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The series of papers on the flow dynamics due to wave-induced macrovortices is
completed with a statistical analysis of the mixing of the shallow flows occurring
around submerged structures used for coastal protection. This is investigated with
specific focus on the role played by large-scale horizontal eddies shed in coastal areas
by waves breaking corresponding to topographic features like submerged breakwaters.
As in Part 2, conditions due to isolated or arrays of breakwaters are studied. Analysis
of particle statistics is used to determine both the features of the induced quasi-two-
dimensional flow and to derive general properties. In particular three distinct regimes
are found to characterize the flow evolution. Asymptotic regimes for small and large
times share in any of the features of typical ‘ballistic’ and ‘Brownian’ regimes. Focus
is mainly placed on properties of the ‘intermediate time’ regime which are seen to
depend on the chosen topographic configuration. In agreement with the deterministic
results of Part 2, we find that, because of an intense longshore current, an isolated
breakwater induces a larger dispersion than that due to an array of breakwaters,
characterized by a rip current. Moreover, for the same topography, the diffusivity
grows with the local wavelength. Comparison with field data suggests that results
of scaled-down laboratory experiments reproduce well natural mixing conditions. A
simple formulation of absolute diffusivity, to be used in practical applications related
to environmental quality management, is, finally, proposed.

1. Introduction
In many cases shallow-water flows, in which the horizontal scales are much larger

than the vertical scale, are characterized by the presence of large-scale features
similar to those of two-dimensional turbulence. Such flows are most often analysed
in terms of depth-averaged properties as in the case of the classic nonlinear shallow
water equation (NSWE). The importance for shallow flows of horizontal large-scale
eddies (macrovortices hereinafter) has been widely reported for coastal flows (e.g.
Oltman-Shay, Howd & Berkemeier 1989; Peregrine 1998; Chen et al. 1999; Brocchini
et al. 2002).

Large-scale horizontal mixing of coastal flows is greatly promoted by macrovortices
which are generated because of a spatially non-uniform breaking of the incoming
waves (e.g. Peregrine 1998; and Part 1 of this series, Brocchini et al. 2004). Although
such differential breaking may be induced for various reasons (irregularity of the
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incoming field, wave–wave interaction, etc.) the major cause of persistent breaking
unevenness is due to topography. This is often characterized by longshore isolated
(natural bumps or manmade submerged breakwaters) or almost-continuous features
(bars or arrays of submerged breakwaters) over which uniform wave fronts break
with large lateral gradients. Hence, macrovortices can be shed which alter both the
hydrodynamics and the morphodynamics (Steijn et al. 1998; Chen et al. 1999; Part 1).

In particular the companion papers, Part 1 (Brocchini et al. 2004) and Part 2
(Kennedy et al. 2006), analyse experimentally, computationally and analytically the
behaviour of breaking-wave-induced macrovortices during startup conditions. Part 1
examines the generation mechanisms and general hydrodynamic behaviour of isolated
breakwaters, with particular attention paid to vortex trajectories and shedding periods,
while Part 2 analyses the transition of startup macrovortices from single breakwaters to
rip current topographies using computations and laboratory experiments. Both studies
provide insight into the fundamental deterministic features of macrovortex evolution.

The present work aims to complete the analysis by characterizing the mixing
features of macrovortices in terms of the statistical properties of the flow they induce,
in conjunction with waves, in the nearshore region. In fact the role of macrovortices
is also fundamental to any water quality evaluation of coastal areas. In most cases
the evolution of passive tracers, like non-reactive pollutants, is predicted by means of
depth-averaged convection–diffusion equations of the type

∂C

∂t
= −v · ∇C + ∇ · (K · ∇C) (1.1)

where C is the tracer concentration, v is the vector of the depth-averaged velocity
and K is the depth-averaged diffusivity tensor (e.g. Taylor 1921). This equation can
only be solved for C if, beyond the flow field, the diffusivity is known through a
constitutive relationship of Fickian type. Such a closure is largely dominated by the
presence of large-scale coherent features like macrovortices and is typical of the flow
conditions at hand. Examples of closures for coastal flows can be found in Inman,
Tait & Nordstrom (1971), Larson & Kraus (1991) and Takewaka, Misaki &
Nakamura (2003).

Results from recent experimental studies of shallow-water turbulence suggest that
such turbulence, generated in shallow jets (Dracos, Giger & Jirka 1992), wakes
(Chen & Jirka 1995) and mixing layers (Uijttewaal & Booij 2000), is characterized
by spectral properties typical of two-dimensional turbulence. In other words both a
direct enstrophy cascade at large wavenumbers and an inverse energy cascade at small
wavenumbers are evident, with decay rates typical of two-dimensional turbulence
i.e. the ‘−5/3 law’ and ‘−3 law’ respectively for energy and enstrophy cascading
(Kraichnan 1967). In this respect it is also desirable to model the transport properties
of shallow-water macrovortices in analogy to those due to coherent barotropic vortices
of two-dimensional turbulence (Provenzale 1999).

In a two-dimensional turbulent flow characterized by large-scale coherent structures
the evolution of tracers and the flow dynamics are so intimately connected that
knowledge of the former may give a predictive key for the latter, and vice versa.
This approach, which has been usefully employed to investigate atmospheric (e.g.
Richardson 1926; Er-El & Peskin 1981) and oceanic (e.g. LaCasce & Bower 2000;
LaCasce & Ohlmann 2003) flows, is now also becoming of interest for nearshore
dynamics (Fong & Stacey 2003). This is also connected with the recent developments
in the monitoring of coastal waters by means of video techniques (e.g. Lippmann &
Holman 1989). With such equipment floats/dye released near the shore can be
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monitored for times/areas large enough to provide the fundamental data for any
dispersion analysis. For example, the recent work of Takewaka et al. (2003) shows
how it is possible to apply this approach to compute dispersive parameters of dye
patches released near the breaking region. With this perspective, and with the aim of
using information from prototype-scale and laboratory-scale experiments, we attempt
to create a theoretical framework for the interpretation of statistics of tracers released
in coastal areas.

In § 2 we give a broad overview of the generation mechanism for macrovortices in
the presence of topographic gradients (§ 2.1) and of the theoretical background used
for the statistical analysis of Lagrangian dispersion (§ 2.2). In § 3 we describe the main
features of the experimental tests used to determine the mixing properties associated
with the presence of currents, waves and macrovortices and we briefly describe the
main results of the hydrodynamic analysis. In § 4 we illustrate the main findings
of the analysis of passive tracer trajectories. Moreover, we describe comparisons to
prototype-scale experiments and give a quantitative formulation for eddy diffusivity
to be used in coastal mixing computations. Section 5 summarizes the main results and
concludes the work.

2. Theoretical background
2.1. Topographic-induced generation of macrovortices in coastal environments

In this section we briefly illustrate the mechanism of generation of vorticity or, better,
potential vorticity in the NSWE framework.

