narrow spectrum), the succeeding

trough is well correlated with the crest and the wave heights are

approximately twice the crest amplitude. In a sea, where the spectrum
is broader, this is not the case.

The results given above for wave amplitudes then need not give

results applicable to crest- to- trough wave heights. Apparently, however,
they apply, in many cases, to wave heights as well.

The results of Seiwell (1948) and Weigel (1949) in an analysis of

wave heights bear this out in that such values as the ratio of the

significant wave height to the mean wave height and the mean wave
height to the average of the one- tenth highest waves all agree well

with the theoretical values which would be obtained by doubling the

values given above and interpreting the results as wave heights.

The most complete study of the problem is found in a paper by
Watters (1953) where the crest- to- trough heights of 109 records
were studied. It was found that the heights were distributed according
to the distribution given by equation (1). The histograms given of the

wave height distributions are just what would be expected from the

sample size and the theory of sampling. The Chi- square test was
applied to 38 of the records studied, and remarkably consistent results

were obtained which conclusively prove that the distribution given
by equation (1) is valid for the wave heights studied.

Hereafter this expression will be abbreviated to p.d.f.



The results cited unfortunately are not interpreted in terms of the

spectrum of the waves. The records were pressure records in which
the spectrum is made narrower by the filtering effect of depth; also,

many may have been swell records with narrow band.

It may be that records of sea waves with a broad spectrum will

have amplitudes distributed according to (1) and that the heights will

not be distributed according to (1). On the other hand, the sharper

peaks and shallower troughs which are the result of nonlinear effects

may make the heights more like equation (1) and the amplitudes skewed
in distribution.

When the wave amplitudes vary erratically from crest to succeeding

trough, as in a sea, the theoretical distribution of the heights is a

very difficult problem in probability theory because the succeeding
trough is partially correlated with the crest.* If it were uncorrelated,

the p.d.f. of the sum of the two values from equation (1) could be found
and this would be the p.d.f. of the wave heights. This is not the case,

however, and the true height distribution in a sea may depend in a

complicated way on the spectrum of the waves. From these results

several conclusions can be reached.

One conclusion, then, may well be that wave amplitudes follow

equation (1), but that wave heights do not follow equation (1) in some
circumstances. Another is that wave heights do follow equation (1) in

some circumstances. The third is that the assumption that wave heights

do follow equation (1) is about the best theoretical assumption that

can be made at the present time because in many cases the assumption
will be approximately correct, not leading to appreciable error, and
because the complete theory has not been solved.

4. Spectrum Really Needed

If an actual ocean wave record is available, its amplitude distri-

bution, or its height distribution, is not the most important property
of the record. The energy spectrum of the record is what is really
needed for many practical applications and without it little of real
theoretical value can be accomplished.

C. Visual Height Observations

1. Reason Needed

There are many cases in which visual observations of ocean wave

*As pointed out by Dr. Robin A. Wooding of New Zealand in personal

correspondence.



heights are the only way to obtain wave data. They are also, in many
cases, the only way to verify a wave forecast. A visual observation

can never yield more than a crude estimate of the wave spectrum.

However, it can be taken in a way which will yield an estimate of the

average wave height, a verification of the distribution given by equation

(1), and an estimate of the reliability of the observed values.

The results to be described are applicable to the type of observation

made on ships at sea such as the sea state conditions reported by

Atlantic Weather Patrol personnel and seamen on naval vessels. If

these results are applied to such observations, the utility of the

observations can be expected to increase greatly. The procedures to

be described have been tested by Atlantic Weather Patrol personnel,

and they do work.

2. Applicability of Theory

The theory discussed above has established the following points.

1. The waves must be observed at a fixed point or at a moving
point because scatter- shot observations cannot be treated

theoretically.

2. The p.d.f. of the amplitudes is very nearly given by equation

(1) and the p.d.f. of the heights may well be approximated by
doubling the values given in equation (1) and in the tables.

3. The successive waves are not independent occurrences and
there is a correlation between successive amplitude values

(and successive height values).

From these results, an attempt will be made to determine the

reliability of wave height observations.

The wave observer is assumed to be keeping his eye on a fixed point

on the sea surface (or on a point fixed relative to the moving vessel on
which he is stationed). He sees a series of waves pass this point. He
does not know the level of the sea surface and therefore he must estimate
crest-to-trough wave heights. Waves with heights ranging from near
zero to very large values will be passing the point at which the observers
attention is fixed. It is assumed that the observer is estimating the

heights as carefully as possible and that a tabulation of the observed
heights is made.

A wave height is defined to be the difference between the height of

the highest part of a mound above sea level and the deepest part of the

10



neighboring trench below sea level. Perturbations and smaller waves
such as the one at T3 in figure 5 are not counted if they do not pass
through sea level.

The first danger which will make the observation less useful is a

tendency to ignore the low waves. The observer in tabulating the heights

of the passing waves may see many low waves and, because they appear

insignificant compared to the more dominant waves, may fail to write

them down. The average of the recorded values is then greater than

the average of all the values, and since the nature of the omitted waves
in unknown, the two values cannot be related.

The observer must therefore .attempt to record the heights of all

the waves that pass the point of observation if the observed values are

to approximate the distribution given by equation (1).

This can be done, but it is difficult to do because almost invariably

the observer will omit the low waves from such tabulations. Emphasis
on this point and its importance may, in time, make it possible to obtain

a complete sample of wave heights. If not, the theory of a truncated
distribution can be used to avoid this difficulty in a way which will be
discussed later.

3. The Average Height

After a sufficient number of heights has been recorded, the

average height is the simplest and most useful statistic which can be
computed from the data.

Even in a sea, if the heights are a correct estimate of E, the ampli-
tudes are distributed according to equation (1).

Consider figure 2. The first wave height equals £ + £ . The second
wave height equals £ + £ and so on, therefore the average wave
height is given by equation (7)'.

(£+£)+ (£+£)+-+(£ + £ ) 2n >
H=^-J !_! ^zJ ^- = f£ll = 2£ <

7
>

N ^ i-\ N

Even if the successive amplitudes combine to give height values
unrelated to the target distribution, the average wave height is still

equal to twice the average wave amplitude, and, under the assumption
that the amplitudes are from a target distribution, the value of E
can be estimated.

11



Figure 2. Envelope and Amplitudes of a Wave Record.

Figure 3. An Artificial Wave Record.

Trough Amplitude Equals Preceding Crest Amplitude.

Heights Are Uncorrelated.

12



4. Reliability of the Average Height

The expected value of the average height equals the expected

value of a random variable from the population. Therefore the average

value of a sample of N observations is an unbiased estimate of the mean
of the theoretical population. There will be no systematic error in the

estimate of the average.

