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Preface

The following pages represent part one of a book entitled

"A Unified Mathematical Theory for the Analysis, Propagation, and

Refraction of Storm Generated Ocean Surface Waves." They contain

the first ten chapters of this projected book. These first ten

chapters are not a logical stopping place in the book. Only part

of the unified theory is presented. That part covers the theory

of wave propagation (wave forecasting) and the theoretical part

of the theory of wave analysis. There are also many references to

chapters in the book which are not presented in part one.

Part one is presented in this disjointed form with all the

apparent loose ends because more of the book could not be com-

pleted before the publication deadline and because an error was

made by the author in estimating the date of completion of the

book. There are many important decisions which have to be made

soon in connection with the problem of adequate methods of wave

analysis and wave recording and it is hoped that the contents of

part one will help in these decisions.

The remainder of the book will be presented in bi-monthly

installments until the book is completed. It is planned to present

the mathematical theory of additional properties of waves in deep

water, the theory of waves in the transition zone, and the theory

of wave refraction in the next chapters. The mathematical theory

is complicated, but the practical application is straightforward

and easily applied. After these chapters, the book will consist



of examples and applications of the theory, of examples from the

work of others which substantiate the theory, and of suggested

procedures for further verification.

The work presented herein has been sponsored by the Beach

Erosion Board and the Office of Naval Research. The Office of

Naval Research is supporting the research which applies to the

problem of wave forecasting. The Beach Erosion Board is supporting

the research which applies to the problem of wave analysis and

wave refraction. If the reader wishes, he can select the various

parts of each chapter which apply to each of the sponsors. However

difficulties will occur in deciding what parts apply to which

sponsor because adequate methods of analysis are a prerequisite

for adequate methods of wave forecasting and a firm understanding

of basic hydrodynamics is a prerequisite for any part of the theory.

One of the most important features of government sponsored

research in science is the wide latitude of action permitted the

researchers by the sponsoring agencies. This is especially true

of the Office of Naval Research and the Beach Erosion Board.

The original contracts were thought of as separate entities, and

it was planned to present separate reports to each. However, as

things worked out, it became possible to unify the entire theory

and present the whole subject as an entity. It is hoped that both

sponsors will be pleased with the final outcome.

March 1, 1952 Willard J. Pierson, Jr.
Department of Meteorology
New York University
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A UNIFIED MATHEMATICAL THEORY FOR THE ANALYSIS, PROPAGATION,
AND REFRACTION OF STORM GENERATED OCEAN SURFACE WAVES

SIR HORACE LAMB M.A. , LL.D., SC.D., F.R.S.

"SINCE THE CONDITIONS ARE UNIFORM WITH RESPECT TO X, THE

SIMPLEST SUPPOSITION WE CAN MAKE IS THAT cp IS A SIMPLE HARMONIC

FUNCTION OF X; THE MOST GENERAL CASE CONSISTENT WITH THE ABOVE

ASSUMPTIONS CAN BE DERIVED BY SUPERPOSITION IN VIRTUE OF

FOURIER'S THEOREM."

Chapter 1. INTRODUCTION

The origin of the remark is lost in antiquity, but many

persons claim that ocean waves are just bumps on the water. Cer-

tainly, wave records show that the waves pattern is sometimes

chaotic, sometimes irregular, and other times smooth. Wave records

are not sinusoidal, nor are they obviously periodic. In this

paper the supposition that waves are just bumps on the water will

be admitted, and then it will be possible to show how waves can

be represented by the sum of a nximber of sinusoidal terms in a

way which will preserve many of their observed properties and

which will be amenable to theoretical work.

The overall theory of wave forecasting is a mixture of various

concepts which do not fit together well at the edges. Waves are

treated partly as non-conservative waves and partly as classical

waves. The significant waves are forecasted over a fetch and

they are supposed to represent the average height and period of

the one third highest waves. Admittedly, they are not classical
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waves, and yet they are forecasted to travel with classical

group velocities, and refracted as if they were purely sinusoidal

waves of one single period.

The Sverdrup-:.:unk theory [1947, 1949a], as extended in part

by Arthur [1948, 1949], depends on the validity of the assumption

that two parameters, viz., the significant wave height and period,

can adequately describe the sea surface at any time and any place.

It will be shown that these parameters are not sufficient to

characterize the sea surface and that the inadequacy of these

parameters in part can explain the failure of the forecasting

method to forecast the significant period as shown by Donn L1949],

Isaacs and Saville [1949], and Pierson [I95lb].

Wave records at present are frequently obtained by recording

the pressure as a function of time at the bottom as the wave

passes overhead. The pressure records are then analyzed for the

significant period and significant pressure amplitude, and the

significant height and period at the free surface are computed

from these values. It will be shown that this procedure is in-

correct.

The use of the significant period in problems in wave re-

fraction is also a most doubtful procedure, A method will be

developed in this paper which will be far more applicable to actual

sea conditions than the present techniques.

The overall plan of this paper is to start with the simple

and proceed to the complex in the derivation of various models

of waves on the sea surface. Models of the sea surface will finally

be obtained which will prove to be adequate for a correct de-

scription of the sea surface.
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After these models have been obtained, they will be dis-

cussed in connection with the problem of wave forecasting, wave

recording, and wave refraction. It will be shown that they

form a basis for a correct forecasting theory of ocean waves.

It will also be shown that the current debate in the literature

about v;hether friction against the atmosphere or eddy viscosity

in the moving water causes the decrease of wave height with travel

into the decay area is an argument about nothing, because this

decrease of height of waves with travel can mostly be explained

by classical concepts without the use of any type of friction

in the theory.

Many of the points which will be discussed in this paper

are purely theoretical. Some of the instrumentation and methods

of analysis which will have to be devised in order to place the

techniques which will be described into practical use have yet

to be developed. The data which are obtained at present are in-

adequate. Procedures for obtaining data which will adequately

characterize waves produced by a storm at sea will be described.

The final result of this paper will be to obtain a unified

mathematical theory for the representation of ocean surface waves

as they are . The behavior of irregular waves will be described

completely from the time they leave their source until they enter

the breaker zone. Applications to problems in beach erosion and

shiT) design and other far-reaching implications will be described.
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Chapter 2. RESUI.ffi OF CLASSICAL WAVE THEORY

Introduction

Classical wave theory has discussed rotational waves such

as Gerstner's waves and irrotational waves such as shallow water

waves, waves of finite height, deep water waves of infinitesimal

height, and solitary graves . This paper will be concerned with the

theory of deep water waves of infinitesimal height at first, and

later the refraction and diffraction of these waves will be dis-

cussed.

Before the theory of waves of infinitesimal height is applied

to the sea surface, a reason should be given for not using the

theory of waves of finite height. The reason is simply that the

waves of infinitesimal height combine linearly whereas waves of

finite height do not combine linearly. The irregularity of the

sea surface is its dominant feature. As such, it can be treated

mathematically. The non-linearity of the sea surface cannot be

treated mathematically without suppressing the irregularity of

the sea surface. These points will be clarified in the resume of

the theory of waves which follows.

Non-linear equations

If irrotational motion is assumed, the problems connected

with gravity wave motion on a free surface approximated by a plane

despite the curvature of the earth can all be considered to be

solutions of equations (2.1), (2.2), (2.3), (2.4), and (2.5) which

are shown in Plate I and which for example are given by Lamb [1932],
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Irrototional Non-linear Equations for Motion Bounded by

a Free Surface and a Bottom of Variable Depth.

Potential equation $xx "•
J^yy

• $zz -

Bernoulli's equation x = $t " o (^x^ * $y^ + $z^ )
" 9^

Boundory conditions:

at Z = -h(x.y) $n =

at Z = Ti n4$t-^($x +$y' + $z')

at Z = n "tlt = - $z

(2.1)

(2.2)

(2.3)

(2.4)

(2.5^

Irrototional Linear Equations for Motion Bounded by a

Free Surface and a Bottom of Variable Depth.

Potential equation $xx + $yy *" $zz =

Bernoulli's equation n = $t ~ 9^

Boundary conditions:

at Z = -h(x,y) $n =

at Z = >l= ^ $t

at Z = '^It = ' $z

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

PLATE I
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Equation (2.1) is the potential equation which originally

comes from the equation of continuity. Equation (2.2) is

Bernoulli's equation where an arbitrary function of time has been

neglected. Equation (2.2) need not be considered explicitly in

solving wave problems; it simply gives the pressure after 9 has

been obtained. Equation (2.3) is a boundary condition equation

and states that there is no fluid motion normal to the bottom.

Equation (2,4) is the free surface boundary condition for pressure

continuity where rj is the free surface. Finally, equation (2.5)

is the kinematic boundary condition at the free surface. It

states the condition that a particle at the free surface must

remain at the free surface. In this paper, partial derivatives

will be denoted by subscripts} for example, $ . means d'^/dt.

These equations have never been solved completely. Partial

solutions have been obtained only after simplifying the equations.

Even the known solutions for waves of finite height are approxi-

mations. The difficulty arises in equation (2,4), The term

2 2?
(cp^ +9^ +9, )/2g is the cause of the difficulty. It is a

non-linear term. Suppose, for example, that 9, satisfies equations

(2.1), (2.2), (2.3), (2.4), and (2.5), and that 95 also satisfies

the same equations. Then
9-|^

plus 92 will not satisfy the equations,

and P^ plus P2 and 77^ plus rj 2 have no meaning.

Thus the original equations for wave motion are non-linear.

At this point, then, in the study of wave motions there are two

possible ways to proceed. One way to proceed is to concentrate

on the non-linear properties of the equations. The second way to

proceed is to reduce the equations to a linear form with the small-
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height assumption so that the property that the sura of two

solutions is also a solution will be obtained.

If the non-linearity of the problem is of the greatest

interest, the work of Stokes [I847] as summarized by Lamb [1932]

illustrates the type of results which are obtained. In Chapter

IX, Section 250 of Lamb, for example, the problem of waves of

finite amplitude in water of infinite depth is treated "as a case

of steady motion" under the assumption that the wave is periodic

in time. The notation is somewhat different from that which is

used here, but equation 4 in Lamb shows that the non-linearity

of the free surface and of Bernoulli's equation is considered in

the derivation to find the speed of the wave. The solution is

approximate because it is in series form. The wave profile is

approximated for the first three terms by a trochoid, and the

whole wave profile moves forward with the speed

c = [| (1 * kV)]i/2
, k = 2e

.

Davles ' Results

A recent monograph by Lowell [1950] on gravity waves of finite

amplitude describes some results which have been obtained by T.V,

Davles [1951] of King's College, University of London. Lowell's

summary of his monograph Is quoted in full below. Davles ' work

has unified the previous theories of waves of finite height and

has yielded some Improved theoretical relationships about the

ratio of wave height to wave length.
,
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GRAVITY WAVES OF FINITE AMPLITUDE

"T. V. Davles of King's College, University of London,

has discovered a new method for treating the classical

problem of steady gravity waves in an irrotational, incom-

pressible fluid. He has been able to solve the problems

of (a) periodic waves in a channel of infinite depth, (b)

the solitary wave, (c) periodic waves in a channel of

finite depth, and (d) periodic waves at the interface

of two streams of finite depth.

"The method used by Davies is a development of that of

Levi-Civita in his paper of 1925. The first approximate

solution contains a variable parameter ft which satisfies

5. /j.</io» ( /^o being known in each case); the lower

range of /x corresponds to the classical waves of small

amplitude, the upper limit corresponds to the case in which

breaking occurs at the crest. The Stokes result, that the

angle of breaking at the crest is 120°, is verified in each

case and the problems of wave velocity, energy, form of

the free surface, and the drift at the base of the fluid,

have in the main been solved. The first approximation is

in error by 13f^ at the extreme case of breaking at the crest,

but the error decreases when the crest is horizontal and

when the ratio of wave height to wave length is smaller.

The higher approximations have been derived in cases (a)

and (b)."*

* The M in this quotation has a meaning here which is different
from its meaning in the rest of the text.
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In the theory of waves of finite height, it is not possible

to take two solutions, add them, and find a solution for the

combined effect of the two profiles. Thus the known solutions

for waves of finite height are all purely periodic, and they do

not apply to the sea surface if the sea is irregular.

Linearized Equations

Since the irregularity of the sea surface will be of the

greatest interest in this paper, the equations must be linearized

if known mathematical techniques are to be applied to the analysis.

The assumption can be made that cp is so small that the square of

cp and its partial derivatives can be neglected compared to the

magnitude of cp and its partial derivatives. Under this assumption

equations (2.1), (2.2), (2.3), (2.4) and (2.5) can be replaced

by equations (2.6), (2.7), (2.8), (2.9) and (2.10) which are

also given in Plate I.

Equations (2,6) through (2,10) are very much simpler than

the first set of equations. The non-linear terras have been omitted

from equations (2,2) and (2.4), and to the same degree of validity,

it is possible to evaluate the free surface boundary conditions

at z = instead of at z =77 , These equations are linear. If

cp^ is a solution of equations (2,6), (2,7), (2,8), (2,9), and

(2,10), and if cpp is a solution of the same equations, then cp-, + cpp

is also a solution. In addition, P-, + P2 and ''7|+7^2 ^^^

defined. Strictly speaking the equations hold exactly only for

waves of infinitesimal amplitude. In what follows, they will

be applied to waves of finite height with the reservation that
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the higher the ratio of the wave amplitude to the wave length

the more inaccurate the results. This linearized theory is

used in nearly all practical wave studies and especially in

the theory of wave refraction and diffraction.

General solutions

The above set of equations is, nevertheless, still compli-

cated, and the manifold of possible solutions is extremely large,

The number of known solutions is quite small.

There are two general types of solutions to those linear-

ized equations. One is the periodic solution in time, and the

other is the non-periodic solution. A periodic solution in

time is a solution such that at any point in the fluid or at

the free surface, the same conditions are found one period later

as were found at the time of the initial observation. The

conditions must be the same for all time. Thus, the conditions

for a periodic solution can be stated as in equation (2.11) in

Plate II. From equation (2.11), it follows that the free sur-

face is also periodic.

The concept of periodicity will be investigated in detail

in the next chapter. It should be noted at this point, that

the sum of two periodic solutions need not be periodic unless

some additional conditions are satisfied.

In addition, a whole class of non-periodic solutions can

be obtained from integration by Fourier's Integral Theorem over

a continuous spectrum of periods. The quotation at the start

of this paper emphasizes the fact that the way to obtain non-

periodic solutions is to build them up mathematically from
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periodic solutions by the use of Fourier's Integral Theorem.

One purpose of this paper is to show what information is needed

to carry out this process for the sea surface. It will be

found that classical wave theory is not quite general enough

to represent the sea surface. The more recent extensions of

Fourier Theory to stationary time series have to be employed

in order to represent waves from a storm at sea adequately.

Periodic solutions

To return to the linear equations, then, it becomes necessary

to study^ the nature of purely periodic solutions. In order to

do this, it is possible to split off the periodicity in time by

use of the equations (2.12) and (2.13) in" Plate II. In equations

(2,12) and (2.13), Re is read "the real part of." 17 and 9 are

complex quantities, and some examples will be given later.

If equations (2,12) and (2,13) are substituted into the

linearized equations, a set of reduced equations is obtained

in which 9 and ^7 • are not functions of time. However, (2,12)

and (2,13) yield the progressive wave solutions. Equation (2,7)

will not be used for a while and it will not be given in modi-

fied form.

The reduced linear equations given in Plate II have been

solved exactly for a constant depth and for a linearly sloping

beach. They have not been solved for z = - h(x,y) where h(x,y)

is an arbitrary function of x and y.

There are two solutions for constant depth. One solution

yields an infinite train of traveling infinitely long straight

parallel wave crests with a free surface which varies sinusoidally

- 11 -



Form of the Irrotctional Linear Equations when the Require-

ment that the Solution be Periodic in Time is Imposed.

Definition of periodicity $(x,y,2,t) = $(x,y,z,t + T)

• 2Trt
then $(x,y,z,t) = Re9(x,y,z)e'' t

n{x,y,t) =ReV(x,y)e-'^

and
,
potential equation $xx''"^yy"*' 0zz =

boundary conditions:

at Z = -h(x,y) $0 =

at Z = V = -^-(t)

at Z = --^^n'=-(t)z

Known solutions if Z = -h (h constant)

Straight wave crests

AqTi e*[T^^^^^^Q^y^'"Q)"^] cosh^(Z^-h)
(|)

=

cosh -^h

2TTt
11= A cos [-^(x cose + ysinG) + S - ^]

.2 gL 2-n-h
C^ = 72 = iiT^anh ^

Circular wave crests

()) » const Ho (x"'') cosh ^(Z + h)

^
giir\/(x-Xo)2+(y-y„)2 -i^

s

7\K

^ cons cgsh-rlZ + h)

\/(x-Xo)2+(y-y.)2

const coslT" Y(x-Xe)^-»-(y-yo)^ --4-~~T~)

\/(x-Xo)2+(y-y„)2

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.20

(2.22)

(2.23)

PLATE JL
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in one direction. The other solution, given by a Hankel

function, yields circular wave crests which radiate from a

point source.

The first solution is found in the Cartesian coordinate

system which has been used so far. 9 is given by equation

(2,18). 6 is an arbitrary phase lag, and A is the amplitude

of the wave crest.

From equations (2,l8), (2,13), and (2,l6), it follows that

Tj is given by equation (2.19). This representation for the

free surface has been chosen in order to point out all the arbi-

trary parameters in the solution. The most important one to

note is the 9 which permits the choice of any wave direction,

if e varies through 27r radians. The equation for the speed

of waves in water of constant depth follows from equations (2,l8),

(2.16), and (2,17), The fact that the depth is constant per-

mits the easy treatment of the problem. The speed of the crests

is given by equation (2,20). Equation (2,19) is the only wave

with straight crests, which travels with the classical wave

velocity of waves with small amplitude. As written, it states

that there are an infinite number of crests present, that the

wave record will be observed for an infinite time at any point

,

that the period and wave length are everywhere the same and

everywhere constant, and that the heights of all crests are

the same. If any single one of these requirements is not

satisfied in nature, then the equation is not valid, and a

more refined analysis is needed,
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The second solution is found in cylindrical coordinates,

and the solution is given in terms of the distance r from a

fixed point, r =0. cp is given ty equation (2,21) where

HI (27rr/L) is the first Hankel function of order zero (see

Somraerfeld [1949]). If r is large and ^^^Yq are the coordi-

nates where r = 0, then cp is approximated by equation (2.22).

The free surf ace^T^ ^ is then given by equation (2.23) under

the same assumption 'that r is large. The same condition for

the speed of the wave crests holds that was given in equation

(2.20). The point of origin of the circular wave crest is

arbitrary.

Equations (2.21), (2,22), and (2,23) will not be used in

this paper. Mathematical techniques similar to the ones which

will be employed in this paper (but more difficult) are appli-

cable to problems involving these equations. They are given

here in the interest of completeness, and in order to make one

very important point.

For narrow fetches with very turbulent and extremely vari-

able winds, and for wave generating areas such as those found

in hurricanes, a detailed study of the sea surface would have

to be made with these equations as a starting point. Problems

in wave decay in particular must be studied because the form

of equation (2.23) provides a means for the decrease of wave

height with distance traveled. In view of these considerations,

the results of this paper will be based upon the assumption

that the elemental unit of analysis is a wave of the form of

equation (2,19). The consequences of this assumption will be
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discussed in detail in a later chapter.

The remaining known solutions to these reduced equations

have been obtained by Stoker, [194-7], and his co-workers for

the problem of a linearly sloping beach with waves parallel

to the beach and recently by Peters for waves at an angle to

the beach (unpublished).* For additional information, see the

paper referred to above.

No exact solutions for the reduced equations have been

obtained under the condition that the depth is an arbitrary

function of x and y. Graphical methods of solution based upon

the principles of geometrical optics have been given by Sver-

drup and Munk [194-4], and by Johnson, O'Brien and Isaacs [194-8].

Pierson [1951a] has discussed these results and formulated the

problem which would have to be solved in order to proceed from

equations (2.14) through (2.17) to a result which would prove

that the principles of geometrical and physical optics are ap-

plicable to problems of ocean wave refraction and diffraction.

Eckart [1951] has obtained an approximate solution to the com-

pletely general problem, accurate everywhere to within a few

percent.

The solutions which have been discussed so far apply to

depths which range from infinite to one or two tenths of the

deep water wave length. The solutions do reduce to the shallow

water theory, if h is picked smaller and smaller, but a wave

of the finite height progressing from deep to shallow water in

Stoker's work [1947] becomes infinitely high as it approaches

*See References.
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the shore and thus the linearized theory breaks down.

Another class of solutions can be obtained under the

assumption that the water is shallow. The shallow water theory

of the solitary wave, for example, as obtained by Airy is treat-

ed in Lamb [1932]. Recent refinements in the theory have been

obtained by Keller [1949]. Lowell [1949a] has studied the

propagation of waves in shallow water. Munk [1949] has studied

the breaking of solitary waves in shallow water. Stoker [1949]

has applied the non-linear shallow water theory to the formation

of breakers and bores and to the breaking of waves in shallow

water.

The results which will be obtained in this paper will

hold only up to the shallow water zone. It will be possible

to generalize the theory of ocean wave refraction to the dis-

turbances studied herein. The breaker zone, however, will not

be treated, although an extension of the results obtained by

Biesel [1951] may make this possible. Biesel's graphs of waves

just before breaking appear to be the most realistic mathemati-

cal breakers ever presented.

Non-periodic solutions

One final important class of solutions which has been ob-

tained in classical wave theory remains to be discussed. They

are the solutions which have been obtained by the use of Fourier's

Integral Theorem for waves in infinitely deep water. The gen-

eral procedure is to integrate the potential function and the

representation of the free surface given in equations (2,l8)

and (2.19) over a continuous spectrum of angular wave frequencies
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(/i. = 2Tr/T) and thus obtain some special case non-periodic

solutions.

For infinitely deep water (for practical purposes about

five hundred feet for waves with periods of ten seconds or less),

the potential function, the free surface, the pressure (z de-

creases from zero), the wave speed and the wave length are given

by equations (2.24), (2.25), (2.26), (2.27) and (2.28) where

jji = 27r/T. The equations follow from equations (2.7), (2.9),

(2.12), (2.13), (2.18) and (2.19).

In these equations (Plate III), <J> is a function of the

three space coordinates and time. <i> also depends upon the para-

meters, /x , e. A, and 6. If <I) ^ = <i> •j^(x,y,z,t
,

/x. -j^,e2^,A-j^,6^)

is one potential function, and if ^2 ~ $2^-'^''^'^»*' /^ 2'®2'^2»^2^

is a second potential function, then <J> = ^-^ + ^2 ^^ ^ third

potential function.

Moreover, if A and 6 are functions of /z and 6, then a

double integral of <l> over ^u. and 6 is also a potential function.

A(^ ,6) and 6( ^,©) must behave properly in a mathematical sense

for large ^ . In particular equation (2.29) is a potential

function which satisfies equation (2.6) and (for z = - od )

equation (2.8). Also 77 can be fotmd from equation (2,9) and

the pressure can be found from equation (2.7). The condition,

(2.10), is satisfied.

If one picks some functional form for A(^,8) and 5(^,8)

and if then the indicated integration can be performed on equa-

tion (2,29), the resulting expression for the potential function

i.e., <i> is a function of the time and space variables and one
set of fixed values for the parameters.
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Periodic Wave Solutions For Infinitely Deep Water Express

ed in Terms of Angular Wave Frequencies.

2TT

Potential function

.2

i^ ,'M. Q^ ^/9 sJn(-^(xcose + y sine)->ut+ (2.24)

Free surface

y\ = A cos(-^(x cose + y sine) - Mt + (2.25)

Pressure

p= pgAe'" ^/^ cos(^(x cos 9 + y sinS) - yut •- s)-qpZ (2.26)

Wave speed C = -jq-

Wove length L =^
(2.27)

(2.28)

A non periodic potential function results from integration

over Ai and 6.
+00 J-TT

i= f f
"^^^^^^ e^^^/^ sin (^(x cose + y sine) ->ut + i(Ai,e))dude

(2.29)
-00 -TT

PLATE in
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will yield all the usual information about the effects of the

disturbance on the free surface.

Lamb [1932] summarizes some of the results which have

been obtained by the use of the Fourier Integral Theorem. Among

the results, the Cauchy Polsson Wave problems are of the great-

est interest as far as this paper is concerned. One problem

gives the wave system propagated from an initially concentrated

elevation of the free surface, and the other problem gives the

wave system propagated from an initially concentrated impulse

applied to the free surface.

The first problem gives the wave system which would result,

if at the given time t = 0, an infinitely high, infinitesimally

wide, infinitely long column of water were to start falling into

the ocean at the point x = 0. The free surface, 77 , is given by

equation (2.3O) if gt /4x is large.

92 t

7) -.

2^2 7r^2xH ^4x^ ^4xi
(2.30)

At any x as t approaches infinity, 7] oscillates more and

more rapidly and approaches infinite values of height. Since

the original formulas upon which this solution is based were

founded upon the assumption that the height of the initial dis-

turbance is small, the physical reality of the problem is ser-

iously open to question.

The second problem gives the wave system which results

from the action of an infinitely intense impulse upon the line

*Note also that the u, v, and w components of the fluid
velocity can be found from <$> .
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X = at the time t = 0. The free surface for large gt Ax

is found by partial differentiation of equation (2.30) with

respect to t and multiplication by l/gp. Again the physical

reality of the problem is seriously open to question.

The two problems described above have been used (frequently

in a most uncritical way) by many authors in attempts to devise

methods for forecasting ocean waves. Until some ship reports

an infinitely high, infinitely long, infinitesimally wide colunn

of water over the ocean or an infinitely intense local impulse

concentrated on a line, it will be necessary to interpret these

results "cum grano salis."

There is one remaining classical application of the Fourier

Integral Theorem which is of great interest in this study. It

is the Gaussian wave packet. Coulson [19431 gives a readily

available summary of the chief results obtained (see reference,

pp. 135-138). The representation for the free surface obtained

from the Gaussian wave packet depended upon the integration of

equation (2,31) where to transform to the notation of equation

(2.29), K would be given by K = /^ /g and n would be given by

n = '/Kg = /J- *

, .s /D L -^i^-^of i27r(Kx-nt)
7](x,t) =£/Ae e ' ^dK (2.31)

'-OO

For t = 0, the integral can easily be evaluated and the

free surface is found to be given by equation (2.32).

* Coulson [194-3] uses ^ for the free surface and not the
potential function.
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7^2x2

-^(^0) =^Ayf"e '^
e^'"'*'"^ (2.32)

Equation (2.32) represents a wave as a function of x on

the free surface with a wave length, L = 27r/K , which is modu-

lated by a probahility curve envelope. In order to evaluate

(2.31) as a function of time also, n was expanded as a function

of K in a Taylor series about the point n = -/K'g . Only the

first two terms of the expansion were used in the integration.

The solution thus obtained was an approximation because

of the series approximation of n. It showed that the crobabi-

lity curve envelope advanced with the group velocity appropriate

to waves with a wave length, L = 2Tr/K , that the envelope flat-

tened out with time and decreased in maximum amplitude, and that

there was a gradual phase shift of the individual waves under

the envelope.

The Gaussian wave packet is a far more realistic problem

than the Cauchy-Poisson problem because the condition that the

height of the waves be small is satisfied everywhere if it is

satisfied at the time t = 0. As it stands, however, it is proba-

bly not applicable for moderately large values of cr and for

large values of time or displacement in the x direction because

the effect of dispersion Is partially neglected in the series

approximation of n.

It should be noted that none of the classical solutions

have considered the possible variation in the direction of pro-

pagation of the wave crests as indicated in equation (2,29),
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This will be done in great detail in this paper when models

which describe waves from a storm at sea are obtained.
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Chapter 3. TYPES OF PERIODIC FUNCTIONS km NON-PERIODIC
FUNCTIONS AND THEIR REPRESENTATION BY DISCRETE

AND CONTiroOUS SPECTRA

Introduction

The surface of the oceans, if represented accurately every-

where, would have to be given by a function of latitude, longi-

tude, and time. The function would include the effects of tides,

piled up water due to wind stress, other things, capillary waves,

and gravity waves. This representation for the sea surface

would be an extremely complicated function. In fact, it is so

complex that it is necessary to restrict the scope of the prob-

lem and to study the various effects separately.

This study will be restricted to the mathematical analysis

of ocean gravity waves with periods ranging from one or two

minutes through one half seconds. Even this restriction is not

enough. It is also necessary to restrict attention to homogene-

ous areas of the ocean over which conditions can be expected

to be relatively the same and to line segments on which the

waves as they pass are the same in essential character for a

relatively long time. A generating area or fetch such as the

ones treated in the Sverdrup-Munk Theory [1944a, 1947] might

be such an area of study if the waves have reached a steady

state condition. It will be shown that the usual measurements

of significant height and period are not sufficient to character-

ize such a steady state condition.

Frequently the character of recorded wave data changes
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slowly over time intervals of the order of four houi-s. In the

same sense that sin t can be approximated in the neighborhood

of t = by t, it v;ill be possible to represent wave records

obtained at a certain time by the functions which will be studied.

The more rapidly the sea surface characteristics change, the

less valid some of the techniques described here v/ill be.

The nature of available data

Ocean waves are recorded by tv/o methods at the present time.

Either the actual height of the free surface is recorded at a

fixed point as a function of time, or the pressure at some depth

belov? the free surface and at a fixed point is recorded as a

function of time. Neither method is sufficient to determine com-

pletely the actual space and time distribution of the free sur-

face, the pressure, and the fluid motions. By a sufficient number

of simplifying assumptions, it is possible to draw a few con-

clusions about the distribution in space and time of the above

properties.

The actual height of the free surface is frequently measured

on the open ocean by an upright graduated pole with a large disk

on the bottom to damp out the motions of the pole. On the end

of piers or at fixed installations such as oil drilling structures

in the Gulf of T.lexico as reported by Glenn [1950], it is possible

to use the instrument developed by the Beach Erosion Board and

described by Caldv/ell [194-8]. In either case a record is ob-

tained of the height of the free surface as a function of time

at a fixed point. Or in terras of the equations employed in

this paper, rj - t)^^ ,y ,z = 0,t) is known.
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Most wave records at the present time are not actual mea-

surements of the free surface. They are measurements of the ;

pressure at some depth below the free siirface. In all but one

Imown case, the depth is the bottom at a short distance (rela-

tively speaking) from the shore. In this one case, the pressure

was recorded by a submarine below the sea surface as reported

by Ewing and Press [1949]. In terms of the equations employed

herein, P = P(x^,y. ,z_,t ) is known where usually z is equal to
o o o u

- h(x ,y ), the depth of the water below the (x ,y ) point of

installation of the instrument.

From either Tj = fj (xQ,yQ,0,t) or P = P^x^jYo^Zoj't ) j the

problem is to find out what P = P(x - x , y - y , z, t),

Tj = 77 (x - Xq, y - y^, t) and (say) U = U(x - x^, y - y^, z, t)

are like. The problem is not simple. In fact, with the given

data, the problem cannot be solved.

As a start, though, it is necessary to study what is most

accurately known, namely either 77 = tj (x^,y^,0,t) or P =

P(x ,y ,z ,t). The free surface will be used in this part of

the discussion although the remarks can be modified so that they

apply to the pressure. The question is, "What ways are there to

analyze the free surface as a function of time?"

Over time intervals of the order of days, Tj = 77 (t), at

any fixed point, is not even remotely periodic. The amplitude

of Tj may vary from small departures from zero to storm wave

heights. The problem, then, is how to analyze 77 under the assump-

tion that some property of Tj is preserved for time intervals of

the order of twenty minutes or so, with the reservation that
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the situation is still undefined outside of some possibly

larger time interval.

Consider a wave record, say twenty minutes long. Is it

possible to pick some functional representation for''? (t) which

will coincide with the wave record for the twenty minutes over

which our attention is concentrated? I^Jany functional represent-

ations are so obviously inadequate that they will not even be

considered, but for other functional representations it is not

immediately obvious that they do or do not apply.

As a start consider a wave record which is not too irregu-

lar.* Such a wave record might appear as sketched in Plate IV.

The essential feature of the record for this part of the discussion

is that there are groups of high waves and that between the groups

of high waves there are time intervals where the amplitude of

the disturbance of the free surface is small compared to the ampli-

tude near the center of the group. These groups of high waves

will simply be referred to as "wave groups."

One discrete period

One way to analyze the actual wave record would be by the

significant wave method of analysis as defined by Sverdrup and

"lunk [1947]. Suppose that the significant height and period are

ten feet and eight seconds. Now Sverdrup and Munk carefully state

that the significant wave does not behave like a classical wave,

yet in many applications it is tacitly assumed that the free sur-

face at a point in relatively deep water can be represented by

equation (3.1) of Plate IV where in this case A = 5 and T = 8.

* Irregular wave records will be discussed very much later.
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Types of Periodic Functions and Non Periodic Functions

and Their Representation by Discrete and Continuous Spectra

Actual wove record tj = r)^{\)

— T

t =

[— 1 m i n u t e -n

t=t. t = t. t = t-

Analysis no. I Purely periodic with one discrete

spectral component.

At

f^\

M —

,,,(t) = A|Cos -^ = A I cos /i 1

1

(3.1)

(3.2)

Portion of graph of 'i?t(t

Analysis no. 2 Purely periodic with many discrete

spectral components. > (3.3)

,(t) = I ApCOs(^^ + Sn) = 5, AnCOs(Mn' + Sn)

(3.4)

(3.5)

Portion of graph of tjj (t)

Analysis no. 3 Not periodic with a continuous spectra

representa t ion

.

Co(a') ^3(n = fo(n ' f,(t-t,) +f2(t-l2) + Ui^-h) (36)

ao(/i) = :i:Jfc(t)cos//td,L bo(^) = s-J^o(t ) sm^t d/. (3.7]

00 op

fo(t) ' fa„(^)cos/itd^ +j bo(M)sin/itd/i (3.8)
o o

Co(^) = + \/(ao/x)^ + (bo/^)^ (3.9)

Graph of i73(t)

PLATE lY.
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This representation implies that the spectrum of the wave ampli-

tude is concentrated at one value, T^. It also implies that

the wave record repeats itself every 1-^ = 8 seconds and that

the wave amplitude is constan.t and that therefore equation (3.2)

holds.

Now try to match the graph of Tj ^(t) with the actual wave

record. A point for t to be equal to zero can be chosen at a

sharply defined crest in the actual wave record. The two records

will coincide in apparent phase near t = 0, but they will soon

get out of phase. In addition, the heights of the two wave re-

cords will rarely coincide. Five sixths of the time the actual

wave heights will be lower than the heights in the function which

is supposed to represent the wave record.

One property which the function which is to represent the

actual wave record should have is that that function should re-

present the potential energy of the sea surface averaged over

time at the point of observation. Thus equation (3»10) should

hold where T represents a time interval which is long compared

to the length of a wave group but short compared to the rate at

which the features of the wave record change (say, twenty minutes),

^/(77,(t)fdt -i./(77,(t))2dt (3.10)

Obviously this particular method of representing the sea surface

is an overestimate of the potential energy of the sea surface.

In addition, many different actual wave records could have the

same significant height and period and completely different values

for the potential energy.
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It is possible to assign a value to A in equation (3.1)

so that equation (3.10) will hold. The value of k would not be

one half of the significant height. If this were done, equation

(3*1) would still not be a good representation for the actual

wave record for reasons which will become apparent later.

In summary, if the actual wave record is represented by a

purely periodic function with one discrete spectral component,

there are only two parameters which can be chosen. These two

parameters do not adequately describe the actual wave record as

a function of time.

Many discrete periods

A second way to analyze the actual wave record would be to

pick out a well defined wave group (if there is one) in the record

and assume that that wave group repeated itself every T seconds

exactly. Here T is the time interval separating either the re-

lative low wave height areas or the relative maxima from wave

group to wave group. By a proper choice of the origin of the time

axis, and by the assumption that the wave group is repeated per-

iodically, it is then possible to analyze that one wave group by

a Fourier series. The. wave record will then be given by equation

(3.3). It must repeat itself every T seconds. The discrete

spectral wave periods which determine those component waves which

vary sinusoidally are determined by dividing the period of repi-

tition by the integers.

Suppose such an analysis were carried out on the records

shown by some computational method such as the one given by Conrad

[194-6]. The record would be multiplied by cos 27rt/T • The area
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under the curve would be computed with proper regard for positive

and negative areas. A similar computation with sin 2-irt/T would

be carried out. Then by proper correction factors and by ele-

mentary computations, the amplitude and phase of the first har-

monic could be found.

If this were done for an actual wave record, or for the one

sketched, the amplitude of the first harmonic would undoubtedly

come out to be negligible. In fact if r were, say, one hundred

seconds, in most records, the amplitude of the harmonic components

would not become appreciable until n were equal to five or six.

It would become a maximum with n about twelve (if the signifi-

cant period was near eight seconds) and die out again as n

became higher than 25 or 30*

Such a computation would' be extremely tedious. But it would

emphasize the fact that the areas of low wave height are essent-

ially caused by the phase cancellation of a great many sinusoidal

waves of low amplitude and the fact that the areas of high wave

height are essentially caused by the phase reinforcement of the

same sinusoidal waves of low amplitude.

The representation thus obtained would be a true representa-

tion of the one wave group studied. However, if the representation

for the actual wave record were compared to the actual wave record,

it would only match up for the one wave group chosen. It would

not match the followin;? or preceding wave groups because they are

not exact duplicates of the chosen wave group. The other wave

groups would vary in amplitude and phase, they would not occur at

regularly spaced time intervals, and they might possibly have a

different apparent period and/or frequency spectrum. Also
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there might be long stretches of the original record which do

not show any groups.

If equation (3.10) is applied to 17 2^*) instead of 77 -j^Ct),

there is a much better chance that the potential energy of the

representative wave record will be aporoxiraately equal to the

potential energy of the actual wave record. However, the wave

group chosen and the time interval, r, might not be representative

of the entire wave record.

There are several other, not so important, ways in which

the actual wave record could be analyzed which would yield a

discrete spectrum. For example, it could be assumed that a ten

or twenty minute length of record repeats itself periodically

every ten or twenty minutes. Such an analysis would be carried

out along the lines of the one described above. The harmonics

would not become appreciable until n was of the order of forty-

five OF fifty. The analysis would be even more tedious than

the one described above, and the results would not be too amen-

able to theoretical work. The portion of the wave record studied

would be repeated exactly, but the record and its representation

would not agree outside of the time interval studied.

It could also conceivably happen that a wave record was com-

posed of discrete spectral components which were irrational. For

example, 77 (t) = cos 2Trt/'/2 + sin 2Trt//3 is not periodic. There

is no time interval, T , such that 77 (t ) = 77 (t + T ), Such a

representation for the free surface would be called an almost

periodic function. For additional theoretical considerations,

reference is made to the book by Bohr [1947] on the subject.
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For additional comraent on this point, see Chapter Seven.