In the pseudo-inviscid NSWE framework (Schär & Smith 1993) in the absence of
shock-type solutions no generation of either vorticity ω, defined as ω ≡ vx − uy , or
potential vorticity, Ω ≡ ω/d , occurs. (In the above the symbol (·)i represents partial
differentiation with respect to the generic variable i, d is the total water depth
and v = (u, v) the vector of the depth-averaged velocity.) In particular ω can only be
transported or locally intensified/reduced if the total depth d increases/decreases when
following a ‘water column’ which represents a coherent body of water of constant
volume; following the same water column the potential vorticity Ω is conserved.

However, if shocks are present in the domain, jump conditions, also known as
Rankine–Hugoniot conditions, hold across the discontinuity. These conditions
introduce a generation mechanism of vorticity/potential vorticity not accounted for
in the absence of shocks. In particular if dissipative body forces, typically due to bores
or hydraulic jumps (i.e. shocks), are accounted for, potential vorticity, generated by
shocks, moves inside the fluid body with the water columns (e.g. Bühler & Jacobson
2001).

Following the approach of Pratt (1983) we assume, for simplicity, that a shock
with a straight, finite front propagates at velocity V in the x-direction (a simple
rotation allows the following to be generalized to any shock incidence). If points with
coordinates xA and xB lie respectively upstream and downstream of the shock there
is a jump in Ω across the shock:

[Ω]xB

xA
= −

[
2

g[d(xA) + d(xB)]d(xA)d(xB)

]1/2
∂ÊD

∂y
(2.1)

with

ÊD =
[d(xB) − d(xA)]3

4d(xA)d(xB)
, [Ω]xB

xA
≡ Ω(xB) − Ω(xA). (2.2)
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Figure 1. The generation of breakers of finite length: (a) uniform wave fronts propagating
at an angle over a uniform beach and (b) uniform wave fronts passing over a submerged
breakwater and breaking locally. Circles and arrows give a schematic representation of the
flow rotation at the edges of the breaker. (Adapted from Brocchini et al. 2002.)

Note that ÊD , being the specific (per unit weight) energy dissipation rate occurring
at a steady (hydraulic jump) or moving (bore) flow discontinuity, relates to ED of

Part 1 as ÊD = ED/g. Hence, potential vorticity is generated at locations where there

is a cross-flow variation of ÊD . Clearly this is maximum where there is an abrupt
cross-flow change of [d]xB

xA
. Also note that the sign of vorticity generated is opposite

to the sign of ∂[d(xB) − d(xA)]/∂y.
The above generation mechanism can be applied to a number of nearshore flow

conditions in which breakers of finite longshore length are present, having been
originated under various circumstances (e.g. Peregrine 1998; Brocchini et al. 2002).
Two examples are reported in figure 1 which are of considerable importance for
nearshore circulation. The first (figure 1a) illustrates the case in which uniform
wave fronts propagate towards the shoreline over a uniformly sloping beach. Their
interaction can lead to local steepening and breaking so that a breaker of finite
longshore length is generated. At the edges of such a breaker, potential vorticity
is generated due to the large value of ∂[d(xB) − d(xA)]/∂y. For a more exhaustive
analysis of the generation of vorticity by breakers of finite length we refer the reader
to Peregrine (1998). The second case (figure 1b) is of greater practical importance as
it models the flow conditions generated by waves approaching the shore and locally
breaking over a submerged breakwater. (Knowledge of these modalities of mixing,
similar to those occurring at a natural bar, is fundamental in assessing water quality
properties at coasts close to urban/tourist areas.) Vorticity generation at the edges of a
submerged breakwater and the evolution of macrovortices in the nearshore has been
investigated experimentally and numerically in great detail (Brocchini et al. 2002;
Part 1 and Part 2).

2.2. Lagrangian dispersion

In this section we summarize some fundamental results on absolute and relative
dispersion of passive tracers, the main assumption being that Lagrangian drifters are
passively advected in a two-dimensional flow. Because of the close dependence of
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mixing (particle separation D) on the flow (spectral energy density E(k)) and vice
versa, mixing properties are often used to indirectly characterize the flow. Hence,
mixing statistics are used here for the interpretation, in strict analogy with the works
of LaCasce & Bower (2000) and LaCasce & Ohlmann (2003), of the flow mixing
observed in the experiments described in § 3.

In particular we compute the absolute dispersion defined as

〈
X2

ij (t)
〉

≡ 1

M

∑
particles

xi(t)xj (t) (2.3)

where xi is the particle displacement from its initial position in the x-direction (i, j = 1)
and in the y-direction (i, j = 2) and M is the number of particles. The trace of this
matrix is the ‘total’ absolute dispersion, i.e. 〈X2〉 = 〈X2

11〉 + 〈X2
22〉 = 〈X2

x〉 + 〈X2
y〉. The

absolute diffusivity, i.e. the time derivative of the absolute dispersion, is

K (1) ≡ 1

2

d

dt
〈X2〉. (2.4)

We can also compute the relative dispersion tensor as

〈
D2

ij (t)
〉

≡ 1

N

∑
pairs

yi(t)yj (t) (2.5)

where yi is the particles’ separation in the x-direction (i, j = 1) and in the y-direction
(i, j = 2) and N is the number of pairs. In this case we have to identify pairs of
particles. A pair is taken to be any two particles (or passive tracers) which come
within a predefined distance apart at a given time. Different maximum separations
are used for identifying pairs. Usually, the smaller the maximum initial separation,
the greater the range of scales sampled, but also smaller the sample size. The rate of
separation between the particles often depends on the initial separation D0.

As for the absolute dispersion, the trace of this matrix is the ‘total’ relative
dispersion, i.e. 〈D2〉 = 〈D2

11〉 + 〈D2
22〉 = 〈D2

x〉 + 〈D2
y〉 and we can define the relative

diffusivity as the time derivative of the dispersion

K (2) ≡ 1

2

d

dt
〈D2〉. (2.6)

2.2.1. Absolute properties of mixing

Particle (floaters in the experiments) data are most often analysed in terms of
absolute statistics, since the relative ones are harder to predict and much less familiar
in the oceanic and coastal context. However, fluid dynamicists recently recognized
the importance of analysing the physics at different scales by means of both absolute
and relative statistics (e.g. LaCasce & Bower 2000).

Flow regimes, in a description which makes use of absolute statistics, are usually
separated with the use of suitable time scales like, for example, the Lagrangian
decorrelation time TL, which is defined as

TL ≡
∫ ∞

0

R(t) dt (2.7)

and in which R(t) is the normalized Lagrangian autocorrelation function. Note that,
because of (2.7) and since R(t) → 0 for t → ∞, TL can be interpreted as the time
necessary for each particle to lose its memory of its initial velocity.
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If absolute statistics are used, the natural definition for the ‘ballistic regime’ is t � TL

(Taylor 1921). In this regime the absolute dispersion typically increases quadratically
in time while the absolute diffusivity undergoes a linear growth

〈X2〉 ∝ t2, K (1) ∝ t. (2.8)

Once the ‘Brownian regime’ is reached, i.e. for t > TL, the absolute dispersion increases
linearly in time, determining a constant diffusivity K (1) → const. Ultimately, particles’
separations reach the scale of the energy-containing eddies LL and the individual
particle velocities become uncorrelated (LL is also known as the decorrelation length
scale).