If enough assumptions are made about the nature of the observations,

the confidence limits of a particular estimate of an average wave
height can be found. These assumptions are not too realistic. They
will have to be modified qualitatively after the derivation is complete,

but at least they permit the statement of some practical rules applicable

to height observations. The following assumptions are made:

1. Each trough is correlated with the value of unity to the

preceding crest.

2. The crests are completely uncorrelated (i.e., the height of a

wave is independent of the height of preceding and following

wave s )

.

3. The amplitudes, and therefore the heights, by reason of the

first assumption are distributed according to the target

distribution.

A total of N wave heights then corresponds to a total of N independent
amplitude observations, and a wave record with these properties (it

does not exist) would look like the record sketched in figure 3. (It is

interesting to note that the amplitude values could be completely
uncorrelated and that the autocorrelation function of such a record
would still show a well-developed oscillation through plus and minus
values.)

A theorem in statistics can now be used to study the average value
of these N wave amplitudes. The central limit theorem of statistics

states (Cramer, 1946, page 215, for example) that: "If £. £ 7 £
are independent random variables all having the same probability

distribution, and if m and cr denote the mean and the standard
deviation of every £ , then the sum

{
N

£
(8)

is asymptotically normal" with a mean Nm and the standard deviation,

13



„ r "It follows that the arithmetic mean
1. V N

1 ± N
ir

C : nU (9)
I v

is asymptotically normal "withameanm and a standard deviation,

This central limit theorem works remarkably well in many cases

for small values of N. For example, the faltung (or convolution) of three

samples from a rectangular distribution even then approximates a normal

distribution, and for the target distribution, it may well be that the

theorem is applicable for values of N as low as 9 or 16 for practical

purposes.

It is necessary to calculate the second moment about the mean of the

distribution given by equation (1). This is found by means of equation

(10) -

z r
/X2= a;

2

=y
o

a)
(x-^Ly-E)

2

^x
e
-x

2
/E

dx

fCDjLX
3

e
-X

2
/E 2_vWE rc02x

a
e
-X

2
/E

dx+
.
E
^CD2X -X

2
/E

dx
=
J

E 2 Jo
4

Jo E <
10

>

= E-^E + ^E

= E (l~Jl

From the above theorem, the computed mean of a sample of N observed
wave amplitudes will be normally distributed with a mean given by
equation (2) and a second moment about the mean given by equation

(10) divided by N.

The variable z defined below is therefore distributed according to

a normal distribution with a zero mean and a unit standard deviation.

-? -

—

(ii)

-/(I-J1E/N

It is now possible to compute the probability that z will lie between

any two values under the unit normal curve. The probability that z will

14



lie between the two values -B and +B as given by the area under the

curve from -B to +B can be computed and set equal to A as in equation

(12).

P (-B< Z<B)= A (12)

If, for example, B equals 1.65, then A is 0.90. That is, nine times

out of ten, z will lie between -1.65 and +1.65.

Some operations on equations (11) and (12) can now be carried out.

The first result is equation (13), and the purpose of the operations is

to get the symbol ^/E inside the inequalities and £ outside the

inequalities.

- B < — — <B.
V (I-?) E/N

Equation (13) can be written as

(13)

B< v/ (|-Z )E /N 2 7(|-J)/ N
<B

- (
14

>

This yields

< — 2 < R+ ^
and

B+ yir
<

<°
< B +

2«/(|- J)/N V(\~f)E/U 2 V(\-f )/N

-Bv/
(i_|:)/N + yV2 BV(l-2)/N + V^/2

3—= < _L < 41

(15)

f v'e £ (16)

Finally, by inverting equation (16) the result is

<>/e< -—_-4__— • (17)
v^72+B7(|-J)/N /?2-B7(|-^)/N

The mean amplitude gives an estimate of E which will be called Em

15



as defined by equation (18).

/— t— (18)

When this is substituted into equation (17) and when simplifications

are made, the final result is given by equation (19).

V N tt -
1 VN tt -

|

The value of +/K is obtained from the observation of the waves.

Usually it is not equal to the true value of ^K. From the above inequality

the bounds within which the true value of ./E will lie, say, 90% of the

time, can be found by multiplying */E by the factors determined from
(19) with B equal to 1.65 and N equal to the number of observations.

For typical values of N, the results of equation (19) yield the values

given in table 3 as entered in the columns marked "theoretical."

Table 3

Confidence values of ^/em
Lower Value Lower Value Upper Value Upper Value

N (Safety factor) (Theoretical) (Theoretical) (Safety factor)

9 0.71 v/E 0.7871: 1.40VE 1.68 -/Em m m m
16 0.76 ,/E 0.82 VE 1.28VE 1.44VEm m m m
25 0.807e 0.85 7e 1.21 /E 1.33 ./Em m m m
50 0.85 Ve 0.89yE 1.12./E 1.21^1:m m m m

100 0.89%/E 0.92./E 1.09 -n/e 1.12yEm m m m
200 0.92^1: 0.94 VE 1.06 >/e 1.09 -/em m m m

16



The techniques used in the above derivation are a standard part of

statistical theory. For another example of how they may be applied,

see Wilks (1951), pp. 195 through 201.

Exactly the same factors multiply the average height values or the

significant height values, since both are simply constants times V/Em.

For example, if 25 values of £ were obtained from the artificial

wave record given in figure 3 under the assumptions which were listed,

and if the observed mean wave amplitude was 10 feet, then the true

wave amplitude as computed from a much larger sample from the same
population would be between 8.5 feet and 12.1 feet for 90% of such
experiments. If on the other hand the value was based on 100 amplitudes,
the true value would be between 9.2 feet and 10.9 feet for 90% of such
experiments.

What has the above derivation to do with actual ocean waves since

the properties assumed in the derivation were shown not to be properties
of actual waves? The answer is that it appears that the values given
are the narrowest bounds possible and that the effect of correlation
is always to make the bounds even wider. That is, if the above theory
says that the bounds are between, say, 7 feet and 13 feet for a given
estimate, then the effects of correlation in the heights make the true

bounds even greater, say, from 5 feet to 15 feet.

The true confidence limits of such an estimate will probably not be
known until the study of time series has advanced in this theoretical

direction. The range of the theoretical bounds as given above is an
underestimate of the range of the true bounds. The true upper bound
is greater than the theoretical upper bound, and the true lower bound
is less than the theoretical lower bound.

The model that was made up applies fairly realistically to a series
of observations of wave heights as would be made in an actual visual

observation. The correlation of unity between a crest amplitude and
a succeeding trough amplitude makes each wave height an independent
observation instead of the sum of two independent observations which
is realistic in the sense that wave heights have been observed to be
distributed according to equation (1). Thus the average of N wave heights
should be considered to be the average of N independent observations,
and table 3 would apply to the computed values.