Conbinuous spectrum

A third possible way to analyze the actual wave record

would be to pick out the well defined wave groups and analyze

them by means of the Fourier Integral Theorem. For instance,

the wave group centered at t = could be defined to be identi-

cally zero beyond the arrows which bracket it. The function

f (t) could be given by the wave group between the arrows and

by the zero outside of the arrows. Then equation (3.7) could

be applied to the function and finally, fgCt) could be represent-

ed by equation (3.8). For conditions on f^it) and for defini-

tions of the symbols used, see Somraerfeld [1949].

Similar analyses of f^(t - t^), f2(t - t2), and f^(t - t^)

in (3.6) could be carried out. Each analysis would yield a con-

tinuous spectrum of wave frequencies given by the appropriate

form of equation (3.7) and the relative importance of various

parts of the spectrum would be given by equations of the form of

(3.9). There is no known precise procedure with which one could

start with the wave record and find the appropriate a. (//. ) and

b.(/J. ), but such a procedure is theoretically possible. Finally,

71 o(t) can represent the wave record exactly over any length of

time chosen for analysis.

If equation (3.10) were applied to the actual wave record,

the two sides of the equation would be exactly equal. Thus this

method of analysis represenf:s exactly the potential energy aver-

aged over the wave record as a function of time at a fixed point.

Such an analysis would make it possible to represent a wave
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record as a fionction of time as observed at a fixed point. How-

ever, it tells us very little about what to expect for times

outside of the interval in which the analysis was performed.

There is also the difficulty that the wave groups as defined

above do not seem to be really persistent phenomenon, that is,

there is no mean time, T , which separates the wave groups.

Time series analysis

A fourth method of analysis, which has not been illustrated

in Plate IV, can be carried out with the aid of the more recent

concepts of time series analysis. These concepts will be dis-

cussed in Chapter 7 where it will be shown that they form the

most realistic method of wave analysis. In this method of analy-

sis, equation (3»10), for example, has a most convenient inter-

pretation.

The problem of variable direction

When 77 (t) has been represented as a function of time by

one of the methods described above, the problem of representing

the short crested appearance of the sea surface is still unsolved,

and the representation of 77 (t) is not enough to yield the com-

plete solution. More information is needed to solve the short

crested wave problem. The exact information needed will be de-

scribed from Chapter 8 onward in this paper.

Critique and plan of the next three chapters

The first three methods of analysis are all inadequate.

Various simple models which have the properties of the second and

third models and v/hich have infinitely long crests will be con-

sidered mathematically in Chapters 4, 5> and 6. '#hen these models

- 33 -



are compared to the realistic models which will be obtained from

time series analysis, the reasons for their inadequacy will he-

come evident. It will also be evident that the analysis based

on method number one is completely inadequate.
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Chapter 4. THE PROPAGATION OF A FINITE WAVE
GROUP IN INFINITELY DEEP WATER

Introduction

Some interesting results can be obtained by the application

of Fourier Integral Theory to the problem of a finite wave group.

In this chapter, a special wave group will be studied in order

to show some of the properties of dispersion in infinitely deep

water. The particular form of the wave group studied in this

chapter will be employed in studies of various not-too-realistic

models of the sea surface. This particular form of the wave group

is too specific for reality, but if it is imagined that the steps

taken with reference to the specific modulation envelope employ-

ed are taken with reference to arbitrary forms for the envelope,

then it is possible to see how some of the properties of ocean

waves can be studied. There are a great many possible forms for

the finite wave groups discussed in the previous chapter. A

very special one will be picked for this chapter.

Formulation

Suppose then that the origin of the space coordinate system

is located at the point x = 0, y = 0, z = on the surface of

an ocean of very great depth. At this point the height of the

free surface as a function of time is measured and it is found

that the equation for the observed free surface is given by equa-

tion (4.1) of Plate V.

Equation (4.1) has three parameters. The parameter, A,

determines the amplitude of the disturbance which is greatest
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The Propogation of a Finite Wave Group in Infinitely

Deep Water.

n(o,o,t) = A e "" sin -Y~ ^ '

"'"e-^'^'sin^ SiHMtdt

N*«> ^2*2
= A.f*"e-'^'''(-COs(f- + M)t + COs{^-M)t)dt

-oo

r-A /
-UtZTT/T)^ -(ax- 2TT/T) ^ >

= :^EA.(-e ^ 40-a + e 4o-z ) (4.2)
2TT0-^

,
- r°° -(AX-*- 2Tr/T)^

n(o,o,t) =^j -e 40-2 sinAitdM

"* (AX- 2Tr/T)^

+ >/lL^
/ e 4(rz sinxxtdu (4.3)'^^
Jo

(a+2TT/T)^
. / ..2

(x,t) = ^Pe^^^4l^5^ sin(i^.Mt)du

,>oo

o

2A r -(AX- ZTT/T] 2 X— -e 40-2 sin (^^ - AJ^jdAX
2-rT

o

j
f(A.i)dAX = -j f(-u)dAX ^ r f(-xi)da

Jo Wo w_oo

. + °° -(a- 2TT/T)
^

2

PLATE 21
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near t = 0. The parameter, a , determines the rate at which

the probability ciirve envelope dies out from t = as t becomes

large either positively or negatively. The parameter, T, deter-

mines the period of the sinusoidal term which is modulated by

the probability curve. For example if cr = I/30 sec" , A = 3

meters, and t = 10 seconds, in three cycles of the sinusoidal

term the amplitude of the disturbance would die dovm from a peak

near 3 meters to a value of about 1.1 meters. In six cycles the

amplitude would be .4 meters; in nine cycles it would be .15

meters i and in twelve cycles it would be .055 meters. Thus for

these values of the parameters, the disturbance would essentially

pass completely in two hundred and forty seconds (four minutes).

For this reason, the wave group will be referred to as a finite

wave group because it lasts for only a finite length of time at

the origin.

Two hours later at the point x=0, y=0, z=0, the sea

surface is essentially undisturbed. It would be nice to know

where the disturbance is at two hours after the time t = 0, and

what disturbance of the free surface it is causing wherever it

is. It would also be nice to know what pressure disturbance at

depths below the free surface is being caused by the passage of

the wave group overhead.

Method of solution

The first step in solving the problem is to find the contin-

uous Fourier spectrum of the function given by equation (4.1).

The expression, 7y (0,0,t),is an odd function, that is, 7^ (0,0, t)

equals -7] (0,0,-t), and so only b(/x ) must be found as given by
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equation (3.7). The expression, b(^ ),is given in equation (4.2)

for the particular problem under study. The integral is evaluated

in Bierens de Haan [I867].

It follows that equation (4.3) is just another way to write

equation (4.1), and if it were integrated (4.1) would be obtained.

As written, equation (4.3) is more informative than equation (4.1)

because it is an integral which contains a term which varies slnu-

soidally as a function of time, and, from Chapter 2, a great deal

is known about how such v^aves travel.

Neither equation (4.1) nor equation (4.3) gives sufficient

information to determine the solution of the problem completely.

There are many disturbances of the free surface which could have

produced the observed variation in time at the point of observa-

tion. The various spectral components which combine at the point

X = and y = to produce the disturbance might have come from

many different directions. It will be assumed that most of the

disturbance came from the negative x direction and is traveling

in the positive x direction. Thus variation in y does not occur

and 7y will be a function of x and t alone. This assumption is

definitely an approximation to what occurs in nature because it

implies that the crests of the disturbance are infinitely long

in the y direction.

The first term in equation (4.3) contributed only a very

small amount to the total integral because, with ^ positive, the

, magnitude of the exponential term is small to start with and be-

comes smaller as fi increases. Let these spectral components

travel in the negative x direction.

The second term in equation (4.3) contributes a major part
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to the integral because, for jx = 2Tr/T, the exponential term is

imity. Let these spectral components travel in the positive x

direction. Under these conditions, the variation of Tj with x

can be expressed, and equation (4.4) follows from equation (4.3).

Equation (4.4) reduces to equation (4,3) if x is set equal

to zero. In addition, a correct spectral wave length has been

assigned to each spectral frequency,^ . Equation (2.25) applies

where S is equal to -7r/2 and e is zero.

In the first term of equation (4.4), the limits of integration

can be changed from zerj through infinity to minus infinity through

zero by the relations given in equation (4.5), and finally 77 (x,t)

can be expressed by equation (4.6). Again equation (4.6) reduces

to equation (4,3) if x is set equal to zero.

If equation (4.6) were integrat-jd at this stage of the deri-

vation, an expression for the free surface as a function of x and

t would be obtained. It is better to delay the integration and

consider the possibility of obtaining some information about the

pressure at the depth z below the free surface.

The pressure can be found immediately from consideration of

equations (2.9), (2.6), (2.7), (2.25), (2.24), and (2.26). From

equation (2,9)? the value of $ is known for z = 0. From equation

(2,6), ^ and ^^ as a function of z follow, and substitution of

4>t as a function of x, z, and t into equation (2,7) gives the

pressure. Equations (2,9), (2.6), and (2,7) are perfectly general.*

In particular, if equation (2,25) is the free surface, then equa-

tion (2,24) must be the potential function, and equation (2,26)

must represent the pressure. Integration over the parameter,/!
,

does not affect these relationships and the pressure as a function
* Within the linear approximation.
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of time, distance, and depth is given by equation (4.7).

The pressure given by equation (4.7) is evidently a rather

complicated function. It is complicated because infinitely deep

water is a dispersive medium. The various spectral components

of the pressure are attenuated at different rates with depth

and the various spectral wave components travel at different speeds

along the surface. It is therefore to be expected that the shape

of the wave profile as a function of time at different values of

X will not be the same as the shape of the wave profile at x

equal to zero and that the apparent period of the pressure vari-

ation at a depth z below the surface will not be the same as the

apparent period of the disturbance at the surface.

Solution

The next step is to integrate equation (4.7). The value of

the integral is given in Table 269 on page 375 of the table of

definite integrals compiled by Bierens de Haan [I867]. After ^

some algebraic manipulations the result can be put into the form

of equation (4.8) of Plate VI.

The free surface can be found from equation (4.8), with the

use of equation (2.9), by substituting p = on the left, z =

into the first term on the right, and z = T) into the second term

on the right. Equation (4.9) then gives the free surface.

The pressure as a function of time and depth at the point

X = 0, is also of interest because the expression is simpler.

By substituting x = into equation (4.8) and clearing fractions,

the pressure can be found below the original point of observa-

tion. The pressure is given by equation (4,10).

The derivation given in Plate V and the results obtained
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in Plate VI could just as easily have been carried out if the

sin 2Trt/T in equation (4.1) had been replaced by the cos 27rt/T.

All that is needed is a few changes in sign in appropriate parts

of the derivation. An arbitrary phase lag, 6, can be inserted

into the sinusoidal term of equations (4.8), (4.9) and (4.10)

and the equations will still be valid.

Evaluation

Now that the solutions have been obtained, some graphs and

tables will be presented in order to show how the functions vary,

why they vary the way they do, and what physically significant

conclusions can be drawn from the data assembled. ^JVhen the para-

meters of the solution are varied, the behavior of the solution

varies markedly.

The behavior of the solution depends most strongly on the

parameter, a , which, in equation (4.1) determines the rate at

which the envelope of the sinusoidal terra goes to zero. For

large values of a the duration in time of the original disturb-

ance is short. For small values of a the duration of the ori-

ginal disturbance is long.

Spectrum

Thus a is an interesting parameter to trace through the re-

maining equations. Consider, for example, the effect of a in

equation (4.6) in which it determines the nature of the continuous

spectrum. The amplitude of the continuous spectrum is given by

c(
fj,)

as shown in figure 1 where the minus sign is omitted by

virtue of equation (3.9).

The graph of the spectrum is a probability curve with a
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Fig I. GRAPHS OF THE CONTINUOUS SPECTRA OF FINITE WAVE GROUPS

FOR VARIOUS VALUES OF 0" AND T.
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rnaxiraum amplitude given by k/2^^a when /x = 27r/T. The larger

the value of cr the more slowly the probability curve dies down

to zero as /x varies and the lower the peak amplitude. As a

approaches zero, c(/i.) approaches an infinitely high spike at

the point yL = 2it/t . Note that as a approaches zero, equation

(4.1) approaches rj (t) = A sin 27rt/T, that equation (4,8)

approaches the correct expression for the pressure which would

be caused by a purely sinusoidal wave, and that equation (4,9)

approaches rj (x,t) = A sin(27rx/L - 27rt/T) where L is the appro-

priate wave length for a wave with a period, T, in deep water.

The continuous spectrum of the disturbances is graphed in

figure 1 for A equal to unity, cr = l/20, I/30, l/50, and l/lOO

sec" and T = 5 and 10 sec. The shorter the duration of the wave

group, the wider the spread of the wave spectrum, and it should

be expected that the more rapidly the shape of the disturbance

will change as it travels onward.

In the formulation of the problem, part of the spectrum

of the wave group at x = was made to travel in the negative x

direction. As a result an integral form of the solution was ob-

tained which could be evaluated in closed form. If this had

not been done at that time, the solution could only have been

obtained in series form and it would have been more difficult

to interpret and evaluate. Figure 1 shows that the contribution

to the total spectrum of these components is indeed so small

that it does not show on the graphs for the values of the para-

meters employed. It can be concluded that the effect of this

tail of the probability curve which exists for negative values

of /i will not affect the properties of the solution very much,
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The assumption made in the formulation essentially poses the

form of r) (0,t) which can be arbitrarily given in such a prob-

lein. The possibility of very low waves traveling in the opposite

direction out of the group is indeed a very small price to pay

for a closed complete easily evaluated solution.

Envelope

The free surface given by equation (4,9) is a product of a

slowly varying term which determines the envelope of the disturb-

ance times a term which is the sine of a complicated function

of X and t and which varies rapidly as a fiinction of x and t in

order to give the individual waves in the wave group. Consider,

first, the envelope of the free surface given by E(rj ) in equation

(4.12) where D is defined in equation (4.11). The minus sign

can be considered to be part of the phase of the sinusoidal term.

- o-^t^
At X = 0, the envelope becomes Ae~

Substitute some constant value for x into the equation for

the envelope, say x = x, and keep that value. As the time varies,

what happens to the amplitude of the disturbance? The disturbance

is greatest when t = 4Trx-,/gT which shows that the envelope moves

in the positive x direction with the group velocity of waves of

the period T. The maximum value of the envelope is given by

a/(D) ^ and so the greatest value of the amplitude of the dis-

turbance decreases as the wave group travels in the positive x

direction.

Let t = 4Trx^/gT + t' = t^ + t' (Equation (4.13)), so that

attention can be concentrated on the times near the time when

the wave group passes the point x-, . The exponent of e in the
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2 2
equation for the envelope takes the form -( cr /D)(t')

(equation (4.14)). This shows that it takes longer for the

envelope to decrease to l/e of its maximum value at x = x,

than it does at x = 0.

The behavior of the envelope as a function of time at a

fixed point is shown by Tables 1 through 4 for the same values

of cr and T which were employed in graphing figure 1 and for

c = 1/20, T = 20 sec. Table 1 shows the appropriate values

for cr equal to l/lOO sec" and T equal to either 5 seconds or

10 seconds. At x equal to zero and t equal to zero the amplitude

of the envelope is one. Thirty-two and four tenths seconds be-

fore or after t equal to zero the amplitude of the envelope at

X equal to zero is nine tenths. On hundred fifty-two seconds

before or after t equal to zero the amplitude of the envelope

is one tenth. The highest part of the wave group passes the point

X equal to zero in three hundred and four seconds (5*07 min).

Of course, the wave group never completely passes a given point.

For example, it takes five hundred twenty-two seconds (or 8.7

minutes) for the .01 values of the envelope to pass,

V/hen the maximum amplitude of the wave group reaches the

point X equal to 17»7 km, the maximum possible value of the enve-

lope is 0.90. The maximum amplitude of the wave group passes

that point x = 1.77 km at the time indicated by t , which in

this case is given by 4,560 seconds (or 1.27 hours) if the period

of the waves under the envelope is 5 seconds and by 2280 seconds

(or .635 hours) if the period of the waves under the envelope is

10 seconds. This shows that the envelope of the 10 second waves

travels twice as fast as the envelope of the five second waves.
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Put another way, for the same value of a , the amplitude of

the envelope decreases twice as fast for 10-second waves as it

does for 5-second waves. Forty-two and four tenths seconds be-

fore and after the time, t^, the amplitude of the envelope is

0.80. One hundred eighty-three seconds before and after t^ the
o

ampitude is 0.10.

The above examples show that this method of computation

breaks down the dependence on time of the amplitude of the enve-

lope into two different parts. The time is given by t = t + t '

.

The part, t , evaluates the gross effect of the speed of travel
o

and it is of the order of magnitude of hours in the computations.

t depends only .on the value of x^ considered and the period of

the waves under the envelope. The part t', evaluates the time

it actually takes the wave group to pass a given point, and it

is measured in seconds, t' depends only on the value of x-, con-

sidered and the value of a . Computation of the actual time t

would require prohibitive accixracy in order to compute the time

of passage of the wave group at large values of x, because t'

is essentially the difference between two large numbers.

Now compare Table 4 with Table 1. In Table 4, or equals

l/20 sec" . The maximum amplitude of the envelope dies down much

more rapidly. In fact, x,, need be only four hundredths of the

distance given in Table 1 for the amplitude to decrease a cor-

responding amount. In Table 1, the envelope could travel I?.?

km before the amplitude would decrease to nine tenths of its

original value. In Table 4, the envelope would travel only .71

km and then its amplitude would decrease to nine tenths of its
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original value. Thus the larger the value of a > the wider the

spectrum of the distiorbance, and the more rapidly the disturb-

ance dies down in amplitude as it travels along.

The time required for the wave group to pass the point of

interest is simply two tenths of the time required for the wave

group to pass the corresponding point of interest in Table 1.

Thus, the modification of the wave group with a large value of

cr occurs much more rapidly than it does for a small value of a .

In summary, the envelope travels in the positive x direction

with a speed determined by the group velocity of waves with a

period T. The larger the value of T, the more rapidly the group

travels in the x direction. Its maximum amplitude decreases as

it travels along, and it spreads out over the sea surface more

and more the further it gets away from the origin. The larger

the value of T and the larger the value of cr , the more rapidly

the group disperses in time.

Apparent local period

The rapidly varying sinusoidal term which determines the

nature of the waves as modulated by the envelope can now be con-

sidered. The sinusoidal term is given by Sisq ) in equation (4.15).

The term varies between plus one and minus one as x and t are

varied and it is defined everywhere in the x,t plane. It is

not periodic in t since there exists no constant t such that

3(71 )[t] = 3(7] )[t + T ]. In addition, the sinusoidal term is

not periodic in x. In fact, the entire solution is not periodic.

Consider the term in the brackets in equation (4,15) for a

fixed positive value of x,. As a function of t, it is a parabola
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Arg S(7;)

fixed

Fig 2

Form of the Graph of the Argument of 8(77).

T* and Tg are defined at Pg.

The figure is not to scale.
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which achieves some maximum value when t is negative at the

point t = tj, as graphed in figure 2, For t>tjy,, an Increase

in t results in a decrease of the argument of the sine curve.

The minus sign at the front of the expression can be put in-

side by adding v to the term in brackets.

Since the original problem was, in a sense, an initial value

problem, the main point of interest will be in the behavior of

3(77 ) for t>0>tw. For this reason, consider the point P-,.

The terms which are constant for constant x-, can be ignored and

equation (4,l6) can be written. Then if t is increased by the

amount, T, , the new constant value will be equal to the old

constant value minus 2Tr, and S(t^ ) will have the same value as

before. Equation (4.18) can then be obtained by subtracting

equation (4,17) from equation (4.16). Equation (4.18) trans-

forms easily into equation (4.19) with the use of equation (4.13)

Finally equation (4.20) can be obtained if equation (4.19) is

solved for 1/T,*, and the reciprocal of the solution is taken.

By an exactly similar procedure, Tg* can be found from

equation (4.l6) and equation (4.21). Tg* is given by equation

(4.22).

The only difference between equation (4.22) and (4.20) is

that the second term under the radical is negative in equation

(4,22). Thus for certain values of t' near t' = - tp. + ^ip "the

value of the term under the radical is negative and Tg* is

imaginary. Such a value of t ' (or t) is shown at the point P2

in figure 2. An increase in the value of t by T,* results in a

decrease in the value of the argument by 27r, but there is no
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possible way to decrease the value of t by T2* and cause an in-

crease in the value of the argument by 2v. This is the reason

why T2* is imaginary for certain values of t '

.

The derivation given above applies only to values of t>tj.j^

(or t'>- t + t,J and x,>0. For the other three possible com^
g 1^1 1

binations of inequalities, similar derivations can be carried

out. One of the two quantities T-j_* or T^*, will always exist

for the entire range of applicability. The other will be imagi-

nary only over a very short range.

Although 3(7^ ) is not periodic, it now becomes convenient

to define a term which is somewhat analogous to the period of

a periodic function. This term will be denoted by T* and it

will be defined to be the average value of T^* and T2*. T* will

be called the appareht local period of S(7^ ).

It has been shown that the maximum value of the envelope

occijirs for t' = 0, and therefore T* is most important near t'

= 0. For the values of a > x-, and T employed in Tables 1 through

4, 8 cr x^T /g-rrD is always less than 10~
, and it can be shown

from the expansion of the radicals in the expressions for T,*

and T2* that T* depends essentially only on the square of this

term as a slight correction factor. Therefore T* can be given

by equation (4.23) to four significant figures in the neighbor-

hood of t ' =0.

The apparent local periods which correspond to the times

and distances given in Tables 1 through 4 are given in Tables 5

through 13. The apparent local periods are given to three sig-

nificant places. Table 5 can be interpreted as follows with
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the use of Table 1, In Table 1, after the envelope has traveled

29.6 kilometers in I.87 hours, the envelope is 0.5 units high,

107 seconds before its maximum value of 0,8 and 10? seconds after

its maximum value. Then in Table 5 at the time t = t - 107

seconds, the apparent local period is 5»04 seconds and at the time

t = t + 107 seconds, the apparent local period is 4,96 seconds.

Thus- the first waves to arrive at the point of observation have

the longest apparent local period.

Tables 5 through I3 combined with equation (4,20) show

that the larger the values of a and T, the more rapidly the

value of T* departs from T as the wave group travels away from

X = 0, In Table 8, for example, after the group has traveled

only 10.9 kilometers, the apparent local period for the waves

which arrive first is 5»42 seconds and for those which arrive

last, 4,64 seconds. In Table 5? after the group has traveled

612 kilometers, the apparent local period is 5»08 for the waves

which arrive first and 4,92 seconds for those which arrive last.

The dispersive effects of the various spectra graphed in figure

1 are evident.

The overall variation of equation (4.9) at a fixed point

as a function of time can now be described, A wave height re-

corder at some distance x, from the origin would not detect any

significant variations in height until a time corresponding to

t had elapsed. At a time in seconds before and after t„ cor-
g g

responding to t ' waves of the amplitude given in the tables with

an apparent local period given in the tables would be recorded.

For times much greater than t , the sea surface would be essentially
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undisturbed again. Figures 3 and 4 are a group of graphs which

show the wave records which would be observed at various fixed

x^ , as a function of time. The graphs have been obtained by con- .

sidering Tables 4, 12, and I3 and hence values of o- equal to

1/20 sec"-^ and of T equal to 10 and 20 seconds. The phase of the

wave crests has been chosen to go through zero at t = 0. A

slight variation in x' and t within the accuracy of the last
o

significant figure given for them would make this possible. The

wave crests have been sketched in from the data given in these

tables. It is simply too long and difficult a procedure to evalu-

ate equation (4,9) by letting t vary through 2 second increments

throughout a range of several thousand seconds in order to graph

the free surface. Figures 3 and 4 are sufficiently accurate,

however, to show the major features in the tr'ansformation of the

wave group.

From equation (4.12), it would also be possible to discuss

the shape of the envelope as a function of x for a fixed time.

The envelope is not a normal probability curve as a function of

X for a fixed t since D varies with x. This aspect of the problem

of evaluating the solution has not been investigated in as much

detail as the problem of the variation in time at a fixed x. For

T = 10 sec and cr = l/loO sec" , the graphs shown in figure 5 have

been obtained. The slight skewness shown by equation (4.12)

(which is not so great as one might expect because the D's in the

two places where they occur counteract each other) is not evident

in the graphs. It might show up for other values of the parameters,
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Apparent local wave length

An apparent local wave length can be obtained by an analysis

similar to the one carried out for the apparent local period. In

the derivation of the apparent local period, no approximations

were made until equation (4,23) was obtained. The derivation

showed that higher order effects could be neglected, and so it

is possible to simplify the derivation of the apparent local wave

length on this basis.

Equation (4,24) defines the argument of the sinusoidal part

of the solution as a fxinction of x and t. If equation (4,24) is

partially differentiated with respect to time, and then if finite

increments are taken as in equation (4,25), T* can be found im-

mediately in the form of equation (4,26). Equation (4.13) would

then give equation (4,23) from equation (4,26).

Now the derivation of the apparent local wave length can be

carried out easily. Equation (4,27) leads to the apparent local

wave length as given in equation (4,28). Note that L* is not

equal to g(T*)V2Tr.

Equation (4,29) shows that t can be considered a fixed value

and redefined in terms of a fixed x by means of the group velo-

city relationship. Also x can be treated as the sum of two terms,

The X-, is the large term which determines the location of the

maximum amplitude of the wave group, and the x' determines the

distance from this maximum. With these equations, an alternate

relationship for L* can be given by equation (4,31).

Equation (4.31) shows that L* is almost equal to the wave

length of a sinusoidal wave of period T in infinitely deep water
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Properties of the Solution (Continued)
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when x' is zero. The term T a /l-n D is small compared to one

for the values of T and cr employed in the evaluation. For a

fixed X-,, as x' increases positively, the apparent local wave

length increases. As x' decreases the apparent local wave

length decreases. Thus for a fixed t as a fionction of x, the

longer waves are in the front of the group.

One final point needs to be made. It was shown that a posi-

tive increase in t by the amount T* caused a decrease in f(x,t)

by the amount 2ir, In equation (4.27), it was assumed that a

positive increase in x by the amount L* caused a positive in-

crease in f (x,t) by the amount 2Tr, Equation (4,31) then gave

a positive value for L* over the range of x and t where the maxi-

mum value of the envelope occurs. The derivation therefore shows

that those wave crests which are under the maximum value of the

envelope as it travels along are moving forward in the positive

X direction.

Apparent local speed

The total change in f(x,t) at a wave crest should be zero

if the observer moves with the speed of the crest. Equation

(4.32) imposes this condition and yields the result that the

wave crests advance with an apparent local speed given by C*

in equation (4.33) • In equation (4,33) it should be understood

that L* and T* are given by equation (4.26) and (4.29), For

values of x and t which give a maximum value for the envelope,

it then follows that the wave crests are moving forward with a

speed twice that of the envelope,
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Summary of wave group behavior

In summary, the wave group studied travels forward with

the group velocity appropriate to the value of T employed. It

dies down in amplitude as it travels along and spreads out over

the ocean surface. The individual waves under the envelope

form in the rear of the envelope as waves with a short apparent

local period, travel through the envelope with a gradually in-

creasing apparent local period to a maximum amplitude where

they have an apparent local period nearly equal to T, and finally

race ahead with a longer and longer apparent local period to

disappear at the front of the group. At any instant of time,

the longest apparent waves are at the front of the group, if

X and t are greater than zero.

The study in this section of the behavior of the solution

for values of the parameters employed in the tables is now com-

pleted. A study of the pressure caused by the surface disturbance

will be made in a later chapter.

New form of Cauchy-Poisson problem

One very special modification of the solution can be found

which yields another fascinating form of the Cauchy-Poisson wave

problem. If in equation (4,1), sin 2Trt/T is replaced by cos 2Trt/T,

then in equation (4,9)) the negative sine term can be replaced

by a positive cosine terra. Then in these new equations replace

A by a modified form given in equation (4.34), where A* is constant

As cr approaches infinity, the modified form of equation

(4,1) approaches an infinitely hign spike which lasts only for

an instant in time. The spectrum given by ai/J. ) is equal to
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a constant value everjrwhere and thus degenerates into a white

noise spectrum. Then for x not equal to zero, the free surface

assumes the form of equation (4,35).

In this modified form of the Cauchy-Poisson wave problara,

the amplitude of the waves at a fixed point, x, does not increase

with time and is finite at all x not equal to zero. The disturb-

ance, as in one of the previous cases, is caused by an infinitely

high, infinitely long,* infinitesimally wide coliimn of water at

the origin, but in this case it lasts only for an instant of time,

Thus there is not enough energy to produce an infinitely high

disturbance at points other than x = 0.

Phy s ical reality of probleja

The physical reality of the whole problem discussed in this

section should be considered. If such a wave group were gene-

rated on the surface of the ocean, would it travel as predicted?

It might not because no ocean is infinitely deep, because the

low periods associated with high values of yu. are really capil-

lary waves, and because such effects as internal viscosity, and

the friction of the atmosphere against the moving waves have been

neglected.

The wave length of a sinusoidal wave in water of finite

depth is less than the values employed here. Since the spectrum

of the waves is defined near fx = where the period of the waves

is infinite, the group will not travel exactly as predicted in

water of finite depth.

In figure 1, for the values of the parameters employed, it

can be seen that that portion of the spectrum which is affected
* In the y direction,
'^or the same period.
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by a depth equal to that of the average depth of the ocean is

very small. Note that this is not the case in the Cauchy-Poisson

problem where the spectrum is a white noise spectrum.

The wave length of a sinusoidal wave when surface tension is

considered, is greater than the values employed here if the per-

iod is very small. For the range of the parameters considered

this effect is very small. Again this is not the case in the

Cauchy-Poisson problem.

The effect of internal viscosity has been shown to be negli-

gible by Sverdrup and Munk [194?] for the dominant spectral com-

ponents employed although Johnson [1949] has shown that it is

important for very short period waves. Internal viscosity would

not be important until the group had traveled a distance equi-

valent to several times around the earth-,*

The action of the air against the traveling wave group or

of some type of internal eddy viscosity in the motion is possibly

an important effect which could modify its actual travel. For

the present, there will be no speculation about the modification

of the solution obtained in this section by these mechanisms.

See Lamb [1932], sec. 348 equation (9). For the ten second
spectral component, traveling with the group velocity of a
ten second wave, the distance the .^roup would travel before
dying down to the l/e of its former height due to molecular
viscosity would be of the order of 10° kilometers.
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Chapter 5. THE PROPAGATION OF A FINITE WAVE TRAIN
IN INFINITELY DEEP WATER

Introduction

There is considerable interest in the problem of what hap-

pens to a train of waves of constant height, finite duration,

and constant apparent local period as it travels along. Sver-

drup and Munk [194-7] have given a physical argument based upon

the fact that the energy of the wave train advances with the

group velocity which shows that the major rise of the amplitude

advances with the group velocity of the apparent local period

and that only very low waves travel out in front of the main

group.

Such a finite wave train has a continuous Fourier spectrum.

In order to determine the effects of dispersion, it is necessary

to investigate the problem mathematically with the techniques

of the previous problem.

Despite Munk's [194-7] assertion to the contrary, dealing

with the recorded period, "without recourse to the nature of

the underlying continuous Fourier spectrum" always tacitly assumes

something about the underlying spectrum which may not be theo-

retically justified. There is considerable confusion in the

technical literature about the difference between the apparent

local period of the previous section and the period of a periodic

function. In addition the use of the formula c = gT/27r in the

above reference is not valid because the formula applies only

to a purely periodic wave train of one constant period.
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Formulation

Suppose that a wave record defined by equation (5«1) is ob-

served at the point x = and y = 0, as a function of time. The

sea surface would be perfectly flat for all times before t = -nT.

After that time waves all of the same height with an apparent

local period equal numerically to T would be observed until t = nT.

There would be 2n complete wave crests. After t = nT the sea sur-

face would become and remain flat again. Thus the wave train lasts

only for a finite length of time, and it is therefore referred to

as a finite wave train. It would be nice to know what the sea sur-

face looks like at other places and other times. It would also be

nice to know how the pressure varies as a function of depth as the

wave train passes overhead.

liethod of solution

The continuous spectrum, hi/i), can be found as usual by in-

tegrating equation (5*2) . The last result in equation (5«2) has

the same property that was found in the previous chapter in that

for ^ > the second term dominates the first term.

By arguments exactly parallel to the ones in the previous

chapter, the equation for the free surface can be written in the

form of equation (5.3). For x = 0, equation (5.3) reduces to equa-

tion (5.1).

It was possible to obtain a representation for the pressure

caused by the disturbance in an integral form similar to equation

(4.7) of the previous section. However the indicated integration

could not be carried out, so, although it would be nice to know

something about the pressure caused by the disturbance, that aspect
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The Propagation of a Finite Wave Train in Infinitely Deep Water

7;(o,0,t) =

Asin^, if-nT<t<nT
T (n an integer)

, otherwise

.+ 00 pTn

b(^) =^\ 77(o,o,t)sin^t dt =4\ sin^sin^tdt
-Tn— OB

(5.1)

.Tn

^-Tn

A [-cos(f+/x)t + cos(^-M)t dt

A
IT

sin(y + ^)Tn sin(^-A^)Tn

i¥^H-)T if-^)

77(x,t) =

A
V

A.

sinju- T n sin /i. T n

(f+M) (^-/-)

vH-®
sin MTn sin (^--M^) d/i

(5.2)

(5.3)

27r

T
(5.4)

^(x,t)=ir\_Sin (-y2--Y-)^(-g-^°^gT'^)l
i-oD L g

sin gnT
— a

la

2 * 0+"°
^a^X

g +-(W-t)
sinanT
— a

da

^+0D

.^ cos(^-^)Js,n[^^ar^^-t)]^l^^da (5.5)
TT

PLATE IS
-79-



of the problem will have to be unknown for the present.

The next step is to integrate equation (5.3)» A few manipu-

lations in the form of trigonometric identities and a transfor-

mation of variable make it possible to put the equation into a

form where the integral can be evaluated. The transformation of

variable given by equation (5.4) and the formula for the sine of

the sum of two angles yields equation {5»5)» The trigonometric

identity for the product of two sinusoidal terms can then be used

to obtain equation (5«6). The assumption that n is an integer is

used.

Consider the first term in equation (5.6) (Plate X). The term

under the integral can be expanded by the trigonometric identity

for the sine of the sum of two angles and thus this integral can

be written as the sum of two integrals. One of these integrals

is given by equation i5*7)' The integrand is an odd function,

and the integral of an odd function from minus infinity to plus

infinity is zero. The other term is even and its integral from

minus infinity to plus infinity is equal to twice its integral

from zero to infinity. The contribution of the first term is there-

fore only the first term in equation (5.8). If this operation is

carried out on each term in equation (5.6) the corresponding terms

result in equation (5.8).

The terms in equation (5.8) can be written as a double Fourier

Integral by means of an interesting mathematical detour, and the

double Fourier Integral can be evaluated by an interchange of the

order of integration. The mathematics will be carried out for

the first term in equation (5.8).
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The Propagation of a Finite Wave Train in

Infinitely Deep Water (Continued)
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The first step is to find the Fourier Spectrum of cos a x/g

as a function of a. Equation (5.9) gives this spectrum as a func-

ticn of the new variable, ?. It then follows that cos a x/g is

given by equation (5.10). Equation (5.11) would be the correspond-

ing equation for the sin xa /g. Note that this step involves the

assumption that x is greater than zero. Slight modifications of

the analysis from this point on would also yield valid results for

X less than zero.

In the second expression in equation (5.12), (Plate XI), equa-

tion (5.10) has been substituted for cos a x/g in the integral

which occurs in the first term of equation (5.8). In the third

expression, the order of integration has been interchanged as in-

dicated by the rearrangement of the brackets. The change in the

order of integration can be justified theoretically. The term

in brackets in the third expression leads to the conclusion that

P p
integration of the term, cos p g/4x + sin p g/4x, from zero to the

indicated variable upper limit is equal to the original integral as

in the foiu'th expression. Finally a change in variable gives the

last expression in equation (5.12).

The term in brackets in the third expression in equation (5.12)

is considered in equation ' (5.12) and designated with the letter I.

It can be shown easily that this integral as a function of p, after

integration over a, is either constant or zero, and its values are

given below the integral (see Pierce, [1929]).

Now that the integral over a has been evaluated, consider the

integration over p when 47rx/gT - t + nT>0. For p <47rx/gT - t + nT,

the integrand as a function of p is equal to cos p g/4x + sin p g/4x
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The Propagation of a Finite Wave Train in

Infinitely Deep Water (Continued)
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times a positive constant. For p>47rx/gT - t + nT, the integrand

is equal to cos p^gAx + sin p^gAx times zero, which is zero. But

since the integrand is zero beyond this value of p, the integral

can be evaluated by integrating cos p gAx + sin p gAx from zero

to 477-x/gT - t + nT as in the fourth expression in equation (5.12).

Then the transformation given by equation (5.14) yields the final

expression in equation (5.12). The theory of integration also

shows that if 4Trx/gT - t + nT had been negative, the integrals

would still be correct as written.

The integral given in the last expression for equation (5.12)

is the sum of two loiown integrals. They are the Fresnel Integrals

which are tabulated, for example, by Jahnks-Emde [1945]. For any

particular value of x, t, n, and T, the upper limit of integration

is some number, and the table gives the value of the integral.

Solution

Each term in equation (5.8) can be treated in the same manner

as the first term was treated. The final form of the solution is

then given by equation (5.15) where G(x,t,T,n) and H(x,t,T,n) are

defined by equations (5.16) and (5.17). These three equations then

are the solution, because they can be evaluated for all values of

t, n, and T, and for all x greater than zero.

In order to show that it is the solution of the problem, equa-

tion (5.15) must reduce to equation (5.1) as x approaches zero

through positive values of x. If the upper limits of .integratipn

are plus or minus infinity the values of the integrals aPe giveri

by equations (5.18) and (5.19).

Consider the expression for G in equation (5.l6). Pick any
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Finite Wave Train (Solution)

77(x,t) = G(x,tJ,n)sin/^^- 2^1'

+ H(x,t,T,n)cos 4Tr2x _ e-n-t
'

gT2 T
,

(5.15)

y|-l[cos-|-<T2 + sin-|-o-2|dcr + j[cos|-cr2+sin^o-2|clo- (5.16)

r+nT

H =

'2~L
(cos-|-o-2-sin-|-a2]da-l/cos-|-o-2-sin^a-2]do-

/cos— (r'^da - Isin ^cr2d(r = J-
2 2

Icos
Jo

COS •^(j2dcr ^2da^Qa = - —

(5.17)

(5.18)

(5.19)

lim G
X "Q-*-

-A if -nT < t < nT (5.20)

lim G =

x-^ 0^
if t < -nT or t > nT (5.21)

(i m H = ift;#-nTandt ¥ nT ''^' . > (5.22),

Plate XR
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value of t such that -nT<t<nT. Then as x approaches zero through

positive values the upper limits of integration of the first terra

in G approaches plus infinity. The upper limit of the second term

approaches minus infinity. The total contribution of the bracket

is then minus 2, and equation ( 5*20) holds.

