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ABSTRACT

This paper is concerned with the expected configuration in space and time surrounding extremely high
crests in a random wave field, or, equivalently, the mean configuration averaged over realizations of extreme
events. A simple, approximate theory is presented that predicts that the mean configuration {(x +r,t + 7)
surrounding a crest at (x, #) that is higher than vyo (where ¢ is the overall rms surface displacement and ¥ > 1),
when normalized by {(x,t) for { > o, is the space-time autocorrelation function p(r, ¢)
=¢x,0D4(x+r, 1+ 1) /?” for the entire wave field. This extends and simplifies an earlier result due to Boccotti
and is consistent with a precise calculation of the one-dimensional case with ¥ = 0, involving the time history
of measurements at a single point. The results are compared with buoy data obtained during the Surface Wave
Dynamics Experiment and the agreement is found to be remarkably good.

1. Introduction

Extreme wave events, giant or rogue waves, have
been responsible for many marine accidents, some in-
volving loss of life. They occur under storm conditions
when the waves are already high, perhaps amplified
further by refraction in currents, such as the Agulhas
Current off eastern South Africa or the Gulf Stream.
The very highest individual waves, the rogue waves,
seem to appear with little warning and may be regarded
as the statistical extremes in an already rough random
sea, occurring sporadically in space and time. Although
the occurrence of these events may be random, it is of
interest to inquire, as does Boccotti (1989), whether
in the vicinity of extreme wave crests there is any pre-
dictable, expected configuration of the sea surface, any
*“organized structure” of the surface in space and time
with which a mariner and his ship must cope.

Any such “organized structure” in a random sea (or
random function in general) is not of course deter-
ministic in the usual sense, but the selection of regions
surrounding extreme maxima does extract a regularity
from the randomness of the field as a whole. Suppose,
for example, we have an extensive record {(x, ) of
surface displacement in a random wind-generated wave
field as a function of position and time. From this rec-
ord, let us pick out the high wave crests, extract in-
stances of wave maxima lying between {,, and ¢,
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+ dm, where {,, is a large multiple of the rms wave
height, and consider the nature of the surface displace-
ments surrounding these maxima. At the maxima, the
surface displacements are all in essence the same, {,.
Close to the maxima, the surface displacements { < {,,..
The expected or mean surface displacement is some-
what less than {,, while still being very large, and the
variance about this mean is small. As the distance in
space or time from the maxima increases, the expected
value of { decreases, and the variance among different
realizations increases until ultimately, far from the ex-
treme events, the order is lost, the expected position
of the free surface is simply the mean water level, {
= 0, and the variance is that of the overall wave field.
This paper is concerned with the question, Given the
existence of an extreme wave crest, what is the expected
surface configuration surrounding this crest or, equiv-
alently, the mean over many realizations of extreme
events, and what is the distribution of variance about
this mean? The question seems to have been asked first
by Boccotti of the Universita di Reggio Calabria in a
series of papers (Boccotti 1981, 1984, 1988, 1989) that
may not have received the attention they deserve.

As long as the wave field can be regarded as a linear
superposition of components with random phase, hav-
ing been generated over a large area in an uncorrelated
way, the displacement of the sea surface can be regarded
as a random Gaussian process; this description has been
used with conspicuous success by Longuet-Higgins
(from 1952 to 1984) and by others. However, it is less
likely to be accurate in a consideration of extreme crests
that may or may not be breaking, and whose profiles
in either event are likely to be distorted by nonlinear
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dynamical processes. Longuet-Higgins (1963 ) showed
that these processes overall lead to a Gram—Charlier
distribution for the surface elevation at a single location,
with a positive skewness proportional to the square of
the wave slope, but the increased accuracy of this spec-
ification is offset by greatly increased complexity. We
therefore suppose here that {(x, f) is Gaussian and
defer the questions of local nonlinear effects for later
study.

Even with this assumption, the calculation of the
expected surface displacement ¢(x, ), given that at
the origin, say, ¢ has a maximum whose value ¢, is a
substantial multiple of the rms value ¢ = ({?)'/?, is
extremely cumbersome and involves the higher mo-
ments of the spectrum, which are very sensitive to the
small-scale, high-frequency cutoff. This sensitivity re-
flects the fact that in a broad spectrum, a large domi-
nant wave may have near its crest a number of short
gravity or capillary waves with many local maxima. In
a consideration of the structure of the highest dominant
waves, these local maxima are irrelevant, as Longuet-
Higgins (1984) points out in his discussion of group
wave statistics, and should be filtered out. The calcu-
lation of {(¢) surrounding high maxima in a simple
time series is given below for the case of a narrow spec-
trum, but the two- and three-dimensional analogues
are far more cumbersome and have not been carried
through.