The theoretical behaviour of the absolute dispersion based on Taylor’s theory has
been systematically observed for non-homogeneous oceanic and atmospheric velocity
fields (LaCasce & Bower 2000); hence the asymptotic behaviour of the absolute
dispersion is disconnected from the restrictive hypothesis of homogeneity.

Usually the absolute dispersion and diffusivity are used to model the dynamics for
times sufficiently large that the anisotropic large-scale turbulence, whose main effect
is convecting the clouds of passive tracers, is greater than the small-scale turbulence.
Vice versa, for small times the isotropic small-scale turbulence is more important and
its main effect is to deform the cloud of passive tracers rather than to advect it. This
suggests that the absolute dispersion is more appropriate for large times/lengths and
the relative dispersion for small times/lengths.

2.2.2. Relative properties of mixing

The definition of ‘small times’ depends on the approach used to analyse the mixing.
If relative statistics are to be analysed a more restrictive definition of the ‘small time
regime’ should be used which makes use of Tp . This is the time at which, soon after
deployment, pairs of particles have lost memory of their initial separation D0, and, for
this reason, Tp is smaller than TL. Since Tp depends on the particles’ initial separation
the ‘large-time’ limit cannot be uniquely defined and it makes more sense to think
in terms of a large-space limit. This is defined as the size of the energy-containing
eddies.

Hence for small separations a behaviour similar to the ballistic regime is observed
for which

〈D2〉 ∝ t2 and K (2) ∝ t. (2.9)

while for separations larger than LL the particles are uncorrelated and the relative
dispersion becomes absolute with a Brownian regime described by

K (2) ≈ 2K (1), (2.10)

for which the relative diffusivity K (2) is constant and approximately equal to twice
the absolute diffusivity K (1).

2.2.3. The intermediate regimes: anomalous diffusion

In the intermediate regime, various behaviours can be observed depending on
the evolution modalities of large-scale coherent vortices. For example, Elhmaidi,
Provenzale & Babiano (1993) report two different ‘anomalous’ absolute dispersion
laws, depending on whether it is a flow in which deformation dominates rotation
(〈X2〉 ∝ t5/4) or vice versa (〈X2〉 ∝ t5/3).
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Figure 2. Cross-shore section of the Bari experimental set-up, corresponding
to the submerged breakwater.

Differences can also be found for the relative dispersion:
(i) In the case of a dominance of enstrophy cascade an exponential growth of

particle separations and, consequently, a D2-law in the relative diffusivity are observed:

〈D2〉 ∝ exp
(
β1/3t

)
and K (2) ∝ β2/3〈D2〉 (2.11)

in which β represents the flux of enstrophy injected at the forcing wavenumber.
The behaviour described by (2.11) was seen to characterize the experimental data of
Morel & Larcheveque (1974) and Er-El & Peskin (1981) for atmospheric mixing and
of LaCasce & Ohlmann (2003) for oceanic mixing;

(ii) On the other hand, in the presence of a background shear (Bowden 1965;
Bennett 1987), the turbulent diffusivity follows a 4/3-law. For particles pairs taking
independent random walks in the y-direction in the presence of a shear flow (dU/dy)
in the x-direction, Bennett (1987) found that the dispersion in the x-direction is
characterized by a t3 growth, accompanied by a D4/3 growth of the diffusivity in the
x-direction: 〈

D2
x

〉
∝ t3 and K (2)

x ∝
〈
D4/3

〉
. (2.12)

Similar behaviour can also occur in the presence of waves. A group of particles
advected by monochromatic waves only exhibits a quadratic-in-time dispersion in
the direction of the wave phase speed, for example in the x-direction (LaCasce &
Speer 1999). However, with a transversal mixing superimposed, the dispersion in the
x-direction can grow as t3 as in the case of a simple shear (LaCasce & Bower 2000).

3. The laboratory experiments
We study the evolution of macrovortices generated during a large-scale laboratory

experiment in terms of the statistical properties of passive tracers. This analysis,
specifically designed to evaluate the features of the mixing induced by both single
breakwaters and rip-channel configurations, is, in spirit, very similar to that performed
to study the mixing features of oceanic eddies by LaCasce & Bower (2000). The
advantage of the present analysis is the possibility of strictly controlling and,
eventually, repeating the input flow conditions.

The experiments, described in detail in Lorenzoni et al. (2004, 2005), were carried
out in a 40 m × 29 m portion of the large-scale wave basin of the Polythecnic of Bari
(90 m long, 50 m wide). Model breakwaters (4 m long, with berm width of about
0.3 m and constant submergence of about 0.015 m) were placed over a sandy beach of
almost uniform slope both offshore of the breakwaters (1:200) and inshore of them
(1:20) (see figure 2). Fine sand (d50 = 0.2mm) was used to cover the bottom. At the
offshore boundary of the domain, with still-water depth of 0.79 m, both regular and
irregular waves were generated with periods in the range 0.91–1.82 s and heights in
the range 1.67–6.67 cm. All these conditions are compatible with a Froude similarity
of prototype conditions scaled-down at a length ratio of 1:30.
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Figure 3. Planimetric layout of the Bari experimental set-up and locations
of the ADVs (labelled V).

Lt−rip (m) Lt−single (m) Lc (m) hb (m) s

0.75 4.00/5.40 4.00 0.125 0.005

Table 1. Main geometrical characteristics of the experimental tests.

3.1. The flow evolution

Two distinct configurations were analysed (see figure 3, in which the locations of
the acoustic Doppler velocimeters (ADVs) are also shown). In the single breakwater
configuration the structure considered is far from any other structure (left-hand side
of figure 3) while in the rip current configuration the submerged breakwaters were
separated by narrow gaps (right-hand side of figure 3). Table 1 summarizes the main
geometrical characteristics of these two configurations. Using the notation of Part 2,
we define Lt the size of the gap between contiguous breakwaters and Lc the breakwater
crest size; hb is the still-water depth at the toe of the breakwaters while s is the beach
slope.

In all cases velocities around the breakwaters and water levels over the breakwaters
were measured (see Lorenzoni et al. (2005) for more details). The spatial distribution
of the structures is very similar to that of Part 2. The main differences between this
experimental configuration and that of Part 2 is the presence of the mobile sand bed.
This allows for natural morphodynamic evolution to occur, hence closely reproducing
hydrodynamic and mixing field conditions.

The general flow evolution is similar to that observed in previous similar studies
(Haller, Dalrymple & Svendsen 2002; Dronen et al. 2002). Waves propagating
normally to the beach over the described topography determine a flow characterized
by both longshore and rip currents, which make up the so-called circulation cells of
the primary circulation. The latter is determined by differential wave breaking since
waves break over the submerged breakwaters and produce a cross-shore setup of the
water surface. The setup is less pronounced in the rip channel, in which the interaction
with the seaward-flowing rip current modifies the approaching waves. Waves flowing
to the shore directly through the rip channel induce finite-length breakers very close
to the shore and, consequently, a pair of macrovortices which rotate oppositely to
the bar vortices (vortices [1] and [2] of Part 2) of the primary circulation. These
are the shore vortices [4] described in Part 2 and partially responsible, along with
self-advection, for the longshore motion of the bar vortices.