Similarly if t <-nT or t>nT, equation (5.21) holds. The sine

term approaches - sin 27rt/T. The expression for H can be analyzed

similarly and H is zero if t is not equal to either nT or -nT.

Therefore equation (5.15) reduces to equation (5.1) when x approaches

zero except possibly at two points, namely t = nT and t = - nT.

At these two points, the actual behavior of the solution is

clarified if, now, after passing to the limiting value of x equal

to zero, t is allowed t,o approach t = nT and t = - nT from both

positive and negative values. The free surface approaches the

value zero as t approaches nT or -nT from either direction, and

therefore (5.15) can be defined to be equal to zero at t = -nT

and t = +nT. Therefore (5.15) equals (5.1) everywhere as x ap-

proaches zero through positive values of x.

There is a reason for the particular care which must be em-

ployed in the study of the solution near these two special points.

It is that the slope of the original expression, equation (5.1)>

is discontinuous at these points. The effect of this discontinuity

in slope causes the solution to have a very peculiar appearance

as a function of time for values of x near x = 0.

E\^aluation

Now that a solution to the problem has been obtained, the

properties of the solution will be discussed and graphed as in the
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previous chapter. The natiire of the continuous spectrum, the be-

havior of the wave train as it travels along, and its variation

with n will be described.

Spectrum

The part of the continuous spectrum which was used in the

integral form of the solution is given as b*(a) in equation (5.23)

.

The second form, in terms of a, can be obtained with the use of

equation (5«4-)j if n is an integer. As fi approaches 27r/T or as

a approaches zero, the spectrum has an indeterminate form, but the

application of standard methods shows that the value of b*(a) ap-

proaches ATn/ir at this point. Thus for larger values of n, the

contribution to the spectrum near values which are equal to values

associated with the apparent local period becomes large compared

to other values of the spectrum. As n approaches infinity, how-

ever, the spectrum does not reduce to one infinitely high spike

as in the problem in Chapter 4, The actual behavior of the spect-

rum is shown in the graphs of b*(a) which are shown in figure 6.

If n equals a small value as in the top graph of figure 6, the

spectrum is a smooth curve v/ith important contributions for all

spectral values. Such a disturbance of the sea surface would tra-

vel only a short distance and rapidly die out. In the bottom graph

of figure 6, there are three different scales on the ordinate,

(b(a')), and abscissa (a'), axes. The inner scales apply for n =

10. If n is increased by a factor of ten, the ordinate scale is

increased by a factor of 10 and the abscissa scale is decreased by

a factor of 10 as in the middle set of scales. Thus, the important

part of the spectrum is increasingly concentrated near /j, = 2v/t
^
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(o' = 0), and tlie side spectral components oscillate more and more

rapidly and tend to cancel. For large values of n, the same re-

marks about the spectral components which travel in the negative

X direction are applicable which were made in the comments about

the spectrum of this finite wave group.

As n approaches Infinity, for any finite values of t and x,

equation (5.15) reduces to -7 (x,t) = A sinCAir^x/gT^- 2Trt/T) which

is a simple sine wave traveling tov/ard the right. Only when the

wave train is infinitely long and lasts for an infinite length of

time is it possible to apply the usual formula for wave speed and

wave length without qualification. Also equation (4.9) reduces

to the above form as a approaches zero.

An interesting question is, "Why are the two continuous spectra

so different in their limiting ^forms?" The explanation lies in

the way that the free surface at x equal to zero approaches its

limiting form. The free surface studied in Chapter 4 deforms con-

tinuously into its limiting form, namely 17 (0,t) = A sin 27rt/T, as

cr approaches zero. The free surface studied in this chapter does

not deform continuously into its limiting form. The sharp discon-

tinuity from full amplitude to zero amplitude is always present,

and an increase in the value of n just displaces the discontinuity

in time. This difference in behavior thus explains the differences

in the type of continuous spectra obtained.

The solution to the problem studied in this chapter is valid

for all integer values of n. For n equal to one, there would be

two complete wave crests under the envelope. The evaluation of the

solution for other values of x and t would then be somewhat difficult
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because all terms in equations (5.15), (5.l6) and (5.17) would have

to be evaluated carefully over small increments in the variable

quantities. The disturbance woiild die down in amplitude and spread

out over the surface quite rapidly. In addition, the variation in

amplitude and sign of the terms G and H would be as rapid as the

variation of the sine and cosine terms so that the simplifying con-

cept of a slowly varying envelope and a relatively rapidly varying

sinusoidal term under the envelope would not be applicable.

Simplificat ion of results

For large values of n the analysis of the solution and the

physical interpretation of the results are simpler. One could con-

sider the problem to represent a train of waves of constant apparent

local period which takes, say, ten hours to pass a given point,

X = 0. Then if T equals ten seconds, n equals l800, and nT equals

18,000.

Now consider the integrals in equation (5.18) and (5.19). If

the upper limit were replaced by plus or minus ten in these inte-

grals, the values of the integrals would still be very close to plus

or minus one half. Thus, interest should be concentrated on times

and places where the upper limits of integration in equations (5«l6)

and (5.17) lie between minus ten and plus ten. One way to do this

is to study the variation of the solution at a fixed value of x as

a function of time. Pick a fixed value of x and call it x^ as in

Chapter 4. Then the forward edge of the wave train arrives at x-,

at a time, t, determined by the group velocity of waves with a

period equal to the apparent local period of the wave train. Vifhen
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t = 47rx,/gT - nT, the upper limit of integration in the second

term of (5.l6) and the first term of (5»17) is zero. The upper

1/2
limits of integration of the other two terms is given by (gAirx^).^

2nT and its value is greater than 10 for all values of x^^ less

than ten thousand kilometers. Note also that a wave train with

3600 waves of 10 second period in it would he about 6OO km long.

For a fixed point, x^, then, if x-, is less than approximately

ten thousand kilometers, the transformation of variable given by

equation (5.24) can be applied where the time of passage of the

forward part of the wave train occurs near t' equal to zero.

Equation (5.15) then simplifies to equation (5.25). The first

integral in equation (5.16) is practically a constant; the second

integral in equation (5.17) is practically zero; and some alge-

braic manipulations then yield equation (5.25) where G* and H* are

defined in (5»26) and (5.27), The value of x, is fixed; equation

(5*25) <ioes not imply that the waves are traveling in the negative

X direction.

G* and H* are functions of the variable upper limit of inte-

gration. For Xn small, the upper limit of integration is greater

than ten or less than minus ten after t' has varied through a small

range of values. For x-, large, t' must vary through a much larger

range of values. G* and H* are graphed in figure 7 for A = 1 as

a function of (gATrXj^)-'-/^t '.

The appearance of the solution as a function of t' for a

fixed X, depends upon the choice of x-,. For small values of x^
,

the effect of G* and H* is to put ripples on the first two or

three waves in the wave train and to leave the remaining waves
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Finite Wave Train (Properties of the Solution)

b*(u) = _ AsinuTn Asin aTn

^(V-) ira
(5-23)

t =
4-7rx,

gT
- nT + t' = t, + t'

^(x.t')^G*(x.,t;n,T)sin(i^' + 1^')

G' = -Â_

2
1 + fc s |- 0-2 + s i

n -|- 0-2 |d o-J

H A
2 [_- J(c0S^cr2-sin|-cr2W

if X, is large enough.

^(x.,t) s /(G*)2 + (H»)2 sin/2^t'^ Izix^ + tan-'-tL""!
\ T gT G*/

Ep^
^ t'+ T

2

4-J^(Mx.t"))dt"^-^((G*)2+(H*f)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

Plate Zm
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unaltered. For slightly larger values, of x-|_, the effect of G*

and H* is to produce strangely distorted wave crests shortly after

t • = and crests with many different apparent local periods short-

ly before t ' = 0. For moderate values of x.j_, the effect of G* and

H* is to cause the individual wave crests to be modulated in ampli-

tude and phase and to have an apparent local period equal to T for

all values of t ' . Finally for values of x, near ten thousand kilo-

meters, G* and H* are no longer appropriate and the original form

of the solution must be studied.

Figure 8 shows the forward edge of the finite wave train as

a function of t' for various values of x-, in order to illustrate

the above remarks. T is ten seconds, n is l800, and x^ has been

chosen to be l/2 centimeter, one twelfth of a wave length, five

wave lengths and one hundred wave lengths. The time scales for

the graphs on the left are different in order to show the fine

details, and the times scales for the graphs on the right are the

same in order to show the overall behavior. For x-, equal to l/2

centimeter, the effect of G* and H* is to put a few high frequency

ripples on the very first wave crest as in the graph at the upper

left. The graph on the upper right shows that the major portion

of the train is essentially unaffected. For x = L/12 and x = 5L

a few crests at the forward edge are affected but the major portion

of the train is still unaffected. For X = lOOL, about ten crests

are found of substantial amplitude in advance of t ' =0, and about

twenty crests are modulated in amplitude behind t ' = 0. The transi-

tion from constant amplitude to small amplitude is quite gradual.

For values of x-j_ which are large enough, G* and H* are slowly
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varying functions of time such that they change slowly over several

hundred seconds. Under these conditions, 77 (x^,t') can be approxi-

mated by equation (2,8). The wave train now has an envelope given

by (G*)^ + (H*)^)'^"'^^. Also since the most rapidly varying term

is the sinusoidal term, the apparent local period is everywhere

equal to T, However H* and G* still vary slov/ly with time so that

the wave crests under the envelope will not all be in phase. The

gradual phase shift with time is given by tan" H*/g*,

It is also possible to compute the potential energy at each

point by the use of equation (5«29)» The potential energy can be

averaged over one cycle; and by suitable approximations the. aver-

aged potential energy can be given as a slowly varying function of

time by (5.30).

Fig-ore 9 is a nomogram which permits the determination of the

amplitude of the envelope of the wave train as a fimction of t

'

for fixed x, (and consequently t ), The straight lines of various

slopes in the bottom part of the figure are graphs of t ' = (^irx-^/g)^ Yi

for various x^ where K is the numerical value of the upper limit of

integration in equations (5.26) and (5,27), iVhen t' equals 2,000

seconds as in the example, and x^ equals 439 kilometers, K equals

2,7, The envelope is graphed as a function of K in the upper graph.

Thus, 2,000 seconds after t equals 10,63 hours which corresponds

to x-,^ equal to 4 39 km, the envelope is .92 times the amplitude of

the waves in the original train. Note that the forward edge of the

wave train passes the point x = five hours before t = 0, and the

forward edge actually takes 15.63 hours to travel the 439 kilometers.

For this particular value of x-|_ the waves build up from an amplitude
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Fig. 9. Variation of the envelope, ttie average potentiol energy, and the phase of the

crests for relatively large volues of xi as a function of t'.
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of less than one tenth to maximum amplitude in 23OO seconds

(38 minutes). This means that after the passage of 230 waves,

the train is essentially constant in amplitude.

An analysis of equations (5.15), (5.16) and (5.17) would

show that the trailing end of the wave train would pass near the

time t ' = 2nT after the forward end. The procedure employed in

the study of the forward end of the wave train could be employed

to study the trailing end of the wave train, and similar equations

and results could be obtained.

Between the time t' equals zero and t' = 2nT, for the example

considered above there would always be essentially 36OO wave crests

in the wave train. A few extra would be found before t' = and

after t' = 2nT. From K = to K = 4 in figure 10, for the example

considered above when x, equals 439 km there would be only 300

waves which are not quite of constant amplitude. At the trailing

end, there would be another 3OO waves. Thus only a total of 6OO

waves out of the 36OO waves, or l6.7^, would be modulated at the

ends of the train.

Other quantities of interest are also graphed in figure 9.

The relative amplitudes of the potential energy at various times

is shown by the dashed graph. The gradual phase shift as a position

of t ' is also shown above the graphs of the envelope and the po-

tential energy. In the forward part of the wave train before

t' = 0, the phase shifts might cause waves which are not approxi-

mately sinusoidal in form.

For the relatively large values of x^ employed in figure 9,

the wave record as a function of t' which would be observed at x-,
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can be graphed by first constructing the envelope and then by draw-

ing in the wave crests with appropriate regard to phase.

There will be some point x^, at which the approximations em-

ployed in equations (5.25), (5.26) and (5.2?) begin to fail because

the modulation on the rear -edge of the wave train will lap over and

combine with the modulation of the forward edge of the wave train.

Figure 9 shows that the modulation is only important for 6000 sec-

onds if X, = 439 km. Modulation which is effective for more than

18,000 seconds would affect the rear half of the train. Therefore

an estimate of nine times 439 km or approximately 4,000 km is better

than the previous crude estimate of 10,000 km for the point at

which the use of equation (5«15) directly would be required in

evaluating the solution.

Some objection might be raised on the -physical reality of the

problem because of the behavior of the solution near x, equal to

zero. The unrealistic behavior is due to the discontinuous char-

acter of the functions employed. Wave trains in nature would not

be so sharply delineated. To eliminate this objection, just con-

sider the wave train as a function of time as it passes the point

X, = 5 km. Let this value of x-, be the new point of origin of the

wave train. Then the new wave train at its starting point would

have smoothed ends, and beyond the new reference point for all times

the solution would be a well behaved function.

Summary

The behavior of the finite wave train can now be summarized.

If the wave train takes a given number of hours to pass a given

point, it will take essentially^the same number of hours to pass
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each subsequent point reached by the train in its forward travel.

There will be a few extra lov/ waves in advance of the train and

a few more lagging behind the train, but there will be only a small

percentage of extra crests produced which are of any appreciable

amplitude. The forward end of the train will advance with the

group velocity of the apparent local period of the waves in the

train, and the trailing end will follow with that same group velo-

city. After a given distance of travel, the ends of the train will

be modulated by a Fresnel interference pattern.

Eventually when x becomes very, very large, the wave train

will have a much lower amplitude. As x approaches infinity, for

n finite, the amplitude of the wave train approaches zero everywhere,

All disturbances of initially finite duration and amplitude must

eventually approach zero amplitudes because of dispersion.

The individual waves will be essentially constant in ampli-

tude and period over the central part of the train. The crests

will travel forward with a speed appropriate to the apparent local

period of the waves in the train. Thus the individual crests are

traveling with twice the speed of the train. Therefore they must

form in the rear of the train, grow in amplitude, travel through

the train, and die out again at the front of the train. At the ends

of the train, a particular crest will not have a speed exactly equal

to the speed in the center of the train, because of the effect of

the phase shifts shown in equation (5.28). Wave crests are created

and destroyed.

Agreement with classical theory

Finally, it should be pointed out that many of the abstract
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points made by Lamb [1932] concerning the propagation of gravity

waves in infinitely deep water, are illustrated in these two con-

crete exact solutions which have been presented. Two quotations

from Lamb follow which illustrate this point.

"It has often been noticed that when an isolated
group of waves, of sensibly the same length, is advancing
over relatively deep water, the velocity of the group as
a whole is less than that of the individual waves com-
posing it. If attention be fixed on a particular wave,
it is seen to advance through the group, gradually dying
out as it approaches the front, whilst its former place
in the group is occupied in succession by other waves which
have come forward from the rear."

"Hence in the case of an isolated group the supply
of energy is sufficient only if the group advance with
half the velocity of the individual waves."

Note also that the solutions obtained in this paper give

some information which is not described by Lamb [1932]. For ex-

ample the solution fol* the finite wave group gives information

about how the amplitude dies down and how the apparent wave periods

change with time. The solution for the finite wave train gives

information about how the ends of the train are modulated.

Comments

The finite wave train is an interesting study. It still

has infinitely long crests, and it is still unrealistic in that

respect. However, properly interpreted and modified it will be

a building block in the formulation of the more realistic models.
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Chapter 6. SOME MODEL WAVE SYSTELIS IN WHICH THE
CRESTS ARE INFINITELY LONG

Introduction

The usual wave record today in deep water is observed as a

function of time at a fixed point. A question arises as to whether

this one record is enough to characterize the sea surface and as to

whether it can be used as a forecasting tool. The actual short

crested appearance of the sea surface and the finite width of the

storm cannot be determined from this one observation. Some elementary

^results (without the use of time series theory) can be obtained

which demonstrate some of the effects of dispersion, but they will

be shown to be inadequate even for the case of infinitely long

crests.

Equations (6.1) through (6.6) describe free surfaces as a function

of time which might be observed at the edge of a storm at sea at

the point x = and y = 0. They increase in complexity, and they

are described less and less precisely as functions. In equation

(6.6), for example, a (/i ) and b (^ ) are unknown functions which

would have to be described before anything could be said about the

behavior of the sea surface either at the origin as a function of

time or at other points.

Figure 10 shows portions of the graphs of rj jj(o,o,t),

''? IIl(o,o,t), and 77^^(0, o,t). The first graph is regiaar and

repeats itself exactly. The second graph was constructed by pick-

ing different values of A^, 6^, and e^^ at random for a few values

and graphing the resulting function.
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Model Wave Systems with Infinitely Long Crests

77(0, 0,t) = A sin
27rt

^(0,0,t)

Asin 27rt

n= + oo

-n T< t< n T

ottierwise

^(o,o,t) =i:'°Ae""'^'""'^sin ^"(L-"-)
^ n = -oo '

n =-p '

ni n=-p

n = + p
-00

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)-»? (0,0,t) =2 / an(u)cosu(t-nT+8n)-l-b (u)sinu(t-nT+8n)ldu

" = -P/o'- -•

Examples. „ _

,-(t+3Q0)^ (_f+200)2

'^^0'°''^= ^n^^ ^ '°° sin(^(t+300)^|-)+ |e 20Sin(i2:ll±200))

+ 20
cin

^^^^-^'QQ
^cocf ^^^^-^'QQ^^ ,

^^Q^^cin^^^fcinf^^^ ^^^ 27r(t-IOO)^'" 20 '^ 10 ^(2u)2t2l^'" lo) MO ^4 ^

-(t-lOO)^ -(t-200)^
+^ e~fo^sin (^-^^;-'QQ))+(i-(t^Qf)e--ri?^sin(22Kt^

^ 4 2Tr(t-300) 25 ^ 10 '

2-(t+300) , (t+200)^

-(t-IOO)2 2 (t-200)^

f 3 25 3;„27r(t-300)].3i„^

(6.6a)

4 27r(t-300) 25 J 10
(6.6 b)
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Equation (6.6a) is a specific example of what equation (6.6)

might look like after different functions had been picked for

a (ft ) and b ( //. ) and after integration over /x . It could be

graphed as a function of t but the phase shifts indicated from

group to group would require more precision than is warranted

for the purposes of illustration. An easier function for pur-

poses of illustration can be found by setting a (ft ) equal to

zero and the 6 equal to zero. The "waves" under the envelope

then factor out and the term in the bracket represents the over-

all envelope in equation (6.6b). Equation (6.6b) is the last

graph in figure 10, The number of different functions which could

be constructed according to equation (6.6) is limited only by the

imagination. It will be left as a problem for the reader to solve

to find out what the functions a (ft ) and b (ft ) are which yield

equations (6.6a) and (6.6b). They are all smooth piecewise con-

tinuous and piecewise differentiable functions.

In this chapter, it will be assumed that the wave crests are

infinitely long in the y direction. The results will then be in-

dependent of y, and a y could be substituted for the second zero

in all of the equations of Plate XIV. It will therefore be omitted

and the free surface will be treated as a function of x and t.

Equation (6.1) is trivial. If the wave is traveling in the

positive X direction, the only possible motion is given by equa-

tion (2,19) where 6 = 0, 6 = 3ir/2, and for infinitely deep water,

L = gT /2Tr, The comments made on equation (2.19) still apply.

If the observation were to represent a storm at sea, the storm

would have started before the start of time, and it would never
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end. Conditions would be the same at all points.

Equation (6.2) has heen solved in Chapter 5* It is far too

regular to represent a storm at sea. However it does start and

stop at the origin, and the wave train actually travels and dis-

perses so that it is observed at different times at different

values of x. If 2nT is of the order of several hours, at each

point, X, there is a time interval of several hours where the dis-

turbance can be thought of as having the properties of equation

(6,1). Outside of this time interval the waves have either not

arrived at a point x, or they have passed the point x, and the sea

surface is essentially undisturbed.

An infinite periodic train of wave groups

Equation (6,3) has not been treated before. It has the faults

of equation (6.1), but it also has some other interesting features

which make it worth studying. The function represented by equa-

tion (6,3) is periodic with a period, t . Therefore it can be ex-

panded into a Fourier Series of simple sine waves with discrete

spectral components. Thus equation (6.7) shows that it is possible

to represent the infinitely long periodic train by a sum such as

the one given by the last expression in equation (6,8).

Each side of equation (6,8) is multiplied by sin 27rpt/T in

equation (6,9). The function is odd and there will be no cosine

terms. Integration of both sides of the equation from - ^/2 to

V2, as shown by equations (6.10) and (6.11) yields the values

of a^. Equation (6,12) is then another representation for T) j(o,t),

Equation (6,12) is much more informative than equation (6.3)

because it is a sum of simple sine terms, and the classical theory
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An Infinite Periodic Train of Wave Groups.

For Equation(6.3) "^ (0,t) = 77|(0,11-t) (6.7)

CO

^iO,t) = "f "a e-"''*-"''sin(^t-nr))=2a„=in2H!li
n=-a) rn=l

(6.8)

n=+® -fT2(i-n-r\^

t Ae-""-"^'sin^(t-nr,sin2ZEL = 2«,singHQlsi„^eL (6.9,

1=-eo m=l

'2 fO m^p
. Zirmt . 2-7rpt ..

ap^sin—=—sm J^ dt= -

m"

2
X
2

^^m f
rn = p

n=+oo -cr2(t-nT)2

E Ae si

n=-<a

(6.10)

-00

n?Z(t-nT)sin2zmLdt = y^e"'''^'in^sin?^dt
Am

-i Ztrm ,
2-7r\2/ , -/2irm 27rf/

2 cr

m=l

00

^J^t)=2^
^ m=l

/27rm .
2Tr_\2/

^A _p\. r "^ T y4a2,„/47|frTfx . 2^^rjt ^

(6.JI)

(6.12)

-{
2Trm 2Tr\2

-e
T //4o-

sm / 47r2m2x 2Trm
V gT2

_ 2^111)] (6.13)
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gives Information on the correct spectral wave length to assign

to each discrete spectral period. In equation (6.13), these

wave lengths are assigned to the periods, and complete knowledge

of the behavior of equation (6.3) at other x has now heen obtained.

Some of the waves are assigned to travel in the negative x di-

rection in order to obtain complete agreement with the results

of Chapter 4.

For a fixed t, the sea surface as described by equation

(6.13) is periodic as a function of x. The wave lengths involved

are given by L = g t /27rm , and they decrease in length by one

over the square of the integers.

Alternate solution

An alternate solution to equation (6.3) is also possible

with the use of the results of Chapter 4. If, in eqviation (4.9),

t - nr is substituted for t, and then if the equation is summed

from n equals minus infinity to plus infinity, an alternate so-

lution is the result. The alternate solution is horribly diffi-

cult to evaluate and interpret. It represents a sort of blind

alley with little practical application. The difficult terms

and derivations of Chapter 4 would have to be analyzed and summed

over many values of n before a resiolt would be obtained. For

comparison, in equation (6,13) for typical values of cr and T,

only about ten terms are important in the sum, and the evaluation

and interpretation is quite simple,

A finite train of regular wave groups

In equation (6.12), for typical values of cr , t , and T, the

first term in parenthesis is negligible and it is therefore neglected
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in equation (6.14), Also for typical values of cr , r , and T,

the finite wave groups in equation (6.4) , are essentially zero

outside of the interval nr - V2<t<nr + y2. It then fol-

lows that an adequate representation for equation (6.4) is given

by equation (6,14) by simply chopping off the infinitely long (in

time) function given by equation (6.12),

Equation (6,14) is a sum of terms each of which is similar

to the finite wave train studied in Chapter 5» The apparent per-

iod of the wave is given by Vm, and if pr + V2 is equal to

an integer, say, q times Vm, the results of Chapter 5 will apply,

(Note, q Vm corresponds to nT of Chapter 5.) Equation (6.15)

then yields equation (6.l6) which shows that q is an integer if

m is even.

For even values of m, then, equation (6.14). can be expressed

as the first condition of equation (6,17), and for odd m, the second

expression can be applied. The results of Chapter 5 apply directly

to each of the terms in the sum for even m. For odd values of m,

a problem similar to the one solved in Chapter 5 would have to be

solved. Formulated in terms of the notation of Chapter 5j the

problem v/ould be to find rj ix,t) given that 7y(o,t) = A sin 2irt/T

for -nt - T/2 < t<nT + t/2 and i7(o,t) = otherwise. The solution

can be found easily by the methods employed before, and the re-

sults are not essentially different from the results of Chapter 5»

The finite regular train of wave groups is therefore composed

of a sum of finite wave trains of amplitude, a , and period, ^/m.

Each train requires (2p + 1)t seconds to pass the point x equal

to zero.

The forward edge and the trailing edge of each train advance
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A Finite Train of Regular Wave Groups.

V^O,i)

(
Z-rrm ^.irf/

^JtFA c, ^ r T /40-2 2umt v^ ^;^ 27rmt
00

m=l m=|

if-(p+l).S,<(p+l),

1 (0,t) = otherwise

(P^i)-c,^

(6.14)

(6.15)

q = mp + — (6.16)

Z^ -:- 2Trmt
amsin^f

—

^^(0,t)

(D

._ 2Trmt

if-(rr.p +f-)^lt<(mp^f)^
E «mS'n

T-

m= 1,3,5

otherwise (6.17)
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with the group velocity appropriate to waves with a period "^/m,

and the edges are modulated by the Fresnel pattern discussed in

detail in Chapter 5* The first train has a period of r seconds

and an amplitude of (VttA/o- t ) exp(-(27r/r - 27r/T) Aa . The

second train has a period of V2 seconds and an amplitude of

(v^A/^ T ) exp(-(2Tr2/r - 27r/T) /4o- ). The periods of the waves

which would propagate into the area of decay, for r = 100 seconds,

would be 100 seconds, 50 seconds, 33*3 seconds, 25 seconds, 20

seconds, l6,7 seconds, 14,3 seconds, 12,5 seconds, 11,1 seconds,

10 seconds, and so forth through 4 seconds for m = 25, 2 seconds

for m = 50, and 1 second for ra = 100, If T were 10 seconds the

train with a 10 second period would have a maximum amplitude and

for typical values of a the trains with one and one hundred second

periods would be very low.

For the values of cr = l/20 sec , T = 10 sec, and A = 5 meters,

and for t = 100 seconds, the amplitude of the 100 second component

-12
would be less than 10 meters, and the amplitude of the 10 second

component would be 3 •55 meters.

If p were equal to l80, the wave system represented by equa-

tion (6.4) would require ten hours and two minutes (36,100 seconds)

to pass the point x = 0, From the derivation, this wave system

can be broken down into a number of wave trains of different

spectral periods and each wave train would advance with its own

group velocity into the area of decay. Each wave train would take

essentially 10 hours to pass a point in the area of decay, but

they would pass at different times.

For the chosen values of parameters for equation (6,4), only
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periods ranging from 17 seconds to 7 seconds are important. All

others are associated with wave trains less than one-half centi-

meter in height. The spectral periods, the wave train amplitude,

and the 1000 km travel times are shown in Table 14, The sum of

the heights (crest to trough) in Table 14 is 10 meters within the

accuracy of the computations so that the amplitude at phase re-

inforcement equals the maximum crest to trough height of the wave

groups in equation (6.4).

Table 14, Component periods, amplitudes, and
1000 km travel times for the important
wave trains in equation (6.4).

Travel time of
Amplitude (meters) forward edge to a

m Period (seconds ) (crest to trough) point 1000 km away

< 10-12

.006 21.4 hrs.

.094 25.0 hrs

,755 28.5 hrs

2.39 32.0 hrs

3.53 35.6 hrs

2.39 39.2 hrs

.755 42.7 hrs

.094 46.3 hrs

.006 49.8 hrs

1
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completely in ten hours, and 31.4 hours after the start of the

wave system at x equal to zero the component would no longer "be

present. Similar remarks can he made about each bar in the dia-

gram. When the various bars of the diagram overlap the sea surface

is the sum of the various sinusoidal terms indicated. Sine waves

of different periods will sometimes add to a maximum and sometimes

cancel to a minimum. In fact, there will be a point of phase re-

inforcement every 100 seconds in this model. The maximum wave

heights present are therefore just the sums of the amplitudes of

the components. The peak amplitudes are shown above the dispersion

diagram as a function of time along with the periods which go to

make up the peak heights.

The forerunners of swell discussed in the literature are

clearly shown in this model. This swell will be more regular than

the original model waves. What is of more interest is the trail-

ing end of short period waves which is not discussed or emphasized

as much in the literature. The waves which arrive after 42 hours

will have periods less than the apparent period in the original

storm, and the question as to why they are not observed more often

arises.

Alternate formulations

The results shown by equations (6,14) through (6,17) can be

obtained in an alternate form by finding the spectrum of equation

(6.4), and by making an approximation to the integration to be

carried out. The alternate derivation is given by Pierson [1951]

in another paper.

An exact solution can also be found by the substitution of
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t - nT for t in equation (4,9) followed by a summation from

n=-pton=+p. The same difficulties apply to this formu-

lation of the solution that applied to the alternate solution for

the infinitely long (in time )pariodlc train of finite wave groups.

Energy considerations

The results so far obtained have been derived from the classi-

cal theory. There is no physical mechanism in the mathematics

which would result in the degradation of energy from kinetic and

potential energy to heat energy from the effects of friction.

There is one effect present, namely dispersion, which spreads out

the energy in time and space that was originally concentrated at

the origin.

The potential energy at an instant of time for a unit area

of the sea surface is given by equation (6.18), In classical theory

in which waves are considered to be purely sinusoidal, it is per-

missible to average over one wave length or over one period and to

discuss the average as an average over one cycle of the potential

energy. For irregular wave records, such as equation (6.5)) this

process is inadequate.

Any record of the sea surface obtained as a function of time

can be treated by equation (6.19). If T is increased, for different

t*, then the average potential energy may settle down to a constant

value in which P.E. would be independent of time.

All of the wave records discussed herein are built up of simple

sine waves, and for sine waves the potential energy averaged over

time at a fixed point equals the kinetic energy averaged over time

at a fixed point. This principle is also true if the disturbance
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is composed of Infinitesimal waves added together by means of

Fourier Integrals, If the potential energy can he accotinted

for, the kinetic energy can he accounted for; and the total

energy is therefore accounted for. For additional information,

see Lamb [1932].

The problem, then, is to construct a balance sheet for all

the energy in the system at x = and show that that energy is

finally observed at x = x-, without loss. The potential energy

will be traced, and since an equal amount of kinetic energy must

be present, the total energy will be accounted for.

Equation (6.19) can be applied to an ordinary sinusoidal

wave for an introductory elementary example. This is done in

equation (6.20) where rj equals -A sin(4Tr x/gT - 2Trt/T). The

last expression in equation (6.20) is a function of T, t*, and

X. For any x and t* as T becomes large, P.E, is given by equation

(6.21). The two sine terms can be at most two in absolute value

for a fixed x, t*, and T, and if T is of the order of ten times

the period, P.E. differs from its limiting value by less than

two per cent. The result shows that the same average potential

energy is present at any point in space at any time.

Energy balance for the infinite period train of wave groups

The Infinite periodic train of wave groups (equation (6.3))

can be written as an infinite sum of sinusoidal waves as in

equation (6.8) and (6.13). If the waves which travel in the nega-

tive X direction are omitted because they are negligible, the

a^^ woiad be defined by the top part of equation (6.14). (See

the discussion at the beginning of the section on the finite
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Energy Considerations.

Potential Energy per unit area.

P.E.= pg^
Potential Energy per unit area averaged over time

•t*+f

P.E. = +//'gfdt

(6.18)

(6.19)

PE. = ^L A^(sin(4zi|. . 2^))2dt = ^^^L 003(8^,- ^))d1

4

for T = kT or as T

•t*"4-T

00

Se =
^^

(6.20)

(6.21 )

t*+T
00

Fl.=^/,|-(-2a„sln(2limix . 2ml)fd.= y42a^(sin(4^«-2=n.Vd.
f*

m=i

t*+T

» m = l

+ J_/oS_V V« « .. /47r2m2x 27rmt x • /4yVx Zrqtx

V** m=iq=i y y

lim :rr= ^PQ 2 P9
9 0) /27nn 2Tr\2/

j-_».coKt. =Zv"4~°m ^ 4"4^2f2Z^C
20-2

(6.22)

(6.23)

m=l - n^_,

for fixed x = x, and t = t*

rP^'
P.E.

N

and

m=k+n
TT^ . P'3 ^ _2

^m

if -nT+E(x„n,T)<^'-t*-T<nT-E(x„n,T)

if -nT+E(x„n,T)<to'_t*< nT-E
gi

if^'-t*<-nT-E(x„n,T)

or if 4-7rx,-t i-T<nT-t- E(x,,n,T) (6.24)

Sl.^^2'
m=k if m satisfies the inequalities

-p(T + 72) + E(x„7^,p)<^^^'-tr</»(T+3^)-E(x.,T/rn,P)

and-p(T + ^)+E(x,y^,p)<^^^-t*-T<p(r+J^)-E(x,,y^,p) (6.25)
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regular train of wave groups.) P.E. can then be given by

equation (6.22),

The process of squaring a sum of terms is carried out in

the second expression in equation (6.22), The sum of the squared

terms occurs in the first integral, and a sum of cross product

terms involving two different wave lengths and two different

periods ( i"/m and T/q) occurs in the second integral. In the

second integral, the product of two sines with two different

arguments is given by half the cosine of the difference of the

arguments minus half the cosine of the sum of the arguments.

Thus each term in the second integral is sinusoidal, with r as

the greatest possible period, and the average of a sinusoidal

term is zero.

The first integral in the second expression for equation

(6.22) is a sum of integrals like those treated in equation (6.20)

Each term can be treated like equation (6.20) was treated. Since

each term of the first integral yields an average if T is large,

the limit for large T is given by equation (6.23). More refined

investigation would show that if T were of the order of ten or

twenty times t , the averaged value of the potential energy

would be within a few per cent of the limiting value.

The results show that the potential energy of the sea sur-

face averaged over a fairly long time for the infinite periodic

train of wave groups is the same everywhere at any time. The

disturbance studied never started and it will never stop. It

covers the whole xy plane.
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Energy "balance for the finite wave train

In Chapter 5> it was shown that the forward edge and the

rear edge of the finite wave train travel forv/ard with the group

velocity of the waves under the envelope and that the edges are

modulated by appropriate combinations of the Fresnel Integrals.

The disturbance is present at a given x, for only 2nT seconds

approximately. Therefore if equation (6.19) is applied to the

solution, for any t*, and if T is allowed to approach infinity

P.E. will become zero. The potential energy averaged over a long

long time after any initial time at any fixed point is zero.

But at a given Xn>0, the disturbance is present for 2nT

seconds, and the 2nT seconds could stand for ten or twenty hours.

If, in equation (6.19), t* were a time after the train had arrived

and if t* + T were a time before the train had passed, then P.E.

would very nearly equal pgA /4. Note that for the elementary

cases discussed above, the average over ten cycles is only two

per cent in error.

The modulation of the edges has to be considered, and the

value of P.E. is not given by pgA /4 if equation (6.19) is evalu-

ated in the modulation zone.

Equation (6.24) formulates the above discussion in terras of

inequalities. Apart from the modulation effects of the edges

expressed schematically by E(*,, n, T) (a positive number), the

value of P.E, will be approximately pgA /4 if the first inequa-

lities indicated are satisfied and it will be approximately zero

if the second two inequalities are satisfied. If none of the
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four inequalities are satisfied, P.E, is of some value between

pgA /4 and zero.

The average potential energy at the modulated edge of the

train was discussed in Chapter 5. Figure 9 shows that at least

to the eye the area under the dashed curve is equal to the area

under a jiunp function given by f(t) = for t<t and by f(t) = 1

for t>t .

To a good degree of approximation, then, the potential energy

averaged over a time short compared to the total duration of the

train but long compared to a cycle is constant when the train is

present at the point of observation. Since the train, if it has

not traveled too far, takes 2nT seconds to pass, the total amount

of energy present is the same as at the origin at each point of

observation.

For great distances of travel, dispersion modifies the re-

sults, and P.E. decreases. No energy is lost; it is just spread

out over a greater time interval.

Energy balance for the finite regular train of wave groups

The finite regular train of wave groups was broken up into

finite wave trains of different periods. At a given point of ob-

servation, x^, some trains will be present, some will have passed,

and some will not have arrived as shown by figure 11. If the

train for m equal to K is present, and if the train for m equal

to K + M is present, then the trains for m for values in between

will be present. Equation (6.25) expresses this formally. Over

a long enough time, all of the energy in the original record is

accounted for at each point of observation.
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The inadequacy of all of the models in thi s chapter

Even if the waves on the sea surface had infinitely long

crests, the models studied in this chapter would be inadequate

for very subtle reasons which will be discussed in the next chapter,

For these reasons, equations (6.5) and equations (6.6) were only

indicated in Plate XIV. Various approximate results based upon

the assumption that the individual groups in the sum of wave

groups do not overlap to the extent that the potential energy

associated with one group is affected by the presence of the

neighboring groups can be obtained. The difficulty in the analy-

sis of equations (6.5) and (6.6) lies in the fact that it appears

that the wave record cannot be expressed as the sum of a number

of sine waves in a form which applies to the whole sea surface.

Even the most general model described by 7^ yy(o,o,t) could not

be made to fit an actual observation of waves on the sea surface.^

The methods of Fourier Integral theory have been pushed as far

as practicable, and it becomes necessary to introduce new con-

cepts in order to obtain more realistic models.
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Chapter 7. THE MOST REALISTIC WAVE SYSTEMS WITH

INFINITELY LONG CRESTS

Introduction

In Chapter 6, model wave systems were derived which he-

came increasingly more complex throughout the chapter. The

most general wave system mentioned only briefly in the last

chapter depended on the assumption that the waves came in groups

separated by an average time interval, t
, throughout the storm

and that the waves were low near the times t = nr + V2.

If sample wave records are examined, it will be found

that portions of the record do exhibit groups which appear to

be of a length t . But also it will be found that there are

long stretches of the record which do not show groups , and

which appear to be just irregular bumps of assorted heights

and various time separations of the crests. Such records are

not adequately described by any of the models which were dis-

cussed in the previous chapter.

The author has spent many hours in conversations with

those whose activities are connected with waves. Along the

New Jersey coast, for example, a fisherman once solemnly in-

formed him that "every seventh wave was the highest." Another

fisherman was equally positive that every fifth wave was the

highest. In fact, opinion was well scattered over all values

from three to seven. A fisherman (or for that matter, any one)

with a profound faith in any one of these particular integers

will some day be bowled over by a wave higher than either its

- 122 -



predecessors or successors with a label "favorite integer plus

two." The sea surface is irregular j it does appear that the

waves sometimes come in groups, but the groups do not persist,

they do not have a mean time of separation, and they do not

contain the same number of waves.

Figure 12 shows some wave records. They are on a greatly

condensed time scale such that the crests are all crowded to-

gether. Note the basic features of these wave records. Iso-

lated high waves frequently occur as at the points marked A.