The assumption of independence for the individual height values is

more to be questioned. As stated above, the effect of correlation is
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to spread out the confidence limits, since the effective number of

observations is decreased by the correlation between values. Another
model could be constructed in which two successive complete waves
are correlated with the value unity and all parts are independent.

Such a record (again an impossible one) would be like figure 4.

Then N wave height observations are really N/2 independent obser-

vations. With the use of N/ 2 instead of N in table 3, the confidence

limits given in table 3 with a safety factor were obtained. This safety

factor is thus a very crude attempt to estimate the effect of stronger

correlation between successive waves.

Figure4. An Artificial Wave Record.

Trough Amplitude Equals Preceding Crest Amplitude.

Heights Correlated with the Value of Unity, Two by Two

5. Practical Conclusions

From these results, it is evident that at least 50 wave heights

must be observed and tabulated before a reliable estimate of the

average wave height (or .,/E) can De found. Very little confidence

can be placed in an estimate based on 25 values; 100 values would
be much more reliable. If 100 values are observed, if every wave
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is recorded, and if the average wave "period" is 10 seconds, then

such an observation requires nearly 20 minutes to make. A wave

observer must take sufficient time to make an adequate observation.

A good observation simply cannot be made in just a few minutes.

6. Truncated Distribution

As the wave observer looks at the waves, there are times when

low waves pass. For example, with E equal to 100 ft. 2 « the significant

height would be 28.3 feet. One wave out of 10 would be less than 6.4

feet high; compared with the more dominant waves, there would be a

very strong tendency to ignore some of these low waves.

When this is done, the problem is what to do with the observed

values which have now become a sample from an unknown population,

since the probability that the observer will ignore a given low wave

is an unknown factor.

The first thing that must be done is to truncate the theoretical

distribution sharply. That is, equation (1) must be set equal to zero

for all x less than a certain value and then correctly normalized.

If the low waves are to be ignored in the tabulation, then all low waves
must be ignored and not just some unknown and unspecifiable fraction

of the values within a certain class interval.

There are two ways to truncate the distribution. The first way
is to discard a certain fixed percentage of the lowest waves of all the

waves that pass a given point. The second way is to discard all waves

less than a preassigned height value.

7. Truncated Distribution at a Fixed Percentage

The first way, namely discarding a certain fixed percentage of

all the lowest waves to pass a fixed point of observation, is inherent

in the concept of the significant height. The significant height is the

average of the heights of the 33 percent highest waves to pass the

point of observation.

To observe the significant height correctly, the following procedure
could be used. The observer would watch the waves pass the fixed

point. If a high wave passed, he would note down its height. If a low

wave passed he would simply make a check to note the passage of the

wave. A series of recorded heights and checks would be the result.

The total number of heights and checks, say M, would be counted up,

and the sum divided by 3. The observed heights would then be put in

19



descending order, and the highest M/ 3 values selected. The average
of the M/ 3 highest waves would then be the significant height.

As an example, consider the series of recorded values given below
as they may have occurred in an observation:

-/. •/» */• &• •/ -/> 6» s, j, J
J, 6, 6, 8, 10 12, 8, 6, 6, J
V, 6, 6, 8, 8 10, 12, 14, 16, 12

8, 6, 6, Vi v v» •/• -«/» &> 6

6, 6, 8, 8, 10 8, 6, 6, J, *J

•/, v» v» 6, 6 8, 6, 8, ,/, v^

V. y/, V, /. v7 6, 6, 8, 8, 10

10, 10, 8, 6, 6 y, y, ^ 6, 6

6, 6, 8, 8, 8 6, 8, 10, 8, 8

(>, «/,-/,«/, <y 6, 6, y, j, y

There is a total of 100 height observations. There are 37 check
values for low waves less than 6 feet high. There are 31 six-foot

waves, 20 eight-foot waves, and so on.

The lowest two- thirds of the waves must be eliminated from the

computations, so the sixty- seven lowest waves must be left out. The
thirty- seven lowest waves automatically drop out, and then thirty

of the six-foot high waves are eliminated. Thus the one- third highest

waves consist of the values of the heights greater than six feet and
one six-foot wave to make up a total of 33.

The average of the one- third highest waves is then computed according
to the following procedure:

Height

6

8

10

12

14

16

TOTAL

Numb



There are a number of disadvantages to this procedure. The total

number of waves which pass must still be counted. How can the one-third

highest waves be counted if the two- thirds lowest waves are not

counted also, so that it will be known that the one- third highest waves

are actually some one-third of a total number of waves?

Also if the significant height is computed, a large number of the

waves which pass cannot be utilized in computing a statistic about the

height. Many fewer usable values are obtained during a given time

duration for the observation. A lot of time is wasted doing nothing.

With the aid of the truncated distribution for K equal to 33 percent,

the mean of the distribution and the standard deviation could be found.

Then the steps used above to determine confidence limits for samples

from the complete distribution could be used on the mean and second

moment of the truncated distribution to determine the confidence

limits of a significant height determined from N observed values. The
results would be more reliable for a given N because some (but not

all) of the correlation effect would be removed. However it would take

three times as long to observe the N elements of the sample.

Exactly similar procedures could be used with any other percentage

of the highest waves. However, in each case the total number of waves
which pass must be observed.

8. Truncated Distribution at a Fixed Height

The second way to truncate the distribution is to eliminate all waves
less than a certain fixed height and observe every wave in excess of

this fixed height. For a given state of the sea the observer might

record all heights greater than, say, 4 feet. For a higher sea all

waves in excess of 10 feet could be recorded.

It is then possible to compute the average of the observed values

and from this the true average of all the heights, including those

which were not recorded, and any other desirable height parameter.
The theoretical derivation is given in the following paragraphs.

Let the minimum height recorded be equal to H Then £

equals H /2, and the theory will be worked out using amplitudes!

The results must be doubled at the finish to obtain the height parameters
needed.

/
,3

°2X
e

" x2/E dx= l-e" fW/E
^> r

Since / 2X P -x /E dx = ,_ p
- C min./E (20)

E

min.
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the truncated distribution is given by

g(x)= 2X e
X /E dx for

min. /E )

min.
< x <00- (21)

The percent of the low waves omitted simply equals

>. 2

100 ( l~e " £ min./E )
(22)

The average amplitude of all of the waves that are higher than

c is given by the first moment of equation (21), and the evaluation

of the' integral yields the following result for £ * which is defined to

be the average amplitude of all waves in excess of £6 ^ ^ min.