More details on specific features of breaking can be found in Lorenzoni et al. (2005).
For the purposes at hand it is sufficient to recall the major difference in behaviour
between long and short waves: they both break around the seaward toe of the
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Figure 4. Vertical distribution of the time-averaged cross-shore velocity u: (a) gap 1,
(b) gap 2 and (c) gap 3. (Adapted from Lorenzoni et al. 2004.)

Cases Hm
0 (cm) T m

0 (s) H
p

0 (m) T
p

0 (s) Ir0

bari a 1.67 0.9 0.5 5 0.043
bari b 1.67 1.8 0.5 10 0.079
bari c 3.33 0.9 1.0 5 0.031
bari d 3.33 1.8 1.0 10 0.056
bari e 5.00 0.9 1.5 5 0.025
bari f 5.00 1.8 1.5 10 0.046
bari g 6.67 0.9 2.0 5 0.022
bari h 6.67 1.8 2.0 10 0.040
bari j (irregular) 5.00 1.8 1.5 10 0.046

Table 2. Main characteristics of the experimental cases performed at the University of Bari.
H0, T0 and Ir0 are respectively the offshore wave height, period and corresponding Iribarren
number (model offshore water depth of 0.79m), where superscripts m and p refer to the model
and prototype scales, respectively.

structures but the former as shallow-water bores and the latter as intermediate-water
spillers.

Rip currents are often unstable, with velocities larger in the middle of the gap
and decreasing seaward, also due to the waves’ action. The large velocities generated
within the rip channel induce intense localized erosion and offshore sand transport.

This is confirmed, for example, by figure 4 in which the experimental vertical
distribution of cross-shore, time-averaged velocities u are shown. These refer to the
test characterized by a regular waves of height Hm

0 = 5 cm and period T m
0 = 1.8 s

(bari f of table 2). The velocities were measured once the flow pattern reached a
quasi-steady state for an period of 30 s and with a sampling frequency equal to 20 Hz.
In particular, velocities towards the offshore reach the maximum values of about
u = −0.19m s−1 at the inshore middle of the gap, both for gap 1 and gap 2, and
become almost vanishing within a cross-shore distance of about 4–5 gap widths. This
seems to confirm the numerical results of Mancinelli et al. (2001), in which the rip
currents are locally intensified near the breakwater but made spatially unstable by
the presence of macrovortices generated by the depth gradients at the ends of the
submerged breakwaters (‘local circulation’). On the contrary, numerical simulations of
Part 1 show that in the case of isolated breakwaters macrovortices slowly propagating
towards the shoreline become one of the most important means of forcing, together
with the waves, of the general circulation. For the single breakwater configuration
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Figure 5. Bathymetry for the rip current configuration (a) at the beginning of the experimental
tests and (b) after about 15 hours of run. (c) Bathymetry used for the mixing analysis for the
single breakwater configuration. Bathymetric data were obtained by means of a touch-sensitive
two-dimensional bed profiler.

(see figure 4c) the cross-shore velocities are less intense (approximately one third)
than those characteristic of the rip current configuration.

In general the vertical velocity profiles are all characterized by weak gradients.
An exception seems to be the profiles measured at the middle of the gap. There the
surface water seems to flow offshore more rapidly than the lower water mass, hence
giving a relatively large vertical velocity gradient at the gap. In all cases the largest
velocity is attained at the surface. These observations are partially at odds with those
of Haas & Svendsen (2002) who found the profile of the rip current to have the
largest vertical gradients offshore of the gap, being almost uniform within the gap.
This discrepancy seems to be mainly due to the fundamental difference in the bottom
configuration of the two experiments: in the Bari experiments the sandy bed is prone
to erosion/deposition with consequent large variations of the local water depth, as
shown in figure 5.

3.2. Data collection for the mixing analyses

After around 15 hours of run, i.e. once the bathymetry has reached the quasi-steady
state of figure 5(b), the analysis of the mixing induced by a rip current configuration
started.

Floaters (10–25 wooden spheres with diameters of 25–42 mm) were released around
the breakwaters and their meandering tracked with a fixed videocamera. The initial
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Figure 6. Examples of particles trajectories for the experimental cases: (a) single breakwater
configuration (bari v4 e1); (b) rip current configuration (bari v2 f3). Stars represent the
beginning of the trajectories and solid circles their end. The bright band crossing the images
from left to right inshore of the breakwaters is due to unavoidable light reflection off the water
surface.

locations of floaters were random but close to the gaps separating the central
breakwater of figure 5 from the two lateral ones. Images, rectified into Cartesian
still-water coordinates, allow inspection of the floaters’ dispersion under the action
of waves, currents and macrovortices (more details on the procedure can be found in
Kennedy & Thomas (2004) and in Part 2). The location of each floater is characterized
by an uncertainty due both to the raw data definition and to the image rectification
procedure, the global result being an error in the range of 1–2 cm. For each test,
tracking of floaters began at a zero time occurring prior the wave paddle starting its
motion and lasting until the water became almost still after the paddle was stopped.
Therefore, particles are first subjected to the small-scale turbulence field, then evolve
because of the combined action of both larger-scale turbulence and waves, to reach
a final stage when, far enough from the structures, they are weakly advected by
macrovortices (of reduced intensity) and currents, thus mainly bobbing in the waves.
Hence, as described in the following, because of floaters leaving the interrogation area,
statistics could only be computed for 40–50 s after the waves reached the breakwaters.

A similar procedure was used for the single breakwater configuration but a different
bathymetry had to be used because of problems in tracking the floaters when released
around the leftmost structure of figure 3. Hence, an isolated breakwater was obtained
by removing the leftmost and rightmost breakwaters of figure 5(b) and by running
waves for a few hours until the quasi-steady bottom configuration of figure 5(c) was
achieved before the tracers’ analyses could start.

Figure 6 gives an example of the floaters meandering after being released in the
channel between two breakwaters, i.e. rip current configuration (panel b) and in the
vicinity of the single breakwater (panel a); from the latter a longshore drift current
is evident of a few centimetres per second as reported in Lorenzoni et al. (2004)
and also discussed in Part 2. There the dominance of longshore flows in the case of
isolated structures is shown to largely depend on the relative size of the gap with
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respect to the breakwater length (Lt 
 Lc) and for large enough beach/bar slopes
(|sbeach − sbar| >hb/Lc). The presence of the rip current and its effects on the particles’
dispersion are clearly shown in figure 6(b).

In particular it is clear that the rip current determines a strongly anisotropic field,
with a cross-shore dispersion greater than the longshore one, especially in the rip
neck. It is also possible to observe that the circulation cell is characterized by a size
comparable with the breakwater length (∼ 4 m).

The experimental cases used for such analyses are summarized in table 3 and are
characterized by configurations made up of either a single breakwater (v3, v4) or of
an array of breakwaters (v2).

4. Statistical analysis of passive tracers trajectories
Flow mixing is quantified here in terms of absolute and relative statistics (i.e.

dispersion and diffusivity) of experimental floaters’ motion and the results are, in
many ways, consistent with the predictions of the theory of two-dimensional flow
mixing. On the other hand, some features specific to shallow flows forced by waves
over topographic obstacles, like submerged breakwaters, have been highlighted.