Sometimes groups appear as in the intervals marked B. At times

the trend in the amplitudes is quite high as in the intervals

marked C. And at other times the trend in the amplitudes is

quite low as in the intervals marked D. The basic feature of

the records is their irregularity, which is a type of irregu-

larity which would almost appear to defy an adequate mathe-

matical representation. Obviously any of the mathematical

models employed in the past chapters do not represent such a

wave record. Consequently, better models must be found.

The next step then in increasing complexity is to find

some way to represent the sea surface which is general enough

to Include this very irregular pattern. It will be found that

Fourier Integral Theory is not enough and that an extension

to a type of Lebesgue Stieltjes Integral is needed.* The ex-

tension to this type of integral and the inclusion of some very

interesting statistical methods simplify the problem once the

basic concepts are understood and permits a tremendous stride

"The Lebesgue-Stielt jes Integral is defined in James and James
[1949] for example.
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forward in the problem of understanding and forecasting ocean

waves.

The generalization which will be developed in this chapter

will make it apparent that the finite irregular train of wave

groups mentioned in the last chapter as given in eouation (6»5)

involves too many special assumptions to permit its development

to a completely realistic case.

The Lebesgue Stieltjes Power Integral

In order to extend the techniques of wave analysis, it is

necessary to discuss a new type of integral which is well estab-

lished in theoretical mathematics, but which is unfamiliar to

many people. The ordinary Riemann Integral is the one which

is well known. The concepts of the Lebesgue Integral and the

Stieltjes Integral are employed in theoretical statistics,

and Cramer [194-6] is a reference for such a study. No attempt

will be made for complete mathematical detail and for complete

generality, but the derivation will be general enough to in-

clude those properties which are needed for wave record analy-

sis. The reader who is interested in greater detail is referred

to Tukey and Hamming [1949], Tukey [1949], Levy [1948], Cramer

[1946], and Wiener [1949]. The methods by which these con-

cepts can be applied to wave analysis most directly are given

by Tukey and Hamming [19491) and many of the arguments herein

will be based upon quotations from and explanations by Tukey

and Hamming [1949] and Tukey [1949].

Consider the Lebesgue Stieltjes Power Integral given by

equation (7.1). rj it) i6 the free surface as a fianction of
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The Lebesgue Stieltjes Power Integral

00

,(t) = /cos(/it + V(f))ydE(/i) (7.1)

'o

where E(/i) =0 for /i 5 (72)

and E(/i,) ^ E(M2) >^ 0<.A^i<A^2 (7,3)

and E(m) < M for all /x (74)

which implies that

lim E(/x) ^ Emax (7.5)
p—oo

consider a one dimensional net given by

then r

^(^^-mJ>i[;? u^ o2 /E(/i2n.2)-E(^2n) ' C0s(M2nH-l t ^^(Mg^^,)) (7.7)

/i.2R-»-co

where 05 >J^(m^^^,) S 27r (7.8)

Partial Sum
r

^(t)= Z^E(/X2„^2)-E(/^n) • COS(M2n+|t + ^(;^2n+l)) (7-9)

n =

nnin(Ai^^|-/iK)= A.^^

fTiax(Ah<+|-Mk)= Ag/^

.t*+T

PE. = Lim ^/(77(t)fdt = lim ^ [E(/x2„,2)-E(/^n)]T^]
T-».«)2T/ r-».0D;T7o'-

-I L t -I

I* A2/i--»-0

Aa/x-^o

^jiira,TE~°''^^''2^^'"^"^^^2) + E(M4)) + ----(-E(M2r)+ E(M2r*2))]
Ag/x-kO

/sg /jg

/.-rllTooT^^^^^-^^)
=^Ennax (710)

Ag/x-^o
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time at the point of observation. The function, \//(/x), is a

point set fiinction which will be defined later. The notation

-/dEC/x ) at first does not make sense, until the process by which

the integration is to be carried out is defined.

The properties of E(^) are given by equations (7.2) through

(7.5)« It is zero for
fj.

less than or equal to zero. It is

monotonically non-decreasing for /x greater than zero; that is,

if fi 2 ^^ greater than /a n, then E(^2^ is greater than or equal

to E(^ , ) as stated by equation (7. 3). Finally, for all /x ,

E(/x ) is less than some positive constant, M, as required by

equation (7.4), If E(/x ) is monotonically non-decreasing and

if it is bounded from above, then it follows that E(^ ) has a

definite maximiim value E ^ (equation i7»5)) which is either
max ^

actually reached at- a finite value of ^. or which is approached

asymptotically as fi approaches infinity. In statistics, a

function with similar pro°perties is referred to as the cumula-

tive frequency function, or ogive, as defined, for example by

James and James [194-9].

E(/i ) will be referred to as the cumulative power density.

It measures that part of the averaged squared'value of rj (t)

which is contributed by those spectral frequencies less than

or equal to fi . The word "power" in the definition is unfortu-
,

nate for wave theory because the averaged squar^ value of rj it)

is most nearly connected with the potential energy of the record

averaged over time. In electronic theory where these concepts

were originally developed, equation (7.1) usually described a

voltage produced by an alternating current, and the voltage ->-.
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squared working into a known load was a measure of the power

involved. By extension anything involving the sq\iare of the

sample studied has been described in terms of power which ex-

plains the origin of the term cumulative power density. Later

on when actual wave power is studied, it will always be referred

to as wave power in order to eliminate confusion.

To proceed with the definition of the integral given by

equation (7.1),* in equation (7.6) the fx axis has been marked

by a series of points, 0, /i,
, ^ gj^t-

^

I^TR'
^^"^^ ^ division

of the range of integration into a number of small intervals

is called a net. The fi , are not necessarily equally spaced,

and they are not necessarily rational points. Now form the

sum of terms represented by equation {7*7) before the limiting

process is applied,. The first term is given, for example, by

the square root of the difference (which is greater than or

equal to zero) between 1(^2^ ^^^ ^^/^o^ times the cosine of

/x,t plus i|/(/i,^) where, as yet, \//(yLL^) is not defined.

The function, \|/ (/i,), can be defined in many ways. One

definition would be to give a set of points between and 27r

from which a value could be picked by some rule once ^'pn+l

was given, and the fact that the integral involved such a set

of points would then make it a Lebesgue integral. Suppose then

that such a rule is given for picking the value of v//(^ 2n+l^'

Then the integral of equation (7.1) is the limit of the

sum given by equation {7*7) as the mesh of the net approaches

For additional information, see Levy [1948],
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zero. That is, the integral is the limit of the process defined

by equation (.7.7) and the law for picking '^^/^an+l^' ^^ ^^^

greatest distance between two successive /^ 's in the net, say

'^k+l
^^^

'"'k'
^^ shrunk to zero. Note that the partial sums

in equation {7.7) are almost periodic functions as defined by

Bohr [194-7] if the /Lt's are irrational.

This integral has one very valuable property. The square

of the function given by the integral averaged over time, is

equal to (l/2)E „. This can most easily be shown by consider-

Ing the partial sum given by equation (7.9) in which the small-

est distance between two successive ft's is A^/a
, a small but

finite value and in which the largest distance between two suc-

cessive /x 's is A 2./^.* The potential energy of Tj {t) averaged

over time is given by the integral expression in equation (7»10)

(see equation (3.10)). Since the A^ g,^^^
are different, the

cross product terms in the square average to zero when (7«9)

is substituted for 77 (t), and the second expression in (7.10)

results (see, for example, equation (6.22)). Upon rearrange-

ment and evaluation of the sum, the plus E( /Zg) in the first

parenthesis is cancelled by the minus E(/x 2) in the second

parenthesis, and the r'th partial sum is
'^{!^2t+2^' ^^ ^ ^^"^

proaches infinity, P.E. equals (pgA)Ejjj^. Equation (7.10)

holds for arbitrarily small values of A2M and hence it holds

In the limit.

A-, /x is the smallest segment in the net; A 2/^ is the largest.

The lengths of all others lie in between.
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Some examples

The Lebesgue Stieltjes Power Integral just defined in-

cludes as special cases all of the representations of the sea

surface in the previous chapters which were infinitely long in

diiration. From the definition of the integral, it is evident

that the function T^Ct) never attains a constant value of zero.

Example one is another way to express equation (2,19) when

X and y are zero and 6 equals 3Tr/2. E(/x) is given by equation

(7.11) which shows that it is piece.vise constant with a value

of zero below 2Tr/T and of A above 27r/T. The function, ^i^),

could be given, for this example, by equation (7«12), but act-

ually ^(.fJ-) could be anything outside of a small interval

about 27r/T.

If the limiting process defined by equation {7*7) is car-

l/2
ried out, the value of [E(/i.2n+2^ " ^^i"'2n^-' ^^ ^®^° ^°^ ^'^^

n except for that particular n, say n = p, for which

^ 2t)'^
^^'^^ *^^2n+2' '^® square root for this particular inter-

val is equal to A. Also since H- o-o '^ f^ 2-0+1 </^2t5+2' *^® expression

1/^20+1 ~ 27r/TJ can be made as small as one pleases. As the mesh

approaches zero,
A*- 2x3+1

^alls on the interval fi = 27r/T ± €

and determines the phase. In the limit then, equation (7«13)

is the result. The potential energy is given by equation (7. 14-),

2and since E equals A the results confirm equation (7«10).

The various functions employed in example one are shown

in the graphs applicable to the example in figure I3. In this

example, since E( ^ ) is a step function, another function de-

fined as JE(/x ), the jump in Ei/x), can be defined and graphed,
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Some Exomples

Example I

r'iir/2 for M = 2yj + €

^0 otherwise

then i7(t) = A sin2ir/-j-

PE. = ^ A2

Example 2

^0

E(/^) =
2yT,SM<27T2

27^T2^;x<27r/T3

'^Af+Al+Al 2Vt3<M«

Af+A^

L< OD

i'(M) =

2f,

M =2yT +€

^(/i) = anything otherwise
,2irt

then ')7{t) = -A|COS^ + A2Sin ^ + ^^cos^

Pi =^(a^a|+a'3)

Example 3

E(M) =
2 aj

/i < 2y^

k(2:J^)^M<Kh-|(2-4)

Sag.
.m=l

OS
2iri

then77(t) = 2 amSin^

/x= 00

< /i< 00

2Tmt

4 m=l

Example4

^[H) --

lim
m -oD

an- < /t < 2-J^^^

2y^SM < 00

then lim 71(0)= lim mylau. = Wmi—=^
ZlT

= cn

'^a

but RE.= [im^/(77(t)fdt
T-»«0

/)ga2Tr

41

(711)

(7.12)

(713)

(714)

(7.15)

(716)

(717)

(718)

(719)

(720)

(7 21)

(722)

(7 23)

(724)

(725)

(726)

Plate 3E1
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JE(^) equals A^ at 27r/T.

Example two is a slight extension of the concepts in

example one. E(/i) has three steps. v/^ ( M ) can be arbitrary

except in the intervals surrounding the points 2Tr/T, 2-n/l,^^

and 27r/T^ where it is given by equation (7.15). The value of

the integral is given by equation (7«17) and P.E. is given by

equation (7. IB). The graphs of the appropriate functions are

given in figure 13

.

Example three is the formulation of the Power Integral for

the infinite train of regular wave groups defined by equation

(6.8). E(ft), as defined by equation (7»19) > is a step function

with an infinite number of steps which become small like

exp[-;i. ] as ;i approaches infinity. E ^ therefore exists.

^iH") can be defined by equation (7.20) as one of many possible

ways. The integral and the average potential energy are then

given by equations (7.21) and (7.22). The various functions

involved are graphed in figure 13.

Example four shows how it is possible to pick E(iU') and

r i H" ) in a way which will yield physically unrealistic results

for '7(t). If E( M ) is continuous and, for example, a linearly

increasing function of fJ- over part of the M axis as given by

equation (7.23), and if ^ ( M ) is zero, the limit, as the mesh

approaches zero in equation (.7»7)i becomes infinite at t = 0.

Let the net points be equally spaced at intervals of A/^ such

that mA/JL = 27r/T^. Then at t = 0, the cosine terra is unity

and the value of 7^ (o) is given by equation (7,25)- As m ap-

proaches infinity, and A /x approaches zero, T) io) becomes
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Infinite. However, P.E. as defined by equation (7.26), is

still finite. The appropriate graphs for example four are given

in figure 13. In this case, there is no jump in E(/i,), and

dE(/z)/d/i equals a if ^ is less than 2Tr/^-^,

The Gaussian case, or the principle of independent phases

The examples of the integration of equation (7.1) which have

been given so far have not introduced anything basically new in

the nature of the sea surface. The integral is so general, how-

ever, that it includes many cases which can only be represented

by such an integral. One special case is the Gaussian case

which is of extremely great importance in the theory of noise

and which will prove to be of equal importance in wave theory.

The integral considered is still equation (7.1) j and the

conditions given by equations (7.2), (7.3)? (7.4), and (7.5)

are still imposed. In addition, the condition that E(/i ) be

a continuous function is added, and the point set which defines

^ilJ-) is very specially defined. Continuity in E(/i) yields all

necessary qualities. It permits a very peculiar mathematical form

for the derivative of E( /i ) which will be discussed later in

Chapter 10.

Continuity of E(/i. ) is imposed by equation (7.27), which

states that the difference between E(/i.
2n+2^ ^"^ ^^M 2n^

"^^^

be made smaller than some delta if jx 2n+2 " /^ 2n "^^ made smaller

than some epsilon (which may depend on delta). * In examples

one, two, and three, this condition is not fulfilled at the

jumps. In example four, E(/x) is continuous.

*See Courant [19371.
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The Gaussian Case

Equations(7.2),{7.3), (7.4) and (7.5) hold

in addition < Eifi^^^^)- Eifi^^) <^

if /^2n.2-M2„<8(0 (7.27)

and < ^{fj-zn+i)^ Sir

such that p(i/^(/i2„+,)<a2-»-)= a (728)

when S a < I

Then Equation (7.7) has a limit and

• t*-hf

,,ni 1 /(77(t))^dt = E^nax (7.29)

f^oo Tj 2

and if (A(/i))^is piecewise continuous

6E{fi) = {f\{H)fdfj. (7 30)

a n d 77(t) = /c s (/tt + v/^(/a))/(A(/i))2 d/i (7.3
1

)

partial sum

17(t) = lim2}y(A(M2n+ |))^(M2n+2At2n)-C0s()ii2n+|t+v/f(M2n+l ))
R*®n =

max(/Ap+|-Mp) = A2/x

O • '^ fr;^ ^TiT
: p'U2n + l

t + >/'(/i2n+|)) ,7,«.
= /teJifr„4^/A(M2n+!))^(/^2n+2-M2n)-^ (^-32)

min(UK+ruK) =^1^

max(Up+r'Jp) =A2U

Gaussian Distribution of Amplitudes

p(77(t,)<K) = -=J==/e'^^^ '"«de (733)

p(K<77(t,)<K + dK) =
'

e"^"""^dK (734)
•max

Plate 221
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The conditions on ^{H-) are that V^CA*-) be between and

2tt and that its value be random and equally probable for any

particular /i . Equation (7.28) states this condition in sta-

tistical terras. The equation is read, "The probability that

vj/'C/Xp ,) is less than a27r equals a," where a lies between

zero and one. Such a condition is equivalent to the statement

that the phases are independent (Tukey and Hamming [1949]).

The integral can then be thought of as the limit of a se-

quence of sums such as equation {7*7) in which the ^ ^^2n+l^

are chosen from a table of random numbers. Of course each time

the process is carried out, the sum will be different because

the phases are different. In addition, it is not possible to

write down an expression for the result of the passage to the

limit

.

The function, ^if^), as defined by equation (7.28) is a

point set function. It cannot be graphed. It is continuous no

where. For a particular net over the axis, and after the choices

from a table of random numbers have been made, it is a definite

function.

Now consider all possible point set function, ^(M ), which

could be chosen by the probability law which has been given.

And consider all the corresponding 7^ (t) which could be deter-

mined from ^(//) once E(/Lt) is fixed. In the limit, a whole

statistical class of functions rj (t) would be the result. What

properties would they have in common? And if a part of one of

these functions from this statistical class is given, how can

E(/x ) be found?
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These questions can be answered. In a statistical sense,

but first some general properties will be obtained. The hope,

of course, is that an actual wave record can be thought of best

as one of the possible functions from the statistical class

described above.

If equations (7.2?) and (7.28) hold, then the limit of

equation {7,7) exists, and the integral given by (7.29) has

the value (l/2)E„ . In addition, if the derivative of E(/i )
max '

is continuous or piecewise continuous, it must be everywhere

positive. Under these conditions, the derivative can be written

as the square of some function A(/x) as in equation (7.30).

With this new representation for dE(/x), equation (7.1) can

be rewritten as equation (7.31) which is no longer a Stieltjes

Integral since there are no jumps in E(/i ). It might be termed

a Lebesgue Power Integral since the point set function ^ (. H-

)

is still involved.

The function, (A(/a)) , is the power spectrum of T) (t). It

has the dimensions [L T], and since d /x has the dimensions of

[T"-'-], the dimension of y (A(/i)) d/x is [L], The power spectriim

is easily measured in a statistical sense, and the methods for

such measurements have been presented by Tukey and Hamming [I94-9].

2
It will be assumed that (A(^)) can be determined with a kno^vn

degree of statistical reliability. The procedures for so doing

will be described in a later chapter when short crested waves

will be considered.

The random walk

If the same net that was given in equation (7.6) is applied
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to equation (7. 31), the partial sum originally represented by

equation (7.9) becomes equation (7.32). In equation (7.32),

the second expression is simply a more informative way to write

the first expression.

In the second expression, for each value of n, the term

under the summation sign is a vector in the complex plane with

an amplitude determined by the value of the radical, and a di-

rection determined by the direction of the unit vector,

exp[i(;x gn+i*
"•

'Z' ^ M 2n+l ^ ^ -^ ' ^°^ ^°^ fixed t, say t^, the

direction of each vector is determined, and since ^^Mpn+l^

has the properties of equation (7.32), the individual vectors

in the sum point in all possible directions.

To add vectors, the tail of the second is placed at the

head of the first and the sum is the vector joining the head

of the second with the tail of the first. The sum of the r

vectors is this process repeated r times.

The sum of these vectors for A , /t and A 2/^ small but

finite is considered in the classical statistical problem of

the random walk. The random walk problem is described in de-

tail by Margineau and Murphy [1943] and Kennard [1938], and

Brownian motion is described by Levy [1948], but the statement

of the problem will be given again here for the sake of complete-

ness.

The classical problem concerns itself with a drunkard who

starts out for home from a pub after a night of revelry. He

strikes out in some direction and walks a distance y, in that

direction, but becomes confused and turns in a completely
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different direction at random and walks a distance yg. He then

walks a distance y^ in another direction picked at random, and

so on. The problem is to determine the probability that he will

be within a distance R from the pub if the total distance he

has walked is given by Y = y^ + yg + + y^^, and if his choice

of directions has been completely random.

The solution to the random walk problem as Y becomes larger

and the y^ shrink smaller and smaller is the normal probability,

or Gaussian, distribution. From the description of the problem,

it would appear that the drunkard would not end up too far away

from the pub. A whole statistical class of wayfarers would show

most of them concentrated near the origin and a few scattered

at greater distances away. The extension of the random walk

problem into three dimensions is the problem of Brownian motion

and similar results are obtained.

The connection of the random walk problem with equation

(7.32) is that in the vector notation shown the partial sums are

all basically random walks. The projection of the sum of the

vectors on the real axis is also a Gaussian distribution in the

limit as r approaches infinity andA^A* approaches zero. Equa-

tion (7.33) is a consequence of this result. It states that

the probability, at a time, t-,, chosen at random, that the ampli-

tude of the sea surface will be less than the value K is given

by the normal probability distribution. K is the departure from

the mean, assumed to be zero, of the record. Equation (.7*3^)

is another way to express this condition. It gives the probabi-

lity that a point chosen at random in the record will lie between
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the value of K and K + dK.

The representation of wave records by the Gaussian case of

the Lehesgue Power Integral

If a portion of an actual wave record Is to be represented

by equations (7.1) through (7.10) and (7.27) through (7.32),

then It must, at least, approximate the properties of the Inte-

gral, and satisfy equations (7.33) and (7.34). One property

of the integral is that rj {t) never repeats Itself. Another

is that if a time interval t is chosen, which is large enough

to eliminate autocorrelation effects, then the values of the

heights of the sea surface measured at t^, t, + r , t^ + 2 t

and so on, will be distributed according to equation (7*34).

Herein lies the fault of the models in Chapter 6. For different

t-, in this model, (since it was assumed that the groups were

spaced r units apart plus or minus a small deviation) the values

of 7^ (t) will not all have the same probability distribution

and therefore the model Is not Gaussian.

It is very easy to test a wave record to see if the dis-

tribution of points chosen from rj(t) at time Intervals suffi-

ciently great is Gaussian. The test has been made on some actual

amplitude wave records and on some pressure records. Some re-

sults of the tests are given in flgTire 14.

The first histogram in figure 14 is from a wave height record

obtained with the Beach Erosion Board instrument described by

Caldwell [1948], which was located on the pier at Long Branch,

New Jersey. It shows that the distribution is not quite Gaussian

because the median value of the histogram is below zero and the
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Histogram of samples from a v/ave record for 5-14-48

0000 to 0007 E.S.T., Long Branch, New Jersey, x^ = 23.1

with 8 degrees of freedom — Eliminate lost group. x^=78

with 7 degrees of freedom. 35 out of 100 times sample

could come from normal distribution.
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come from normal distribution.

Fig.i4. Histograms of wave height and pressure amplitude distributions

from sample records.
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frequency of large negative departures from the mean is not

as great as the frequency of large positive departures from

the mean. However, the departure from the Gaussian distribution

is not so great that the resemblance to the Gaussian distribu-

tion is lost.

It is interesting to consider the probability that such

a histogram composed of one hundred values chosen at random

from a seven minute wave record could have come from a Gaussian

distribution. The Chi-Square Test can be employed to determine

this probability by standard statistical methods. The needed

values computed by the methods described, for example, in Hoel

[194-7] are given in Table 15.

Table 15. Chi Square Test of the upper histogram
in figure 14.

Xj y(x^) _£i_ ^1 -Fj (£i_:_v! (^i - Fi)^/^i

2.30 .029 1.67 - .669 0.448 0.268

1.72 .091 5.24 -,.237 0.056 0.011

1.14 .207 11.9 4.09 16.70 1.40

0.568 .339 19.5 -1.51 2.28 0.117

0.00 .399 23.0 -3.96 15.70 0.684

0.583 .337 19.4 3.61 13.00 0.670

1.16 .204 11.7 2.26 5.11 0.435

1.73 .088 5.06 -3.06 9.39 1.854

2.30 .028 1.61 -1.61 2.60 1.611

2.89 .006 0.345 .655 0.26 0.754

3.46 .001 0.058 .942 0.89 15.29

(Chi)^ = 23.1

Less last term 7.8
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The value of Chi Square is 23,1 with eight degrees of free-

dom. It is highly improhable that such a distribution could

come from a normal distribution. But note that it is the very

last value in the sum which makes the sum so high. If this

last tern is omitted Chi Square is 7»B, and the sample could

have come from a normal distribution 34 out of 100 times if

chosen at random.

The departure from the Gaussian case can be explained on

the basis of the actual non-linearity of the sea surface. Be-

cause of the non-linearity, crests are higher and troughs are

lower than in a surface described by the Gaussian case. The

peak values of the crests are what have produced the high value

of Chi Square. It was pointed out in the second chapter that

little could be done about the essential non-linearity of the

sea surface, and these histograms show remarkable agreement with

the hypothetical Gaussian case within the limits of the lineari-

zation assumption.

The potential energy of an actual wave record averaged over

time can be computed by squaring the wave record and averaging

over time. Such a computation would require rather lengthy

computations. The histograms show that E can be estimated

easily be taking the second moment about the mean (square of

the variance) of a sample of one hundred or so points from the

record. The computations involved would be considerably less

than by the other method, and the reliability of the estimate

would depend on the size of the sample, on the magnitude of

E„ _, and on the function S(tt). The value of E„„^ and of P.E.
max

'

r" max
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as computed from the histogram is given beside the histogram.

E and P.E. are reliable and theoretically definite statis-
max

tical quantities obtained from wave records. These points will

be considered in more detail later.

The remaining histogram in figure 14 was obtained from a

pressure record which was taken by a pressure recorder in 30.5

feet of water (mean low water) offshore from Long Branch, New

Jersey. It was obtained in October 1951? while an east coast

storm passed Long Branch just a short distance out over the

ocean. This histogram is more nearly distributed according to

the Gaussian law than the height record was. In fact, 43 out

of 100 times at random, this histogram could have come from a

normal distribution. The better agreement can be explained on

the basis of the fact that the second order non-linear terms die

out more rapidly with depth. Consequently in the pressure re-

cord the higher ridges and shallower troughs which were at the

surface are less accentuated. From these histograms, E
^max

has been computed which is analogous to the quantity E in

^max
the height record. However, P.E. cannot be computed from E

P.E. can be computed if either E ( /u. ) or (A (ft)) is known,

and if a certain linear operator is applied to E ( /x ) in order

to get the value of E which applies to the free surface (see

the discussion of pressure records in a later chapter).

A number of other samples of points equally spaced in time

were picked from this same pressure wave record. Of these,

several values of Chi Square were so high that they were not

in the tables. Other values were quite reasonable, and the
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probabilities that the samples could have been picked from a

normal distribution were 30 in 100, and 50 in 100. There were

two cases in which Chi Square was very large.

The skewness of the histogram of the surface records is

one way in which ''7("*^) does not follow a Gaussian distribution.

A second way in which the distribution will not be Gaussian

comes from the fact that equation (7»34) yields a finite probabi-

lity for very high crests and very low troughs. For low waves,

this finite but very small probability is not important. The

Gaussian distribution is only a statistical ideal} for example,

it predicts men twenty feet high from a population with a five

foot mean and a variance of one foot. In short, all statistical

theory must be used with judgment. Actual wave heights cannot

exceed a certain value since the crests will break. It is to

be expected that for high seas the histograms will be both skewed

and chopped off at the extremes. The effect of breaking in a

complex irregular sea surface is again a non-linear problem and

cannot be treated by the methods under study.

Figure 14 shows consequently that actual wave records very

closely approximate the requirement that "^ (t) have a Gaussian

distribution of the amplitudes. Berkoff and Kotig [1951] have

commented on the fact that certain symmetry requirements for

''7(t) are not met in actual wave records. This failure is a

consequence of the actual non-linearity of the problem, but

again the departure from the Gaussian case is small.

This fact is indeed fortunate. The theory of the statis-

tical analysis of functions of the form of equation (7.1) in
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the Gaussian case has been presented by Tukey and Hamming

[1949]. For the non-Gaussian case very little is known.

Paraphrasing Tukey, it can be said that "This restriction to

Gaussian (wave records) will presumably not be a serious hindrance

to our analysis of actual (wave records) which will be non-

Gaussian to a greater or less extent, if we use the quantitative

expressions for the fluctuations as warning signs, and realize

that fluctuations larger than those predicted by Gaussian theory

are likely. The recommended procedures (in the paper) are known

to be good for Gaussian (wave records). For moderately non-

Gaussian cases, the analogy with simple problems suggests that

the procedures will be quite good." For wave records the

modifying effects of non-linearity must be kept in mind, at

least in a qualitative sense. Tukey (personal communication)

says that the values of Chi Square given before are just what

one might expect from random noise and that the better results

for the pressure records show that the system is non-linear in

the high frequency components.

If the qualifications and explanations in the above section

are taken into consideration, it can be concluded that the best

possible known way to represent a wave record and consequently

the sea surface as a function of time at a fixed point is given

by the Gaussian case of the Lebesgue Power Integral. Any portion

of a record of the sea surface as observed as a function of time,

if the sea surface is in a stationary state, can therefore be

thought of as a segment of one of the statistical ensemble of

functions which would result from the indicated limiting process
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which defines the integral.

Stationary processes and stationary time series

The first three examples given in Plate XIX and the

Gaussian case of the Lebesgue Power Integral are all specific

examples of stationary processes. A stationary process is simply

a function of time, say ''7(t), such that the essential proper-

ties of the function are not altered by the substitution of

t + h for t in the functional representation. Substitution of

t + h for t in the first three examples simply changes the phase

of the various sinusoidal waves in the function. The power

spectrum is still the same, and the function is still composed

of the same sine waves. Similarly, in the Gaussian case, sub-

stitution of t + h for t simply changes the values of \// (
/i. )

,

and the function is still an element in the class of all possible

functions which can be found by the procedure of integration de-

fined above for a particular E(^ ).

A stationary time series can be made from any of these

functions by giving their values only at separate points; say,,

at tn, tpj t^ t , preferably separated by the same length

of time. The height of the water against a wave pole in suc-

cessive frames of a motion picture film strip would be a practical

example

.

Special note

The Gaussian case of the Lebesgue Power Integral does not

have to have any special form for E(^ ). E( fi ) can be any

f^^nction as long as it is continuous. In previous chapters,

the normal probability curve has been used as a special example
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of an ordinary Foxirier spectrvun to study the propagation of a

finite wave group and to study the propagation of various finite

wave trains. The accidental fact that the spectrum was connected

with a normal probability (or Gaussian) curve should not be con-

fused with the very important fact that values of ''7 (*) a't

greatly separated values of t, chosen at random, are distributed

according to the Gaussian probability law.

Wave record analysis

Any given wave record as a function of time can be considered

to be a short piece of an infinitely long record which is one

of the infinite n^lmbe^ of records possible from the integration

of the Gaussian case of the Lebesgue Power Integral, The problem

is to find (A(^ )) ,
given the short piece of the record. This

problem is the basic problem of wave analysis if it is general-

ized to permit representation of short crested waves. The function,

(A(/i.)) , and the extension to what corresponds to it for a short

crested sea surface can only be estimated because of the finite

length of the record. The longer the record, the more reliable

2
the estimate of (A(/a)) , The problem of wave analysis will

be considered for the short crested case in a later chapter.

Wave forecast models for wave systems wi th infinitely long

crests in the Gaussian case

Consider again equation (7»l)j for the Gaussian case.

Instead of ''7(t), equation (7.35X employs Tj {o,t) to point out

the fact that the function is presumably known only at the origin

2
of the X coordinate system. Assume that (A(/i)) is known.

This wave record as a function of time at the origin never started
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The Forcasting Problem for a Sea Surface

Represented by the Gaussian Case of the Lebesgue

Power Integral with Infinetely Long Crests in the Y

Direction

7(0,1) Wcos{^t + ^(/x))ydE(/i)

T7(x,t) . fcQs{^-,l^^^{^i.))ME^^l)

Jo

77(x,t) = /cos(;xt+(v//(^)- ^))ydEuI)"
Jo

0< <|'(M2n + i)-^^^^~^ + 27rN--rj/Wn.i)<2Tr (7.38)

(7.35)

(7.36)

(7. 37)

F(t)-77(0,t) ^- F(t)/cos(/it + i/^(/i))N^dE(/i)

/o
r

= F(t) X ^E(/i2nv2)- E(^-2n)- C0S(M2n+| t + '/'(M2n4l)) (739)
n =

max(^p.^rMp) ^AgM

f I <:t<D^
Special Case F(t) =|

10 otherwise

The Square Cornered Filter

2/i-x
t.

tr =

g

2a:x
+ Dv»

if tr^tob-t, band for o particular /i is present

Z>xx
+ D„ > t,b

>

g(WDw)
2x

2^x

g

2x

A(.= i^
'^" 2x

5/A<

Ml
- g(tob-Dw)

2x

S.RG
,

,fg(t.£;M<^<i|i

lo /i otherwi

F.F.G.=^

/x oinerwise

9*ob

(/cosf-S^dsf ^(/sm|-S'dS J
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and will never stop. Consequently this representation lacks reality

in the same sense that equations (6.1) and (6.3) lacked reality

in that the storm which produced the record would have to last for-

ever at the origin. If 7j (o,t) is given by equation (7.35) then

by virtue of the linearity of the problem, 17 (x,t) is given by

equation (7«36).

Equation (7.37) is another way to express equation (7^36)

and the variation with x has been absorbed in \//(/i ). For any

partial sum such as equation (7.9), and for a fixed x, (say posi-

tive), it is always possible to add an integral number of 2-jr's

to ^ (M2n+1^ " ^^2n+l^ ^1^^ ^^^ obtain a new value, v//
'
( f^ 2n+l^

'

which satisfies equation (7.38). The ^'(A''2n+1^ ^^'"'" ^® distri-

buted according to the same probability laws that govern the distri-

bution of t^e original ^(/^2n+l^' ^^'^ consequently ^'(A'-) is

another point set function like ^(H-). Consequently 7] (x,t) at

any x is Gaussian and has the same cumulative power distribution

that the record at the origin had, 77 (x,t) also has the same

power spectrum. In a statistical sense, then, the sea surface

has the same properties at all points.

Wave record of finite duration

In order to generalize the model to a record at the source of

finite duration, consider the multiplication of 77 (o,t) by F(t).

F(t) ib any function of time which varies very slowly compared to

the individual waves in 77 (t). F(t) should also be essentially

zero outside of a certain range of t. F(t) operating on the inte-

gral as in equation (7*35) is equal to the effect in the limit of

F(t) operating on one of the partial sums which represent 7] (t),
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But it is relatively easy to determine the effect of F(t) on a

simple trigonometric term of angular frequency, /x 2n+l*
'^^® result

of operating on any partial sum with F(t) can consequently be found

very easily. In the limit, then, the complete effect on the inte-

gral can be determined by considering fi to be a variable.

One of the many possible F(t) is given by equation (7,A-0)

where D is the duration of the waves. The wave record builds
w

up to full amplitude instantaneously at t = and dies out instant-

aneously at t = D . When this particular F(t) is applied to one
W

of the terms in the partial sum indicated in equation (7.39), it

can be seen that the problem is essentially the same problem that

was solved in Chapter 5 except for a shift in the time axis. If

F(t) is applied to rj it) , the result is no longer a stationary pro-

cess, but a sample taken during a time interval in which F(t) is

essentially one would yield a power spectrum upon analysis indis-

tinguishable from the one obtainable from the unmodified function,

'^(t).

In Chapter 5 it was found that the forward edge and the rear

edge of the wave train advanced with the group velocity, and that

the edges were modulated by Fresnel Integrals. For the moment,

although it is physically impossible, assume that the amplitude

of the train is either zero or one at any x and that the Fresnel

modulation effects are not present.

The square cornered or sharp cutoff filter

The time, t^, required for the forward edge of the wave train

to reach the point x for a fixed fJ- is given by equation (7.41),

The rear edge, t^, passes D seconds later. Consequently, for a
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particular fx and for a fixed value of x, if the time of the

observation, t v^, lies between t^. and t^ then the component

sinusoidal wave for that particular /x is present as shown hy

equation (7.42). Substitution of equations (7.41) and (7.42)

into (7.43) yields equation (7.44). Rearrangement of equation

(7,44) then yields equation (7.45).

For a fixed time and place of observation, and for a fixed

duration of the waves, those spectral values of yu are present

which lie between the values git^-^ - D^)/2x and gtQ^/2x. The

other values in this simplified case are not present. The upper

value of jj. which is present is given by equation (7.46), and

the lower value, by equation i7'^7)» The band width present,

A/x , depends directly on D^ and inversely on x as sho^vn by

equation (7.48).

Figure 15 shows how these considerations can be used to con-

struct a forecasting diagram. The top part of the figure is a

graph of the straight lines given by equation (7.46) and (7.47)

as functions of t and /j. for various fixed values of x and for

D equal to 10 hours. Pick a time, t = t v^, say, twenty hours
w

and a fixed x, say, 200 kilometers. The line for t - 20 hours

intersects the two parallel lines which apply to x = 200 km, and

a segment of the H- axis is cut off between the two parallel lines.

The projection of this segment onto the /i. axis then gives the

band of frequencies present at x = 200 km, 20 hours after the

start of the storm.

Practically nothing is known about the power spectrum of

waves at the edge of an area of generation in a storm at sea.
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Consequently, for purposes of illustration, a form for the power

spectrum has been assumed. The assumed form of the power spectrum

has been plotted below the part of the figure just discussed. It

represents what needs to be known about the power spectrum at the

source before the power spectrum at any other point of observation

can be forecasted. The power spectrum at the source is given by

the dash dot curve.

The band width determined above has been used to multiply the

power spectrum at the source by the square cornered filter in

order to find the power spectrum at the point and time of obser-

vation. The square cornered filter is given by equation (7.49)

»

and to apply it to the given power spectrum set the forecasted

power spectrum equal to zero outside of the segment described above

and set it equal to the power spectrum at the source inside of the

segment described above. The heavy solid lines show the effect of

applying the square cornered filter to the power spectrum at the

source.

The forecasted power spectrum is an instantaneous power spect-

rum, and in terms of our original definition, it has no meaning.

However, if a wave record taken at x = 200 km from twenty hours

minus ten minutes to twenty hours plus ten minutes is analyzed for

its power spectrum, it might be expected that something like the

above pattern, except for slight smoothing at the edges, would be

obtained because the filter function is a slowly moving function of

time.

The remaining power spectra show the forecasted power spectra

for various x's and various times. For a fixed x, as time increases,
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the filter tunes through the power spectrum at the source. High

period waves are received first followed by low period waves.

The hand width is constant for a constant D . For a larger fixed

X, as time increases the filter tunes through the power spectrum

at the source more slowly and its band width is narrower,

A square cornered sharp cutoff filter is physically impossible.

It is, however, a relatively simple step to extend the forecast

diagram to a Fresnel Filter. The procedure is to return to the

methods of Chapter 5 and solve the problem given by

'2n+l
'

if O'^^ob'^^w ^^^ ^^ ''7(0, t) = otherwise. The transformation

given by t^^ = t ' + D^2 would break the function down into an odd

and an even part about t ' = 0. Formulas similar to those in Chap-

ter 5 would result except that the original simplifications in the

derivation permitted by the use of the whole number of waves and

the oddness (in the sense of not even) of the function would not

be available. Note that the third step in equation (5»2) shows

that the Fourier spectrum will be continuous at ^a = 27r/T2 ^-,

.

The result would be functions similar to equations (5.15) > (5.16)

and (5.17) > and it would be possible to show that a modified form

2 2
of G + H would give the square of the modulation envelope in the

given wave train. The arbitrary phase would be in the trigonometric

term.

Finally, the Fresnel Filter would be obtained as given by

equation (7,50). In the filter, emphasis is placed on the varia-

tion with /J. for a fixed x and t. If x is small, and if /t = gt u/2x,

then the range of integration is from a large positive number to
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zero. The value of F.F.G. is then one fourth. Similarly, the

value at M = g(t v.
- D )2x is one fourth. For /x outside of

' ° OD W

this range, which is the same range as that of the square cornered

filter, the Fresnel Filter falls to zero. Inside this range, it

rises to one rapidly, overshoots and oscillates about one very

rapidly, and finally settles down to one near the center of the

band, if x is small. For very, very large x, the filter does not

achieve the value one at the center of the band.