One of Boccotti’s principal results, restated some-
what, is the following. Let p(7) represent the autocor-
relation function

p(r) =T+ 1)/

of a Gaussian wave field and let 7 = 7' be the time
delay at which the correlation function attains its first
minimum, Suppose that (i) at time 7 = 0 the surface
displacement { = B, large compared with ({*)'/?, and
¢ =0and (ii) at time 7', { = rg8. The expected surface
configuration {(7) is then given by

()
8

=[1=(p(#)*1 " [p(r) — p(7)p(r — 7)
+ {p(r — 1) — p(7)p(7)}r]. (1.1)

Although Boccotti’s derivation of (1.1) involves no
approximations except that of a Gaussian field, the im-
plicit assumption that when § is large, the instant 7
= ( necessarily corresponds to a maximum (with { < 0)
is in fact equivalent to a narrow spectrum approxi-
mation, as will be seen in more detail later. Boccotti
extends (1.1) to express the expected space-time con-
figuration of the surface surrounding a high maximum
at x = 0, t = 0 by replacing p(7) by the space-time
correlation function p(x, 7), retaining the specifications
§(0,0)=4,$(0,0)=0,and {(0, 7') = rB. In general,
these specifications do not define a maximum in { at
(0, 0) since in addition, one needs V{ =0, {,,, {,, <0
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and {{,y — ({x,)? > 0. Nevertheless, in the limit where
B/(£%)"/2 is very large, one might safely conjecture that
points satisfying Boccotti’s conditions, which occur
rarely, must be close to true maxima. To illustrate his
result Boccotti calculates the space-time autocorrela-
tion by inverting the wave spectrum using the JON-
SWAP spectrum as an example, defines a wave group
surrounding extreme events by the extension of (1.1),
and gives numerical examples (Boccotti 1988) of the
propagation, reflection, and diffraction of such a group.

In this paper, we return to the original question of
the expected configuration of extreme wave events and
the fluctuations about this configuration. A simple ap-
proximate method is given that provides an expression
for the configuration in space-time, {(X, 7) surround-
ing an extreme maximum at x = 0, 7 = 0, which is
simpler than (1.1) but in essence equivalent to it. This
approximation is confirmed by a detailed calculation
of the more restricted one-dimensional problem of the
form of {(7) surrounding extreme maxima in the nar-
row spectrum limit. Finally, these expressions are
compared with buoy data obtained in the Surface Wave
Dynamics Experiment (SWADE: Weller et al. 1991)
during the storms of October 1990 and are found to
be surprisingly accurate.

2. A simple approximation

Rather than seeking the precise points where real-
izations of {(x, t) attain maxima, let us consider those
regions where { = v({?)'/? = yo, where v is (formally)
a number large compared with unity. For a given v,
at any instant these regions consist of isolated islands,
each containing at least one maximum, and as v in-
creases, the islands shrink, converging towards the
maxima and then disappearing. Our interest is in large
values of v, where there are rare, small, isolated islands
in which { = o and allows us to pose the question
thus: Given that at x, ¢, say, { > o where 7 is large,
what is the expected distribution of { in the vicinity,
and what is the standard deviation about this expected
value? The expected distribution in space and time de-
scribes the configuration and evolution of the extreme
wave events and the standard deviation is the random
uncertainty.

Accordingly, let {; = {(x,)and & = {(x+r,t+ 7).
From the theorem of conditional probability, the dis-
tribution of {, given that {; = o is, in the usual no-
tation,

p(&16 = vo) = p(&, §1 = ve)/p(§ = vo).

In a Gaussian process, the two-point probability density
function

p(§1, ) = [27a(1 — p*)'2]7!

G206+ 8)
20%(1 — p%)

Xexp[ }, (2.1)
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where p(r, 7) is the correlation function between ¢,
and {;. Then

P(f‘z, g‘l
= [* pts, tdsi,

= vya)

_ exp(—§3/20%) (= <ol — (51 = pb)? dt
2ra?(1 — p2)12 ), 20%(1 — p2) | "

since {1 — 206152 + 3= (51 —pf)> + (1 — p?)$3.
The integral can be simplified by a change of variable,

and
2 2 0 ’
p(6, 1 > yo) = 2R S2/207) f edu, (2.2)
Uo

V2o
where
°o = Yo —p$
°el2(1- )7
Also,
(& = vyo) = V_a . ex p( )ds“n,
= 7 f(y), , 2.3
V(2_7r)ye f('Y) say ( )

where the function f(7y), illustrated in Fig. 1, is about
0.9 for realistically important values of . Its asymptotic
form (Abramowitz and Stegun 1964, p. 298) is