In particular we analyse and discuss not only the behaviour in time of both the
absolute and relative dispersion/diffusivity but also the dependence of the relative
diffusivity on the length scale, i.e. the distance D. (Note that, for these mixing
evaluations, the limits imposed by the available window size are such that floaters
can be regarded as always residing in a region with intense wave-breaking-induced
turbulence.)

The analysis of all the available data from the laboratory experiments suggests
a simple scenario, characterized by three regimes: a ‘microturbolence regime’, an
‘intermediate regime’ and a final ‘equilibrium regime’. We analyse the statistics under-
lying the different behaviours both of the different configurations (i.e. single break-
water configuration and rip current configuration) and of the different wave conditions
(i.e. the dependence on the offshore wave height H0 and period T0).

We find that the results pertaining to all statistically equivalent cases are very
similar, repeatability of their salient features being robust. Hence, for this reason and
for the sake of clarity we only show results of representative cases to illustrate the
dynamics. These representative cases are bari v4 e1 and bari v4 f3 respectively for
short and long waves over a single breakwater; cases bari v2 e2 and bari v2 f3 are
used for describing respectively short and long waves over an array of breakwaters.

4.1. Absolute statistics

The absolute statistics (diffusion and diffusivity) computed from the available data
usually match well those of a ‘ballistic regime’ (t < TL), a first regime, here called
a ‘microturbulence regime’, which is characterized by a dispersion only caused by
the microturbulence, the macroturbulence due to waves and large-scale eddies being
absent. The analysis of the absolute dispersion 〈X2〉 for all floaters, both for the
single breakwater configuration and rip current configuration shows the classical
initial quadratic growth in time, representing the ballistic regime, till the time at
which the waves reach the breakwaters (t ≈ 10–15 s) (see figures 7 and 8, where the
68 % confidence limits are indicated by the bars). Using equation (2.4) we can compute
the absolute diffusivity, as the time derivative of the absolute dispersion. As shown in
figures 9 and 10, for all these cases the absolute diffusivity grows linearly in time, i.e.
K (1) ∝ t for t < 10–15 s.
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Cases H0 (cm) T0 (s) nin tout (s) nfin np1 np2 np3

Single breakwater configuration

bari v3 a1 1.67 0.9 26 95 23 40 119 228
bari v3 b1 1.67 1.8 24 80 21 44 117 205
bari v3 c1 3.33 0.9 26 90 22 30 93 198
bari v3 d1 3.33 1.8 25 60 17 20 58 120
bari v3 e1 5.00 0.9 26 80 13 9 30 63
bari v3 f1 5.00 1.8 26 40 13 15 25 56
bari v3 g1 6.67 0.9 20 30 16 14 58 109
bari v3 h1 6.67 1.8 24 40 18 25 64 136
bari v3 j1 5.00 1.8 26 50 15 25 51 102
bari v4 e1 5.00 0.9 28 59 20 18 64 153
bari v4 e2 5.00 0.9 25 76 19 26 66 151
bari v4 e3 5.00 0.9 26 70 17 24 49 93
bari v4 f1 5.00 1.8 22 54 15 24 54 96
bari v4 f2 5.00 1.8 24 50 18 26 75 152
bari v4 f3 5.00 1.8 25 50 18 41 60 130
bari v4 g1 6.67 0.9 26 55 18 18 41 109
bari v4 h1 6.67 1.8 26 50 20 34 85 173
bari v4 j1 5.00 1.8 23 40 13 13 34 72

Rip current configuration

bari v2 a1 1.67 0.9 24 100 22 26 98 199
bari v2 a2 1.67 0.9 25 100 24 26 93 219
bari v2 a3 1.67 0.9 24 120 22 14 70 164
bari v2 b1 1.67 1.8 25 170 16 9 30 70
bari v2 b2 1.67 1.8 23 170 9 5 14 33
bari v2 b3 1.67 1.8 22 170 12 4 17 38
bari v2 c1 3.33 0.9 24 120 22 19 80 196
bari v2 c2 3.33 0.9 22 107 16 8 41 102
bari v2 c3 3.33 0.9 23 100 18 34 88 147
bari v2 d1 3.33 1.8 25 80 19 21 68 146
bari v2 e1 5.00 0.9 25 90 20 23 88 156
bari v2 e2 5.00 0.9 25 72 20 37 105 178
bari v2 e3 5.00 0.9 24 72 17 27 77 128
bari v2 f1 5.00 1.8 22 40 19 22 70 153
bari v2 f2 5.00 1.8 25 45 20 19 70 143
bari v2 f3 5.00 1.8 24 45 18 37 78 134
bari v2 g1 6.67 1.8 24 45 20 17 56 132
bari v2 h1 6.67 1.8 23 45 16 8 32 87
bari v2 j1 5.00 1.8 25 45 18 33 91 148

Table 3. Main characteristics of the experimental cases performed at the University of Bari. H0

and T0 are the offshore wave height and period, nin is the total number of particles at t = 0 s,
tout is the time for which a sufficient, for the statistical analysis, number of particles nfin, are still
in the domain, np1, np2 and np3 are the number of pairs for the three initial separations used
for the relative dispersion analysis, i.e. for D0 = 0.4 m, D0 = 0.8 m and D0 = 1.5 m respectively.

A second, intermediate regime, which we define as the ‘growth regime’, is observed
for approximately 10–20 s < t < 40–60 s. Figures 7/8 and 9/10 show that the duration
of this regime is function both of the wave forcing and of the topographic features.
As better clarified in the following section, in this regime the macroturbulence,
induced by waves (single breakwater configuration) and large-scale shear (rip current
configuration), dominates.
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Figure 7. Absolute dispersion 〈X2〉 for the single breakwater configuration: (a) short wave
(bari v4 e1); (b) long wave (bari v4 f3). The 68 % confidence limits are indicated by the bars.
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Using the results both of the single breakwater configuration and of the rip current
configuration, we have found that the growth regime is characterized by a t3-power
law, i.e. 〈X2〉 ∝ t3 for the absolute dispersion (see figures 7 and 8). The time at
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Figure 10. Absolute diffusivity K (1) for the rip current configuration: (a) short wave
(bari v2 e3); (b) long wave (bari v2 f3).

which the transition between the intermediate and the final asymptotic phase occurs
is around t ≈ 40–60 s.

A final ‘equilibrium regime’ (t > TL) is found in which the generation, transport
and decay of the main large-scale features balance to give a sort of mean steady
state. In this regime, reached after some decorrelation times, the absolute statistics
behave as in the case of a Brownian regime. We, thus, find an almost linear growth
of the absolute dispersion as shown by figures 7 and 8 and a constant value for
the absolute diffusivity for large times as illustrated by figures 9 and 10. From a
comparison between the results for the single breakwater configuration and for the
rip current configuration, we can observe that the asymptotic value of the absolute
dispersion 〈X2〉 for the single breakwater cases is greater than that of the rip current.
This seems some first evidence that the rip current jets may reduce, owing to their
spatial coherence, the dispersion of the floaters.