To employ the filter in the forecasting diagram, it is only

necessary to evaluate equation (7»50) for t , equal to zero, and

for various x as a fiinction of /x . Then if the filter is located

at the same place as the square cornered filter was located in

the figure, which can be accomplished by setting the lower quarter

pov/er point at /x = g(t . - D )/2x, the product of the Fresnel

filter times the power spectrum at the source then gives the power

spectrum at the point and time of the forecast.

The Fresnel filter has been applied to the power spectrum

at the source according to the above rules. The line of dots

above and below the results for the square cornered filter show

the envelope of the very rapid oscillations at the edges of the band

as produced by the Fresnel Filter. Since a wave record is of

finite duration and since the filter tunes through the power spect-

rum at the source, these rapid fringe oscillations could be con-

sidered to cancel themselves out in a twenty minute record and

the simplest filter to use would probably be a slightly smoothed

square cornered filter.
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A Storm of finite duration with a fetch of finit e length

The wave system given by F(t) as given by equation (7»40)

as It operates upon equation (7«35) is unrealistic in one sense

which can be eliminated without requiring that the system be of

finite width and contain short crested waves. The storm which

would conceivably produce the waves would have to extend along

the entire y axis of a coordinate system located at the forward

edge of the storm. In addition, the winds which would conceivably

produce the waves could not exist for any values of negative x.

That is, the waves could not exist for negative x and they would

have to build up very rapidly to a full stationary state (within

the storm) within a very narrow zone at x = 0. Under these con-

ditions when the storm lasts for Dg (Duration of Storm) seconds

and then ends suddenly, the duration of the waves Is D seconds,

and D,„ = D<,.W S

It is possible to formulate a somewhat more realistic case

under the assumption that the same stationary conditions exist

over a major portion of the fetch over which the waves passing

X = were generated that exist at x = as the waves pass.

This condition would occur in the fetch, or area of generation,

if the wave spectrum had built up to the point where breaking at

the crests due to non-linearity would dissipate the same amount

of energy that is added to the wave system by the winds over the

fetch. The exact mechanism is beyond the scope of this paper

because of the non-linearity, but such a stationary state is with-

in the realm of possibility.
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Under these conditions, waves would leave the forward edge

of the fetch while the winds are blowing over the fetch throughout

the duration of the storm. But when the winds stop, there would

also be a distance, F, behind the point, x = 0, such that for any

point between x = and x = - F there would be essentially the

same time power spectrum for the waves as at the origin. The

time power spectrum must be measured over a short enough time

interval and at a time near t = Do.

Consider the effect of operating on T^Cojt) as given by

equation (7.35) with a new envelope function F-p,(t,/^ ) at the

source. The effect of Fp(t,/J. ) on 7^(o,t) is by the definition

of the integral the same as the limiting effect of F„(t, jjl) op-

erating on a partial sum as the net of the partial sum goes to

zero; and, as before, it is only necessary to consider the effect

of Fp(t,/i) upon one sine wave in the partial sum.

At X = 0, no wave component of spectral frequency
,

/j, ,, is

observed for t less than zero. At t = 0, it appears instantaneous-

ly and at full amplitude to last at least until t equals the dura-

tion of the storm, D^. The wave component does not cease when

t = Dg because it still exists over the fetch. The rear edge of

the component must travel a distance F to reach the .origin, and,

if the spectral frequency is
fj. ^ and if the rear edge travels

with the group velocity, then an additional time given by

2/i.^F/g is required. After t = Dg + 2yu.^F/g, this particular

component will no longer be present.

Fp(t) as given by equation (7.51 formulates these conditions

for
fj.

variable. The higher frequency (shorter period) components
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The Forecasting Problem for a Sea Surface Represented by Infinitely

Long Crests, a Gaussian Wave Record, and Winds that lost Ds Seconds
Over a Fetch of Length, F.
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take much longer to travel the length of the fetch and conse-

quently they are observed for a greater length of time at the

source. The wave system can he thought of as consisting of two

parts. Vi/ithin the time interval, 0<t<Dg, all spectral components

are present at x = with an intensity given by the original

power spectrum. Then for t greater than Dg, there will be a value

of /x such that, at the time of observation, t = Dg + 2/i.F/g,

those values of fi which are less than the value of /jl which

satisfies this equation will no longer be present in the power

spectrum at the source. The others will be present with the

same intensity as before.

Now that the conditions have been given for x = 0, the con-

ditions for positive x can be found for the case of the square

cut-off filter. For any particular /j. , under the assumption

that the sine wave in the partial sum which applies to this parti-

cular
fj.

has a forward edge with an amplitude which is either

one or zero and which travels with the group velocity, the for-

ward edge of that wave train requires 2/jl x/g seconds to reach

the point x. The time of arrival of the forward edge of the

train, t^, is given by equation (7,52).

Similarly the rear edge of the train starts out Dg + 2ftF/g

seconds after the forward edge. The time of passage of the rear

edge of the train, t^,, is consequently given by equation (7.53)

•

If the time of observation, t - , lies between tx. and t as

stated by equation i7»5^) then that particular spectral component

will be present. If t^-j^ is less than t» the train will not have

arrived, and if t^-j^ is greater than t« the train will already
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have passed.

Under these conditions the upper value of /i- in the fre-

quency hand present at the point x at the time of observation,

t^^, as given by ^tu , can be found by setting t , = t~ and

M- = H-u J
and using equation (7.52). The result is equation

(7»55)» For those fi greater than /tu > the wave trains will

not yet have arrived.

The lower value of fi In the frequency band present at the

point X at the time of observation, tfjij, as given by /X|_ , can

be found by setting t , = tj, and ^ = /x^ > ^^id using equation

(7«53)» The result is equation (7*5(>)» For those ^ less than

/Al , the wave trains have already passed.

Those wave trains present at the point, x, at the time of

observation, t^, are consequently associated with values of /x

which satisfy the inequality given by equation (.7*57) • A slight

extension of the forecasting graphs given by figure 15 will make

it possible to devise a forecasting graph for this model with

the use of equations i7»55)t (7.56) and (7,'^7)»

The band width, of the square cornered filter which applies

to this case is given by equation (7*5^')* An alternate formula-

tion is given by equation (7.59). The first term in equation

(7.59) is the same as in the previous case and the second term

is a correction for the finite length of the fetch. At a fixed

X, the band width increases as t ^^ increases. Stated another

way, the band width is wider for higher values of ^ at a fixed

X as the filter tunes through the original spectriun at the source.

The square filter for a wave system at the source represented
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by the Gaussian case for storms with a fetch of finite length

is then given by the value of S.F.G.F, which is one if equation

{7.57) holds and zero otherwise. The functional form of S.F.G.F.

is given by equation (7.6O).

Forecasting diagram for a storm of finite duration with fetch

of finite length

A forecasting diagram for the application of equation {7, GO)

to the power spectrum given at the source in order to find the

power spectrum at the point and time of observation is given by

figure 16. The upper part is a copy of the corresponding part

in figure 15 except that the lines which pass through the point

t = Dg are now labeled with the values of x + F. The diagram

again applies for Dg = 10 hours. The lower lines are graphs of

equation {7»55) for fixed x, with /x and t^^ variable. The upper

lines are graphs of equation (7.56) for fixed (x + F), with ^

and t , variable.

As an example, suppose that a storm with winds that last

for ten hours over a fetch one hundred miles long develops and

then ceases. The fetch is defined over a strip on the x axis

between x = and x = - F with x = the forward edge of the

stormj and positive values of x define the area of decay. Suppose

also that the power spectrum at x = during the time 0<t<Dg

is given by the same graph as in the previous figure.

Then to forecast the power spectrum at the point x = 400 km

for the time t
^^

= 20 hours, with the use of figure 16, locates

the lines for t , = 20 hours, x = 400 km, and x + F = 500 km on

the upper part of the figure. The intersection of t^ = 20 hours

- 162 -



t' 20 HOURS

)(-400 KM.

\
\

t'20 HOURS

X.800 KM

F«200 KM.

'1 T I' — I IT- r I I

to ts



and the curves for x + F = 500 km determine the value of ^^ ,

and the intersection of t , = 20 hours and the curve for x = 400 km
OD

determines the value of /Xy . The forecasted power spectrum then

equals the power spectriim at the source between these values and

zero otherwise. This case is illustrated in the first graph below

the forecasting diagram.

For later values of t^ and with F fixed, the band width of

the power spectrum observed at the point x, becomes wider. In

general, the longer the fetch the more rapidly the band width widens

at the point of observation.

Figure l6 includes two special cases. If F equals zero, x + F

= X, and the special case considered in figure 15 is the result.

If Dg is zero, then the upper lines passing through the point

t = Dg coincide with the lines passing through t = 0. Then by

considering the lines appropriate to, say, x = 400 km and

X + F = 500 km and t , = 20 hours, the spectrum at the point

X = 400 and time t
y^

= 20 hours can be found in the same way as

described above. This special case could occur when a strong wind

blows for a very short time over a long fetch.

In general, the upper curves shift up and down for different

values of Dg, and F varies from storm to storm. In some storms,

the effect of Dg dominates the effect of F. For other storms,

the effect of F dominates the effect of Dg. For the usual weather

situation, the values of F and Dg must both be considered in order

to forecast the power spectriun of the waves.
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Correction of filter for the finite time of observation

At the point, X, and at the time, t^, an observation for

some finite time must be made in order to obtain a wave record

from which an observed power spectrum can be obtained in order

to compare it with the forecasted power spectriim for verification

piirposes. If the observed record is too short, the measured power

spectrum will be inaccurate. If the observed record is fairly

long, the square filter will tune through part of the /x axis during

the time required for the observation. The measured power spect-

rum will be more accurate, but the forecasted spectrum must be

corrected for the effect of the finite time of observation.

If the wave record is observed at the point x, from the time

t = t -u -
t(vi /2 to the time t = t , + t^ /2, the smoothed filter

can be computed by averaging the square filter given by equation

(7»60) over the time, t^ . The smoothed filter is then given by

equation (7.6I) and it has the shape of a trapezoid.

In figure I6, for the other forecasted spectra indicated in

the other curves of the figure, the effect of the trapezoidal

figure given by equation (7.6I) is shown by the heavy curves. The

square filter is shown by the dashed curves. The appropriate

Fresnel Filters have been eliminated because the fringe effects

appear to be unrealistic. A t^^, of one hour has been chosen.

Note the varying width of the spectrum as t , increases.

Other smoother filters

The three filters which have just been described are not too

realistic for the practical purpose of developing an easily applied

wave forecasting theory. Probably an Fj.(t) which rose smoothly
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to a constant value In the storm for the duration of the waves and

then died out smoothly to zero again would be the most practical

one to start with.

Fp(t,/x ) = (l/7r)[tan"^(t/B]^) - tan"^(t - Dg "»• ^^^2^

might be quite a practical one. The parameters, B^ and B2, could

be related to the build up time of the waves. As the two values

of B approach zero, Fp(t) becomes in the limit equation (7. 51).

Such a representation would probably eliminate the Fresnel fringes.

Physical interpretation of the forecast diagrams

The waves at the source can be characterized as "sea." The

waves at large x can be shown to have the properties of "swell."

One of the ways in which the apparent period of ocean swell can

increase with travel time is explained by this model. The analy-

sis, however, is still incomplete because it does not contain any

of the properties of short crested waves.

At the source, the power spectrum might look like the one

assumed in figure 15. There is some indirect evidence which sup-

ports this general shape. The partial sum given by equation (7.32)

shows that the sea surface can be represented by the sura of many

vectors in the complex plane. These vectors have ijiany different

angular speeds. Suppose that at some instant of time, some numbei

of the vectors add together to give a definite peak amplitude to

the projection of the sum onto the real axis. And also suppose,

as indeed must be the case, that the other vectors all add together

to very nearly zero. These vectors which add to give the displace-

ment are all rotating at widely different values of /u, . Hence

after they have gone aroimd the circle several times they will
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begin to cancel each other out, and the sea surface will go

through several wavelike oscillations of decreasing amplitude.

If t is varied negatively the vectors will cancel out with de-

creasing time. The process described above shows how a wave

group is generated. At other times, different vectors could be

involved, and the wavelike oscillations could have an entirely

different apparent period. If the vectors which add by chance

to give the peak wave have widely different angular frequencies,

they cancel out very rapidly with time and the group is short.

If by chance, these vectors have more nearly the same angular

frequencies, then the group lasts longer. In the limit, these

considerations show that the sea surface at the source is irre-

gular and choppy, that groups of widely different durations can

occur at random, and that the sea surface has the properties

generally ascribed to the term "sea." The "significant" period,

if it means anything at all in a source region, is probably the

median value of the square root of the power spectrum.

At a large value of x, the power spectrum contains a much

narrower band of frequencies. Consequently if the vectors in

the partial sum which approximates the record, by chance add to

a large displacement, these vectors will make a great many more

rotations than in the case described above before they get out

of phase. The wave groups (when they occur) are therefore longer

and more regular. The wave record is still Gaussian, but the

autocorrelation effect is greater, and points in the record would

have to be taken at greater time intervals in order to show the

Gaussian character. The Gaussian model of the Lebesgue Power
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Integral therefore demonstrates the transformation of sea into

swell without any effect of friction.

The period increase of ocean swell

One point which Sverdrup and M\ink [1947] make in their studies

of ocean waves is that the "significant period" of swell from a

distant storm is higher than the "significant period" of the waves

in the storm and that when the swell is highest the "significant

period" is higher than the "significant period" in the storm,

Sverdrup [194-7] explains this observed fact by supposed selective

attenuation of low periods. Figures 15 and l6 show another possible

explanation. In these figures, the peak of the power spectrum

is at a higher period than the median value of the square root

of the power spectrum. From the figure the "significant period"

in the storm would be probably around seven seconds. Now, the area

un^er the power spectrum equals the square of the wave record

j

and at large x, when the band width is narrow, the highest waves

occur with a "significant period" of ten seconds. Hence, this

shows a period increase of ocean swell without selective attenu-

ation. But the "significant period" of the swell does not in-

crease indefinitely. It increases to ten seconds as the width

of the filter narrows, and then stops increasing. It is known

that the forecasted swell periods in the Sverdrup Munk theory

fail for great decay distances,* and the above reasons could easily

be an explanation.

Personal communication, R. S. Arthur
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Wave decay

In the Sverdrup Munk theory the decrease in wave height due

to the travel of the waves into the area of decay is ascribed

to selective attenuation of the waves against the atmosphere.

The forecasting diagrams in figures 15 and l6, show that the square

of the wave record averaged over time decreases with the band

width of the filter. Therefore for a disturbance of finite dur-

ation over a fetch of finite length, the wave amplitudes die down

essentially like l/v^ simply due to the properties of dispersion.

This amount is not quite enough to fit the empirical forecasting

graphs of Sverdrup and Munk as revised by Arthur [1948, 194-9] >

but another factor approximately equal to l/v^ will result from

consideration of short crested waves. It will eventually be shown

in this paper that wave decay can be explained without friction

effects. At this point, reference is made to figure 8 in the

paper by Donn [194-9]. Although the spectrum shown is not a power

spectrum, (and the ft axis is plotted backwards), this figure

already shows remarkable agreement with figure l6.

Comparison with the models of Chapter 6

The models studied in this chapter are far more realistic

than the models studied in Chapter 6. In the first place, wave

records appear to be actually Gaussian to a very good degree of

approximation even if the records are swell records. Secondly,

the models in this chapter provide for a smooth continuously

varying record at large decay distances, whereas all of the models

in Chapter 6 required discrete jumps in wave amplitude at distant
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points of observation. Finally, the forecasting diagrams explain

in part the observed change from sea into swell and the decrease

in wave height with distance traveled,

Fourier Integral versus Lebes^ue Power Integral

The introductory chapter of this paper began with a quotation

from Lamb which stated that the most general case consistent with

the assiunption that the potential function was a simple harmonic

function in x could be solved by the use of Fourier's Integral

theorem. Interesting, but not completely general, results were

obtained in Chapters 4, 5) and 6 with the use of Fourier's Inte-

gral theorem. Then suddenly strikingly realistic and completely

general results were obtained by the use of a new integral referred

to as the Lebesgue Power Integral. It would seem, at first approxi-

mation, that Lamb was wrong in the quotation.

This is not the case, however. Lamb was correct. If 77 (o,t)

is given at x = throughout the entire storm, no matter how com-

plicated the function, and if rjiojt) is zero before and after the

storm, then it is conceivably possible to find the Fourier spect-

rum for the entire wave system, and to solve a much more complicated

problem somewhat along the lines of the problems solved in Chap-

ters 4 and 5» Such a procedure would be impossible in a practi-

cal sense because of the length of the record and complexity of

the function which would be required.

For an actual wave record it would also not be possible to

attack the problem along the lines employed in Chapter 6 where the

wave system was treated as if it were composed of wave groups

repeating at fairly regular intervals, since a difficulty arises
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upon attempting to find the average potential energy in the

system when the wave groups overlap in time.

The Lebesgue Power Integral for the Gaussian case of a sta-

tionary time series eliminates these difficulties because it era-

ploys a function which is (apart from a constant) directly related

to the average potential energy in the wave record. Methods of

wave record analysis based upon this integral do not depend upon

the entire wave record, upon the time the record was made, or

upon the existence of groups of waves in the record. The analysis

of the wave records is therefore much simpler, and the interpre-

tation of results is much easier. The formulation of the wave

record as a Lebesgue Power Integral is not a complete solution

to the problems because such a record lasts forever, and theoreti-

cally at least, only has a meaning for an infinitely long record.

It should be noted that it is not necessary to include a

section on energy considerations in this chapter. The potential

energy averaged over time at the point and time of observation

is given by the area under the forecasted power spectriMi multiplied

t>y pg/4, and the very nature of the filters employed shows that

all of the energy is accounted for.

Fourier Integral theory was employed in order to find the

filter functions for the forecasting diagrams since they are all

based upon the results of Chapter 5. The Fourier Integral solu-

tion gave the effect of the finiteness of the record on the infin-

itely long record as represented by one of the terms of a partial

sum which in the limit gave the Lebesgue Power Integral.

In conclusion for this chapter, the most realistic results
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are obtained by a judicious combination of Fouribr Integral

theory, stationary time series theory, and statistical methods.

The stationary time series concepts and the statistical methods

apply to the wave system as a whole as if it were to last for-

ever. Small pieces of the wave system when analyzed as wave re-

cords can be treated as if they were samples taken from a station-

ary process, and the statistical methods appropriate to such a

treatment are valid. The concepts of Fourier Integral theory

apply to the propagation of the system and to the fact that it

lasts only for a given number of hours and is generated over a

fetch of finite length.
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Chapter 8. SHORT CRESTED WAVE SYSTEI^B

Introduction

The possibilities of models with infinitely long crests

have heen analyzed in the past chapters of this paper. Unfortu-

nately for theoretical purposes, storms are finite in width and

waves at the edge of a storm at sea are short crested. These

two facts have not been adequately treated in past forecasting

theories and it is necessary to treat them adequately now. Waves

are observed at angles up to forty-five degrees to the direction

of the wind in a fetch of finite width. The waves therefore

spread out over areas considerably wider than the width of the

storm. The potential energy per unit area of the waves in the

decay area must therefore be lower, and the waves must therefore

be lower due to this effect.

In this chapter, then, the basic material for the analysis

of short crested waves will be derived. In Chapter 9, the Lebesgue

Power Integral for a short crested sea surface will be derived,

and the behavior of the waves outside of a storm of finite width

will be studied. In Chapter 9, the results will be so general

that they will form an adequate theoretical base fot a wave fore-

casting system.

Elementary short crested wave systems

Short crested waves are discussed somewhat briefly in Lamb

[1932] and in most other references on wave theory. The usual

analysis is of such an elementary nature that it is necessary

to start from these elementary concepts and show how they can
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be extended to the more complicated patterns.

The simplest short crested wave system could be represented

by equation (3.1) where 0<a<l. The sea surface at t = is

an alternating sequence of elliptically shaped hills and valleys.

As t varies they appear to move in the positive x direction.

At any fixed y, the sea surface is sinusoidal in the x direction

with an apparent length in the x direction given by L^^^ in

equation (8.2). The velocity in the x direction of the crests

is given by C/ n in equation (8.3). Note that L/^x is not equal

to C(^)T.

Equations (8.1), (8.2) and (8.3) describe a possible con-

figuration of the sea surface, but the particular method of pre-

sentation employed is limited to that one particular form and

minor modifications and extensions thereof. By a trigonometric

identity equation (8,1) can be written in the form of equation

(8.4), The short crested waves then turn out to be simply the

interference pattern between two long crested waves which are

traveling in different directions. The first wave is traveling

in the direction of the line J\ - a x + ay = 0. It has in-

finitely long crests oriented perpendicularly to this line.

The individual crests have the classical wave length and travel

with the classical speed. The second wave is traveling in the

direction of the line y 1 - a x - ay = 0. In this direction,

it has all the properties of classical waves.

Equation (8,1) is thus another way to analyze equation (8.4)

It can be employed only if the two waves have the same amplitude

although interesting results can be found if the two waves in
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Short Crested Waves

'7(x,y,t)= Acos(|f^ay).cos(|fIVr=^' x--2=i) (8.1)

L(x) = gT/27r VP? (8.2)

C(^, =gT \/l-aV27r (8.3)

77(x,y,t)=|-cos(|^'(\F7^ x+ay)-^)

+ -fcos(^'(^/r^x-ay)--^) (8.4)

77(x,y,t)=tt A^cos(f^'(\/i^x+a,.y)-^+Sii) (8.5)

Plate mrm
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equation (8.4) have both different directions and periods. Dif-

ficulties arise when there are more than two terms in the sum

and when the amplitudes are not the same. Under these conditions

a sum of terms of different periods, directions, and amplitudes

is the result such as in equation (8.5). The only method of

analyzing the expression is to evaluate the expression term by

term and sum them all in order to determine the actual appearance

of the sea surface. There is no short cut to permit a form like

equation (8.1),

Equation (8.5) yields a multitude of representations for

the sea surface, depending on the number of terms chosen to be in

the sum. Figure 17 is an example of what the sea surface might

look like with five terms in the sum of equation (8.5). The

equation given on the figure was evaluated for t = as a function

of X and y. The contour system begins to look like some of the

aerial photographs of the sea surface which are found in the

literature. In equation (8,5)« if -1< a.< 1, and if the square

root can have both positive and negative signs, then the expression

is as general as possible.

A useful lemma

In order to derive many of the results which will follow,

it is necessary to prove a very useful lemma (or auxiliary

theorem*) which has many applications in Fourier Integral Theory.

This lemma will not be proved for the most general conditions

on the functions possible. The conditions which will be assumed

are general enough to include all of the cases in which it will

Trom lecture notes taken in a course in mathematics given by
Professor IJagnus of N.Y.U. Math Institute. Referred to also
as Dirichlet's Limit formula. See C .arant [1937] p. 321 for
alternate proof.
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be applied in this paper.

The conditions which will be imposed are the following.

First, the functions, f(x) and its first derivative, f'(x), are

continuous as stated in (8,6). Secondly, the absolute value

of f (x) is less than some positive constant M as stated by equa-

tion (8.7), And thirdly, the absolute value of the derivative

of f (x) is less than M.

If these conditions are satisfied, then it can be proved

that equation (8.9) holds. The proof follows. The integral

from -A to A can be broken up into three parts as in equation

(8.10) where e is some small but fixed number. The integral from

-A to - € and the integral from € to A can be shown to vanish.

The integral from - e to € contributes the whole value to the

entire integral.

Consider, first, the integral from € to A, It can be in-

tegrated by parts, and if absolute values are taken, the first

inequality in equation (8,11) is the result. Estimates based

upon M, the value of e , and the length of the path of integra-

tion, then yield the second inequality. The second inequality

as N approaches infinity tends toward zero. Therefore the inte-

grals from € to A and from -A to - e tend to zero as N approaches

infinity.

Consider next, the integral from - « to e , In equation

(8.12), the transformation of variables given by equation (8.13)

yields the first expression. As n approaches infinity f(x'/N)

approaches f(o) over a large range of x', and f(o) can be factored

out of the integral as a constant. The integral from - N to

N of (sin x')/x' approaches the integral from minus infinity
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A Useful Lemma

Given f(x) and f (x) continuous

f(x)l<M

(8.6)

(8.7)

|f'(x)l<M

then lim

A

sin Nx

N-*oo.
f(x)dx = 7rf(o)

(8.8)

(8.9)

Proof

lim /
^i^ f(x)dx= lim / -^i^** f(x)dx+

I

N— oo.
~A

N—

«

-A

lim h^

+ lim

lim
N-»oo

sin Nx
f(x)dx

f(x)dx

(8.10)

.A

sinNx
f(x)dx ^ lim|--q?J^f + lim

I
f^^^-i?-q§)dx

^ i;rv, /2M
.
2MA \^-n

N-»oo
(8.11)

lim ^ f(x)dx= lim ^f(-^)dx'= lim f (o) / ^dx'=7rf(o) (8.12)

Where x= Nx (8.13)

Plate XXIV
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to infinity of (sin x')/x' which has the value v. The final

expression in equation (8.12) is thus the desired limiting value.

If A is permitted to approach infinity in equations (8,9),

the same result will hold. The results hold for any preassigned

A no matter how large, and therefore they hold for A infinite in

the limit.

The initial value problem in the y,t plane for a disturbance

of finite duration and width

In a storm at sea, the waves are quite irregular. There

are high waves, and low waves. The high waves sometimes appear

to come in groups followed by times when the waves are relatively

low. In addition, even when the waves are high the crests are

not very long, possibly only ten times the distance between suc-

cessive crests. -Consider then a wave record in deep water ob-

tained by a whole line of wave recorders along a segment of the

line X = parallel to the dominant orientation of the crests.

If all of the wave records were properly synchronized, it woiild

be possible to obtain a plot of wave height as a function of time

and the position of each of the recorders on the line x = 0.

The free surface would then be expressible as a function of y

and t inside of a closed curve given by some function of y and t.

Inside of this closed curve let the sea surface be given by the

observations. Outside of the closed curve, let the sea surface

be identially zero in amplitude, and if desired smooth the sharp

edges off the boundary. The result is a finite short crested

wave system observed as a function of y and t at an arbitrary

origin in deep water. It could represent a whole storm at sea
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as it passes the line x = 0. Before a certain time its ampli-

tude would be zero and after, say, ten hoxors had elapsed it would

again be zero. In addition, outside of a certain range of y at

X = it would never be observed.

The immediate problem is to find out how this disturbance

behaves at other values of x. In anticipation of what is to

follow, though, think of a storm at sea as a sum of many elemental

sine waves traveling in various directions but bounded by the

closed curve described above. The disturbance is, by the principle

of superposition, and due to the linearity of the system, equal

to the sum of the individual disturbances, no matter how they

differ in direction, amplitude, phase, and period.

The function, 7](o,y,t), has now been obtained. What is

the function T7(x,y,t)? Strictly speaking, rj (o,y,t) does not

determine rj (x,y,t) because there is an ambiguity in the possible

directions of the individual spectral components. For a com-

pletely general problem, 77 (o,y,t) would also have to be measured.

However waves in a storm at sea travel in the direction of the

wind and if the reasonable assumption that each spectral component

has a component of direction of travel in the positive x direction

is made, then a solution can be obtained.

Equation (8.14) postulates that the free surface is composed

of spectral sine waves of special frequency /x which travel in

the spectral direction x cos e + y sin 9 (see equation (2,29)),

Note that the limits of integration are over only half a circle

in the fi , e polar coordinate system, and that /u. is always posi-

tive since the integration is from zero to infinity. With this
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assumption about the limits of integration, it is not necessary

to know Tj jr^yy^^ because all spectral components have a direction

component in the positive x direction.

If equation (8,14) represents the free sTirface everywhere,

then equation (8.15) represents the sea surface at x = and

it can be expanded into the form of equation (8.16). Now the

left hand side of equation (8.l6) is a known function, and if

the values of a(/^ ,0) and b(/i.,0) were known then the step back

to equation (8,14-) would be simple and the problem would be solved.

Take the known function rj (yjt), multiply it by

cos((/i. /g) sin e*.y)«cos /i.*t, and integrate it over y and

t from minus N to plus N and from minus M to plus M. Consider

the limit as M and N approach infinity. The first expression

in equation (8,17) formulates this operation, and in the second

expression (8,l6) has been substituted for 7^(o,y,t). The sec-

ond, third, and fourth term in the bracket from equation (8.16)

are not needed because the integration is even, and since, for

example, cos /x*t sin /it is odd the integration is zero. The

third expression in equation (8.17) can be obtained from a trigo-

nometric identity.

The integration under analysis is continued in equation

(8.18), Two transformations of variable are employed in order

to get from the second expression to the third expression. The

second expression can be expanded into one integral which involves

(slni fjL - /A *)M)/( fi ~ IX *) and another which involves

(sin( /A + /J- *)M)/(m+ /I *). In the first integral the transfor-

mation of variable given in equation (8.19) is used and In the
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second, equation (8.20) is used.

As M approaches infinity, the results of the lemma given in

equation (8.9) can be applied. In the first integral, the range

of integration includes o = 0, and in the second integral it does

not. The limit in the first case is consequently a definite value.

In the second case, it is zero. The second expression in equation

(8.21) is the limiting value as M approaches infinity.

The limit as N approaches infinity can now be studied. There

are two terms in the bracket in the second expression of equation

(8,21) and the integration can be written as the sum of two terms.

The transformation of variables given by the upper sign (where

applicable) in equation (8,22), (8,23), and (8,24) can be used in

the first term, and the corresponding relations with the lower

sign can be used in the second term. The result is the third

expression in equation (8,21).

The range of integration in both integrals includes the

origin, and as N approaches infinity both integrals have a limit. .

The limiting value is given by the last expression in equation

(8.21). It is an even function in 6* as should be expected from

the form of the original integral over 7) (o,y,t) times even cosine

functions.

In equation (8.25), a similar integral is evaluated where

the cosines have been replaced by sines. The result is an odd

function in 9*.

When the two equations (8,25) and (8.21), are taken together,

it is possible to solve for a( ft *,©*), and the result is given by

equation (8,26). Similar operations with cos[(/x*) /g sine]sin ;a*t
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and sin[((;i*)Vg) sine]cos/i*t, make It possible to find b(/A*,e*).

The spectrum of the disturbance given by aifJ- ,e*) and

b(/i.*,e*) has now been found from the function 77(o,y,t) which

was known. These known values can now be substituted into the

original formula given by equation (8,28) which is known once

77(0, y,t) is given. The integration in the square brackets must

be carried out before the integration over fi * and 9*, and in

order to emphasize this, the y and t which disappear due to the

process of integration are not starred, and the ones which will

remain in the final solution are starred.

The initial value problems in the x,y plane for a disturbance

over a finite area

Given '^(x,y) at t equals zero, it is possible to find

''7(x*,y ,t *) by the methods used above. Formulated in terms of

z/ , where v is the spectral wave number, equation (8.29) pre-

scribes a motion such that each elemental wave in the motion has

a component of travel in the positive x direction. A derivation

which follows the procedures used above very closely then yields

the final result as given by equation (8. 30). The values of

a( 1/ ,e ) and b( ^ *,9*) are given in the brackets and can be found

given T7(x,y).

The use of v instead of H- is more convenient in the deri-

vation but not essential. The variable could just as easily have

been /a . The transformation of variables given by equations (8,31)

and (8.32) then yields equation (8.33). The wave system conse-

quently has the same form as the previous system.
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The initial value problem in the y,t plane for a wave train of

finite width and finite duration

The problem to be solved now is the logical extension of

the problem in Chapter 5 to the case of a storm of finite width.

Equation (8.28) is the starting point and when 'J7(o,y,t) is given,

the problem consists of evaluating the indicated integrations.

The initial values are given by equation (8.34-). Outside of

a certain range of y at x = given by plus and minus one half the

width of the storm, W , no disturbance is observed at the source.

Outside of a certain range of time at x = given by plus and

minus one half the duration of the waves, D , no disturbance is

observed at the source. Inside of the indicated rectangle in

the y,t plane, a disturbance given by A sin((/i.^ /g)y sin e^ - A^^^t)

is observed. For y fixed, the disturbance inside the rectangle

is a disturbance whose record, as a function of time, would look

very much like the disturbance produced in Chapter 5» Since l^ ^

is a fixed number, the apparent period of the disturbance would

be given by T, = 27r/yLt , within the time interval given in equation

(8.34), For a fixed 9,, Z^,, and t , as y varies, the disturbance

is a slowly varying sinusoidal function, if ©-, is small. The small-

er the value of 6, , the more rapidly the crests of the disturbance

move in the y direction. The crests in the y,t plane do not move

in the y direction with the speed of gravity waves because they

are really only a component of the wave as observed at x = 0.

Given the graph of T7(o,y,t) the use of equation (8.34) determines

/^ , and e, uniquely.

Several integrals must be evaluated in order to obtain the
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spectrum of the disturbance. The first integral in equation

(8.28) involves the evaluation of equation (8.35). All of the

terras in the integrand are odd, the integration is even, and

the result is that equation (8.3?) is zero. The second integral

in equation (8.28) involves the evaluation of equation (8.36).

The integration is straight -forward and the result is given in

equation (8.36).

The results of equation (8.36) can be substituted into

equation (8.28). An integral would then result over the sum of

two terms from zero to infinity. The integral is approximated

in equation (8.37), for ease of evaluation, by an integration

from minus infinity to plus infinity of the t erm which gives

the important contribution for fi * positive.

For all equations subsequent to equation (8,37), all of

the starred quantities in equation (8.37) will be written without

stars for simplicity of notation . By the transformations indi-

cated in equations (8.38), (8.39), (8.40), and (8.41), equation

(8.37) can be put in the form of equation (8.42),

The pair of equations given by equations (8.43) and (8.44)

define a transformation of the spafce over which the integration

is to be carried out. The inverse of the transformation is given

by equations (8.45) and (8.46). The Jacobian of the transforma-

tion is given by equation (8.47). The application of this trans-

formation to equation (8.42) yields equation (8.48) in which the

original strip over which the integral was to have been evaluated

in the /x ,p plane now maps into the whole a,p plane.

Were it not for the very complicated coefficient of x in
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the last sinusoidal term of the integrand, the integration of

equation (8.48) would then yield the final result. Note that

as D and W„ approach infinity, the application of the lemma
w s

given in equation (8.9) yields a simple sine wave of the form

A sin((iU]^Vg)(x cose^ + y sine^) - /^^t) without edges. The

integration as it stands, for D^ and Wg finite, is too difficult

to carry out and it must be approximated. The term involving x

in the last sinusoidal term of the integrand is approximated in

equation (8,49), The second expression in equation (8,49) is

simply a way to rewrite the original expression. Since the major

contribution of the integral occurs near a and p equal to zero

from the behavior of the other terms in the integrand, higher

order terms such as those involving a-* and a can be neglected.

The third expression in equation (8.49) employs this approxi-

mation. Also since the major contribution is given near a and

p equal to zero the square root can be approximated by the first

term in its binomial expansion, and the fourth expression is ob-

tained. The final expression in equation (8.49) is the result of

clearing fractions.

Equation (8.50) is the approximate result which is obtained

when the approximation given in equation (8.49) is substituted

into equation (8,48). The first term in the argiiment of the last

sinusoidal term of the integrand is simply a constant as far as

the parameters of integration are concerned. The remaining terms

2 2
are functions of a , a, p and p alone without cross product terms

of the form of, say, a. p.

For simplicity let yl - p^ = K as defined by equation (8.51)
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The terns, xK, + yp, and -p-,x+ K^y, occur as units in the inte-

grand. The terra, xK, + yp, , is the direction in which the wave

crests travel, and the term, -p-|_x + K^y is the direction of

orientation of the wave crests. They are the coordinates of

a rectangular coordinate system which has been rotated through

the angle 0, , and they are designated by X and Y in equations

(8.52) and (8.53). Note that X and Y are perpendicular.

The constant term with respect to the variables of inte-

gration can be factored out by a trigonometric identity, and the

use of the notations given above them yields equation (8,54-). The

notation for the various constant terms can be shortened by the

use of the symbols, C, D, E, and F, as defined by equations (8.55)>

(8.56), (8.57) and (8.58). Then the trigonometric terms under

the double integral can be split into a product of two integrals

by expanding them by a trigonometric identity and the result is

equation (8.59).

Each of the integrals in equation (8.59) is an integral

over only one variable and if one of them can be evaluated, all

can be evaluated by similar techniques. The integral of one of

integrals is given by equation (8.60). It is integrated by the

very same techniques that were employed in the integration of

a function of similar form in Chapter 5. The steps from equations

(5.9) to equation (5.12) in Chapter 5 could be cai^ried out (with a

different variable for the notation) in order to obtain equation

(8.60).

The integration of equation (8.59) would then result from

the substitution of equations like (8.6O) into equation (8.59).

Delta is the dummy variable of integration for those expressions
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which originally involved beta, and gamma is the dtunmy variable

of integration for those expressions which Involved alpha origin-

ally. Let the last expression in equation (8.60) be a short hand

notation for the expression which precedes it.

Eqiiation (8.61) is the resiat when this short hand notation

is substituted into equation (8.59). Each of the indicated inte-

grals is a Fresnel Integral and its value is consequently knovm.

The terms preceding the t^^o trigonometric terms in (8.6l) deter-

mine the envelope of the traveling wave, and since an expression

of the form G cose + H sine can be written in the form

(G + W")' sin(e + tan" G/H),the last expression in equation

(8.6l) shows the results of this transformation.

The expression, FF(x,y,t),is equal to the sum of the squares

of the two coefficients in equation (8,6l). It will turn out

to be the two dimensional equivalent of the one dimensional Fres-

nel filter described in Chapter 7» 'ffhen the process of squaring

and clearing terms is carried out, the final result is the last

expression in equation (8,62). FF(x,y,t) will be referred to

as the Fresnel filter for a storm of finite width.

Interpretation of resTilts

The expression for FF(x,y,t), given in equation (8.62), is

a product of two terms which involve Fresnel Integrals. The function

will first be treated for a fixed value of x as a function of y

and t. Each of the terms in the large bracket is essentially

two inside of a certain range of t and y for a fixed value of

X. Outside of this range at least one of the terms is nearly

zero and the product is therefore nearly zero. Consider the first
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bracketed term. If Y is zero and W^ is fairly large, for an

X which is not too large, the integrals will have to be evalu-

ated from a large negative value to a large positive value and

by the same arguments employed in Chapter 5> the value of the

bracketed term will be essentially two. If, say, Y = K^Wg/2

then the integrals will have to be evaluated from zero to a

large positive value, and the value of the bracketed term will

be one halT. Thus when Y = K^Wg/2 or Y = -K^Wg/2, the potential

energy, averaged over a relatively short interval of time, of

the waves at that point under the envelope will be one fourth

of its value near the center of the disturbance. Similarly in

the second bracketed expression if (2 fijx/gK-.) - t - (D^2) = 0,

or if (2/i.^x/gIC, ) - t +(D /2) = 0, the average potential energy

will be one fourth the value at the center of the disturbance.