) 2 - XV

E

2 x*e dx - xer-j
x 2/E

i E ( I- e"
€ min/E

) ,_ e
"^min/ E

min.

CD

/
CO

mm.

X
2/E

I ^min.
'~ e

^F~i
dx

f . e
"^

min-/E + /mia J

00 _XVE
e dx

(23)

*o min.

[|-e"£min./E
]

The last integral inequation (23) is the integral of the normal distribution

between known limits. It can easily be evaluated from tables.

Equation (23) is a function of three variables, £ *, £ min., and E.

Any two determine the third. Suppose then that the heights of all waves
greater than 4 feet are recorded, and that the significant height of the

waves is 8 feet. The significant height determines E, and then £ *

can be computed. Under these conditions the average height of all waves
greater than 4 feet is 6.64 feet. The percent of waves omitted can be

found from (22) and in this case it equals 39.4 percent.
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Table 4

The significant height, average height, and percent of waves omitted in terms of the average
height of all waves in excess of 4, 10, or 20 feet

AVERAGE HEIGHT OF
ALL WAVES GREATER 4.86 5.30 5.70 6.16 6.64 7.22 7.68 8.80 9.82 11.04 12.3
THAN 4 FEET

AVERAGE HEIGHT OF 2.50 3.13 3.75 4.37 5.01 5.63 6.25 7.50 8.76 10.0 11.3
ALL WAVES

SIGNIFICANT HEIGHT 4 5 6 7 8 9 10 12 14 16 18

% OF WAVES OMITTED 86.6 72.2 59.0 48.2 39.4 32.9 27.6 20.0 14.5 12.4 10.0

AVERAGE HEIGHT OF
ALL WAVES GREATER 12.06 12.88 13.50 14.7 15.7 16.6 18.52 21.08
THAN 10 FEET

AVERAGE HEIGHT 6.25 7.50 8.76 10.00 11.3 12.5 15.0 17.8

OF ALL WAVES

SIGNIFICANT HEIGHT 10 12 14 16 18 20 24 28

% OF WAVES OMITTED 86.5 75.1 63.9 54.2 46.3 39.4 29.5 23.2

AVERAGE HEIGHT OF
ALL WAVES GREATER 22.7 25.4 27.5 30.4 33.4 36.8 39 43
THAN 10 FEET

AVERAGE HEIGHT 20.0 22.5 25.0 28.1 31.3 34.3 38.8 40.7

OF ALL WAVES

SIGNIFICANT HEIGHT 32 36 40 45 50 55 60 65

% OF WAVES OMITTED 18.0 14.5 12.4 10 7.5 6.5 5.6 4.6

AVERAGE HEIGHT OF
ALL WAVES GREATER 33.16 35.3 38.3 42 42.8 47.2 48.4 54.8 63 66
THAN 20 FEET

AVERAGE HEIGHT OF 25 28.1 31.3 34.3 38.8 40.7 43.7 50.1 56.3 62.5
ALL WAVES

SIGNIFICANT HEIGHT 40 45 50 55 60 65 70 80 90 100
% OF WAVES OMITTED 39.4 32.9 27.6 23.7 20 17.5 14.5 11.5 10 7.5
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Table 4 gives the data needed for typical significant heights. In

an actual observation the number obtained is the average height of

all waves in excess of a certain height, and the table then gives the

true significant height, the true average height of the total sample,

and the percent of waves omitted.

In each entry, the average height of all waves is less than the average

height of all waves in excess of some fixed height. Thus the tendency

to ignore the low waves can make a visual observation quite unreliable

unless corrections for the omitted waves are made theoretically.

Note also that as the percent of waves omitted becomes smaller the

difference between the average of the truncated distribution and the

average of the full distribution becomes less and less and less.

9. An Example

The data obtained by the USCGC UNIMAK from 1800 to 1900Z on

February 14, 1953 give an example of the procedures which can be

employed in the use of the theory of a truncated distribution.

The original raw data were first of all averaged to determine the

average height of the reported waves. Then the value of vE was
computed. From this and table 1 the theoretical distribution can be

compared with the observed values. The result is given in table 5.

Table 5

Data obtained by USCGC UNIMAK 141800Z to 141900Zof February 1953
Average Height 15.5 feet (uncorrected)

Significant Height 24.5 feet (uncorrected)

Limits



From the table it is seen that the waves between heights of zero and

5.6 were simply not observed although there should have been about

five of them in a sample of fifty values under the assumption that the

true mean was 15.5 feet. Also the mean of 15.5 feet implies that there

should have been five waves greater than 26.6 feet and only one such

wave was actually observed.

Now, the heights of all waves in the original sample which are greater

than 10 feet can be averaged. The result is an average of 17.1 feet,

and by the application of the results given above it follows that a better

estimate of the significant height is 20.9 feet and that a better estimate

of the average height of all waves is 13.1 feet. The results are summa-
rized in table 6.

Table 6

Corrected data on the basis of the theory of truncated distributions

Average of heights greater than or equal to 10 ft. = 17.1 ft.

Significant height = 20.9 ft.

True average height = 13.1 ft.

Limits

10

Theoretical

Frequency

26

10-12
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10. An Overall Check of the Theory.

During a two- week period in February 1953, the Weather Bureau
observers on the various coast guard cutters of the Atlantic Weather

Patrol made visual wave observations which were to be used as a check

of the forecasting procedures given by Pierson, Neumann, and James

(1955). A check for internal consistency of the data showed that the

observations had been carefully made.

The height observation for a particular report consisted of the

tabulation of 50 individual crest- to- trough heights. A considerable

range of height values was reported for each observation. For a given

observation, the reported height values would range from 10 feet to

30 feet, which appeared to agree with the theory that the wave heights

were distributed according to equation (1). The average of the 50

reported heights was computed, and the significant height was found

from the average height by multiplying the average height by 1.416/0.886

(or 1.60), which is the ratio of the significant height to the average

height.

Twelve of the reported observations were selected because of the

high waves that were present. Forecasts based on the theory of the

manual by Pierson, Neumann, and James (1955) were prepared without

knowledge of the observed values. The results of the comparison of

the forecasted values with the observed significant heights computed
as described above are presented in table 7 under the heading, Observed
Significant Height (no correction) and Forecast Significant Height.

The results of the comparison of the forecast and observed values

were most disappointing. Errors as big as 17 feet resulted. The average
forecast error was 8.6 feet. There was also a definite bias in that all

but two of the forecast values were less than the observed values. The
column labeled Error (uncorrected observations) shows these results.

There was evidently something wrong!

At that time, none of the work on confidence limits or on truncated

distributions as discussed above had been applied to the data although

the theory was a standard part of statistical texts as it is given, for

example, by Cramer (1946) and Wilks (1951). The theories discussed

above were then developed and applied to the observational data.