From a comparison among the behaviours of the absolute diffusivities due to
the single breakwater configurations (see for example figure 9) we can conclude
that for short waves (wave period T = 0.9 s), the absolute diffusivity, K (1) ≈ (1.5–
3.5) × 10−2 m2 s−1, is smaller than that of long waves (wave period T = 1.8 s) for
which K (1) ≈ (2.9–5.7) × 10−2 m2 s−1 (see table 4). This is also true for the rip current
configurations (see for example figure 10) in which for short waves the values of
absolute diffusivity are K (1) ≈ (0.4–2) × 10−2 m2 s−1 and for long waves K (1) ≈ (0.7–
4.8) × 10−2 m2 s−1 (see table 4). The absolute diffusivity values are also directly
proportional to the offshore wave height H0. So the influence of the offshore wave
height and period on the magnitude of the absolute diffusivity is clearly evident.

4.2. Relative statistics

The results illustrated in § 4.1 and the regime classification proposed there are given
support and clarification on the basis of relative statistics.

Three initial separations are considered for the relative dispersion analysis,
D0 = 0.4, 0.8, 1.5m, as shown in table 3. The smallest and the largest values are
used to separate respectively the small- and large-scale turbulence. The intermediate
value of D0 is representative of the smallest gap width Lt . These scales have been
chosen by taking into account both the information gained from the analysis of
Part 2, for which Lt is fundamental to assess the asymptotic flow regimes, and the
need of adequately resolving the mixing. The latter requirement forces the use of
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Cases Hm
0 (cm) T m

0 (s) H
p

0 (m) T
p

0 (s) K (1)
m (10−3 m2 s−1) K (1)

p (m2 s−1)

Single breakwater configuration

bari v3 a1 1.67 0.9 0.5 5 15.4 2.53
bari v3 b1 1.67 1.8 0.5 10 8.4 1.38
bari v3 c1 3.33 0.9 1.0 5 25 4.11
bari v3 d1 3.33 1.8 1.0 10 29 4.76
bari v3 e1 5.00 0.9 1.5 5 19 3.12
bari v3 f1 5.00 1.8 1.5 10 43 7.06
bari v3 g1 6.67 0.9 2.0 5 34 5.59
bari v3 h1 6.67 1.8 2.0 10 39 6.41
bari v3 j1 5.00 1.8 1.5 10 57 9.37
bari v4 e1 5.00 0.9 1.5 5 18 2.96
bari v4 e2 5.00 0.9 1.5 5 32 5.26
bari v4 e3 5.00 0.9 1.5 5 28 4.60
bari v4 f1 5.00 1.8 1.5 10 100 16.43
bari v4 f2 5.00 1.8 1.5 10 40 6.57
bari v4 f3 5.00 1.8 1.5 10 40 6.57
bari v4 g1 6.67 0.9 2.0 5 36 5.92
bari v4 h1 6.67 1.8 2.0 10 46 7.56
bari v4 j1 5.00 1.8 1.5 10 25 4.11

Rip current configuration

bari v2 a1 1.67 0.9 0.5 5 4.8 0.79
bari v2 a2 1.67 0.9 0.5 5 4.0 0.66
bari v2 a3 1.67 0.9 0.5 5 4.3 0.71
bari v2 b1 1.67 1.8 0.5 10 7.6 1.25
bari v2 b2 1.67 1.8 0.5 10 7.7 1.27
bari v2 b3 1.67 1.8 0.5 10 6.2 1.02
bari v2 c1 3.33 0.9 1.0 5 9.0 1.48
bari v2 c2 3.33 0.9 1.0 5 14.8 2.43
bari v2 c3 3.33 0.9 1.0 5 12.2 2.00
bari v2 d1 3.33 1.8 1.0 10 18.1 2.97
bari v2 e1 5.00 0.9 1.5 5 10.2 1.68
bari v2 e2 5.00 0.9 1.5 5 12.0 1.97
bari v2 e3 5.00 0.9 1.5 5 11.3 1.86
bari v2 f1 5.00 1.8 1.5 10 29.2 4.80
bari v2 f2 5.00 1.8 1.5 10 17.2 2.83
bari v2 f3 5.00 1.8 1.5 10 30.7 5.04
bari v2 g1 6.67 1.8 2.0 5 20.3 3.34
bari v2 h1 6.67 1.8 2.0 10 48.0 7.89
bari v2 j1 5.00 1.8 1.5 10 18.0 2.96

Table 4. Laboratory absolute diffusivity K (1) where superscripts m and p refer to the model
and prototype scales, respectively.

relatively small values of separation, needed to resolve well the initial stages of the
mixing (for this reason we neglect Lc ∼ 4.0 m, close to the integral scale, as a suitable
scale for the mixing analysis).

Different relative dispersion/diffusivity behaviours are found for the intermediate
regime of the two configurations of single or neighbouring breakwaters. While for
the latter both relative and absolute statistics are those typical of a shear-dominated
flow, in the case of a single breakwater evidence has been found of an enstrophy
cascade which, in principle, can be caused by either the stretching of vortex sheets
from a shearing field (a qualitative example is shown in figure 11) or a merging of
same-signed vortices.
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In figures 12 and 13 the total relative diffusivity, i.e. K (2) = K (2)
x + K (2)

y , is plotted
for the three initial separations D0 = 0.4, 0.8, 1.5m, against the distance D defined as
the square root of 〈D2〉. In agreement with the results of the relative dispersion for
the scales of the intermediate regime (D0 < D < LL) the diffusivities exhibit a different
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Figure 13. As figure 12 but fot the rip current configuration. (a) bari v2 a1, (b) bari v2 b3,
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power-law dependence for the single breakwater configuration (figure 12) and the
rip current configuration (figure 13). The case of the single breakwater exhibits a
K (2) ∝ D2 law which seems to suggest an enstrophy cascade. On the contrary, the fit
K (2) ∝ D4/3 of figure 13 recalls the case of shear/waves dominance (Bennett 1987),
rather than an inverse energy cascade, also in view of no evidence of vortex merging,
which is essential for inverse energy cascading. Hence, the strong horizontal shear,
given by the rip current, seems to cause the D4/3-dependence for the relative diffusivity.

The flow anisotropy is analysed both in terms of absolute/relative dispersions, as
shown in figure 14 (dotted lines indicate ± one standard deviation on the mean),
and in terms of relative diffusivities in the x- and y-directions, as shown in figure 15.
In particular for all the rip current configurations analysed (an example is shown in
figure 15) the relative diffusivity in the cross-shore direction is greater than that in the
longshore direction, K (2)

x >K (2)
y . We can also observe (see figure 14b) that for an array

of submerged breakwaters the cross-shore relative dispersion 〈D2
11〉 is greater than the

longshore component 〈D2
22〉, the cross-term 〈D2

12〉 being always small, while for the
single breakwater configuration 〈D2

11〉 < 〈D2
22〉. We can find a similar behaviour for

the absolute dispersion in the x-direction 〈X2
11〉 and in the y-direction 〈X2

22〉. Absolute
statistics also reveal that the mixing induced by the single breakwater configuration
is significantly more anisotropic than that induced by the rip current configuration.
These results, in agreement with the analyses of Part 2, show that the rip current
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configuration is dominated by a strong offshore and weak longshore transport while
the single breakwater configuration is characterized by a strong longshore and weak
cross-shore transport.
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To better distinguish the relative dispersion behaviours, it is usual to introduce the
‘characteristic time’:

τ (t) ≡ 〈D2(t)〉
K (2)(t)

. (4.1)

If this is constant, the growth rate of the relative dispersion may be represented by
an exponential law typical of an enstrophy cascade regime (Babiano et al. 1990). This
is often difficult to observe as, since it occurs in the intermediate regime, care must
be taken in suitably choosing the initial separation D0 which must be small enough
with respect to the largest-scale eddies to adequately resolve the flow.