SY)~1—7243y— ... for y> 1. (24)
Thus, from (2.2) and (2.3),
p(&)6 = vo)
el B
= —= exp|l — =S e ¥du. (2.5)
oV f(v) 202 )
-0 ’ . .
8, 3 % 5 6
Yy

F1G. 1. The function f() of Eq. (2.3).
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The expected value of {; = {(x + r,t+ ), given
that {, = {(x, 1) = vo, is then

&= f " op(alh = vo)ds
= yop[f(y)]™" |

after an integration by parts and some reduction. In
particular, when r = 0, ¢ = 0, the average helght of
those waves higher than yo is yo[f(7v)]™', since the
autocorrelation functlon 1s unity, so that

(2.6)

{(x+lf,t+7')

f(x, t)§‘>‘yv (2.7)

= p(r, 7).

The expected profile of the water surface surrounding
extreme events, normalized with respect to the extreme
wave height, is simply the overall space-time autocor-
relation function of the sea surface; the simplicity and
generality of this result is somewhat surprising.

The variance about this mean among different re-
alizations of extreme maxima can also be found simply.
From (2. 5),

E=f_ S3p(6lh = yo)dh,

(e:) [ & exp(——) f " e dudts,

- %5}3) o(y, p), (2.8)
where
1o = [ e f: e~ dudy,
and

y = V2py
2= )7

The integral can be evaluated by differentiation with
respect to the parameter v, and it is found that

dI V; 2.2 2 - 2
—_— = + (1 = pH)le .
Since I - 0 as y = o0,
Vr
I=—=¢e1" + 7 ()
W2 {vp*+ v }s

and so

2 _ 2'7'2"’2 ] 29
fz 6{f(7)+1 (.)
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Hence,

- _ 2.2
(§2—§2)2=§%—f22:02[1—~”f’2’ (l—f)}

~ o2 {l —p*(1l -2} for y>1, (2.10)

from (2.4).

Near the crests of extreme waves with { = y¢, where
p = 1, the variance about the mean is very small, ap-
proximately v ~2¢2, where o is the variance or mean
square displacement of the wave field as a whole. The
crest heights of almost all waves with { = vo, v > 1
are only slightly greater than ¢ because of the rapid
drop-off of the probability distribution. With increasing
distance (in space or time) from the crest, the variance
increases but remains less than or equal to ¢? as the
envelope of the correlation function decreases. As vy
increases, we consider rarer and more extreme wave
events, and the random variations from the mean
among such events become an even smaller fraction
of the maximum wave height.

Boccotti’s (1989) results are couched in terms of the
asymptotic limit ¥ = oo, and he writes of “the quasi-
determinism of the highest waves” in a random sea.
His expression ( 1.1) is considerably more complicated
than our (2.7), which reduces to his (1.1) on the rec-
ognition that, at a given position with r = 0, since {is
Gaussian, {(7), like p(7), is an even function of 7.
Thus,

=[1 = (p(7)’1" [p(7) = p(r")p(r — 7')
+ {p(r —7) — o(v)p(7)}r],
and by comparison with (1.1) it is found that
{r=p(")}plr =)= p(-=7=7)} =0

for all 7. The second factor is not zero for all 7 so that
r = p(7'). Substitution into (1.1) gives

S0 _
8

which is the limit of (2.6) or (2.7) as ¥ = oo and
f(v) = 1. Despite the somewhat different formulations
of the question, the asymptotic results are the same—
as our intuition might have suggested.

p(7),

3. A more precise calculation for {(7)

The principal limitation in the approximate method
of the previous section is that the locations of extreme
maxima are defined only as being in the “islands” for
which { = yo. When # is large, the islands are very
rare and very small so that there is little uncertainty in
the definition of the point where r = 0; 7 = 0; but when
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v is only moderate, the “islands™ are larger, and the
expressions found for nominal values of r and 7, in
fact, represent averages in the space or time domain
over intervals equal to the size of each island. A more
precise calculation is the direct one: given that at time
tm, Say, {(f) has a local maximum with {(¢,) = vo;
then what is the expected value of {(¢,, + 7)? This
calculation, even for a single variable, is-a good deal
more cumbersome than the approximate method for
estimating ¢ as a function of both space and time, but
it does serve as a check on the asymptotic results for
v > 1, as well as a comparison benchmark for the ap-
proximation at the moderate values of v where its in-
terpretation begins to become fuzzy. .