If the four equations treated above are put back into their

original form as a function of x,y and t and 9, by the use of

(8.51), (8.52), (8.53), and (8.41), then y and t can be found as

a function of x and the other parameters of the solution. The

result is equations (8.63), (8,64), (8.65) and (8.66). For a

fixed value of x, 0^, W^ , D , and /x ,, these equations are equa-

tions of four straight lines in the y,t plane. Segments of these

straight lines are graphed for x = x-]_ in the upper right of the

y,t plane shown in figure I8. Their intersection determines a

rectangle in the y,t plane. Inside the rectangle, the disturb-

ance is at essentially full amplitude, and at the heavy bound-

aries as indicated on the figure, the average potential energy

if one fourth of what it is in the center.
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Interpretation of Results

Quarter Power Points of the Function FF(x, y, t)

For fixed x in the yt plane

W
y = ^-ftan^,x (8.63)

W
y = -^-htan^,x (8.64)

t = ^ + 2^£iL (8.65)
2 g cos a, ^

t = -^-h^^^n (8.66)
2 gcosa,

For fixed t in the xy plane

W
T = cosO,^ (8.67)

W
2:=-cos^,^ (8.68)

X = i^54^ (8.69)

gcos^,(|* + t)

PLATE X XXV
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y=^+\or\9,xIT

y=-^+tanaxn I

I

X= X
I

I

^="2" gcos^, 2 "gcos^i 2

x=
-gcosQ|Dw gcos^iDw

4/ai
'^^

4/X|

Fig 18. The Quarter Power Boundaries of the Envelope of

the Solution. The heavy lines are the boundaries. The

dashed lines are portions of the equations of the

boundaries. The wave crests are shown in the xy plane.
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When X is not zero, as a ftinctlon of y, the profile of

FF(x,y,t) where it exists looks at an edge like the dashed curve

in figure 9» Similarly when x is not zero, as a function of t

the same profile would be foiond. The product of the two profiles

is rather complex at the corners of the rectangle.

As X approaches zero in equation (8,62) the radicals in

the integrand become infinite. The quarter power lines move

to the position indicated at the origin of the y,t plane in figure

20. This shows that the solution reduces to the initial values

given in the formulation of the problem despite the approximations

employed in evaluating the integral.

N ow the function will be studied for fixed values of t as

a function of.x and y, A second set of coordinate axes defined

by X and "Y as given in equations (8.52) and (8.53) are also use-

ful. The bottom graph in figure 18 shows the two coordinate sys-

tems. The quarter power points in the Y direction are given simply

by equations (8.67) and (8,68). In the x direction, they are

given by equations (8.69) and (8.70). The area in the x,y plane

occupied by the waves is consequently a parallelogram with sides

parallel to the Y axis and the x axis. The individual wave crest

segments are parallel to the Y axis and travel in the positive

X direction. On the "x, axis, the value of X for the forward edge

of the disturbance is given by X = x/cosQ-^ = g(t + D^2)/2/x,^

which shows that the forward edge of the disturbance travels in

the positive X direction with the group velocity of waves with

a jjeriod /x ^.
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The accuracy of the approximations employed

Two approximations were employed in the derivation of the

solution. The first approximation was in the formulation of

the integral representation given by equation (8,37). This in-

tegral r epresentation permits some of the spectral components

to have a component of travel in the negative x direction. By

the arguments given in Chapter 5 for the simpler case, this ap-

proximation is probably not too bad. The effect of the other

approximation, namely that given in equation (8.49), is probably

more important. The approximation is more accurate for small

values of e, . With 6, greater than Tr/4 or less than -^74, the

approximation becomes poorer, A more accurate evaluation of the

integral might show that the parallelogram form in the x,y plane

shown in figure l8 would tend to lose the sharper corner

and assume the shape of a rectangle with sides parallel to the

X and Y axes as it travels along. The approximation is adequate

in the sense that it locates the disturbance fairly precisely

and shows where it is got located to a great degree of accuracy.

Additional comments

It would be possible to take the two initial value problems

given in this chapter and manufacture some model wave systems

from storms at sea which have properties which would be analogous

to those models studied in Chapter 6. Models with discrete

spectral components which would travel in all directions within

a 180** sector could be manufactured. They could be made to be

infinite in duration and width, infinite in duration and finite

in width, finite in duration and infinite in width, and finite
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In duration and width. The elemental unit of construction

would be a finite wave group which would last for only a few

minutes and be only a few kilometers wide as it passed the line

X = near a point y = y •

The most realistic model possible by these methods would

be a model something like the last model described briefly in

Chapter 6. The analysis of the properties of the model would

turn out to be very complex, and the results would be indecisive

because of the difficulties involved in evaluating the potential

energy.

None of the above possible models would be Gaussian in

character, and since there is evidence that a wave record is

very nearly Gaussian in character as shown in Chapter 7? they

would all be unrealistic. For this reason, none of these models

will be treated.

Instead, in Chapter 9, the Gaussian case for a short crested

sea surface will be treated, and FF(x,y,t) as derived in this

chapter will be applied as a filter to the Gaussian case in

order to forecast the spectrum of the waves in the area of

decay.

- 205 -



Chapter 9. THE MATHEMATICAL REPRESENTATION OF A SHORT
CRESTED SEA SURFACE BY A LEBESGUE STIELTJES
POWER INTEGRAL AND THE PROBLEM OF FORECASTS
FOR A STORM OF FINITE WIDTH AND FINITE
DURATION OVER A FETCH OF LENGTH, F.

Introduction

Now that wave systems have been represented for the short

crested case by Fourier Integral Theory, the next step in general-

ity is to represent an area of a short-crested sea surface by a

Lebesgue-Stielt jes Power Integral. It will then be possible by

extending the methods of Chapter 7 to devise a forecasting proced-

ure for an actual short crested irregular sea surface in a storm

at sea of finite duration and finite width.

The Lebesgue Stieltjes Power Integral for short crested wave

systems

The logical extension of equation (7.1) to a short crested

sea surface is given by equation (9.1). The integral could also

be considered as if x were zero and the term x cos G were absent*.

It would then follow from the properties of gravity waves in deep

water that the term x cos could be added immediately under the

assTimption that the disturbance occupies all of the x,y,t space.

Note that the integral is not completely general in that it does

not represent waves traveling in all possible directions. All

component waves have a component of motion in the positive x di-

rection. A more general representation would later on necessitate

evaluation of derivatives of the sea surface. For most systems,

equation (9.1) is general enough.
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The Lebesgue Stieltjes Power Integral for Short Crested Wove Systems

-^(^y.oW cos{^{xcos^*ys\n^)-fJL^+^|/{|M,e))\j^EJ^) (9.1)

Jo dx
z

Ee(o,0)=O (9.2) E^ (^7|-) = (9.3) O«E,(/i,0)<M for all /i and Q (9.4)

if /j.K</J.K*i(9.5) and 6[,<Q.,(9.6) andif E2(/ik4)^E:2^hA) (9-7)

E2(/XK,a..)<Ea(/iK*.,a*.) (9.8) E2(^K,a)^E^/tKA.)(9-9)

E2(AtK*,j9j)<E2(/i.K..,^j*.) (9.10) and finally if

^^{^JiK.AyUlJir^*uS,)>^U^H.^ByU^tM (9.11) one finds that

UiJiK.uB,*)-Uii^n,B,)^UH'KA*yUiJ-M (912) and also

H^lK.M-U|^KM,^, yUn-^. ft..) +E2(^k,0,) »o (9. 13)

let < /X|</i.2</X3</A4</i6<. </i.K</XK+lft-K+2 </i.2R<« (9.14)

where /iK*r/xifA,yLi (9. 15) /iL+r/iL=A2/i(9.l6) and whereAa^^/iK^TAtM./i

(9.17)

and let -f^eo<d,<dz<d^< 6|,<61,*r <a8^f (9. 18)

where 6,^,6^^^ (9.19) O^^did^zd (9.20) and whereA20^a*l6|,«A,0

(9.21)

Then 'n(x,y,t) = lim Z-I-cos(^-^^x cos^H;^sin^J-;i,,„t+\/^(;i2„+„02P„))

^-fi^g^o ^_
A|/i*0 • y E2( /12N+2Ap+a) ~E2(/X2N^2P+2)'E2(/i.2N+2,02p)+E2(/X2N,^p)

^'*-°
Plate XXXH (9-22)
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Ep( ^l ,e) is the ciMulative power distribution in the /x ,e

plane. It represents the amount of power present in the system

below the wave frequency fi and between the directions -ir/2 and

e. EpCfi. ,©) is defined for values of between -7r/2 and v/2 and

for all positive values of /^ . As required by equations (9.2),

(9.3)j and (9.4), E2(/^,©) is zero at the origin, zero along the

line e = -Tr/2, and bounded from above for all fi and 6.

Equations (9.5) through (9.10) require that E2(/x,©) be mono-

tonically non-decreasing in both /J. and ©.

Some properties of £2(^6 ,6) at a set of four points at the

corners of an elemental area element are also needed. The required

property is stated in equation (9.11). Equation (9.11) yields

equation (9.12) and equation (9.13) through the usual operations

with inequalities. Equation (9.13) Is very important. This par-

ticular combination of the values of £2(^,6) at the four corners

of the area element must always be greater than or equal to zero,

if equations (9.5) through (9.11) hold.

In order to define the. integral given by equation (9.1), it

is first necessary to define a net over the /i- ,6 plane described

above. The H- axis is first broken up into a finite number of

intervals as given in equation (9.14). Equations (9.15), (9.l6),

and (9.17) state that the smallest interval is A 2 H-
and, that the

largest interval is A^fi. Next, the angular coordinate, e, is

broken up into 2S angular segments in the interval between -Tr/2

and 7r/2. Equations (9.19), (9.20) and (9.21) state that the small-

est angular segment is A 2© and that the largest is A-G.

Equation (9.1) is then the limit of the partial sum given by
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equation (9.22) as fJ- 23 approaches Infinity, e2j^ approaches

v/2 from values less than 7r/2, and the mesh of the net approaches

zero. The rule for picking \j/ (
fi ^e) must also be given before

the partial sum is formed. For some forms of the integral

V'CA'-,©) can be a continuous function; for other forms of the

integral, it must be defined in very special ways. The value

under the square root sign is always positive by virtue of

equation (9.13).

An imporant property of the Lebesgue Stieltjes Power Integral

for a short crested sea surface

From the properties of £2(^,9), it follows that £2(^,6)

has a definite limiting value when 6 = ir/2 as fi approaches

infinity. This limiting value will be called Egj^^^^, and it

should be noted that the free surface considered as a function

of time (when squared and averaged over time) for some fixed x

and y may or may not be related to the Ejjj„_ of Chapter 7, For

this reason the difference between ^2 and E _ must be kept

in mind until their relationship is studied in Chapter 10.

T/Oien the free surface defined by equation (9.1) is squared

and averaged over the y,t plane, it can be proved that equation

(9.24) is the result. The potential energy averaged over the

y,t plane is then given by equation (9.25).

Equation (9.24) can be proved by the procedures given in

equation (9.26) and the steps which follow it. In equation (9.26)

the definition of the integral given by equation (9.24) has been

substituted for rj ix,y,t). By a correct application of the

various limiting procedures, the result can be proved. In equation
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(9*27) all of the limiting processes have been designated by the

simple notation, lim, and the summation over n has been Tirritten

out in full. In equation (9»28), the summation over p has also been

written out in fuuLl, and the trigonometric terms have been desig-

nated by a shorter notation.

The next expression in equation (9.28) indicates the process

of squaring the entire large bracket. Each term in the sum v/ill

occur as a square, and there will also be a large number of cross

product terms. Each squared term will be of the form of the square

of one of the indicated square roots times the square of a cosine

term, and since, for example, (cos a) = (1 + cos 2a)/2, a term

equal to one half of the sujns of the squares of all of the indi-

cated square roots will occur. There will also be a great many

terms which are periodic in either y or t or both. Some of the

terms which are periodic in either y or t or both occur first as

the product of two trigonometric terms. In every case, however,

either the values of /^ in the two terms or the values of 9 in the

two terms will be different, and the product can therefore be

written as the sum of two trigonometric terras which involve the sum

and difference of the arguments.

The sum of all of the values of E2(/^ ,9) at the points of

the net telescopes into the value of S2( /^ 2S'®2R^ ^^ virtue of

the properties of the net and the properties of £2(^)6). For

example, the first row of terms in equation (9.28) becomes simply

E2(/^ 03,92). All terms occur once positively in the sum and once

negatively except £2(0,0), E(02,92), E2(/^2S»°^ ®"^ E2(M2S»®2^*

All but E2(/i.2S'®2^ ^^® zero by definition. The second row of

terms, of which only the first is shown, becomes E ( Mpq^^A^ ~
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EpC A''2S»®2^' and the stun of the first and second row then becomes

^2^^2S»®4^' Finally, the complete sum is simply ^2^ /J-
2S^^2B.^

'

Figure 19 illustrates this property of the net. The net as

shown is not a very close one, but it is seen that if the indicated

signs are assigned to each corner of the elemental areas of the

grid system, and if the sum of all the terms is then taken, every

value of EgC/^,©) which occurs will be cancelled out by a term of

opposite sign except the ones for £2(0,0), £2(0,6^2^1 E2(/J. g,0)

and EgC/x 0,9,2)' The only one not zero of those that are not can-

celled out is E2( A*- g)6n2^*

The next step is to integrate over y and t and pass to the

limit as L and T approach infinity. The only term remaining is

iE2(yU.2S'®2R^* ^^®® ^°^ example equation (6.64).) Then as 62^

approaches Tr/2, the next expression is obtained. And as fJ. 23

approaches infinity, E2jjj^3j/2 is obtained. Finally, the same re-

sults hold as A^/A and A,e approach zero. Therefore equation

(9.24) is proved.

The resTilts hold for any value of x. Consequently, they hold

for an average over x also. In other words, equation (9.24) and

(9.25) could be modified by another integration from x* to x* + L*

and a division by L*. Then the limits as T, L, and L* approach

infinite would be the same as the limits as they are given.

Some examples

Various examples of the integration of equation (9.1) will

now be described. These examples will all be examples of the non-

Gaussian case. They are of interest because they show that all

of the systems which were infinite in duration and width in the
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Fig 19 The Properties of the Net in the {^-,6) Polar Coordinate

System.
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past chapters come under the properties of this particular integral.

The form of Ep(;^,e), for example one is given by equation

(9.29). \//(/x,e) is zero. E2(/i,e) is indicated schematically

by the little polar coordinate sketch on the left. Graphed as a

surface in the three dimensional ft jGjEgC A^ ,9) space, E2(/i.,9)

would look like a vertical cliff along the curve /x = ftj, be-

tween e = and e = 7r/2, and the curve 9 = 0, between fi = fi.j

and fJ.= 00. There will be a sharp corner at the point (a'-j,0).

2
A plateau of height A would exist to the upper right behind these

two curves, and E2(M>9) would be zero everywhere else.

Now consider a partial sum such as equation (9.22), For any

net, a portion of the net will look like the magnified part shown

in the plate. There will always be an area element in the /x ,9

plane which encloses the point (^^,0). For this particular net,

the appropriate corner points are given by (A''2i»®2m^' ^^2i+2'®2m^'

CM2"+2»®2m+2^ and ( l^2V^2m.+2^ ^^ ^ counterclockwise order. The

square root of the appropriate term in the partial sum then has

the value. A, for this set of four points as shown by equation

(9.31). All other elements in the net contribute nothing to the

partial sum. For example, the contribution of the element to the

right of the one just considered, yields a value of zero as shown

by equation (9,32). Consequently, for this particular partial sum,

the value of the partial sum is given by equation (9.33). There

is always some set of fovir net points such that equations (9.3^)

and (9.35) hold, and as A^M and A^9 go to zero, the final re-

sult is equation (9.36). Consequently, example one is simply a

single sinusoidal wave traveling in the positive x direction of
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Some Examples

Example I

0;^<0

A;otherwise (9.29)

magnified part of net

\
•

\

r-T"

f(A^,0)=O (9.30)

I

2m+4 — T—

r

,
• I

2m+2 -T--+-
2m

2:
I I

•
I

T-l 0=0

I I

I

5,|_P "l~~/ ~J~~ for a partial sum
^'^2i 2i^2 2i+4

UfJLz\*2,dzH*z)-E2{fl2],dzH^-Ez{lJ^,^e2Ji^E2(flz^,dz^= \/A'-0-0 +0=A (9.31)

.2 .2

E2(/i.2i.4,aM*2)-E2(/l2i.2,02M+2)-E2(pi.4,au)+E2(^2i«,02j=yA-A-O-O=O (9.32)

all other elements of the net, but the first one give a contribution of zero

2

therefore 7;(x,y,t)= Acosf-^^^(x cos^2„*,+ y sin ^2M^,)-^2it,t) (9.33)

since there is always some set of four net points such that jjiz\*i>yiT>^z\

1>
( f

Qud d2H*iO> d^y, (9.34) in the limit 77(x,y,t)= A cos (-^x-^it) (9.35)

Plate SXXIX
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constant period and amplitude in deep water.

The form of EgC/^,©) for example two is given by equation

(9.36a) and the appearance of the function is given on the little

figure to the left. \|/( /x ,9) is defined in small strips which

cover the jumps in EpCM,©), and it can be anything otherwise as

shown by equation (9.37a). A partial sum, if the net points are

close together, for the element which encloses the point (/x__,0),

then yields for the square root term the value

((A^^^ + k^) - A^^ - + 0)^/^ = Ag.

The final result, in the limit is given by equation (9.38a). From

the above two examples, it is evident that all of the examples

given in Chapter 7 are special cases of the integral given by

equation (9.1) in which the sea surface does not vary in the y

direction.

In example three, E2(a'-,©) is given by equation (9.36b), and

i//(At,e) is zero. For the area element which encloses the point

(/i,j,Tr/6), the radical in the partial sum for that term is given

2 2 1/2
by (2A - - A + 0)^ = A. The integral is consequently given

by equation (9.38b). Equation (9.38b) is just a specific example

of equation (8.4) as far as the direction of the two waves is

concerned.

In example four, the form of E2(a'' ,©) is given by equation

(9.39) > and i//(/A,e) equals 3Tr/2. The integral is then a special

case of equation (8.5). In fact, the integral is equal to the

equation given in figure i9 when t is zero. E2(M)0) is an inter-

esting function in this particular case, and a three dimensional

sketch of the surface involved is given in figure 20. Note the
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Some Examples

Example H

E2(/i,a)=

v//(/x,a) =

2 e

0; ^<0 (9.36a)

0; ^<fji^

'0;\fi-^\<€ (9.37a)

77-; l/i.-/xj<€

anything otherwise

Then7/x,y,t)=A,cos(^x-;i.:t)+A2sin(^x-/iit)-A3cos(^x-/iMt)

Example HC

E3(/i.e)='

0, d<-^

0;fJ.<fix

(9.38 a)

(9.36 b)

A^ <LL<oo
H^H-

, 2Aj/ii^/i.<<

\lf{fijd) =

Then 77(x,y,t) = Acos(f-^xcosf -ysin|)-;tit)+

+Acos(j{xcos|^+ysin|)-/xit)

Examples / O-.^ sin-'(-^)

(9.37b)

(9.38 b)

EyM

0;Sin'(-^)<^<0 and;x<-^

i.';^^<c^ sin-'(-^)<^<0

4»U^t/<2 50 ^'^^ 50
|;0<^<sin-'(i)^^/-<^

50

l|,sin-'(^)<0<| ^V^
l|-;0<^<sin-'(^) -^$/i<cxD

^ 2;sin-^l)<^<f 2^^fi<o^

hi
Then i7(x,y,0) = Equation given on Figure t9

Plate XH
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50

.s,n-'(-i)

2Tr6

50

IT

2

Figure 20 The Form of E(^,^) for equation (9.39)
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point at (2Tr 6/50, sin l/5). An area element from the net which

covers this point gives no contribution since

(2 - 7/4 - 7/4 + 3/2) = 0. Also note that Tj (x,y,0) for a fixed

1/2
y is an almost periodic function in x since (24/25) is an

irrational number.

The Gaussian case of the Lebesgue Power Integral for short crested

wave systems

By the techniques employed above, many strange and wonderful

sea surfaces can be created. It appears that none of them would

be quite as strange and wonderful and realistic as the one which

will now be described. The short crested wave system given by

the Gaussian case of the Lebesgue Stieltjes Power Integral appears

to describe the actual surface of the sea in the best possible

way within the limits of the linearization assumptions of Chapter 2,

The Gaussian case can be obtained in the following way. Equ-

ations (9.2) through (9.13) are still imposed. In addition, if

a small circle of radius 6 is placed around any point, say,

(A''jj,e.), then it is required that the absolute value of the dif-

ference between E2(/^,©) at the point and at any other point in

the circle be smaller than an epsilon (which may depend on delta).

Stated another way, ^2^ f^ »®^ ^^ ® continuous function in both

variables, and it is monotonic non-decreasing in both variables

(see Courant, Vol, I). Equations (9.41) and (9.4-2) are another

way to impose these conditions. Finally, ^ (^ ,e) must have a

value between zero and 27r, and its value is picked by the proba-

bility law given in equations (9.44) and (9.45).

If equations (9.2) through (9.13) hold, and if the conditions
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The Gaussian Case of the Lebesque Power

Integral for Short Crested Wave Systems.

Equations(9.2) through (9.13) hold

in addition , ? ,
if (/^k+FMk) +(^j.r®j)<S^ ^9.41)

then E2(/tK+h^J+i)-E2(AtKA)<€(S) (9.42)

and 0< «/^(At,©)<27r (9.43)

P(O<^(M2n+i.02p+i)*=a2^) = ct (9.44)

where 0£a<l (9.45)

then equations (9.22) and (9.24) still hold,

also if E2(/i,^) has continuous first derivatives

= [A2(M,^)]^d/xd0 (9-46)

alternate formulation of integral
ir

^(x,y,t) =/ /cos[|-(xcosa + ysin0)-/it+i/r(/i,0)]y[A2(M,a)]2cl;id0 (9.4 7)

T
S-l R-l , v2

77(x,y,t) =^l"]rj^|^^ 2^-cos(i^^^(xcos02p^, + ysin02p+,)-M2n+|t+'/'(M2n+i,^2p+i)

f-e2t°" *^(A2(M2n+lAp^l))^(M2n+2-M2n)(^2p+2-^2p)

A|^-^o

'

"°
S-. R-i i(^^'xcosa2p,,+ ysin02p,,)-/x2„,,ti-^(/.2„,,,e2p,,))

= lim Re > •>, e ^
UoS-^OO -^^ '^-'

,

^ fl^O V(A2(M2n+lAp+l))^(M2n.2-M2n)(^2p+2-^2p) O-^S)

A|/l-*0

PloteXd
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given ty equations (9.4-1) through (9.45) are added, then the

limit of the partial sum defined by equation (9.22) still exists,

and the integral given by equation (9.1) still has the property

given by equation (9.24),

If Ep(/i.,e) has a continuous second mixed partial derivative,

it must be everywhere greater than or equal to zero. Consequently,

it can always be written as the square of some function A2(/^»©)>

and under some conditions equation (9.46) is another way to write

d Ep(/x,e). Substitution of equation (9.46) in equation (9.1)

yields equation (9.47) which has a meaning only in the Gaussian

case. The expressions for the partial sums can then be written

in the forms given in equation (9.48). In the last expression

in equation (9.48), the partial sum has again been expressed as

a vector in the complex plane. It will be shown in Chapter 10

that for a fixed x and y as t varies, the short crested sea sur-

face as observed at a point has all the properties studied in

Chapter 7 for 77 (t). The exact relations between E2(M »©)> E(/i ),

2 2
(A2(/i ,0)) and [A(/x )] will also be discussed at that time.

Some example s of cumulative power density functions and their

power spectra

Values of [Ap(/i. ,9)] have never been obtained j^or an actual

sea surface because the observations needed on which the compu-

tation of the function depend have never been obtained. Some

examples of what the function might look like can be given, and

2
then the consequences of the form of [A2(/a ,6)1 in the results

of a hypothetical forecast can be described. It will be seen that

the nature of the forecasted values depends critically on the
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Some Examples of Cumulative Power Density Functions and Their

Power Spectra.

Example I

B;E2M)=(f-§)(0.^)K*

E,E2(fJi,B)-.0

A; [A2(/t,5)f =

-X
[A2(/^,^)]

ExampleH
-37

E2(/^,^)= if -^<5 < -^^8

•^e""" ^-d +cosfaVd^''E2(/^,^) KM*e

, K(i|)i(,.e-^V2._;.T^yA^V2.)(^,^^|3.^M^
T,2 ^ ^ iTT

if-^<a<^

E3(,,,) /^K^*e-^''>t'^du* = ^|r(,_e-^¥.-§e-^'^-)

(9.49)

(9.50)

if^<^<|-

[A2(m,^)]^ = otherwise

(9.51)

(9.52)

Plate XEE
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nature of the sea surface in the storm.

Example one is a possible form for EgC/^,©). The /^ ,0 polar

coordinate system is broken up into five areas as shown in the

little sketch on the side of the plate. In area A, the value of

EpCyLt,©) is constant and equal to the values given in equation

(9.49). The figure is cut off at finite values of /x , but the

same value holds for 6 between ^74 and Tr/2 and f^ greater than

27r/5. In the other areas, the values of E2(/^,6) are given by

the appropriate functions in equation (9.49). Note that E2(/x,e)

is continuous.

Area D is the only area in which E2(/^ ,©) is a function of

both and /i . The second mixed partial derivative is different

2
from zero only in this area, [A2(/a,6)] is equal to K* in this

area, and it is zero everywhere else. For any partial sum, with

a small enough net, there would be no component wave crests travel-

ing in directions between -r/2 and -7r/4, and in directions between

7r/4 and Tr/2, and there would be no component wave crests with

periods greater than 10 seconds or less than 5 seconds. In the

limit, if the phases were random, the wave system would still be

Gaussian.

In equations (9.49) and (9.50), if K* equals 1.69 10^ cm^

< 2
sec, then ^2 equals 2.5 10'^ cm . The potential energy in the

system averaged over y and t is then equal to 6.25 lO'^ ergs/cm

(if the product pg equals 10-^ gnv/cm sec ),

Example one is physically not a very realistic example. It

would not be expected that a turbulent process such as the one

v/hich produces waves in a storm at sea could produce such a sharp
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cornered power spectrum. Example one Is given so that it can be

compared with the next example in order to show how remarkably

different the forecast results can be.

Example two is somewhat more realistic, although it must be

emphasized again that very little is known about the actual values

of E2(.H',Q) in nature. In example two, EgC/^,©) is zero for e

between -7r/2 and -3Tr/8. It is given by equation (9.51) between

-3ir/8 and Sir/S. For 9 between Stt/S and 7r/2, it is a function of

fj- alone.

The second mixed partial derivative is different from zero

only for 6 between -3Tr/8 and Stt/B. [A2(/a,©)] is then given by

equation (9.52).

EgC/^ ,e) and [AgC/AjG)] are shown in figures 21 and 22,

respectively. The isopleths of constant EgCM*©) for 9 greater

than S't/S follow the circles of the coordinate system since there

is no variation in 6. The power spectrum has a peak at e = and

/J- = 2-^/1^. The values of the parameters in the equations for

the evaluation are given by

K = 2.68 10^ cm^sec^,
tf 2

and T, = 10 seconds. E2jjj ^ is then given by 2.5 lO-' cm . The
n

average potential energy in the system is then equal to 6.25 10'

P ^ / 2 2
erg/cm (if the product pg equals 10-* g,/cm sec ). This is the

same amount of potential energy averaged over y and t which would

be found in a simple sinusoidal wave with an amplitude (crest to

mean water level) of five meters. The same amount of energy as

in the power spectrum given in example one has been used for

purposes of comparison later.

- 225 -



M'



T=2

T=4 u.^

T = 5

e = o

0.1 X lo'

FIG. 22 THE FORM OF Ca2(^'«)I|' FOR EQUATION (9.52).
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The forecasting problem for a sea level siirface represented by

short crested waves, a Gaussian Lebesgue Power Integral, and

waves that last D„ seconds at the edge of a storm of width W .

Equation (9.1) has the same nature as equation (7»1) in that

the disturbance exists everywhere and has the same character every-

where, once EpC/^ ,6) is fixed. If the disturbance were observed

as a function of y and t at x = 0, it would be represented by

equation (9.53). The limit of the partial sum given in equation

(9. 54) is again a representation for equation (9.53)'

In order to produce a localized storm, instead of a disturb-

ance everywhere, the representation given by equation (9.54-) can

be multiplied by a slowly varying function of y and t as given

by F(y,t). For a particular example, F(y,t) can be represented

by equation (9.55). Other functional forms for F(y,t) with smooth-

er sides might be employed for somewhat more realistic results,

but the form given in equation (9.55) at least has the property

that the area covered by the waves has a finite width and that

the waves are of finite duration at the source. W^ves produced

by storms in nature are not so sharply defined as this model.

The argument now follows the same line as the one which was

used in equation (7.39). If F(y,t) as given in equation (9.55)

is applied to T7(0,y,t) as given in equation (9.54), the distiirb-

ance which results is observed at the source only over a distance

of length W^ and only for a time D , If the disturbance is ob-
s w

served within the time interval indicated, it will be indistinguish-

able from a similar short observation at any time and place in
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the disturbance covering the whole y,t plane. F(y,t) can be

applied to each term in any finite partial sum. As the indicated

limit is approached, the result of the operation by F(y,t)

can be treated as a filter operation on [A2(Ai,©)] In order to

find the power spectrum at other times and places as the concentra-

ted disturbance at the source disperses and spreads over the x,y

plane.

The problem of the result of the application of F(y,t) to a

particular term in the partial sum was solved in Chapter 8, apart

from minor modifications necessitated by the arbitrary phase,

^ ^ ^2m+l'®2D+l^* Th®s® modifications only serve to complicate

the algebra in the analysis and the same filter function is ob-

tained. The end result is FF(x,y,t) as given in equation (8.62).

This filter function is repeated with modifications in equation

(9.56). The time variable has been referred to t , by a change of

variables, and the filter is also given as a function of jx and 9.

If X, y, t , , D and W are fixed, FF(x,y,t , A*- »©) can be varied as

a function of ^ and e, and the filter properties can then be deter-

mined.

The e-band cutoff points

The Fresnel filter, FF(x,y,t ,
/i ,9)^ has the disadvantages of

the corresponding filter given in equation (7.50) in that it oscil-

lates rapidly near the quarter power points as a function of /i- and

e. It can be approximated as before by the square cutoff filter.

In the first term given by equation (9.56) the quarter power points

occur where equations (8.67) and (8.68) are satisfied. With the

use of equations (8.53), (8. 51) and (8.3I), equation (8.68) can be
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put in the form of equation (9.57). The points x and y are treated

as constants, 9 is treated as a variable, and when 6 equals 6
,

as e is increased, the term in the filter passes through the value

one half. For 9 greater than 9 the terra rapidly hecomes zero.

The result is that tan 9„ is given by [y + W^/2)]/x. Similarly

equation (8.67) yields equation (9.59). For 9 less than 9^^, the

term in the filter is nearly zero, when 9 equals 9, it is one half,

and for 9 greater than 9t but less than 9„, the term is essentially
Jj u

two.

The properties of the filter which cause it to cut off all

but a certain angular band width of the power spectrum at the

source can be explained by reference to figure I8 and to figure

23. Figure I8 shows that for a fixed value of 9, the disturbance

in the x,y plane remains between the two lines, Y^- = cos ©tW /2

and Yy = - cos 9tW /2, Consider then in the x,y plane, the area

which can be occupied by a disturbance which travels along the

line Y =0, for a fixed point x = x^ and y = y^. The lowermost

part of that disturbance as shown by the dashed line X,, = - cos 9 W /2

will just miss the point x^y, , and any disturbance which leaves the

source at directions greater than 9 will never be observed at the

point X, y... Similarly the disturbance which travels along the line

Y, = 0, will pass just below the point x, ,y^, as shown by the

dashed line, Y, = cos 9tW„/2, Any disturbance which leaves the
""X ii s

source with a direction less than 9^. will never be observed at the

point x^,y^. Equations (9.58) and (9.6O) have a simple interpre-

tation in terms of these considerations when interpreted with the
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aid of the upper part of figiire 23. Another important direction

namely the direction to the point x,,y^, is given by equation (9»6l).

The H- -band cutoff points

The second term in equation (9.56) can be studied as a function

of ^l and e for a fixed value of x and t , . The upper and lower

ranges of integration when set equal to zero, yield the information

that when /^ /cos 9 is less than gCt^^ - D^)/2x, the disturbing ele-

ment in the partial sum will already have passed, and that when

^/cos e is greater than g^Q-h/^x the disturbance will not yet have

arrived. When the band width is small, the variation of cos 6

is small and the range of the values determines the range of jjl

essentially.

The square filter for the Gaussian case of a short crested sea

surface in a disturbance which lasts D„ seconds at the edge ofw

a storm of width, W

Under the assumption that the Fresnel fringes will cancel out

because of the finite time of observation, the square cutoff filter

for this model wave system can be given by equation (9.62) , Since

ej^<ejj<e , and if e - 9^. is small, the value of ^/cos can be

approximated by w^cos 9^,. 0^. is the angular direction of the

point X, ,y, , from the point x = 0, y = 0, The second inequality

in equation (9.62) can then be multiplied through by cos 9^^, and

the result is a factor of the form (cos 9q)/x. The factor, (cos 9jj)/x

is simply equal to the reciprocal of the distance a given elemental

disturbance must travel to reach the point (Xn,y-|), and consequently

it is equal to 1/R. The value of R is measured from the center of

the forward edge of the storm to the point of forecast. With this
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slight approximation the square cutoff filter is given by equa-

tion (9.63). The result is then an equation analogous to equa-

tion (7-^5)9 in which R has been substituted for x. Equations

similar to equations (7.46), i7.A7) and (7.48) would also result

and remarks similar to those in Chapter 7 could be made about them.

The e-band width

From equation (9.58) and (9.60), it is possible to form the

difference given by 9 - 9^. and determine the 9-band width. The

result is equation (9.64) where A 9 is the angular width of the

square cutoff filter.

The 9-band width is not of equal width above and below the

value e^. This is shown in equations (9.65) and (9.66) which show

that A 9^, the variation in radians from 9jj to 9^ (the upper cut-

off angle), is smaller than A9j^, the variation in radians from

the lower cutoff angle to Q-q.

The square filter for the Gaussian case of a short crested sea

surface generated by a storm of finite duration D^, finite width,

W , over a fetch of length, F.

With the realization that the wave systems under study are

only a first approximation to actual wave systems from a storm

at sea (mainly because of the nature of the functional form of

F which has been assumed} and not because of the inadequacy of

the Gaussian Lebesgue Power Integral), it is possible to account

for the effect of a fetch of finite length. If a wave record is

observed at a point x = 0, y = 0, (or any value between ± ^g/^)*

there is of course an ambiguity as to where the waves come from
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behind the y axis. The lower part of figure 23 illustrates

two possibilities which could occur. Suppose that an area of

relatively strong winds covers the region between x = and

X = - F, and y = W /2 and y = - W_/2. Also suppose that the

winds last D units of time. Then at the time t = D an ele-

mental wave which has left the storm area would occupy the area

ahead of the y axis which is bounded by the solid lines. When

the winds stop at t = D , the area behind the y axis bounded by

the solid lines might be occupied by an elemental wave component

which could travel off in the 6, direction after t = D^. This

would imply a rather peculiar behavior of the wave component, and

the two obliquely oriented areas would sweep out a rather peculiar

area as they travel along.

In an actual storm the area covered by the winds merges

gradually into the area of relative calm. In addition the wind

direction varies turbulently over the storm area. It would there-

fore be equally consistent to assume that the area occupied by

the wave element traveling in the 9, direction could be given by

the dashed area at the time, t^^ = D^. At any time after t^^ = 0,

one observation, sufficiently detailed to determine £2(^^,0) at

X = 0, y = 0, would yield only enough information to show that

either of the two assiimed areas could be used. A system of weather

maps which could yield such a pattern and which could occur in an

actual meteorological situation, will be described in a later

chapter. The filter under discussion will be derived under the

assumption that the elemental wave system occupies the area

bounded by the dashed lines,
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The determination of the angular bond

filter for a storm of finite width.

width of the

— Possible area covered by waves at t = 0$ for

storm of finite width.

- Assumed area for the computations of the

square cut-off filter for the storm of finite width.

Fig. 23 Filter Considerations for a Storm of Finife Width,
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Under the above assumptions, the modulating function

Fp(y,t,M) is given by equation (9.67). Equation (7.51) of

Chapter 7 modified by the requirement that the storm be of

finite width has been employed, and the argument that shorter

period waves require a longer time to travel from the rear edge

of the fetch to the point, x = 0, y = 0, is employed.

The square cutoff filter for the Gaussian case of a storm

of finite width and duration over a fetch of finite length under

the above assumptions, is then given by equation (9.68). The

/^ cutoff values are given by an equation similar to equation

^7*57) except that they are determined by the distance R and not

by X. The 6 cutoff values are given by equation (9.64). The

/i band width is given by equation (9.69), and the 9 band width

2 2 2
is given by equation (9.70) in which R equals x + y . It should

be noted that equations (9.64) and (9.70) hold only if R^>W_V4,

that is, outside of a semi-circle with a center at x = 0, y = 0,

of radius W /2, If the point of observation is inside of this

circle, the expressions for Ae and AQt given by equations

(9.65) and (9.66) can be employed. The filter might be smoothed

by arguments similar to those employed in deriving equation (7,$1).

The final forecast formulas for waves in deep water

If the entire forecast is to be carried out in deep water,

the final forecast formula is then given by equation (9.71). If

the short crested disturbance at the source is given by equation

(9«4-7)5 and if the disturbance is produced by a storm of finite

width and finite duration over a fetch of length, F, then the

forecast formula states that the short crested disturbance in
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the vicinity of the point x-|_>yi>*oi3
is given approximately by

2
multiplying [ApCM?©)] "by the cutoff filter given by equation

(9.68) and integrating the resulting Lebesgue Power Integral

for the Gaussian case.

More precisely, the wave system at the source is one system

from a whole statistical class of systems given by all the poss-

ible forms the free surface can assume upon forming all of the

possible limiting partial sums which can be obtained from equation

(9.4-8) with all possible combinations of the random phases. Thus

the disturbance at the source is one of an infinite number of

2
possible disturbances for a fixed functional form for [ApC/^,©)] ;

and the disturbance in the area of decay is one of an infinite

number of possible disturbances for a fixed functional form of

S.F.G.W.F. times [A2(/i,6)] . Also more precisely, when, as in

the last paragraph, integration of equation (9.71) is referred

to so glibly, one should think only of some finite partial sum

evaluated with a sufficiently small net to yield a result ade-

quate for the problem imder study. In addition, the indicated

forecasted sea surface should be considered to be valid only for

a relatively short time, and only over a relatively small area

of the sea surface.