A closer look at the reported height values shows that the heights

did not follow the distribution given by doubling the coefficients in

table 1. The low waves predicted by the probability distribution

function were either missing or reported in far too small a proportion.

27



However, it was known that equation (1) was quite likely to be the

true distribution of all wave heights as evidenced by the works cited

above; and in addition the forecasting method which was being tested

had worked well when compared with actual wave record observations.

It was evident, therefore, that the observers had not been able to

observe and record the low waves that had actually occurred. As
shown in the UNIMAK example, with a significant wave height of 20.9

feet, 26 waves out of 67 should have had a height less than 10 feet.

Only 50 waves were actually recorded, and 17 waves less than 10

feet high were omitted.

Histograms of the data were plotted, and the observations were
truncated at that height such that the distribution above that height

resembled a truncated distribution as given by equation (21). From
this truncated distribution the new corrected average height and
corrected significant height were computed.

The values which resulted are entered in table 7 under the heading
Observed Significant Height (corrected). The result was to decrease
each value by an amount which depended upon the nature of the original

sample. Some heights were decreased by as much as six feet, and the

average decrease was 3.75 feet. The decrease is tabulated under the

entry labeled, Decrease.

The forecast values and the corrected observed values then agreed
far better than the forecast values and uncorrected observed values.

Some of the largest errors were decreased a great deal. Seven of the

twelve forecasts were within plus or minus five feet of the observed
values. The forecast values still had a tendency to be lower than the

observed values.

When the truncated distribution is used to determine the significant

wave height, the confidence limits determined from the full distribution,

strictly speaking, should not be used to obtain estimates of the reliability

of the observations. The correct procedure would be to use the mean
and second moment about the mean of the truncated distribution in a
derivation similar to the one given above.

However, such a derivation would have to be carried out for many
different cases, and it is believed that the final results would not

improve too much on the estimates obtained from the theory derived
above as based on the full distribution.

The confidence limits derived above can be applied to the results
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obtained in table 7 with the reservation that the results are only

approximate. In table 7, the 90 percent confidence limits are given

on the assumption that the observations consisted of 50 independent

height values. For example, for the observations made by the USCGC
MENDOTA on 2 September 1953 at 1200Z, the Observed Significant

Height (corrected) was 28 feet, and 90 percent of the time (under the

assumptions which were made) the true significant height would be

between 25 and 32 feet on the basis of many more observations.

The forecast error as a departure of the forecast value from the

closest value of the 90 percent confidence limits is then entered as

the band error for 50 independent observations.

The band error is a better measure of the discrepancy between the

forecast and observed values because it does not penalize the forecast

value for the unavoidable observational error which is due to the small

sample size.

Three of the twelve forecasts are within the 90 percent confidence

of the observations. Four more are within three feet of the 90 percent

confidence limits. When the band error for an assumed 50 independent

height observations is studied, it is seen that the forecasts are quite

accurate.

The last two entries of the table show the 90 percent confidence

limits on the assumption that the heights are really only 25 independent

observations. This permits a spread of ten feet between the upper and

lower bounds of some of the limits. For more precision it is evident

that visual observations should consist of 100 observations at least,

in order that it would be possible to be sure of somewhere near 50

independent values.

Under these conditions, four forecasts fall within the 90 percent

confidence limits. Five more fall within five feet of the 90 percent

confidence limits. Under these conditions, though, the confidence limits

are so broad that the observations are of little use in saying anything

about the wave properties. One of the purposes of this paper is to show
that reliable observations are needed and that they cannot be reliable if

enough individual values are not observed.

There is a consistent bias running through the data. The observed

values consistently run higher than the forecast values. Much more
data need to be collected before this bias can be established as real

or false. There is, though, a possible explanation for this bias. It

is that the observers did not keep an eye exactly at a fixed point on
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the sea surface. If each observation had a little extra height added

to it as the observer looked along the crest to the highest part of the

crest, then the average of these heights would tend to be higher than

the average of the heights of the waves passing a fixed point.

11. Other Errors

There is finally the question of the reliability of the height estimates

as made by visual observations. Can an observer estimate the wave
height of a wave thirty feet high within plus or minus two or three

feet? Any such error, if consistent, in the estimation of the individual

wave heights would introduce errors in the reported values. Very
little is known about the nature of such errors, but there does seem
to be a tendency to overestimate wave heights when visual observations

are made. A cheap easily used instrumental aid for the measurement
of wave heights would be a very useful device to be supplied to ship's

personnel taking wave observations if such an instrument could be

devised.

When the possibility of observer error, in addition to statistical

error, is considered, it is seen that the results of table 7 are a good

test of the theories given above and of the forecasting methods which
were verified against the height observations.

12. Summary

In summary, based on the above results, the following rules can

be given for the visual observations of wave heights:

(1) The heights of the waves passing a fixed point should be

observed. (The point could also be fixed relative to a moving
ship.)

(2) All heights should be recorded (or if this is too difficult,

all heights in excess of a fixed lower bound should be observed
and the theory of the truncated distribution then used).

(3) At least fifty values, preferably one hundred values, should

be recorded.

(4) Table 3 then gives values for the confidence limits to be

placed on the observations. The value is more exact theo-

retically if all waves are observed, and it is approximately
correct when a truncated distribution is used.
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III. VISUAL "PERIOD", "WAVE LENGTH", AND "SPEED" OBSER-
VATIONS

A. Definition of Terms

Part of the difficulty in making wave observations and wave record

analyses lies in the loose interchange between theory and practice of

two distinctly different meanings of the word, "period".

A period of a simple harmonic progressive wave is a number with

a precise mathematical meaning. A true period will be underlined in

this paper, and it will be designated by the symbol, T.

The time interval between two successive characteristic points

in a wave record, such as the wave crests or the zero up- crosses, is

not a period in the exact mathematical sence since a wave record is not

periodic. These time intervals will be called "periods". A wave record

has many different "periods". A simple sine wave has only one period.

"Periods" in this sense will have quotation marks around them. The

individual "periods" will be designated T. as they are enumerated in

an observation or from a wave record; and the average "period", that

is the average of all of the observed "periods", will be called T.

Similarly, wave length , (L), and "wave length", (L), will be discussed.

For additional discussion of these terms, see Pierson (1954) and Pierson,

Neumann, and James (1955).

Figure 5 illustrates the analysis of a wave record for its various

Figure5. The Definition of the "Periods" in a Wave Record.
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"periods". The "periods" are designated by T. T and so on. In such

a wave record it is theoretically wrong to' equate these observed

"periods" with the period of a simple harmonic progressive wave.