Let §i = {(¢t + 7), & = §(8), & = §(¢), and §
= ¢(t). The probability density function of {(z,, + 7),
assuming that {(t,,) is a maximum with {(¢,,) = vg, is

p(§(tm + 7))
=) 0
f dfzf_ P(§1, §2, 3 =0, &)l Sal dia

=5 0 , (3.1)
f dfzf_ P($2, 53 =0, $a)l$al dia

where p({1, §2, §3, §4) and p($3, §3, §4) are the joint
probability density functions for the variables named.
In a Gaussian wave field,

(52, 5 =0, &) = 2n) 32 {my(memy — m})} /2
mals + 2mybs + mof‘zt} . (32)

x —_
e"p{ 2(mom, — m3)

where m; represents the ith moment of the spectrum.
Also,

p(g‘la {2, ;3 = 09 {4)

= (2m) 72 |My| 71?2 exp[—

2 2 M,-,-f,-s}, (3.3)

hj=1,2,4

where M;; is the matrix inverse of

B 3 %y(r) |
my oy - A0 2D
W) My 0 —m,
D, = ,
AT _n) m, 0
or
(T

(3.4)

with Y(7) = $(O¢(+ 7) = 2p(7). The expected
value of {(t,, + 7), given that {(¢,,) is a maximum
larger than vya, is therefore

§(tm +7) = f_w Go{{(tm + 7)}d6i. (3.5)
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Evaluation of the integrals in closed form does not
seem to be possible in general, but when the spectrum
is narrow in the sense that A/y2 < 1 or ¥y2/A > 1,
where A = (mgm4/m3) — 1, it is found that the integral
of the numerator of (3.1) involved in (3.5) is

yVm,

621,/ foo
RS -y¥2 _ 2 -1722 ¥ -u?
Beme W7 Qulm) 225 | e,

(3.6)

with a relative error of order (VA/v) exp(—v2/24A).
The details of the integrations can be obtained from
the authors by request. The numerator can likewise be
evaluated as

Vm,

e "2{ 1+ O((VA/v) exp—v2/2A)}.

2w My
(3.7)
Since the integral in (3.6) can be expressed as
1 2
—=e "2 f(y),
yV2
we obtain from (3.5), (3.6), and (3.7) that
- o> 8%(r
fim 79 = yop(r) - LTI (5
Ym; or

Now,
my = —a*[d*p/d1*)o,

so that the mean height of the maxima higher than v,
obtained by putting 7 = 0 in (3.8), is

Ft,) = w[l + f‘Z)],
Y
and
i 1) _ @[, , fO)
E(tm) {(T) 72 b<0)H1+ 72] ’

(3.9)

which agrees with the approximation (2.7) (for the
restricted case r = 0) to the lowest order in v 2.

The variations of {(¢,, + 7) about the mean among -

different realizations of extreme maxima can likewise
be calculated when y2/A > 1:

Pt = [ St + 0},

and

[g‘(tm +7)— g-:(lm+ T)]2

Pt +7) — St ¥ 1)
4

211 — p2()1 = 2

1 = ()] = X

i
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dp\? d*p .
x[(;) +20 2501 =100
L (Y,
+72m2(d12) ) ('y)}. (3.10)

The approximate theory of section 2 does not, of

course, provide the terms in (3.10) involving time

derivatives of p, of which the first is_the most

important when 1 is large. In either case, ({ — {)? is

of order v "2 when 7 = 0 and approaches o2 as the time

interval increases and p(7) = 0. As v increases the

rms variations about the mean become a decreasing -
fraction of the maximum elevation itself,

4. Comparison with buoy data from SWADE

The results of the previous two sections have been
compared with buoy measurements obtained during
the Surface Wave Dynamics Experiment at the location
Discus-North (38.37°N, 73.65°W, NDBC station
44001) during a time interval of 6 hours beginning at
1916 (UTC) on 26 October 1990. The wind speed av-
eraged 19.6 m s~'. The buoy was a discus of 3-m di-
ameter (Steele et al. 1992), modified as described by
Weller et al. (1991). The vertical acceleration of the
buoy was digitized at 1 Hz and recorded on board. The

~data were later filtered numerically to exclude periods

99-5 —

99 —

(pet)

I

50

Pi(Lie)> V)