Practical evaluation of the filters

Three sharp cutoff filters have been described above in

equations (9.62), (9.63) and (9.68), For a fixed value of x,

y, and t^^, they determine an area in the fJ- ,9 plane. Inside

of this area in the /i. ,0 plane the power spectrum is the same
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as at the source, and outside of this area the spectrum is zero.

In all three filters, the 9 cutoff values are given by the same

expression. In each of the three filters the H- cutoff values

are slightly different. The determination of the e cutoff values

and the G-band width will be described first j then the various

/x -band width determinations will be described; and finally

some sample filters will be graphed.

Determination of the e-band width and the 9 cutoff points

The angles Gjj, A 9 , and A 9^ are functions of x, y, and

W . For a storm of given width, the values of x and y then deter-

mine these angles. If the width of the storm is doubled, and if

the values of x and y are doubled, the same values for the angles

result. Consequently, if x and y are measured in units of W
,

the angular cutoff values are in a sense independent of the

actual width of the storm. In figure 24, lines of constant Gj^,

Ae , and AG, are shown on an x,y coordinate system with units

marked off in terms of the width of the storm. Note that A G^

is slightly greater at each point than A 6^, Given [A2(M ,G)]

and the point in the x,y plane at which the forecast is to be

made, measure x and y in terms of W^ and enter the point on figure

24 to read off Gjj, A 9^, and A9j^. Then in the i^ ,6 polar co-

ordinate plane draw a line through //. equals zero along a radius

at the value G^. Mark off an angular increment in the positive

G direction equal to A units from the values Gjj, and a decre-

ment in the negative G direction equal to A Gj^. Draw the two

radii obtained. The two outside lines then cut off a sector of
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the M >6 plane which determines the cutoff values. Note that

the e cutoff values do not depend upon time, and that for a given

storm and a given point of forecast, they are fixed once and for

all for all forecasts. Note the complete symmetry upon reflection

in the equals zero axis of the coordinate system as given by

the equation. Only the first quadrant is shown in figtipe 24 for

this reason.

Determination of the h^ cutoff values

In equation (9.62), the ratio, /^/cos 9, must lie between

two fixed numbers, once t^, D and x are fixed. An equation of

the form, M/cos 6 = const, is an equation of a circle in the

M ,e polar coordinate system which passes through the two points

(A*- = 0,e = tr/2, and /^ = const/cos ejj,e = Q-q) • The circle has

a center on the line 6=0. The intersection of the two curves

/^/cos © = const and M/cos 9 = consty and the two lines

,

9 = 9jj + A6 and 6 = 9jj - A9j^, then determines an area in the

fji ,© plane bounded by segments of two straight lines and two

circles.

In equation (9.63) in which cos Qj. has replaced cos 0,

ft is given by t V2R and M^. by g(t_,^ - D )/2R. Figure 15 c
'u -"^ ^"""" "^ "ob'"' °"" '^L "' ^"''ob w an

then be employed, upon reading R for x, to find the band width

and the upper and lower cutoff values for the point and the time

of the forecast. In the /x ,9 plane the area bounded by /a = /a
,

fj.
= /i-, 6 =

0JJ
+ A9^ and 6 = 9jj - A 6j^ then determines the

edges of the filter given by equation (9.63) once x, y, W^, t ,
,

and D are given. (D is ten hours for figure 15> but the

extension to any value of D^ is simple.)
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In equation (9.68), figure l6 can be employed to find the

/J, band width and the /^ cutoff values for a storm with a duration

of ten hours and with any length fetch. The /i- band width depends

upon Dg, R, F, and t^^.

Final forecast diagrams

Figiu*e 24 and figure 25 are all the equipment needed to deter-

mine the filter characteristics for the filter given by equation

(9.68). Figure 25 is simply a graph of the straight lines given

by t^^ = 2/x^R/g (see Chapter 7, page l62) on a tQ^> M coordinate

system for various values of the parameter, R. Given D , F, t ,
,

and R, the appropriate graph of the straight line t , " ^e
~

2/Xj^(R + F)/g can also be found, and the intersection of various

lines on the diagram then determines ^ and /x t foi* "the filter.

The entire procedure for the evaluation of equation (9.68)

for a fixed set of parameters with the use of figures 24 and 25

will now be described. The given parameters, which could theo-

retically be evaluated from weather maps are: storm width, 200 km

(W^); fetch, 200 km (F); duration of storm, 15 hours (D^
)

; x, 600

km; y, 600 km; and time of observation, 40 hours (t r^).

The evaluation of the e-band width proceeds as follows.

Tan Sjj = y/x = 1, and e^^ = 450. x = y = 3Wg, and from figure 24,

Ae^ = 4.4'* and Ae^^ = 5.2'*. The e-band width is therefore 9.6"

and the e cutoff points are at 49.4° and 39.8°. (From equations

(9.65) and (9.66), Ae^ = tan'-'-d/lB) and Ae^^ = tan"-'-(l/ll).

The evaluation of the /i. band width proceeds as follows.

R equals '/2 6OO which equals 848 km. In figure 25, locate the

line t^^ = 40 hours, and the line labeled 848 (= 850) km. The
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point of intersection in the fu. ,t^^ plane then determines the

value of fJ- which is equal to .81 radians per second. Next lo-

cate the line t , - 15 hrs = 25 hrs, and the line labeled

1050 km(= 848 + 200). The intersection of these two lines in

the fu. ,t , plane then determines the value of fJ- -^ which equals

.402 radians per second. The value, .402, corresponds to a per-

iod of 15*63 sec, and .81 corresponds to a period of 7»75 seconds.

All spectral periods greater than 15.63 seconds or le^ than 7*75

seconds will not be present at the point and time oP^'^bservation.

The filter for the given set of parameters theBUAquals one

inside of an area element in the /x ,6 plane bounded by 6^ = 49,4

degrees, Qj = 39*8 degrees, A*- ^ = .81, (a segment of a circle),

and /A T = ,402, Inside this area the forecasted power spectrum

equals the power spectrum at the source, and outside of this area,

it is equal to zero. The wave system at the point and time of ob-

servation is then the Lebesgue Power Integral over this forecasted

power spectrin.

Some examples

The filter given by equation (9»62) can best be evaluated by

brute force. The filter given by equation (9*63) is simply a special

case of the filter given by equation (9.68) when F equals zero.

Figure 26 shows the cutoff boundaries of the three filters described

above for various values of the parameters. The values appropriate

to equation (9.62) are shown by the dotted lines when needed. The

values appropriate to equation (9«63) are shown by dashed lines

when needed and the values appropriate to equation (9.68) are given

by the solid lines. The 9 band width is the same for all three
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filters and the lines are given by solid lines for all three filters

See the legend at the bottom of the figure.

The greater the departure of B-^ from zero the more the filter

for equation (9.62) departs from the other filters. The approxi-

mations employed in obtaining the other filters is therefore most

accurate for small Qjy. In addition the original Fresnel filter

was more accurate for small values of Q-q. Consequently, these re-

sults should not be applied too strictly at large angles.

If the power spectrum given in figure 22 for equation (9.52)

were to represent the disturbance at the source, then the appli-

cation of the filters given in figure 26 would result in various

quite different sea surfaces at the various points and times of

forecast. There would be a very small disturbance at the point

and time used to determine the particular filter labeled number I,

because the power spectrum is identically zero for e greater than

67.5** and very low for 9 near 67»5*'» In contrast for the power

spectrum given by equation (9.50), the disturbance would be identi-

cally zero.

For filter number III, the power spectrum given in figure 22

would result in considerably higher waves at the point R = 850,

and Gjj = 22.5° (corresponding to y = 326, x = 790 km) than at the

point determined by filter number I. For equation (9.50) and the

value of K given for equation (9.50) the waves determined by the

filter at the above point would be considerably lower compared to

those determined by figure 22 because only the components from 10

seconds to 7*75 seconds would be present (due to the original

nature of the power spectrum).
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A study of the effects of given filters upon the two power

spectra under consideration thus shows that the forecasted values

would be completely different in many cases for the same storm

parameters and the same point and time of observation. For many

forecasts based upon equation (9.50) there would simply be no

waves present, whereas for the same forecasts based upon figure

22 (equation 9.52) an appreciable disturbance would be present.

These two examples therefore make it evident that there is no

hope for consistently accurate wave forecasts until 1^2^^^ >®^ ^^^

been measured for wave systems at the edge of an actual storm at

sea. Dealing with the significant waves at the edge of the storm

without regard to the underlying power spectrum can never yield

consistent results. At this time, the hope that £2(^^,9) will

in some way be a function which depends consistently upon the wind

velocity, and the air mass in which the winds are blowing so that

it can be predicted is expressed. Methods for measuring E2(/i,©)

will be given in the next chapter.

Decrease in wave height with travel

For the same power spectrum at the source (say figure 22),

the effect of doubling R and t^^ is interesting to study. Filter

V for St^ = - 22,5** for example could be reflected in the 6=0

axis. Then it would correspond to the filter for the same para-

meters given on the figure except Gj^ would then equal + 22.5".

Thus doubling R (or x and y) and t^^, results in a power spectrum

at the new point of observation with the same value of ;i. ^, but

A/xand Ae are approximately halved. Consequently the potential
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energy averaged over y and t are the new point of observation

is only one fourth of what it was at the closer point. The wave

height which is (crudely) proportional to the square root of the

average potential energy therefore decreases like l/R.

In particular, for waves observed on the x axis, at large

values of X, A /x = gD /2x and Ae = W /x. The effect of the

short crestedness of the sea surface at the source is then of

the same order of magnitude as the effect of dispersion, and the

average potential energy decreases like l/x . Consequently, the

actual short crestedness of waves from a storm at sea cannot be

neglected in an adequate wave forecasting theory.

At this point, reference is made to H.O. Publication No, 604,

Techniques for Forecasting Wind Waves and Swell. This book contains

the lates theory for forecasting significant waves as developed

by Sverdrup and Munk. Consider, in particular, Plate VI of the

above publication. It can also be found as figure 3 in Forecasting

Ocean Waves by Munk and Arthur [1951]. It gives values of Hj^/Hp as

functions of Tp. For Tp in the plate, equal to 10 seconds, Hj^/Hp

is 0.8 at 200 nautical miles, 0.63 at 400 nautical miles,

0.43 at 800 nautical miles, and 0.26 at l600 nautical miles. The

numbers squared are given by 0.64 at 200 nautical miles, 0.40 at 400

nautical miles, 0.17 at 800 nautical miles and 0.0? at l600 nauti-

cal miles. Roughly these values decrease by a little more than

one half as the decay distance is doubled.

The theory discussed above in this paper says that at great

distances the values should decrease by one fourth as the decay

distance is doubled. The methods employed in the derivation of

the theory on which the figure in H.O, Pub. No. 604 is based,
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depend upon, among other things, the assumption that the decrease

in wave height is caused by friction against the air. The width

and the duration of the storm are not considered, Groen and

Dorrestein [1950] attribute the decay of waves to eddy viscosity

in the water, but again their theory does not account for wave

dispersion and lateral spreading. The theory discussed in this

paper predicts greater decreases in wave height simply due to

dispersion and angular spreading from a storm of finite width and

duration than are predicted by the Sverdrup-Munk theory without

these considerations.

Storms are of finite width and duration. A storm which is

wide compared to the decay distance but which lasts a relatively

short time would cause waves at distant points which decrease in

height like lA^ simply due to dispersion. A storm which is narrow

compared to the decay distance but which lasts a long time would

cause waves which decrease in height like lA^ simply due to

angular spreading. Other small, short duration storms would be-

have differently. Storms which cover a large area and which last

a long time would behave still differently. The curves in H.O.

Pub. No. 604 are based on wave observations from many storms of

many different widths, durations, and fetch lengths. Consequently,

the curves average In many errors even if there is some slight

loss due to friction.

From these considerations, and since the significant height

and period have been shown to be inadequate in many other respects,

it must be concluded that the decrease of wave height with distance

traveled can best be explained by the methods derived herein and
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that friction effects are negligible, or of second order in

importance, in the problem of wave forecasting.

Transformation of sea into swell

The results of Chapter 8 and of this chapter also explain

all of the known effects which accompany the transformation of

sea into swell. Short crested waves are simply sums of waves with

infinitely long crests such as equation (8,5). A short crested

Gaussian sea surface is given by an integral of the form of equa-

2
tion (9.47), The greater the variation of [A2(/J- ,9)] over fi and

e the more irregular, choppy, and short crested the sea surface

will be at the source. The apparent crests will actually vary in

direction depending upon what particular terms happen by chance

to reinforce at a particular time and place. For example, if

2
[ApC/J-,©)] were given by, say, figure 22, and if a partial sum

such as equation (9.4-8) were formed over a net containing about

fifty elemental net areas, the resulting equation for tj (x,y,t)

would represent a very complex irregular short crested sea surface

which would approximate (even for such a coarse net) many of the

features of waves at the edge of a storm at sea.

Now consider the power spectrum given by applying filter V

to figure 22. For any partial sum, all the elemental waves would

be traveling in directions only a few degrees from' -22,5° and all

the elemental waves would have nearly the same spectral periods.

The sea surface would therefore have to consist of large areas

of waves of nearly uniform height with quite long crests all

traveling in the same apparent direction. Arguments similar to
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those in Chapter 7 show that a wave group would have to last a

considerable length of time before the elemental vectors in the

partial sum become sufficiently out of phase to cancel out the

wave amplitude. Note the change in the direction of the apparent

crests. The crests appear to be coming from a point source at

these distances.

Period increase of swell

If figure 22 were actually to approximate the power spectrum

at the source, the period increase of ocean swell can also be

explained by this model. The "significant" period for the highest

waves passing a point of observation would increase from a value

of approximately seven seconds in the storm to a value of ten

seconds at distant points of observation, but it would not in-

crease indefinitely.

Complete reality of the final model

The decrease in wave height with travel, the transformation

from an irregular choppy short crested "sea" to a regular "long

crested" smooth "swellj' the arrival of Waves at points at an

angle to the main direction of the winds in the storm, the period

increase of the swell and the so-called forerunners of swell are

all explained by this model. Note that the "swell" is still

Gaussian. The author has yet to see a natural wave record even

approximately equal to A sin 27rt/T over a time interval of 20

minutes.

Additional comments on the final forecast formula

The final forecast formula, given by equation (9.71) and

the auxiliary formulas given by equations (9.24), (9.25), (9.46),
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(9.47), (9.48), (9.65) through (9.70), and equations ^1 ,55) and

{1*5^) (with R replacing x), is the most realistic forecast for-

mula of all those that have been presented. The above formulas

are the only ones out of over three hundred in this paper (so far)

which are needed to carry out a wave forecast. Actually only

two diagrams given by figures 24 and 25 are needed along with

the concept of the Gaussian case of the Lebesgue Power Integral

for short crested sea surface. All of the other attempts to

represent the sea surface and to forecast ocean waves serve only

to illustrate forcefully the inadequacy of the models employed,

A system which depends on the gross characteristics of a storm

at sea, namely its duration, width, and fetch, and on the properties

of a very special integral has yielded results which explain all

known properties of waves from a storm at sea by the use of the

classical concepts of gravity wave theory.

In actual practice, the square cutoff filter will be only a

first approximation to the actual wave systems because the winds

which produce the waves require time to build up to full amplitude

and die down from full amplitude, and because of smoothing effects

due to the finite time required for observation and the finite

area which must be observed. The waves build up with the wind,

and they have different characteristics at the edges of the storm

and at the rear of the storm than they do at the center of the

forward edge. The actual filters will then be smoothed In some

way with respect to the theoretical filters. Their actual nature

awaits detailed analysis and study of the sea surface,
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Moving stortas and hurricanes

Storms with rapidly moving edges (from which the waves

leave the storm) and hurricanes produce wave systems which are

not covered by the above theoretical considerations. The theory

can probably be applied to slowly raovln;g storms without too great

an error. Also various successive temporarily stationary positions

of a moving storm might yield fairly good results upon application

of the theory. Hurricanes just do not come under the scope of

the theory for reasons mentioned in Chapter 2, The Gaussian

Lebesgue Power Integral has a different form and a hurricane has

no width because it is circular. Possibly in another paper and

at another time, the problem will be treated for moving storms

and for hurricanes. The above forecast model ought to work for

a large number of practical cases.

Something left out

There is still a joker in the deck. The functional forms of

Ep(^t,e) for storm waves at sea are still unknown. From the re-

sults of Deacon [1949], Donn [194-9], Arthur [194-9]} and Barber and

Ursell [1948], a particular E2(/i.,9) must vary considerably over

a range of /x corresponding to a period range exceeding values

of from below five seconds to above twenty seconds and over a range

of e from forth-five to sixty degrees above and below the dominant

direction of the winds in the storm. In the next chapter, adequate

methods for the analysis of ocean wave records, and adequate pro-

cedures for the determination of ^2^1^ »®^ ^^^^ ^® given. Then
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after a sufficient amount of correctly obtained data has been

assembled and analyzed, and after the variations of E2(/x ,9)

as a function of the properties of the storm have been obtained,

it will then be possible to prepare correct wave forecasts.
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Chapter 10. METHODS FOR TliE DETERMINATION
OF POWER SPECTRA

Introduction

In Chapter 7j the sea surface as a function of time alone,

at a fixed point was first studied. In Chapter 9, some properties

of a short crested sea surface were derived. It is still necessary

to show that a short crested sea surface observed at a fixed point

is a Gaussian case of the Lebesgue Power Integral as a function

of time. When this is accomplished it will also be possible to

2 2
show that the functions, E(M), E2(M,e), [A(^)] and [A2(/x,e)]

are interrelated.

The techniques of Tukey [1949] and Tukey and Hamming [1949}

will then "be applied in order to obtain the relationships between

the non-normalized auto-correlation function and the power spect-

rum, and procedures for the estimation of the various power spectra

will then be described.

Other properties of a short crested sea surface will then be

obtained. Finally methods for computing [A2(/i,©)] will be pre-

sented.

Where and when the methods apply

The methods to be presented in this chapter strictly speaking

apply only when the sea surface is in a steady state. That is

[A(/i.)]^ or [Ap(/i,e)]^ when determined by these methods should have

the same value about any point of the sea surface at any time. It

has already been pointed out that under these conditions wave fore-

casts and methods of wave analysis would not be needed because the
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waves everywhere would be the same. Waves at the forward edge

of a storm can be thought of as being in a steady state along

2 2
that forward edge if [A2(/x,e)] and [A(/x)] do not change with

time during the duration of the storm. Since the methods of

analysis to be presented can be applied to time intervals which

are short compared to the duration of the storm and to areas which

are small compared to the dimensions of the storm, the methods

are valid in the analysis of actual wave records at the edge of

a storm or over a wave generation area.

The methods of analysis which will be presented are also valid

in the area of wave decay. The filters described in Chapters 7 and

2
9 are slowly varying functions of time. If [A(ft)] is analyzed

from a wave record thirty or forty minutes long, the wave system

will be so slowly varying that the methods will be valid. If

[ApC/ijO)] is determined over an area of the sea surface thirty

or forty miles on a side, and for thirty or forty minutes, the

wave system will be so slowly varying that the methods will be

valid.

An analogy to electronic practices might clarify the situation.

An engineer designs a radio to operate on 60 cycle AC ciirrent.

The design of the power supply is based mainly on the formula

E = E sin 2Trt/T, For nearly all practical purposes, the fact

that the radio is turned on or off can be ignored, and the fact

that the voltage is actually given by an equation like equation

(5«1) is not important.

Similarly, the amplification sections of a radio are treated

as .if they were amplifying constant musical notes. A small enough
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section of speech, although In reality the frequencies are slowly

varying (compared to the duration of one cycle), can be treated

this way without any serious consequences.

Consequently, the results of this chapter will apply to

almost any wave situation. If there is reason to believe that

the waves are changing very, very rapidly, the results of the

analysis should be questioned, but for slowly varying situations

the results can be interpreted in the light of the theoretical

considerations given in the previous chapters.

2 2For these reasons, [A(/^)] and [ApC/^jO)] will represent

power spectra for any sea surface either at the edge of a storm

or in the area of decay. No special notation will be used to desig-

nate special conditions.

Non-Gaussian short crested sea surfaces

Consider, for example, the short crested sea surface given

by equation (8.1), For this representation of the sea surface,

it is possible to pick some fixed point on the sea surface, say

X-, and y, , and observe the wave system at that point as a function

of time. Evidently, there will be places at which very small

(or zero) amplitudes will be observed, and at other places the

amplitudes will be quite large.

In equation (10.1), the potential energy averaged over time

at the point (x-,,y-,) is computed. The result shows that the value

obtained is still a function of y^. At some points, P,E. Is

pgA /4j at others, P.E. is zero. The potential energy averaged

P
over y and t is pgA /8. (See also equation (8.5).)

At first, the point just made above does not appear to be
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very important. But wave records at present are observed at a

fixed point as a function of time. If this very simple example

of a short crested sea surface yields such widely varying re-

cords and such widely varying values of the average potential

energy, what assurance is there that actual wave recorcls as a

fimction of time represent the sea surface in the neighborhood

of the point of observation, and that the average of the squared

wave record is actually related to the potential energy of the

sea surface?

For the non-Gaussian case, that is for sea surfaces of the

form of equation (8.5) > the potential energy averaged over time

varies from place to place. Stated another way, it is a fimction

of the point of observation as shown by equation (10.2).

Gaussian short crested sea surfaces

For the Gaussian case of a short crested sea surface, it can

be proved that the potential energy averaged over time at any

point on the sea surface is given by equation (10,3). This pro-

perty of the Gaussian case is very important because it shov/s

that the current wave records as obtained as a function of time

do contain important information worthy of more detailed and re-

fined methods of analysis.

The proof of the statement made by equation (10.3) is some-

what lengthy, and some other important results are also obtained.

Consider first the integral definition of the short crested sea

surface as given by equation (10.4) in which x-, and y, are given

subscripts to point out that the sea surface is being observed

as a function of time at a fixed point. In Chapter 9? the inte-
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gral was defined by a net over the M ,9 plane as the mesh of

the net was shrimk to zero. Consider the two values of ^^ given

by /J. and /x ^^^ in "t^s net defined by equation (9. 14-), and break

up this small increment, A /J- , into N much smaller increments as

shown by equation (10. 5) • The relations between the various ^J 's

involved are given by equation (10.6). Also consider a full net

over 9 from -7r/2 to n-/2, for each of the smaller nets given in

equation (10.5). The values of 9 at the net points will also

need to depend on the particular net interval, jJi

2k+2i ^°

^2k+2i+2» ^"^ they are therefore designated by subscripts like

e, . as shown by equation (10.8).

One property that these Lebesgue Power Integrals have (and

which has not been proved in this paper) is that they are the same

as the ordinary Riemann integral in that it is possible to break

up the area of integration into small touching but non-overlapping

pieces and the total integral is the sum of the integrals over

the smaller pieces. Consequently, the contribution to the total

disturbance created by the power in the semicircular strip from

fi-

J.
to /i-

y._^2 ^"^ from -7r/2 to w/2 is given by the limit of the

partial sum given by equation (10.9).* ''?A/i.(x-, ,y-, ,t ) is thus

the contribution of this strip to the total integral as observed

at the fixed point x, ,y, . The proof of equation (10.3) consists

essentially of picking an appropriate sub-net in this semicurcular

strip to obtain the desired properties.

In equation (10.10), it is pointed out that for any

*Note that the R here has nothing to do with the R of Chapter
9. It is just an integer.
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M2k+2i+l ^^^
®2t)-t-l i

''^^^ ^1 ^^^ ^1 fixed It Is always possible

to subtract and integral number of 27r*s from the sum in order to

find a new ^ '(j,p.), (short notation for ^ '
( M 2k+21+l?®2p+l i^^

such that v//'(J,p.) has the same probability distribution as the

original V •

In equation (10.11), for a fixed j, the net over 6 for this

small subdivision of the original strip has been picked so that

each of the terms under the square root sign in the evaluation of

the integral has the same numerical value, given by the increment

in E( /A ,7r/2) from /^2k+2i *° '^ 2k+2i+2 ^i'^^^©^ ^y ^) ^^^ total

number of elemental areas in the small strip. This can obvious-

ly always be done. Each term in the sma over p is thus given

by Ae./R.

Equations (10.10) and (10.11) are next substituted into

equation (10.9) in order to obtain the first expression in

equation (10,12). The cosine term is then expanded by trigo-

nometric identity in the second expression, and the summation

over p is moved inside. An expression of the form A cosG + B sin9

2 2 1^2
can be written in the form [A + B ]

' cos (6 - \j/ ) and this has

been done in the last expression in equation (10.12). The com-

plete expression for ^ '(j) is given by equation (10.13).

The next step is to simplify the coefficient of the cosine

term in equation (10.13). In equation (10.14) this is done by

writing the cosine and sine in complex notation. 'Vhen the first

expression on the right in equation (10.14) is expanded, only

the cross product terms remain and the second expression results.

The sum from p equals zero to R - 1 of exp(i \i/'(j,p^)) is a sum
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of R vectors of unit length all pointing in randomly picked

directions. Let the sum be the complex vector given by B .p^exp(i9 . )

.

The other sum is a siim of R vectors and every vector in this sum

points in exactly the opposite direction to the corresponding term

in the first sum. The sum is therefore of the form B .j^exp(-ie .

)

and it points in exactly the opposite direction. The complex pro-

2
duct is therefore always a real positive number (B.j^) , as given

by the last expression in equation (10.14).

From equation (10.13), the sine of ^ (j) can be written in

the various forms given in equation (10.15). The results of equa-

tion (10.14) permit the use of terms like B .p^expde .j^) , and in

this case the B .„ cancel out. The sum therefore represents the

sine of some angle, e.^. But from the nature of the sums dis-

cussed in the paragraph above, the value of G.^^ for a large value

of R is equally probably any value from zero to 2Tr. Equation

(10.16) is therefore the result, and the probability distribution

of ^'(j) is the same as that required originally in equation (7.28)

These results are next substituted into equation (10.17).

Since the values of the B.^ are not one, one begins to suspect

that things are getting complicated. Also the results are be-

ginning to look something like the results which were obtained

in Chapter 7-

So far in the proof only one small strip between ^ 2k+2i

and UL o'j^o-^o has been treated. There are N of these strips

between /x r. and /i
k+2*

'^^® values of A E. can, by picking the

points
fj, 2v+2i» ^'-^ ^® made equal to

[Ep( /x.„^2>'^/2) - E2(M j,;;?'^/2)]/N as shown in equation (10.18).
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This increment in power is devSignated by A E(K + 2,K)/n.

The next step is to compute the power contributed by

''^Aa ^^I'^l'*^ with the use of equation (10.17). The phases

drop out and since the /^ 's are different, by the argtunents given

in other parts of this paper, the first two expressions on the

bottom line of equation (10.19) can be obtained.

It is now necessary to investigate the limiting process more

carefully, N and R must both approach infinity together. That

is, each term in approaching the limit is found by picking fixed

N and R and forming the net which has the property that each ele-

mental area in the net contributes the same power (namely

AE(K + 2,K)/nR). For the next N and R picked larger to approach

the limit a completely different net will have to be found.

Now as N and R become large, B.-q becomes larger and larger

but if it is divided by v^, the number B.^./'/B. has a probability

distribution given by considering it to be a sample from a nor-

mal (Gaussian) population with a zero mean and a unit standard

deviation. This is stated by equation (10.20). Proof can be

found in the statistical references cited elsewhere. Thus the

Slim over N of the (B-t^) /I'fR becomes more and more like the sum

of N terms each of which is the square of a number taken from a

normal population with zero mean and unit standard deviation.

This sum of N terms is precisely the second moment of a sample

of N values from the population, and by Tchebycheff 's theorem

and the law of large numbers, this sample second moment can be

made to differ from one by as little as desired by picking N

large enough. Therefore the limit as N and R approach infinity

- 265 -



d
00

d
? s CNJ

d

lO



of the expression given in equation (10.21) Is one, and it is

possible to write AE(K + 2,K)/2 as the last expression in eqioa-

tlon (10.19).

The power in '^ /^n (x,,y-,,t) over the strip boijinded by

^ K» ^K+2' """"/^j and 7r/2 is therefore given by

i^2^IJ. ^^2^Tr/2.) - E^ifi j^,7r/2)]/2

at the point x, ,y, when the sea surface is obsenjred as a function

of time at that point. (Note E2 ( ^ j^^.2
> -Tr/2 ) and £2(^^^,-11/2) are

zero by definition.)

For e fixed at ^72, ^2^ fJ~ ,Tr/2) is consequently connected

with E(/i. ) as defined in Chapter 7. The Lebesgue Power Integral

given by equation (10.22), evaluated as a function of time by

any finite net (no matter how small), is by virtue of equation

(10.19) indistinguishable from the result of evaluating the

Lebesgue Power Integral given by equation (9.1) at a fixed point

as a function of time.

In addition, for all practical purposes, equation (10,23)

and equation (10.24) determine the relationships between E2(y^ ,9),

E(At), [A(/x)]^, and [A2(/^,e)]^.

Equations (10. 23) and (10,24) are not strictly true. The

functional relationships given do not hold exactly point for

point. The relationships are true, however, in the sense that

given that E2(At,©) is a continuous function with piecewise con-

tinuous first partial derivatives, then E(/i), and [A(/x )] are

point set functions with definite properties in a probability sense.

To show this, consider the function E(;^),* as yet not defined,

and the function E(/x) defined by (10. 23). Also consider the
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o 2
function [A(M )]""*, as yet not defined, and the function [A(/j.)]

defined by equation (10.24). E(/x) is assumed to have a piecewise

continuous partial derivative with respect to ^ . Form a net over

2
the /^ axis. Also find [Aifi)] . For each net interval, /J-

2n+2 *°

2
yu.

, take the value of i^^ H- 2n+l^'^ ' ^^^^ ^ number from a Gaussian

distribution with a zero mean and unit standard deviation and

2
multiply Ca( A''2n+1^-' ^^ ^*^ square. Assign the result to the

entire net interval, M2n+2'^2n* "^^ resulting new function is

piecewise continuous, and as, say, a function of ^ it can be

integrated from to fJ- to find a new cumulative power distribution.

The new cumulative power distribution will be continuous, since

the integral of a piecewise continuous function is continuous.

Now consider the class of all possible functions which would

result from this operation as the mesh of the net approaches zero.

2
There are an infinite number. Define the function, [A(/x)] *,

mentioned above, to be one of the functions; and define the

function E(/i)» to be the integral of [A(;i)]^*.

How does [A(m)]^* differ from [A(/x)]^? First of all it is

2
continuous no where. Each point value of [A(^)] * can differ from

the value at any nearby point by any amount. The function,

2
[A(/i.)] *, cannot be graphed, but it can be visualized as a cloud

2
of points scattered above, below, and on the graph of [A(^ )]

such that no point is above any other point and there is a point

for every point of [A(a^)] . In addition, if a new net is taken

over [A(yu. )] *, the Lebesgue integral from /x g^ to /a 2n+2 °-^ this

function has the same value as the integral from /^ pn *° ^ 2n+2
p

of [A(/i.)] . This statement can be proved by methods similar to
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those used in equations (10.1) to (10.22).

How does E(At)*differ from E(/x)? E(M)* is continuous,

and it has the same value as E( /^ ) at each point. But it has

a derivative at no point, because the slopes at two neighboring

points can be completely different.

The above considerations are admittedly very crude explana-

tions of what are, in reality, very complex properties of some of

the more abstract functions treated in the theory of functions of

a real variable. A study of the derivation given above from equa-

tions (10.1) to (10.22) shows that actually functions like E(m)* and

[A(At)] * are approached instead of functions like E(/i.) and

[A(/^)]2.

However, and this is the Important point, it is impossible

to tell the difference betv/een the starred and unstarred functions

by any numerical or physical (electronic and/or mechanical) method

of analysis of the original wave record. In any numerical method,

a finite net must be taken, and the abstract differences between

the functions cannot be detected. In an electronic or mechanical

method of analysis, at some time in the analysis the record is

sent through a tuned circuit of finite band width and again the

abstract differences between the functions cannot be detected.

For a further consideration along these lines, the papers of Tukey

[1949] and Tukey and Hamming [194-9] can be consulted.

In conclusion, then, it is possible to think of the power

spectriim and the cumulative power distribution as nice, smooth,

elementary functions, to work with them as such, and differentiate,

integrate, and transform them as such. With these considerations

in mind, equations (10.22), (10. 23) and (10.24) can be used with
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complete freedom in subsequent theoretical and practical work.

2
Numerical methods for the determinat ion of [A(/^)] from a sample

from a stationary time series

Ocean wave records are obtained on both coasts of the United

States and in England. A few are or have been analyzed by Deacon

[1949], Barber and Ursell [1948], and Klebba [1946,1949] with the

aid of mechanical-electrical wave analyzers. Others are being or

have been analyzed by Seiwell [1949, 1950, 1950] and Seiwell

and VVadsworth [1949] and Rudnick [1949] by autocorrelation methods.

Two have been analyzed by Tukey and Hamming [1949].* All the rest

of the wave records have suffered the inglorious fate of being

analyzed for "significant" height and period. Given the "signifi-

cant" height and period, it is usually impossible even to estimate

the average potential energy (in part, because the records are

pressure records). In fact, from the two numbers which result, it

is impossible to tell if the waves are all from one source, and

in general it is frequently difficult to tell whether the record

was of a "sea" or of a "swell."

The numerical methods of analysis of stationary time series

or "temporarily hoipogeneous" time series (Tukey) as derived and pre-

sented by Tukey [1949] and Tukey and Hamming [1949] are the basis

for a correct analysis of wave records because they are the only

methods in which the errors of the analysis can be precisely de-

fined by statistical methods. Any analysis of a short section of

* These results will be discussed in greater detail in a later
chapter. It suffices to say now that the error in Seiwell 's

interpretation was that he failed to consider the whole auto-
correlation function of the records he studied. They actually
die down to zero if carried out far enough with a long enough re-
cord. The wave analyzer records of the records he studied are more
realistic than his interpretation.
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a stationary time series always introduces errors of a statis-

tical nature. The techniques given by Tukey [1949] tell us how

big the error is and how to make it smaller if desired.

In addition, Tukey and Hamming [194-9] discuss design criteria

of physical wave analyzers. The numerical methods can be used

to calibrate the wave analyzers, to tell how much in error the

physical analysis is, and to determine possible improvements in

the design of the instriiments. More will be discussed on these

points later,

Statement of problem

A wave record is a short section of a very nearly tempor-

arily homogeneous longer record. It can to a first approximation

be treated as a stationary process. Such a wave record could be,

say, seven minutes long (the usual Beach Erosion Board practice),

twenty minutes long (Barber and Ursell [1948]) or an hour long.

Consider such a record. Read off the values of the record at,

say, one second intervals of the record and tabulate the values in

terms of their departure from the mean of the record at the time

of observation. The result is a sample from a stationary time ser-

ies, and there are N points representing N values as given in equa-

tion (10.25). The problem .of numerical wave record analysis is

2
to find an estimate of the function [A(/i)] from these N numbers,

and to tell how reliable this estimate is.

Preliminary investigation; the non-normalized aut ocorrelation

function

The problem is to find [A(m)] • It will be found first by

abstract methods, and then by practical numerical methods. The
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procedure is to find first the non-normalized autocorrelation

function and then to determine [aCA'-)] from it.

The non-normalized autocorrelation function is given by

Q(p), where p is a continuous variable, in equation (10,26). In

the first expression on the right in the top line of equation

(10.26) Q(p) is defined in terms of 7](t), the free surface as a

function of time, as observed at a fixed point. The variable, p,

has the dimensions of time, and ''7(t + p) is simply the value of

''7 which is found p seconds after the time, t. In the second ex-

pression, the Lebesgue Stieltjes representation for '^ it) is sub-

stituted for T7(t). On the next line, the integral is represented

by the limit of a partial sura. The results are equally valid for

the non-Gaussian cases discussed in Chapter 7«

For q not equal to n, the product term which results can be

written as the sum of two trigonometric terms which when averaged

over time average to zero, and consequently the expression simpli-

fies to the third expression. Upon rearrangement, the fourth

expression is obtained in which the square of the cosine term

has a net positive mean, and the cosine sine term averages to

zero. The fifth expression extracts the constant part of the

cosine squared term; all other terms are sines and cosines, and

in the limit, average to zero. Integration over time yields the

bottom expression on the left, and, in the limit, the last two

integral forms are the result. These integrals are ordinary

Stieltjes integrals without the square root sign as in the power

integrals. If [A(/x)] is a piecewise continuous function, the

last integral is an ordinary Riemann integral (i.e. the kind one

can often look up in tables of integrals to evaluate).
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At this point a very important theorem due to //iener [1930]

is used. The theorem states that the power spectrum of the

stationary process is given by the Fourier cosine transformation

of the autocorrelation function. The theorem is much more general

than needed here, and its proof will be given here only for the

specific cases under study.

The proof of equation (10.27) follows in equation (10,28).

The infinite integral is replaced by the limit as M approaches

infinity of the integral from to M in the first expression on

the right. The integral form for Q(p) given in equation (10.26)

is also substituted for Q(p). The steps thereafter are straight-

forward, and upon the application of the lemma given in Chapter

8, the result is obtained immediately. The second term in the

next to the last expression is zero because the range of inte-

gration does not cover a equal to zero.

Tukey's formula s

The problem of numerical analysis was stated in equation

(10.25), but then it was necessary to carry out some preliminary

theoretical derivations before continuation of the description

of the numerical methods. Equation (10.29) states that it is

more convenient to take the points of the record at equally spaced

intervals of time, designated by At. The three basic formulas

for the numerical estimation of the power spectriom as presented

by Tukey [1949] and Tukey and Hamming [1949] are given by equations

(10.30), (10.31) and (10.32).

Equation (10.30) is the finite difference analogue of equation

(10.26). It describes a procedure for finding an estimate of the
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non-normalized autocorrelation function. There are a total of

m lags shown, and m numbers are the result, as designated by

«o' h^ ^2 Vl' ^"^ ^m-

Equation (10.31) is the finite difference analogue of

equation (10,27) except that it yields increments in E()U. ) in-

2
stead of [A(/U.)] . It yields the "raw" or uncorrected values

of quantities related to [A( M )]^, (Tulcey [1949]).

Equation (10.32) finally yields the difference values between

^(A'-i.+Wp) and E((W.,_, /o). It is a correction of the "raw" data

which is necessitated by the inherent inaccuracies introduced in

the procedure by taking only N points and by the finite difference

procedures. It essentially smooths the values of L-. by giving

the correct factors which determine the interrelation between ad-

jacent values.

After the various multiplications and summations indicated

by equations (10,30) through (10.32) have been carried out the re-

sult is m numbers which represent the increments in E(/^) from

H- equal to 7r(h - l/2)/Atm to fJ. equal to •ir(h + l/2)/Atm as

given by equation (10.34). The center of each band is at ^
j^

equal to irh/Atm as given by equation (10.33) • Note that the

dimensions of the various quantities are correct. The most re-

2
presentative value of Ca(a^)] for the point, M , , is then given

by equation (10.35) • The period, T, , which corresponds to the

spectral frequency /x , is given by equation (10,36).