Beyond this limitation we also note that the unavoidable noise characterizing
the relative diffusivity (see figures 12 and 13) can lead to problems of computation/
interpretation of τ (t). We, thus, consider an alternative means of measuring dispersion,
i.e. the finite scale Lyapunov exponents (FSLEs), in which the independent variable
is a distance rather than a time (Aurell et al. 1997; LaCasce & Ohlmann 2003).

To calculate the FLSEs, choosing a set of pair separations Rn increasing multi-
plicatively as

Rn = αRn−1 = αnR0 (4.2)

in which α is a number greater than one, we calculate the times required for each
pair’s separation to grow to the successive Rn. The times are then averaged for each
separation class. The maximum Lyapunov exponent, in the limit of small bin spacing,
is given by

λs(n) = ln(α)

〈
1

Tn

〉
. (4.3)

It is important to note that the FLSE uses all sets of possible pairs. The FLSE
behaviour is related to the relative dispersion growth rate. In particular, if the latter
is represented by

〈D2〉 ∝ tn the FSLE becomes

〈
1

Tn

〉
∝ D−2/n. (4.4)

In figure 16 we show the results in terms of the FLSE both for the single breakwater
configuration (bari v4 e1 and bari v4 f3, panel a) and for the rip current configuration
(bari v2 e3 and bari v2 f3, panel b). The dotted lines indicate the 68 % confidence
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limits. Separations were calculated using α = 2, but the results do not depend on this
choice, which determines only the number of bins. We can observe that, for the single
breakwater configuration, the mean inverse doubling time is almost constant (perhaps
weakly increasing), i.e. λ∼ 0.03 s, with the distance for separations smaller than 1.5 m,
which represents the case of exponential particle divergence; then the FLSE decreases
like D−2 which is consistent with a linear growth in the relative dispersion (i.e. the
asymptotic regime characterized by standard diffusion). The results for the rip current
configuration show a more complex scenario for the intermediate regime. An almost-
constant dependence on D (λ∝ D0, rather λ∼ 0.04 s) is observed for separations
smaller than about 0.8 m, then a weak decay λ∝ D−2/3, not visible for the single
breakwater configuration, is found for separations up to about 1.5 m. The latter
regime is consistent with a growth of dispersion cubic in time and, consequently,
with a K (2) ∝ D4/3 regime. For separations larger than 1.5 m also the rip current con-
figuration exhibits a λ∝ D−2 decay which reflects an asymptotic or equilibrium regime.

The presence of an equilibrium regime is also clearly evident in all the reported
results in terms of relative dispersion/diffusivity. For D > LL a linear growth in time
of the relative dispersion is found which gives rise to a constant relative diffusivity
K (2) about twice the absolute diffusivity K (1) for a distance larger than about 1 m.
Note that horizontal line giving 2K (1) in figures 12 and 13 is not just a reference
but is computed from the available data. The 1 m size represents the Lagrangian
scale LL, i.e. the energy-containing scale, and compares well with the dimensions of
the largest-scale eddies reported in Lorenzoni et al. (2004, 2005).

From a comparison between figures 12 and 13, we observe that the relative dif-
fusivity for rip current configurations is approximately 2.5 times smaller than that
characteristic of the single breakwater configurations; in particular, the former has
mean values K (2) ∼ 2K (1) ≈ (1.5–5.5) × 10−2 m2 s−1 while for the latter K (2) ∼ 2K (1) ≈
(3.5–8.5) × 10−2 m2 s−1.

This quantitative result seems important in view of a general description of the
mixing properties due to waves incident on either a single or an array of breakwaters
and for use in practical computations of mixing using convective–diffusive equations
like equation (1.1).

4.3. Comparisons with field results

We compare our experimental results with some recent and important field
observations that Johnson & Pattiaratchi (2004) made for a rip current configuration.
The comparison is performed in terms of the behaviour of the statistics and of
the asymptotic values of relative diffusivity. The comparative analysis has two main
aims. First of all we want to assess the validity of our assumption that scaled-down
experiments can provide an adequate description of prototype conditions (present
subsection). Hence, if the fundamental statistics, like the diffusivity, follow similar
patterns to those found in the field we can expect scale effects to be negligible.
In that case (see § 4.5), results from the Bari experiments can be used to prescribe
relationships between flow conditions and K (1) to be used in practical applications.

Similarly to our experimental results (see § 3), Johnson & Pattiaratchi (2004) found
that the diffusivity calculated both inside and outside the surf zone follows a 4/3-
dependence, previously determined for oceanic turbulence at much larger scales (e.g.
La Casce & Bower 2000).

Using a Froude similarity (clearly the best suited to a wave-dominated shallow
flow), with a geometric scale ratio of 1:30, it is also possible to compare the values of
relative diffusivities. In particular the relationships between length and time scales are
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Lm = Lp/30 and Tm = Tp/
√

30 in which L and T represent length and time scales and
the subscripts m and p represent ‘model’ and ‘prototype’, respectively. Using these
relationships it is clear that

O(Kp) = O

(
L2

p

Tp

)
= O

[(
L2

m

Tm

)
302

√
30

]
= 30

√
30Km (4.5)

which is used to compute the diffusivity at the prototype scale shown in table 4.
The laboratory relative diffusivity K (2) is in the range (0.8–3.6) × 10−2 m2 s−1 for the
experimental cases with wave height comparable, at prototype scale, with that of the
field experiments of Johnson & Pattiaratchi (2004); at prototype scale, the laboratory
diffusivity values are equivalent to K (2) ≈ 1.3–6 m2 s−1. The latter are similar, in
order of magnitude, to the field relative diffusivity values reported by Johnson &
Pattiaratchi (2004), ranging between 1.29 and 3.88 m2 s−1. However, these values are
somewhat smaller than the order of magnitudes suggested by Inman et al. (1971)
for both cross-shore and longshore diffusivities. In that work it was suggested that
O(K (2)

x ) = 10 m2 s−1 and that O(K (2)
y ) = 100 m2 s−1. Hence, although this suggestion

is in line with our observation that mixing dominated by longshore currents (our
isolated breakwater) is more intense than that dominated by cross-shore currents (rip
current configurations), the orders of magnitude suggested by Inman et al. (1971)
seem more associated with intense events rather than average conditions. The linear
scaling of K (2)

y with the separation between rip currents is also questionable. Such an
assumption leads to too large values of diffusivity and a different scaling seems to give
more reasonable results. Such a scaling is described in detail in the next subsection.