B. Visual "Period" Observations

1. Theory of the "Period" Distribution

The probability distribution function of the time intervals between

successive wave crests is not known. Rice (1944) has given a formula

that gives the mean of this unknown distribution in terms of an integral

which involves the spectrum of the waves. Apparently none of the higher

moments is known.

Even if the distribution of these "periods" were known, it would

still tell us very little about the true spectral periods in the exact

mathematical sense of the word. In addition, the loose interchange of

"periods" and periods in theoretical work leads generally to invalid

results.

2. Method of Observation

The observed statistical distribution of the "periods" and the

average "period" for a given state of the sea are nevertheless useful

values which can be obtained by the use of a stop watch in visual

observations. Recommended procedures for observing the "periods"

are given in Pierson, Neumann, and James (1955). A foam patch or a

floating object can be used as a reference point. Two observers
working as a team can make the observations more rapidly and

efficiently.

C. Calculation Of The Average "Period" In Terms Of Theoretical

Spectra

1 . Method of Calculation

Neumann (195 3) has shown good reason to believe that the spectrum
of a sea grows from high frequency to low frequency with increasing

duration or fetch. The spectrum of a given state of the sea is given by

[A(/i]f'i e
- 2 9V vy for/x>^

(24)

where ft- is a function of the wind velocity and either the fetch or the

duration, and v is the wind velocity.
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1.

The average "period" for a partially developed sea can be evaluated
in terms of ft £ by the following procedure. Let 2-rri = p. and Ztri. =fj.

and let f. = 1/T.
1

Then the use of a formula derivedby Rice (1944) shows that the average
"period" is given by

or by

where

/"fee"
20 '* df,*

/"CO j_ 2a/ f
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L T
2 a T

d-rl 2̂

/•T£
2

-2a T

J T e dT

a=g 2 /47r 2
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(25)

(26)

The integrals given in (26) can be integrated by parts until an
integral involving the probability integral results. A change in variable
under the final integral in order to put it into unit normal form yields,

after several operations, the result that
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2 Tl

2 /47r
2
v

2

2g Tj,/2t7-v -ac
2/2

8T;V/(2^V)
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2
T 2
/(27r V )

2 J

%
(27)

The ratio, gT. /2ttv, occurs everywhere in equation (27). This is the

ratio of the phase speed of the highest spectral period present to the

wind speed. It is usually designated by

£
}

s gT./2irv (28)

and then equation (27) yields

~ V3 2 7T V

2 g

l'/2

0C
2
/2 . 3

4/3.2

(29)
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As B. approaches infinity, this equation reduces to

~ a/3 2 fry
1

=
2 g

in c.g.s. units or to
0.285v

(30)

(31)

where v is in knots. This is the average "period" of the fully developed

sea as shown by Pierson (1954).

The function of B, in equation (29) can be evaluated and used to

determine T for a partially developed sea. Let the term in brackets

in equation (29) be F (f>J. Then equation (29) becomes

f= 0.285 v .F(/3i).

The values of F ( BJ are given below in table 8.

Table 8

F ( B,) as a function of B .

.

B.
i
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The first few terms of this expansion are

t= t;[

5 7 *i 9 l
n

3 5 <- 7fc

(35)

and under the condition that B. be small, a reasonable approximation
i

is that

T = T; -v/~3/5 = 0.77 T
(36)

as given by Pier son, Neumann, and James (1955).

2. Interpretation of the Average "Period"

The average "period" as observed by stop watch, or as computed

from a wave record, can be an extremely misleading statistic. It

overemphasizes the short "periods" and neglects the long "period".

The maximum energy in the spectrum is always at a higher value than

is indicated by the average "period".

The significant "period", that is, the average period of the one-third

highest waves, may equal the average "period" or it may be a trifle

higher because of the neglect of shorter "periods" in the average.

However, it is even more doubtful a statistic because its relation

to the wave energy spectrum is not known.

For either the average "period" or the significant "period", the

computation of the average wave crest "speed" or the average "wave
length" cannot be carried out by the use of the classical formulas as

will be shown later. The classical formulas apply only to the true period

of a simple harmonic progressive wave.

The average "period" can be used to determine the state of de-

velopment of the sea for a given wind velocity. It can be used to check

a given forecast of the wave spectrum if only a sea is present. However,
spectra of many different shapes can yield the same average "period";

and the average "period" and the significant height do not completely

characterize a given state of the sea.
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In fact, there appears to be no way to obtain parameters which

completely describe the seaway by visual observations or by the

statistical analysis of a wave record or a pressure record. The

partial characterization in terms of significant height and average

"period" is, however, useful in many aspects if it is interpreted with

care in terms of possible wave spectra and the meteorological synoptic

situation.

D. "Wave Lengths"

1. The Observation of the "Wave Length"

Photographs of the sea surface, such as figure 1, show that it

is composed of short- crested waves. There are medium waves super-

imposed on the big waves and short waves superimposed on the

medium waves. There are ripples on top of everything else. The waves
in a photograph are much more irregular than a corresponding wave
record. There appear to be more short waves in a photograph than

there are in a wave record.

Most of the time a dominant direction of travel can be determined
for the waves. Then the length of the waves along this direction can

be measured. The actual distance between successive crests must be

measured. Procedures for measuring the "wave length" are given in

Pierson, Neumann, and James (1955). The procedures involve towing

a line with floats behind a vessel for use as a scale, and the use of the

ship or other ships as a scale factor.

The average "wave length" cannot be computed from the average
"period" in terms of the classical formula. Stated another way, it

is not true that the average "wave length" in feet equals 5.12 times the

square of the average "period" in seconds. For fully developed seas,

the average "wave length", if the theoretical spectrum which is

assumed is correct, is given by

L = -
. 5.12 T < 37 )

For the theory of the derivation, see Pierson (1954). For nonfully

developed seas the formula does not hold, and the derivation of the

average "wave length" is more difficult.

It appears that the p.d.f. of the "wave lengths" cannot be computed
from the p.d.f. of the "periods" even if the p.d.f. of the "periods" were
known. It would have to be computed by mapping the wave spectrum

as a function of frequency and direction, into a frequency spectrum of

the spectral wave lengths. Then, if the theory of the p.d.f. of the
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"periods" is ever solved, it will be possible to determine the p.d.f.

of the "wave lengths" by using the same theory on the new spectrum.

Aerial photographs, if the scale is known, would be useful in the

determination of the probability distribution of the "wave lengths"

empirically.

Observations which show that the formula given above is more nearly

correct for the average "wave length" than is the classical formula

are cited by Dearduff (1953). He states that "the observed wave lengths

were as a whole much smaller than the calculated lengths based on the

usual formula." The value which was obtained from the analysis of

observations made from Nantucket Lightship was half of the value

which would be obtained using the classical formula.