For /J- equal to zero and fJ- equal to ir/At, the statements

given above must be modified because of the edge effect. For h

equal to zero in equation (10.32), /m ^ should be given by

E(/^l/2) - E(0) and the band is only one half of those in the
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center. Similarly for h equal to m, fi , should be given by

E(ft-^) - ^(Mv,-i/?^' ^^ addition the formulas given in equation

(10.37), must be employed in equation (10. 32) in order to deter-

mine the appropriate values for h equal to zero or m. The formulas

follow from more detailed considerations based upon the fact that

Q(p) is an even function; i.e., in equation (10.29) summation over

p equals zero, minus one, etc., to minus m, will result in the

same numerical values for Q(-p) as for Q(p).

Planning the analysis and the work involved

The point is rapidly being approached where it will be neces-

sary to use a computing machine, an I.B.M. machine, or an auto-

correlator such as the one at V\[oods Hole in order to carry out

the numerical work indicated in equations (10.29), (10. 30), and

(10.31). The word "work" is chosen advisedly because it will be

work to do a sufficient number of wave records in order to cali-

brate the various mechanical electrical wave analyzers now in use.

This work can be planned. It is possible to decide before-

hand how reliable the values need to be and how to get these values

as economically as possible. An example will be given later which

will show how easily much effort can be wasted.

The choice of A t and the determination of the amount of aliasing

From equations (10,25) and (10.29), the data to be analyzed

are presented as point values of the original time series at equal

time intervals. The problem of the choice of A t is very important,

If At is picked too small, too many computations have to be made,

and the final results often lead to the result that the power

spectrum is negligible above a certain value of jx , If At is
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picked too large, the power per division on the H- axis as shown

in equation (10.34) can have other values of power from other

parts of the H- axis aliased into (or added into) the true values

for the particular band desired.

Consider the sketch at the top of Plate LI. If only the four

values labeled 1, 2, 3, and 4 are given, it is not possible to

tell the difference between the dashed sine curve and the solid

sine curve. In fact, since the numerical method of analysis assigns

all of the power present to spectral values between zero and

2'n-/2At, if the solid curve represents a spectral value greater

than 2Tr/2At, it will be aliased by the method of analysis into

a spectral value associated with the dashed curve on the plate.

These features are explained in greater detail by the values shown

in (10.38), The spectral frequency given by 27rh/2 Atm for h equal

to zero, one, two. .. .through m has aliases given by (2Tr/2At) +

(27rh/2Atra), (4rr/2At) ± (2Trh/2 Atm) , (677-/2At) ± (27rh/2Atm)

and so forth. From the little table it Is seen that the value

of the aliased cosine terms is the same at the points t = 0,

At, 2 At as the value of the true component at these points.

The sketch below shows this effect in another way. The power

associated with the first little black strip shows up in that

range of the spectrum upon analysis, but if there is any power

associated with the other little black strips, it will shov;? up

in the range where the true values occur.

The important point is to pick A t small enough so that

there is no appreciable power in the power spectrum for spectral

frequencies above 2Tr/2At. Stated another way, components with
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periods shorter than 2 At should be negligible in the record.

Wave records obtained by pressure recorders are an excellent

illustration of this point. If, for example, the depth of the

water is 22,5 feet, then waves with wave lengths less than 45

feet have very little effect upon the pressure at the bottom.

Consequently components with periods less than three seconds

will have very little effect on the pressure at the bottom and

will not show up in either the record or the power spectrum. In

this example, then, a A t of 1,5 seconds would be sufficiently

small to be sure that there was no aliasing in the analysis of

the pressure record. This point will be discussed in greater de-

tail later.

Resolution and the choice of m

For a fixed value of A t, the larger the value of m, the

more points are determined for the power spectrum, and the greater

the ability of the analysis to determine the finer details of the

pov/er spectrum. For example, if it was suspected that a wave re-

cord contained a sharp peak near a certain frequency, say 2Tr/5,

then the sharp peak could be determined more accurately by taking

a larger value of m. For A t equal to 1 and for m equal to 10,

then frequencies from 27r3/20 to 2-rr5/20 are present in the band

containing 2Tr/5. For At equal to 1, and for m equal to 50,

then frequencies from 2Trl9/lOO to 27r2l/lOO would be present in

the band containing 27r/5. * If the power were actually concentrated

^Periods from 6,6? to 4 seconds in the first case, and periods
from 5.26 to 4,76 seconds in the second case.
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near 2Tr/5, the second value of ra would show this more clearly.

AccTiracy of the final values obtained

The power integrals under study in this paper are extremely

complicated functions. Their analysis is consequently also ex-

tremely complicated. The numerical methods presented by Tukey

[1949] and Tukey and Hamming [1949] are the only methods of analy-

sis which permit as a final result a correct estimate of how

accurate the calculated power spectrum is.*

Associated with the final m numbers obtained in the analysis

is a value, f, which is called the number of degrees of freedom

of the value of U, . The value of f can be computed from equa-

tion (10.39). The larger the value of f, the more reliable the

power estimates of the spectrum. Equation (10.39) shows that

the larger the value of N the larger the value of f and that the

larger the value of m, the smaller the value of f. Thus greater

resolution, which requires a large ra, sacrifices accuracy of

analysis unless a very large N is chosen.

The number of degrees of freedom of the sample, f , can be

used to determine the reliability of the power spectrum estimates.

Tukey and Hamming [194-9] have shown that the values of U^ given

2
by equation (10.32) are distributed according to a X ' distri-

bution with f degrees of freedom. Table I6 gives the important

numbers connected with this distribution. The first values are

expressed in decibels for the convenience of electronic engineers

*This statement is made with the knowledge that many incorrect
and inadequate methods for determining hidden periodicities and
their significance are to be foimd in current geophysical
studies. A prime example of hov/ to do things wrong is found
in the current claims of Langmuir [1950].
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who think in such terras. The second set of values entitled

"Departure from True Values" is simply ten to the power one

tenth of the numbers in the first set of tables. The third

set of values is the reciprocal of the second set of values.

Estimate of sampling error

Suppose that some fixed power spectriim is chosen. From the

power spectrum suppose that a section of the function, "^ (t) , is

constructed. And then suppose that a U. from (10.32) is found as

an estimate of the power in some band by the use of equations

(10,29), (10.30), (10.31) and (10.32). The true value is known

from the chosen form of the fixed power spectrum, and the estimate

is known by the procedures given by Tukey and Hamming [194-9] • How

far off can the estimate be? The answer to the question can be

given in a probability sense. The estimate is a sample from a

population of possible samples. That is, many different samples

could have been taken from many different rj {t) constructed from

the same fixed power spectrum.

For a particular example, suppose that there are ten degrees

of freedom (i.e. f = 10). Then there is one chance in forty that

the estimate will be less than 32^ of the true value. There is

one chance in twenty that the estimate will be less than 39a^ of

the true value. There are nine chances in ten that the estimate

will lie between 39fc and l80,< of the true value. There is one

chance in tv/enty that the estimate will exceed the true value by

180^. Finally there is one chance in forty that the estimate will

exceed 200^?^ of the true value. The estimate (from the center

column) will be too low more often than it is too high. There
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is one chance in two that the estimate will be lower than 93/^

of the true value.

The same example can be expressed in another way. Suppose

that from the same fixed power spectrum a large number of different

sections of 7^ (t) are given, and suppose that the power in a given

band is estimated for each of these sections. Then from this large

number of estimates, the ratio of the number less than 3^% of the

true value to the total number will approach the fraction 1/40 as

the total number of estimates is increased. Similar statements

for each of the other values can be made.

Thus for ten degrees of freedom, it is not possible to be

very sure of the accuracy of one single estimate of the power in

a given band. The value will be wrong by more than a factor of

two one time out of ten.

The error of a particular estimate

Usually the true value of the power in the band Tinder analy-

sis is not known, and usually only one sample of 7y(t) is avail-

able. Thus only one estimate of the power in the band is avail-

able and no additional analysis of the data can be carried out.

The last table permits an interpretation of the accuracy of this

one number. Thus, if U, from equation (10.32) is, say, ten

2
thousand cm , then the true value of the power in the band will

2
lie between twenty-six thousand cm and five thousand five hundred

2
cm nine times out of ten for ten degrees of freedom.

As the number of degrees of freedom is increased the range

of values such that the true value will be included 90^! of the

time becomes smaller. For one hundred degrees of freedom, and
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2for U, equal to ten thousand cm , the true value will lie between

2 2thirteen thousand cm and eight thousand cm ninety percent of

the time.

The reliability of a seven minute wave record

Seven minute long samples of a function related to 77 (t),

namely P(t), are taken every four hours at Long Branch, New Jersey

by a pressure recorder in approximately thirty feet of water.*

Spectral components with periods less than 3*5 seconds will not

show up in the records. A A t of I.7 seconds is therefore the

value which will exclude aliases and eliminate dangers from that

feature of the analysis. There are 420 seconds in a seven minute

wave record and therefore N is 246. If m is chosen to be twenty,

then one band would cover periods from 7»14- to 4.56 seconds. The

value of f would be 24, and approximately 90^ of the time the true

value of the power in the band would lie betv/een 1.8 times and ,63

times the estimated value. The same possible error could occur

for the estimate of each of the bands, and the total power in the

record can also be incorrect.

These results are not too surprising. Consider again the

records shown in figure 12, The records are over one hour long.

One tenth of the record is about seven minutes long. It is evident

from the records that strips seven minutes long can be found which

would yield much smaller values for the simple estimate of the

number, E , than would be obtained from the estimate over the
' max'

entire record. Similarly, much higher values could also be found.

It is therefore necessary to conclude that the data which can be

See the next two chapters.
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obtained from a seven minute record are not very reliable.

Wave analysis

The wave analyzer constructed by Klebba [1946, 1949] and the

2
one used by Deacon [1949] find some function related to [ACa*-)] >

possibly its square root. Tiikey and Hamming [1949] give some de-

sign criteria for such devices. One extremely important point is

that they can be just as much in error as the numerical method

estimates for low values of f , and if the tuned circuit in the de-

vice is too sharply peaked they can be even more in error. The

modifications which could improve the design of Klebba 's instrument

will be described in a later chapter. They are not too difficult

to make. Even as it is now constructed it is a very valuable instru-

ment, and it can be made even more valuable by these modifications.

Very slowly varying

Equation (10.39) gives the number of degrees of freedom per

elemental band of the derived power spectrum if the spectrum is

very slowly varying over that band . If the spectrum varies rapidly,

then the true number of degrees of freedom is less. For additional

details see Tukey and Hamming [1949]. The considerations given

above serve as design criteria and the real errors may be some-

what worse than are indicated by the table.

The Y;ork involved

Tukey and Hamming [1949] have estimated that (m + 1)(N + | + 2)

additions, (m + 1)(N + | + 4) + 2 multiplications, and m + 3

divisions have to be made to carry out one numerical analysis ^vith-

out checks for accuracy. Simplifications of procedure are given

In the above reference. V/lth a desk calculator, and with N equal
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to 600 and m equal to 60 (assiming all the necessary trigonometric

terms are available in a matrix), it should take about one eight

hour day with a skilled operator. For punch cards on an IBM

machine, about four hours are needed. High speed calculators re-

quire two and a half minutes, plus the time required to code the

machine. It might be well worth while to set up a high speed cal-

culator for the permanent part of the process and process a great

many observations in one single day.

The determination of [A2(/Li,e)]

The function, [ApC/^ ,©)] , is very difficult to evaluate.

It is a function of two variables, and, over a complex sea surface,

especially at the edge of a storm, the short crested waves imply

a wide variation of the function. The needed measurements can be

made and it is theoretically possible to determine the structure

of the function.

There are two instruments discussed in the literature which,

along with an ordinary pressure (or spar) type wave recorder, make

it possible to measure the appropriate functions. One instrument

is the airborne wave recorder described by Deacon, Darbyshire,

and Smith [1949]. It measures elevation of the sea surface along

some chosen line over the sea surface at practically an instant

of time. It will be assumed in this derivation that the speed of

the aircraft is so great compared to the variation with time of

the sea surface that the values obtained are essentially instant-

aneous. Minor (in principle) modifications of the procedures which

will follow could eliminate this assumption. The second instrument

woiad have to be an extension of the stereoptican methods to high
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to high altitude, wide base line, aerial photographs. The sea

surface as a function of x and y at an instant of time would

then be the observed quantity.

The functions which are observed by these instruments will

be described in the course of the development of the method for

2 2
the determination of [A2(/u,,e)] . Of course, [A2(A'-,e)] can

only be estimated for some finite net in the same way that [A(/i)]'

was determined by the methods given by Tukey.

Preliminary investigation

Consider the airborne altimeter. It yields a graph of the

height of the sea surface along the path taken by the aircraft.

Suppose that the aircraft were flying at a speed of 200 mph in a

dense fog over a perfectly sinusoidal wave system (which does not

exist in nature). V/hat v/ould the record look like? The disturb-

ance is given by equation (10.40) where 0^ and /^ , are fixed. Of

course the pilot does not knov; the orientation of the x axis, and

he does not know the direction of orientation of the wave crests.

Rotate the coordinate system with respect to the sea surface so

that x' is the direction along which the aircraft is flying on a

straight course. The equations for the rotation are given by

equations (10,41) and (10,42), The sea surface in the new co-

ordinate system is given by equation (10.43). Since the aircraft

is flying so fast, as a first approximation consider t to be fixed

at an instant of time and since the aircraft is flying in the x'

direction, y' is fixed. The recorder, if calibrated in distance

traveled by the aircraft, will then record an observed wavelength,

L^, given in equation (10.44) and (10.45). If the aircraft is
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flying in the true direction of travel of the crests (i.e. 0-, =

e*), the true wave length of the waves will be observed. If not,

some wave length greater than the true value will be observed as

shown by equation (10.46). It is not possible to record a wave

length shorter than the true value. Conversely, the wave number

given by v = Stt/L will vary between zero and its true value,

and it will not be greater than its true value.

The problem is quite simple in this case if the pilot wishes

to discover the true wave length of the waves below the aircraft

in the fog. Many passes are made over the sea surface at various

headings until a heading is found such that the length of the re-

corded waves increases when either the aircraft is turned to the

right or left. This minimum length is then the true wave length.

By then flying very very slowly, or sending out a helicopter,

the direction of wave travel could be determined by the Doppler

effect.

For the other simple cases discussed previously, similar

techniques could be used and the resolution of five or six sinu-

soidal waves of different periods and directions would not be too

difficult a feat by ordinary techniques. However, the true sea

surface is best represented by a Lebesgue-Stielt jes pov/er integral

2
over [A2(/i,6)] , and, as such, it is composed of an Infinite

number of infinitesimal sine waves traveling in all directions

from (it is hoped) -7r/2 to Tr/2 with respect to the dominant dir-

ection of the crests and with all possible spectral frequencies

over a considerable range of the /^ axis. For these reasons, the

determination of [A2(/J-j6)] is a complicated problem.
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The determination of [k^i /^ ,0)] , observed quantities

Consider the short crested Gaussian sea surface given by

equation (9.47) and apply equations (10.41) and (10.42) so that

the sea surface can be studied as a function of x ' . The result

is equation (10.47). For convenience 6 equals zero should be

picked to be the dominant direction of travel of the apparent

crests, and the direction 9 equals zero is therefore along the

X axis. The angle, 9*, then measures the angle between the x

axis and the line of flight. The observed spectral wave niunber,

1/ , then depends upon the spectral frequency and the cosine of

the difference between 9 and 9*. Angular directions above and

below 9* are determined by an angle, 9 .

The procedure is now to transform the M ,9 polar coordinate

system and the Integration over [A2(/^,9)] to a i/q»9q polar

coordinate system and an integration over a new function

'-^2^ ;/ ,9 ,9*)] . The variables, v and 9 , are defined in terms

of At and 9 by equations (10.48) and (10.49). The inverse trans-

formation which defines fJ. and 9 in terms of v and 9 is given by

equations (10.50) and (10.51)« The Jacobian of the transformation

1/2
is given by equation (10,52). Substitution of (g i/^/cos ©q) for

M and 9 + 9* for 9 in equation (10.47), and the use of the Jacob-

ian to preserve the mapping then yields equation (10.53)* The

Jacobian is needed because the function lk2( f^ ^Q)] has been dis-

torted by the mapping, and in order to preserve the total power

in the wave system it must be amplified for low values of v and

cos e and decreased for high values of v , Stated another way,

an increment , A /u. , maps into a much smaller A i/ ^ if it is at the
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low end of the /J- scale than it does at the high end of the M

scale. From the properties of the Jacobian, it then follows that

equation (10.54) holds and E_ _ is given by both an integrationT max aw
over the /m ,9 plane and the v ^Q plane (see Courant [1937]) •

The integration over the 6 coordinate then can be defined to

2
yield the fixnction [A( v ,& *)] as given by equation (10»55)»

The angle, 0*, is, of course, fixed for each single flight.

It is now possible to describe the functions which can be

recorded by current instrumental techniques. First, the free

surface as a function of time at a fixed point in space can be

recorded. The function which results is a Gaussian Lebesgue

Power integral of the form of equation (10.56) (or (7-1)) as has

been proved at the start of this chapter for the case of a short

crested sea surface. Secondly, for a fixed 9* the sea surface

as a function of x' can be recorded. In equation (10.53) > if y'

and t' are fixed, then by exactly the same techniques that were

employed to study the short crested sea surface as a function of

time it is possible to prove that the free surface as a function

of x' for a fixed y' and t is given by equation (10.57).

Both functions are samples of stationary series and both can

be analyzed by the methods presented above in order to determine

[k(^)]^ and [a( i/q,9*)]^ for a finite net. In addition many dif-

ferent values of 9* can be chosen and a whole set of functions of

the form of [A( v ,9*)] for different 9* can be found. Thus the

observed power spectra are given by equation (10,58). From these

2data, the problem is to find an estimate of [k2( ^ ,Q)] .,
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2

THE DETERMINATION OF [Aj (/'.^D

»>T°.„I -.2. . 1

Er.ax=/7CA2(''>«a'ded^
= //CA2((^^''''(e.+^>a^(i;7X^)^dflo d.„

, (10.54)
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(10.55)

o
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statement of Problem.

The observed functions are

'/(x„y.,t) = /cos[Mt +'''(Mr]^CA('^FdM
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(10.56)



2
The determination of [AgC/J-j©)] i solution

For convenience in notation let ^ be defined by equation

(10.60) and V by equation (10. 6I). These are the cutoff values

of the spectral wave frequencies and the spectral wave number.

If there is no aliasing for fi greater than M,.? then the largest

spectral wave number which can be observed is v »

2
Then for m lags of ^^(t), m + 1 values of [k(

fj,
)] can be

found as given by equation (10.62). These values will be desig-

nated by A(h) as h runs from to m for simplicity of notation

as given by equation (10. 63). '^^^'^c ra^-^
^^ given by equation

(10.35) after the use of equations (10. 30), (10. 3I), and (10. 32).

It is possible to pick 2q + 1 directions for 6* as given by

equation (10.64), and 9* can be designated by ttJ V2q as j* is

sum;ied from minus q to plus q as shown by equation (10,65). The

6* are equally spaced angular values above and below equal to

zero.

For each value of 6*, the stationary series which is observed

can be analyzed by numerical methods exactly like equations (10. 30),

(10.31), and (10.32). The space separation of points in the series

is given by A x-^^ equals (2 At) g/2-rr. For each value of 9*, that

is for j* fixed, the power in m + 1 bands of the i> axis can be

estimated. Values of the form [A( v -^ TrjV2q)] , can be obtained.

These values will be designated by A(h',j*) as h' runs from zero

to m for simplicity as given by equation (10. 67).

From equation (10,63), m + 1 numbers are the result. From

equation (10.67)>(2q + l)(m + 1) numbers are the result since j*

ranges from minus q to plus q, but for J* equal to plus and minus
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q the results are the same because the same track is retraced in

the opposite direction. Equation (10.69) states formally that

A(h',-q) equals A(h',q). Thus m + 1 numbers are duplicates and

can be discarded. Finally (2q+ l)(ra + 1) numbers result from the

application of the procedures given by Tukey and Hamming [1949] to

the recorded data. This is stated in (10.68). As a check, the

2total area under A.(h) in cm should equal the total area under

A(h',j*) for each j to a high degree of acci:iracy. If not, the

value of N is too small and the value of m is too large for re-

liable results.

It is now necessary to study how the ft ,9 plane maps into

the ^q?6q plane and how area net elements in the first plane map

into area net elements in the second plane. For this purpose,

pick the values given by equation (10.70) for the /x axis and the

values given by equation (10.71) for the 9 axis. The curves de-

fined by the double lines are boundary curves of area elements.

The unknown number, A2(h,j), will designate the value of

Ta (
^^ ^ h^^

over the net area element defined by equations (10,73) and (10.74),

It will be assumed that A2(h,j) is constant over the area element.

Figure 27 is an example of such a net of the fi ,9 plane for

the special case of m equal to 10 and q equal to 3, The values of

Ap(h,j) are shown in each of the area elements. The Ag^^jJ^ ^^®

the unknowns which must be found to determine an approximation of

p
[Ap(^,9)] . Wear the origin of the coordinate system some of

the values of AgCh,^) are not shown because the figure would be

too crowded. There are (m + l)(2q + 1) unknown values of A2(h,j),
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In the V ,e plane for a fixed e , pick the net defined by

equation (10,75) for v and (10. 76) for 9 . Over the area element

2
defined by equation (10. 78) and (10.79), the value of [k^i 1/^,6,6*)]

can be designated by A2(h',J',j*) in equation (10.77).

The net for the v ,6 plane for 9* equal to 7r/6 and for ra

equal to 10 and q equal to 3 is shown in figure 28 by the dashed

lines. The circles shown by the solid lines show what happens to

the lines /a equal to a constant in the /x ,9 plane as they are

mapped into the J^qJ^q plane. (See equations (10.48) and (10.49).)

Consider what happens to the boundary curves which define the

area covered by A2(h,j), The cixrve p. equal to ^^(2h + l)/2ni

maps into v^ equal to v^ cos 9(2h + 1) /(2m) as stated by

equation (10. 80). Similarly equation (10.81) is the mapping of

/i. equal to /^ (2h - l)/2m. The straight line 9 equal to 7r(2j - l)/4q

maps into 9 equal to 7r(2(j - j*) - l)/4q as stated by eauation

(10.82). Similarly, equation (10. 83) shows the mapping of 9

equal to 7r(2j + l)/4q. Equations (10.80)and (10. 8I) are equations

of circles which pass through the point v ^ equal to zero and 9^

equal to plus or minus 7r/2. They are shown, for example, in

figure 28. From these considerations, the area element 12(8, 1)

maps into the shaded area shown in figure 28. It therefore covers

part of A2(6',0',l*) and A2(7' ,0' ,1*)

.

Power is conserved by the mapping. Since A2(h,j) is the con-

stant value for the power spectrum over an individual area element,

the integral over the area element in the p- ,9 plane is given by

equation (10.84). After the mapping the integral over the area de-

fined by equations (10. 80), (10. 8I), (10.82), and (10. 83) becomes an
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integral over a portion of the i^q>6q plane. The integral is

evaluated in equation (10.85) which proves that power is conserved.

Consider figure 29. The dashed lines hound the area elements

of A2(h',o',j*) and they form a net over [Ag^
^o»®o»®*^-' * ^°^

this particular case 9* equals zero. The shaded area shows the

area mapped into by ApCSjl). For this case, j is greater than

zero and J
* is zero, as assumed for a special consideration in

equation (10.86). Then after A2(h,j) has been mapped into

2
'•^2^ z/q,9-,9*)] , the greatest value of 1/ , v , is then found

max
by substituting the smallest value © can have, namely equation

(10,82), into the upper boundary curve, namely equation (10. 8I).

and the result is equation (10. 87). Similarly equation (lO.STS)

gives the minimum value of v ^,

For the net in the ^ .e plane, A2(h,j) therefore occupie-s

part of several area elements given by A2(h' ,
j ' ,0 *•) . In fact, there

exists some value of h' , say K, such that v and v are
mln max

sandwiched between Vq^^^^ - l)/2m and ^(2K + P)/2m as stated by

equation (10. 89). Finally on mapping A2(h,o) into A2(h' ,0
'
,0*)

,

A2(h,j) contributes part of its power to the A2(h',j',0*) for h'

ranging from K to [K + (p - l)/2] and for j' equal to j as stated

by equation (10.90).

Consider equation (10.91). The right hand side of the equation

gives the power in the area element, A2(h,o) in the /jl ,e plane.

p
Ap(h,j) has the dimensions of cm sec/radian, and the whole term

2
has the dimensions of cm . The number B(h, j ,h' ,

j
• ,

j*) is a number

which partitions the right hand side into contributions to the

various elements A2(h',j',0*) in the ^^i^q plane. Equation (10.92)
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follows from equation (10,91). The dimensionless nxiraber,

2'jrqm B(h, J,h' , j '
, j*)//x TT, determines that fractional part of

A2(h.ij) which is contributed to the value of A^ih^y ,2*) * For

the examples in the plates, B(h, j ,h' , j ' , j*) is zero if h'<K and

if h' >(2K + P - l)/2 as stated by equation (10.93). It is also

zero if 0* / r.

The power in an area element in the v q>0q plane is givep by

equation (10.94). A2(h',j',j*) has the dimensions of cm-^/radlan,

2
and the right hand side of (10.94) has the dimensions of cm .

The integral over 6 (see equation (10,55)) then becomes the sum

given by equation (10.95)« A(h',j*) has the dimensions of cm-'

2
and the right hand side has the dimensions of cm .

All of the terms of the form of B(h,j,3',j', j*) A2(h,j),

2
which have the dimensions cm , can be treated for a fixed h' and

j*. Summed over all possible j', h, and j, they will be all con-

tributions to the net elements in the v ,& plane for a fixed h'.

In fact, they must again equal the right hand side of equation

(10.95) as is stated by equation (10. 96),

Equation (10. 96) thus involves known values of B(h, j ,
j

' ,
j

'
,3*)

and a known value for the right hand side given by the values found

in equation (10. 67), The unknowns are given by the A2(h,j). Sepa-

rate eqixations for each value of h' and j* result as shown by

equation (10,97), and equation (10,96) with equation (10.97) there-

fore stands for a system of 2q(m + 1) linear equations.

Also equation (10.98) follows from equation (10,24), The

right hand side is known from equation (10,63). There are m + 1

equations of the form of equation (10. 98) as stated by the con-

dition (10,99). The unknowns are A2(h,j).

- 301 _



Equations (10.96), (10.97), (10.98) and (10.99) therefore de-

fine a system of (2q + l)(m + 1) inhomogeneous simultaneous linear

equations and there are (2q + l)(m + 1) unknown values of A2(h,j),

Such a system has a solution if the determinant of the equations

is not zero. It has not been proved that this is the case, but

further investigation has shown that sub sets of the equation

starting with h and h' equal to m can be solved. It appears that

a process similar in the abstract to the concrete process of

peeling the outside rings off one half of a slice of a Bermuda

onion one by one will yield the values of A2(h,j).

Corrections to the equations

Some of the area elements in the ft ,9 plane and in the v qj9q

plane contribute only half of the power to the total power that is

contributed by area elements in the center of the system. Others

at the corners of the system contribute only a quarter of the

amount of those at the center. Equation (10.94), for example,

must be modified if h' equals m. Also the terms in (10.95) for j'

equal to -q and q have a factor of one half in them. At various

places in these equations, then, factors of one half and one fourth

must be inserted. These factors have been omitted in order to simp-

lify the notation since it is not intended actually to solve such

a system. (For one reason, the needed data are not available^

Further explanations

Figures 27, 28, 29 and 30 can be studied together in order

to understand better the procedures described above. In these

figures A2(8,l) in the /x ,9 plane is traced as it is mapped into
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Figure 28 ^
The Mapping Of [A^C^.S)]

Into l^p^B^,9*)Y

Doshed Lines-, NefFor [\(vo,S<„d )]

Solid Lines; Boundory Lines For

Areas Covered By Ajlh.j)

m= 10 q = 3

B(8,l,6,'0;r)A^(8,l)

"2 3

the contribution of ^^^^.n^r

8(8,1.7', O' I*) Aj(8,l)

the contribution of Aj(8,l)^^

to A,{7,'0;i*)^

a ,_X^ ohosed by rotation into upper port os for os
° 2 3
inlegrotion is concerned
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- e„=o

B(8,l,4,0 )A2(8,I)

the contribution of

Aa(8.l)ff-;toA^4;i:0*)f^-

Figure 29

The Mapping Of [A^(tJ.,9)f

Into [l\^{vc,9o,8*)V

Doshed Lines; Net For :&^(,Vo.9o,d*]f

Solid Lines ; Boundary Lines

For Areas Covered By A^thj)

9*Equals Zero m = 10

q =3

8(8,1,6,1 0"')A2(8,1)

the contribution of

*3'8.i)l^toA^(6;i;o*)|^

B(8,i,5,'l,'0 jAjCS.I)

the contribution of

A(8,l)P-'toAJ5,'i:0*)|;f
2 ' 2qm 2* ' ' '2q

8(8,1,6,1 0')A2(8,I)

the contribution of

A (8,1)^10 A fTri'O*)'"''2qm 2qm
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6„= -J-^oliosed by the rotation into lower port as for os integrotion

IS concerned v. do--!r

/A' X \
Solid Lines; Boundary Lines For Areas Covered by A.(hi) '^/ n s

Figure 30
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•-p-y m = 10 q = 3 ^iSi

'Am ^-.
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'^- /#. .^^ \ \ \ \ \ \
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the functions [A^i v ^,0^,^/6*)]^ , [AjC v^jQ^yO*)]^ and

[A2( i/qjQqj-itA*)] .* In figure 28, the elemental waves in

A2(8,l) are traveling very nearly in the direction 9* = 7r/6.

A2(8 1) then goes into a symmetric figure which contributes part

of its power to A2(6',0',l*) and the other part to A2(7' ,0' ,1*)

.

Note also that the range of integration in equation (10.53) is

from -7r/2 - 0* to ir/2 - Q* and that the figure shows A( v ^^Q^^tt/S*)

as if it varies from -'ir/2 to v/2. The true figure can be obtained

ty slicing figure 28 along the line 9 = 27r/6 and rotating the

pie-shaped sector obtained counterclockwise until 9 = v/2 touches

9^ = -7r/2. Then 9^ varies from -A-tt/G to 27r/6.

For 9* equals zero, the mapping is given by figure 29. The

shaded areas again show what happens to A2(8,l). The power in

A2(8,l) is distributed over AgCA' ,1' ,0*) , A2(5' ,1' ,9*) , A2(6',l',0*)

and A2(7' jl' >0*)» '^^e wave elements in the elemental area,

A2(8,l), are now at an angle to the direction of observation. For

9* equals -v/6 the power in A2(8,l) is contributed to A2(2
'
,2' ,-1*)

,

A2(3',2',-l*), A2(4', 2 ',-!*) and A2(5' ,2
'
,-1*) as shown by figure

30. The angle between the wave direction and the direction of x'

is now greater.

The computation of B(h, j ,h' ,
j

' ,
j*)

The value of B(h, j ,
j

' ,
j

' ,

j
*) depends only on the properties

of the net and not on- any unknown quantities. There are

(m + 1) •(2q + 1)-^ possible values but most of them are zero and

many of them are numerically the same. There are a possible 77

values for B(8,l,h' ,
j

'
,0*) if m is 10 and q is 3, but for j' not

*Note how the circles shown by the solid lines squeeze down to the
origin. One of them is so small, in fact, that it is not shown.
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equal to 1 they are zero, and for h' less than 4 or greater than 7

they are zero. Therefore only fo^^r values have to be found out of

the T], From figures 29 and 30, B(8,l,7» ,1' ,0*) and B(8, 0,7' ,1,-1*)

have the same numerical value. Thus only a few of the values act-

ually have to be determined.

The evaluation of B(8,l,5' jl' ,0*) will be discussed as a par-

ticular example. It is the ntunber which results from the double

l/2
integration of (l/2)(g/cos 6 v )

'^ d i^Qde over the shaded area

indicated in figure 29. Three sections of the boundary curves are

given by constant values of y and 6 . Two of the boundary curves

are functions of i/ and e . By breaking up the area shown into

three sub-areas shown by the heavy lines, and then, by integration

over V first, the center area works out immediately with respect

to the next integration over 9^. The other two areas become° o

elliptic integrals over 9 which can be evaluated from tables such

as those in Janke-Emde [194-5] •

Estimate of the work involved

For a complicated function, [A2( v ^<b)'\ , and for m equal to

10 and q equal to 3 as in the figures, seven analyses of the form

described by Tukey and Hamming [1949] would have to be carried out.

Each might require four or five hours on a computing machine. The

evaluation of the B(h,o ,
j

' ,
j

' ,
j *) might require several days. The

result would be T] linear inhomogeneous simultaneous equations with

^^ unknowns. The matrix of the equations has certain symmetry

properties and if its inverse could be found easily, then the numer-

ical work would involve another day of work. l?ith time for checks

of the computation, it would take about ten days to determine the
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fionction. For larger values of m and j, the time required in-

creases very rapidly, and the use of electronic computers might

be advisable.

The reliabil ity of the results

If [ApC^,©)] were determined by the procedures described

above, there would be some doubt as to the reliability of the re-

sults, especially for small values of m and q. They would at least

give an Indication of the values of the function but the degree of

confidence in the final numerical results in terms of the number

of degrees of freedom cannot be given at this time.

The airborne altimeter might introduce additional error by

reflecting in part the effect of atmospheric turbulence as sug-

gested by Tukey in a recent conference. A stereoptican measure-

ment of 17 (x') for different 6* from a photograph would eliminate

errors due to the effect of turbulence.

If [ApC/^,©)] is a function which has been filtered by the

travel of the disturbance from the source so that it is confined

to a small area of the M ,© plane, just a few directions of ^ would

yield, along with the observation of 77 (t), a great deal of inforra-

2
ation about [AgC^i »©)] •

2
Other methods for the determination of [AgC^?©)]

In a recent conference, Tukey suggested another method for

2
the determination of [A2(/i.,e)] by the use of the stereoptican

measurements. The method depends on many parallel measurements

for different y' in the x' direction. Waves not traveling in

the x' direction can be partly filtered out by the addition of

values on a line y' equals constant. The details of the procedure
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have not been investigated by the author, and possibly they can

be worked out in some future paper. The method has definite

advantages over the method described above according to Tukey,
o

A final method for the determination of [A2(/A,e)] depends

upon the acceptance of the results of Chapter 9. The oceans act

as a filter on the waves which propagate from the edges of the

storms over them. Swell simultaneously recorded on a line of

pressure wave recorders (on the California coast, for example)

spaced several hundred miles apart can be analyzed by the equa-

tions given in this section. The 9 band width and filter char-

acteristics could be determined from the dimensions of the storm,

and the pov/er spectrum at the edge of the storm could be computed

from the observed power spectra after the propagation of the waves

over a long distance of decay. [A2(/Ltj©)] at the edge of many

storms must also be determined by the methods described in previous

paragraphs in order to verify the statement made in this paper

that friction effects are negligible. If this statement is veri-

fied, and many arguments have been given which make it appear to

be true, the method described in this paragraph will then be a

very important way to study the variation of [A2(a'->©)] with •

wind velocity and air mass properties.
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APPENDIX

The foregoing chapters are all of the material available in

finished form for publication at the present time. Some detailed

wave analyses will be carried out in a later chapter. This ap-

pendix has been added in order to show six very interesting figures

which Illustrate the great range of possible wave records and the

interpretation which can be put upon them in the light of the fore-

going chapters.

Figures A-1, A-2, A-3, A-4, A-5 and A-6 are from the original

paper by Klebba (1946). They have been furnished through the co-

operation of Admiral E, H. Smith of Woods Hole Oceanographic In-

stitution. The figures which show wave records are numbered on

the right and the corresponding wave record analyses on figures

A-3 and A-6 have been numbered to correspond to the wave records

for comparison purposes.

The sharp jagged tops of the spectra shown (which are not

necessarily power spectra) are probably due to design faults of

the instrument and to sampling error. The band width of the tuned

circuit of the instrument is probably so narrow that the instrument

responds very erratically to portions of the record near certain

critical frequencies. For example in figure A-3, the sharp jagged

tops in the spectra numbered 13 and 14 could be drastically smoothed

in order to obtain a spectrum more like the one numbered 15.

These data are not quantitative in any way because the instru-

ment has a gain control and the gain of the electronic circuits

was readjusted for the various analyses. (See for example records
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17, 18, and 19 and spectra 17, l8, and 19.)

Finally note that the spectra yield very little information

for periods less than 6 seconds. The depth of location of the

pressure recorder was 78 feet in one case (B Station) and 103 feet

for the other case (A Station). Periods less than 5«6 seconds and

6.5 seconds are hardly detected by the pressure recording instru-

ment.

With these qualifications in mind, the records can first he

studied qualitatively and then compared qualitatively with the

spectra. Note record 22, for example, in figure A-4, By scanning

the record, it is seen that the departure from the mean value is

most of the time much less than the peak values of the record. It

is not too difficult to accept the hypothesis that enough points

taken at random would have a Gaussian distribution. Now note

the tremendous variability of the record as a function of time.

The time intervals between successive apparent crests vary over

a wide range. An autocorrelation of the record with itself would

rather rapidly die down to zero which would mean that what happens,

say, one minute in the futiire has very little to do with the be-

havior of the record at the time of observation.

Now note record number 6. It is much lower in amplitude,

but again the departure from the mean of the record is much less

most of the time than the departure when the few peak values occur.

Again, it is not too difficult to accept the hypothesis that the

distribution is Gaussian. The variability of this record is much

less than that of the former record in that the time interval

between successive crests is much less variable. An autocorrelation
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of the record with itself woiild die down to zero much less

rapidly than in the former case (if both were normalized to

one at the start). In fact, it is even possible to imagine

that one could say something about the behavior of the record

one minute into the future given that, say, one of the "groups"

was just starting up.

Nov/ compare the spectrum for record 22 with the wave record.

The spectrum has amplitudes of importance in the entire band

from six seconds to twelve seconds. The wave record is just about

what one might expect from such a power spectrum.

Finally compare the spectrum for record 6 with the wave re-

cord. The spectrum covers a much narrov/er band from eight to

eleven seconds. (It even looks as if it coiild have been obtained

by the forecast procedures.) The character of the record fits

the nature of the spectrum qualitatively.

Trouble occurs though in trying to apply too precise a reason-

ing to the records and the corresponding spectra. Record number

5, for example, differs only a little (to the eye) from record

number 6 and yet the two spectra are very different. It is believed

that the differences are due to Instability of the instrument and

not to a marked change in the sea siu-face during the three hour

interval from record 5 to 6. More precise analysis along the

lines described herein would eliminate this trouble.

In conclusion, for part one, quantitative methods of wave

analysis have been described herein. They appear to be able to

make it possible to put wave analysis and wave forecasting on a
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much firmer theoretical and practical basis. It should eventually

be possible to analyze records such as those just given "accurately,

quickly, and quantitatively, by both numerical and physical

methods and to relate the pov/er spectra to the storms which

produced the waves.
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