1o

FIG. 2. Cumulative probability density function
of the surface displacement.
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FiG. 3. Mean profiles of surface displacement around wave crests higher than 2.0s in the four
datasets—the dotted curves being for times following the crest and the dot—dash lines preceding
them. The solid curve is the expression (3.9) calculated from the overall autocorrelation function

for surface displacement.

longer than 25 sec and then integrated twice to provide
{(t) at 1 Hz. Four sequences of data, each ninety min-
utes long, were chosen to represent reasonably steady
wind and wave conditions for evaluation of the theo-
retical results. The surface elevations measured by the
buoy were closely Gaussian. Figure 2 shows a repre-
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sentative cumulative pdf in which the departures from
a Gaussian distribution are most evident as a slight
deficiency of very low values (deep troughs). Each of
the four data segments, labeled wavedyn 1 to 4, con-
tained about 750 wave crests, of which about 10% were
higher than 2¢ and 1% higher than 3¢. This is consistent
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FIG. 4. As for Fig. 3 but for wave crests higher than 2.5¢.
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F1G. 5. Mean profiles of surface displacement at time 7 before and after points where
¢(¢) > 20. The continuous curve represents the approximation (2.7).

with a value of the spectral width parameter ¢ of Cart-
wright and Longuet-Higgins (1956) of about 0.6 and
of our A of 1.0. The relative errors in the expressions
(3.6) and (3.7) are thus of order 5%.

__The autocorrelation function p(7) = {(2)§(t + v)/
¢? was calculated for each dataset. The records were
then searched for maxima higher than 20, the time of
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occurrence being denoted as #,,, and the mean surface
displacement in the vicinity of these maxima {(z,, + 7)
was found as a fraction of {(¢,,) by averaging over this
ensemble. The resulting average configurations are
shown in Fig. 3, the dotted line indicating 7 > 0 and
the dot-dash line 7 > 0, preceding the maxima. The
expected configuration calculated from p(7) using the
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FIG. 6. As for Fig. 4 but for {(z) > 2.50.
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FiG. 7. Predicted and measured variances about the mean profiles
surrounding wave crests higher than 2¢.

narrow spectrum approximation (3.9) is shown as the
solid line; the agreement is quite surprising in view of
the relative smaliness of «y (i.e., 2). As «y increases, the
theoretical expressions are expected to become more
accurate, but the statistics deteriorate since fewer such
maxima occur in records of finite length. Correspond-
ing curves for vy = 2.5, shown in Fig. 4, exhibit more
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scatter since now the mean profiles are averaged over
only 15-20 events, and the standard deviation in the
estimate of the mean is larger. .

Figures 5 and 6 compare the simple approximate
expression (2.7), (with r = 0) with averaged values of
¢(t + 7) given that {(¢) > o, and the results are found
to be almost indistinguishable from those of Figs. 3
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FIG. 8. Measured variances around regions where {(¢) > 2.0¢
compared with the approximate expression §2.
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FIG. 9. Profiles surrounding the highest individual wave crests in each of the datasets. In wavedyn
1 on the upper left, the crest height was 4.66 m above mean water level, corresponding to v
= 3.74. On the upper right, {,, = 3.86 m, ¥ = 3.26; lower left ¢,, = 3.88 m, { = 3.31; and lower
right {,, = 3.58 m, ¥ = 3.05. The expected profile is the solid curve, with +¢ the dotted curves;
the individual measured profiles are the dot-dash curves.

"and 4. The expected variances about the mean profiles,

calculated from Eq. (3.10) are shown in Fig. 7 for v
= 2.0, together with those measured at points before
and after the maxima. The measured variances ap-
proach those of the wave field itself somewhat more
slowly than the theory would suggest; the scatter is a
good deal larger when v = 2.5 because of the smaller
sample size. Figure 8 shows corresponding variances
at time ¢ + 7 given {(¢) > vyo (rather than being a
precise maximum); these seem to be generally some-
what larger than in the previous case as one might pos-
sibly have anticipated.

As we examine ever higher crests, the analysis pre-
dicts that the expected root-mean-square variation
about the expected value in the vicinity of the crests
becomes an ever smaller fraction of the crest height.
To examine this, we selected the largest individual wave
crests in each record; these are shown as the dot-dash
lines in Fig. 9. The solid line represents the expected
profile calculated from the correlation function, and
the dotted lines give the predicted standard deviation.
In each case, the shape of the highest wave itself is
predicted with good fidelity, though neighboring waves
seem to be underpredicted. On the other hand, the
agreement between these individual realizations and
the theory is best for the very highest wave with
= 3.74 and less persuasive for the highest wave in
wavedyn 4 for which vy = 3.05.
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