The theory on which equation (37) is based assumes that ripples

on top of the more dominant cycles are not counted in the measurement
of the "wave lengths". The crest must be above sea level and the trough

must be below sea level before the wave can be counted. A ripple or

perturbation riding on top of a larger wave should not be counted. When
such values are counted their effect is to decrease the average wave
length to a value even less than the one given by equation (37).

2. Explanation of Theory of Equation (37)

There is an idea prevalent in current wave theory that a wave

record can be broken up into pieces of one wave per cycle and that

each oscillation can be treated as if it were a sine wave with the use

of the classical formulas for the piece.

The theory can be sketched briefly as follows; Given a wave record
as on the bottom of figure 6, the record is broken up into pieces at

each zero up- cross and each fragment is treated as if it were a piece

of a sine wave with a true period equal to the length in time of the piece

and with an amplitude equal to one-half the crest-to-trough height of the

piece. If the above assumptions were correct, then the wave record
could be represented mathematically as the sum of a number of

functions of the form sketched on the top of figure 6.

Such a representation is obviously absurd. If such a fragment were
generated in a wave tank, it would alter in form completely before it

could travel even a few feet. A Fourier analysis of one of the pieces

shown in figure 6 would show it to be composed of a very broad Fourier
spectrum of frequencies so that it would not be correct to apply the

"period" T. to one of the pieces. Such a small piece of a sine wave is

not the same thing as a sine wave.
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Figure 6. The Representation of a Wave Record as a Sum of

Individual Sinusoidal "Cycles" with Different "Periods" in an

Artificial Wave by Wave Analysis.
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The Representation of a Wave Record as a Sum of Many

Sine Waves with Individual True Periods.
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The correct way to think of a wave record is to think of it as composed
of a very large number of very low sine waves with phases all mixed
up and with different periods in such a way that figure 7 represents

the wave record.

If any one of the above pieces is generated for a long enough time

in a wave tank, the waves propagate without change of shape and have

classical wave lengths and classical phase speeds after initial transients

have died out. Since, as a first approximation, the system combines
linearly when all waves are produced simultaneously, the behavior

of the sum equals the sum of the behaviors of the individual sinusoidal

components.

Figure 7 explains why it is so difficult to observe the visual properties

of waves or to analyze a wave record statistically. The variation

in wave amplitudes described at the start of this paper is caused by

the complicated effects of phase reinforcement and cancellation of this

large (infinite) sum of small (infinitesimal) amplitude true sine waves
combined in random phase.

It also explains the difficulties involved in determining the "periods",

since a "period" is the time interval between two successive zero

up- crosses. When a sum of, say, fifty or sixty true sine waves is

written out and when they are assigned amplitudes according to some
spectral law and phases at random, it then becomes difficult, if not

impossible, to solve for those times in the record produced where the

record adds up to zero and to compute the time intervals between the

zeros. These "periods" thus are produced by an interference effect.

This is why the probability distribution function of the "periods"

is not known theoretically. Mathematicians simply have not yet been
able to solve this problem.

Intuitively, at least, the reason why the average "wave length"

is given by equation (37) in a fully developed sea can now be explained.

If the wave crests were infinitely long, then corresponding to each sine

wave in the sum as observed as a function of time at a fixed point,

there would be a sine wave on the sea surface as a function of distance

along a line.

Each wave length in feet would be given by 5.12 times the square of

the true period of the sine waves in the sum which goes to make up the

sea surface along the line. The wave lengths are related to the square

of the periods. The more rapid oscillations in the record as a function

of distance for periods less than the average "period" outweigh the

effect of the much less rapid oscillations for periods greater than the
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average "period", and the result is that the average "wave length"

is less than what would be computed from the average "period"

by the use of the classical formula. When this effect is corrected for

the short-crestedness of the waves, the result is equation (37) for a

fully developed sea.

As part of the erroneous method of wave analysis depicted in figure

6, it is frequently assumed that the "wave length" of the wave which
passed during the time interval, T., is given by

L. = 5.12 T. (38)
J J

in deep water or by an appropriately modified equation in shallow water.

This assumption is obviously dependent upon the assumption that the

zero which passes at the start of the "cycle" does not disappear before

the zero which passes at the close of the "cycle" finally arrives, and

upon the assumption that a new zero does not form between the first

zero and the point of observation and the old zero before the second

recorded zero passes. (Similar remarks could be made about crests.)

Since the wave forms of actual ocean waves do not propagate without

change of shape, and since the crests of actual ocean waves are not

conservative, these assumptions are not valid and the formula cannot

be used.

The average of the "wave lengths" as computed from the individual

"periods" is always greater than the average "wave length" computed
from the average "period", and even this latter value is too big.

Although it is unknown, suppose that the p.d.f. has the typical

properties of all p.d.f. 's in that it gives the probability that a "period"

within a band of "periods" will be observed.

The p.d.f. of the "periods" is then g (T)dT with the properties that

~ ~ (39)
g(T)= for T <0, K }

g(f) > for f >0, (40)

>co
and r

o (41)

The average "period" then equals

00

j= Tg (T)dT.
Jo

(42)
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The average "period" is estimated from a finite series of individual

"period" observations such that

T = l/n 2 T. .
(43)

1 = 1
'

Now consider the following form which is always greater than or

equal to zero because it is the integral of an always positive (or zero)

function.
CD

(T-r)
2

g(T) dT >0 (44)

l

It yields

00 o _CD m
/ T g(T)dT-2T/ Tg(T)dT + T / g (y) d T >

, r 00
2

T* = I
T g ( T ) d T > T

(46)

The term on the left is estimated by

2 i
_ ~ t

Now let L.* be the average "wave length" computed by computing
the "wave length" associated with each of the observed "periods"

and averaging the results. From equation (47), this "wave length"

is given by

±2 n '*' 2

l* --YV -- 7T t, Tir (48)

The wave length, L, computed from the average "period" is found by
averaging the observed "periods" and computing the average "wave
length" from the average "period" according to equation (43).

r*s

l^& £<*&, ^ ,4,)

But from equation (46), L* is greater than L and from equation
A,
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(37) L. is too big when compared with actual observations. Therefore

the average "wave length" cannot be computed from the observed

distribution of the "periods". The individual "wave lengths" computed
from the individual "periods" have therefore a very doubtful meaning.

With reference to "wave lengths", the only reliable formula is for

the average "wave length" for a fully developed sea as given by

equation (37). For swell, the average "wave length" is approximately

given by the classical formula using the average "period" of the swell.

For seas not fully developed or for cross seas, no convenient formulas,

in general, exist.