From the behaviour of the relative diffusivities in the x-direction and y-direction,
shown in figure 15, it is possible to determine the values of the decorrelation length
scales Lx and Ly , for which the individual particles’ velocities in the x- and y-
directions are uncorrelated, respectively equal to Lx ≈ 0.6–1.2 m and Ly ≈ 0.5–0.8 m.
At the prototype scale these length scales are equal to Lx ≈ 20–35 m and Ly ≈ 15–
25 m, which show a good agreement with the field results for a rip current oriented
normal to the shore (Johnson & Pattiaratchi 2004) of, respectively Lx ≈ 30–40 m
and Ly ≈ 20–30 m. The laboratory values slightly underestimate field ones, probably
because of the spatial limitation of the experimental domain.

4.4. Absolute diffusivity: parametric analysis

The present results, in terms of the absolute diffusivity values, can also be used
to determine relationships that have practical application for the computation of
nearshore flow mixing. These are, usually, aimed at estimating the absolute diffusivity
K (1) by means of general flow parameters. One of the formulae most frequently used
is that of Larson & Kraus (1991) for which an estimate K∗ of K (1) is given, for a flow
evolving over a planar beach, by

K∗ = CKubH (4.6)

in which CK is a dimensionless constant experimentally determined as CK = 0.15–0.50,
ub is the local/representative bottom friction velocity and H is the local/representative
wave height.

We seek to obtain a similar relationship valid for a complex topography like that
described in Part 1 and Part 2, in which the estimated value K∗ of the absolute
diffusivity K (1) is

K∗ = CKŨL̃ = CK

√
ghbH0. (4.7)
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Figure 17. Comparison between the values of the dimensionless function CKmeas determined
by (4.10) from the experimental measures and the computed values of (4.9), reported along
the x- and the y-axis respectively: (a) all experimental data; (b) best-fitting data.

Here the velocity scale Ũ is taken as the local wave celerity c =
√

ghb, with hb equal to

the water depth at the offshore breakwater toe, and the length scale L̃ is taken as the
offshore wave height H0. In order to account for topographic effects and wave propa-
gation we do not take CK as a constant, but as a dimensionless function of the type

CK = f (Ir , Lt/Lc) (4.8)

in which Ir ≡ s/
√

H0/L0 is the Iribarren number, used to take account of the influence
both of the wave period T0 through the wavelength L0 = gT 2

0 /(2π) and of the
bottom slope s. Moreover, the function CK depends on the gap dimension Lt , whose
asymptotic values Lt → 0 and Lt → ∞ respectively give the rip current configuration
and the single breakwater configuration. As shown in Part 2 the geometry, and
in particular the gap dimension, influence the circulation patterns, with different
behaviour for the single breakwater configuration and the rip current configuration,
respectively dominated by longshore and cross-shore flows. Hence the use of the
breakwater length Lc to make dimensionless Lt and the dependence on the distance
from the shoreline of the structures xb, implicitly accounted for by using the bottom
slope and the depth hb measured at the offshore toe of the breakwaters. Note that
the breakwater submergence, kept constant to typical design values both here and in
Parts 1 and 2, is also likely to influence K∗. However, in view of the available data
and to keep the analysis as simple as possible, this dependence is disregarded here
and its evaluation deferred to future studies.

In brief the proposed relationship is

CK = 3.5
√

Ir (Lt/Lc) ⇒ K∗ = 3.5
√

Ir (Lt/Lc)
√

ghbH0. (4.9)

Using the experimentally measured values of the absolute diffusivity K (1), we com-
pute the corresponding values of the dimensionless function CKmeas as

CKmeas = K (1)/(
√

ghbH0). (4.10)

The geometric data used for the analysis are those of table 1 and the experimental
values of the absolute diffusivity are reported in table 4.

A comparison between the values of the dimensionless function CKmeas determined
by (4.10) from the experimental measures and the values computed with (4.9) is shown
in figure 17. In panel (a) we show the result obtained using all the experimental data
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while panel (b) shows the best fitting. It is clear that, although with a relatively low
correlation coefficient (R2 = 0.60), the proposed relationship (4.9) represents all the
experimental data well, the angular coefficient being 1.12. Removal of the data per-
taining to irregular waves improves significantly the correlation coefficient (R2 = 0.75),
only moderately altering the angular coefficient which becomes 1.15.

Because of those results we believe that relationship (4.9) represents well the de-
pendence of the absolute diffusivity K (1) both on the offshore wave height and period
and on the different configurations, i.e. the single breakwater and the rip current
configurations. However, predictions of (4.9) might worsen when using dimensionless
parameters which differ too much from those here used.

Finally note that, owing to the limited fetches (100–300 m) of the coastal areas
considered, wind stresses are here taken as having a negligible effect on the mixing.
However, specific conditions may occur (e.g. strong winds flowing towards the
offshore) for which wind-induced mixing could be as important as turbulence-induced
mixing.

5. Conclusions
This work, the third in a series of studies on the nearshore dynamics due to

breaking-wave-induced macrovortices, focuses on the mixing flow features. On the
basis of laboratory experimental data the mixing of shallow flows occurring around
submerged structures used for coastal protection is investigated in close analogy
with that of two-dimensional flows. Analysis of particle statistics, both absolute and
relative, suggests the flows of interest are characterized by three main regimes.

During the first stages of evolution, i.e. before the waves reach the breakwaters
(microturbulence regime) an almost linearly growing absolute diffusivity K (1) ∝ t

characterizes a typical ballistic regime.
Once waves pass over the structures the flow turbulence is dominated, as also

described in Part 2, either by waves and longshore mixing (single breakwater
configuration) or by rip-induced shearing (rip current configuration). In this inter-
mediate regime or growth regime relative statistics have distinct features that depend
on the topography. In the case of isolated structures an exponential growth like
〈D2〉 ∝ exp(β1/3t) characterizes the relative dispersion while the relative diffusivity
undergoes a quadratic growth of the form K (2) ∝ D2. Both results suggest an enstrophy
cascade due to stretching of small-scale vortices by the action of the largest vortices
generated at the breakwater edges. On the other hand, neighbouring breakwaters
induce intense rip currents which dominate the flow behaviour. In fact a polynomial
growth like 〈D2〉 ∝ t3 characterizes the relative dispersion while the relative diffusivity
grows like K (2) ∝ D4/3. This 4/3-growth is similar to that recently found in the field
in the case of rip currents (Johnson & Pattiaratchi, 2004).

A final regime characterizes the flow. In this equilibrium regime the flow features
are similar to those of a typical Brownian regime and a constant relative diffusivity
is found which approximately doubles the absolute diffusivity: K (2) ∼ 2K (1).

As well as this classification, which we found rather robust, other results important
for practical applications have been obtained. It is clear that: (i) short waves induce
smaller diffusivities than long waves, (ii) the large longshore dispersion induced by
isolated structures forces a larger diffusivity than that due to rip currents: K

(1)
single ∼

(1.5–3.5)K (1)
rip .
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An estimate K∗ has also been obtained for K (1) as function of the main wave
(H0, L0) and topographic features (Lt, Lc, s, hb)

K∗ = 3.5
√

Ir (Lt/Lc)
√

ghbH0 (5.1)

which is proposed for use in nearshore water quality computations.
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