However, for newly generated partially developed seas in which B.

is less than 0.5, it is possible to obtain an approximate value for L,.

Under these conditions, Tj is given by

L, = 2.56 T.
2

(50)
i

The method for deriving equation (50) involves short-crested seas

and employs approximations and procedures similar to those used

in equations (33) through (36).

E. Wave "Speeds"

1. Theory - A Contradiction

The usual wave observation procedure has been that of observing

the "periods" of the waves and computing the average "period". The
"wave lengths" and "speeds" of the individual waves are rarely

independently observed.

The theories given above suggest that the average "wave length"

of a fully developed sea is two- thirds of the value given by the classical

formula. Also some independent observations suggest that these

theories are more nearly correct.

In c.g.s. units, the two classical formulas for the speed of a wave
crest are given by

C = L/T (51)

and

C = gT/2ir . (52)

In terms of average "periods" and average "wave lengths" in
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units, equation (37) becomes

L = (3) gT^/27r (53)

Now suppose that the average speed is computed by assuming that the

classical formulas involving the period and the wave length of a simple

harmonic progressive wave hold for the average "period" and the

average "wave length" of an irregular state of the sea. The results

are that

C=-|gT/2TT
(54)

from equations (51) and (5 3) and that

C = gT/27r (55)

from equation (52).

The result is two different values for the same theoretical quantity,

and there is a contradiction involved. The contradiction lies in the

assumption that the classical formulas can be applied to average wave
properties.

For an irregular sea, current theory tells us nothing about the

average wave "speed". Neither equation (54) nor (55) can be assumed
to be the correct one.

2. The Observation of Wave "Speeds"

Wave crest "speeds" must therefore be observed independently of

the "periods" and the "wave lengths". The "speed" of a given crest

may not even be a constant. The wave crest "speeds" can be measured
at the same time that the "wave lengths" are being measured by the

methods given by Pierson, Neumann, and James
( 1955). Such observations

in a sea are very scarce, if any exist at all, and thus the present state

of theory and observation can give no information on this problem.
Data on this problem, when they become available, will prove to be
very interesting.

IV. CONCLUSIONS

The visual observation of the properties of ocean waves will always
be an important supplementary source of wave data. The data thus

obtained can never be as adequate as wave records which are analyzed

for their spectra, but they can be used if they are interpreted with

care.
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A series of wave height observations can be used to verify the

theoretical probability distribution of wave heights. Even for irregular

seas, the distribution may be fairly well approximated. The reliability

of the average height can be estimated from the size of the sample
and confidence limits can be assigned to the values observed. The
theory of truncated distributions can be used to refine the values if

the low waves are neglected.

The average "period" is a misleading statistic unless it is interpreted

in terms of the wave spectrum. It gives a value which is shorter than

the period where the maximum energy exists in the spectrum. It can
be forecast and thus related to the spectrum of the waves.

The average "wave length" cannot be computed with the use of the

average "period" by means of the classical formulas. For a fully

developed sea in deep water the theoretical value is two-thirds of the

value that results from the classical theory. The "wave length" of an
individual wave cannot be computed from the "period" of that wave
as it passes a fixed point.

The wave crest "speeds" are rarely observed, and the classical

formulas cannot be used to predict the "speeds" from the "periods"
and "lengths" in a sea.
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ADDENDUM

Since the preparation of this paper and of the wave forecasting

manual (H.O. Pub. No. 603), two papers of interest in connection with

this paper have come to the attention of the author. The first paper,

by Arakawa and Suda (1953), gives some data on the measurement of

the average wave length of a wind-driven sea. The second paper, by

Wooding, gives information on the meaning of the significant period.

Arakawa and Suda (1953) summarize and discuss some wave obser-

vations made by the Japanese Navy during a typhoon which occurred on

September 26, 1935. Table 6 of their paper is reproduced in full and a

paragraph referring to the table is quoted as follows:

"Table 6 shows that comparisons of measured and computed values

for the MIKUMA gave rather unsatisfactory results. This may indicate

that the state of the sea as observed by the main squadron was, to

some extent, uncertain. Comparisons of measured and computed values

for the wave length and the wave period from the cruiser NACHI on the

other hand gave fairly satisfactory results."

It_ should be noted that according to the notation used in this text,

L, ¥, and C are probably what were really observed.

Table 6. Observed and computed values of velocities,

lengths, and periods of wind waves in the

typhoon area, Sept. 26, 1935



For a simple sine wave, the formulas, L = CT, and L = gT I Ztr imply
also that L = 2ttC /g, C = -v/gW27r, C = gT7 2 tt , T = v/2T4J/g, and T =

V^ttC / g . Thus if L or C or T is observed, the other two quantities can
be computed from it. In table 6, the comparison shows that C could not

be predicted from either T or L. The value of L. when computed from C
is much too low. When L is computed from T the NACHI observations

agree, but the computed wave length is considerably greater than the

observed wave length in the_MIKUMA observations. Whenthe formula for

the average wave length L\ in terms of the average period, T, namely
L = TgT /2ir, is applied to the MIKUMA observations, the period of

13 seconds yields a value of 2/3 of 264 meters or 176 meters as

compared to an observed wave length of 180 meters. The second set

of observations yields a value of 184 meters as compared to an observed
value of 200 meters. The percentage error with respect to the observed
average wave length is about 2% with the new formula and 47% with the

classical formula in the first case. In the second case, the errors are

8% and 38 %, respectively.

It is most interesting that two of these four sets of observations

obtained in 1935 should agree with the newly derived formula. Since the

other two do not, it can be added that observations in a towing tank in

which Gaussian waves were generated, confirm, the theoretical basis of

the derivation of the new formula.*

Wooding (1955) has derived an approximate joint probability distri-

bution for wave amplitude and frequency (period) in random noise, and he

has applied the results to the interpretation of wave observations. The
results show that the time interval between the successive upcrosses in

a wave record has a higher probabiliy of being large if the wave is high

than if the wave is low. Thus the average time interval between
successive crests of the one-third highest waves shouldbe greater than

the average time interval between all the crests. Or, stated another way,
the significant "period" is greater than the average "period."

It should be possible to derive a formula for the significant "period"

in terms of a theoretical wave spectrum using the results of Wooding
(1955). If an average wave length were obtained using the "significant"

period and the classical formula, the error would be even greater than

that obtained by using the classical formula and the "average" period.

In view of the difficulty of observing the significant wave height

discussed in this paper, it is believed that the observation of a true

* See Lewis (1954).
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significant "period" would be even more difficult, and that the con-

clusions of this paper with respect to visual wave observations should

still be adhered to substantially. The rules given are internally

consistent, and should yield consistent results.
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